Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/4390
Title: | Modeling the Progressive Axial Crushing of Foam-Filled Aluminum Tubes Using Smooth Particle Hydrodynamics and Coupled Finite Element Model/Smooth Particle Hydrodynamics | Authors: | Aktay, Levent Johnson, Alastair F. Toksoy, Ahmet Kaan Kröplin, Bernd Helmut Güden, Mustafa |
Keywords: | Energy absorption Smooth particle hydrodynamics Coupling phenomena Foam-filled tubes Polystyrene foam |
Publisher: | Elsevier Ltd. | Source: | Aktay, L., Johnson, A. F., Toksoy, A. K., Kröplin, B. H., and Güden, M. (2008). Modeling the progressive axial crushing of foam-filled aluminum tubes using smooth particle hydrodynamics and coupled finite element model/smooth particle hydrodynamics. Materials & Design, 29(3), 569-575. doi: 10.1016/j.matdes.2007.03.010 | Abstract: | As alternatives to the classical finite element model (FEM), a meshless smooth particle hydrodynamics (SPH) method, in which the discrete particles represent a solid domain, and a coupled FEM/SPH modeling technique were investigated for the numerical simulation of the quasi-static axial crushing of polystyrene foam-filled aluminum thin-walled aluminum tubes. The results of numerical simulations, load-deformation histories, fold lengths and specific absorbed energies, were found to show satisfactory correlations with those of experiments and FEM. The results further proved the capabilities of the SPH Method and coupled FEM/SPH modeling technique in predicting the crushing behavior of foam-filled thin-walled tubes. | URI: | http://doi.org/10.1016/j.matdes.2007.03.010 http://hdl.handle.net/11147/4390 |
ISSN: | 0264-1275 1873-4197 |
Appears in Collections: | Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
12
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
13
checked on Dec 21, 2024
Page view(s)
290
checked on Dec 23, 2024
Download(s)
374
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.