Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2317
Title: | Cure Kinetics of Vapor Grown Carbon Nanofiber (vgcnf) Modified Epoxy Resin Suspensions and Fracture Toughness of Their Resulting Nanocomposites | Authors: | Seyhan, Abdullah Tuğrul Sun, Z. Deitzel, J. Tanoğlu, Metin Heider, D. |
Keywords: | Nanostrcutures Polymers Fracture toughness Dynamic scanning calorimetry |
Publisher: | Elsevier Ltd. | Source: | Seyhan, A.T., Sun, Z., Deitzel, J., Tanoğlu, M., and Heider, D. (2009). Cure kinetics of vapor grown carbon nanofiber (VGCNF) modified epoxy resin suspensions and fracture toughness of their resulting nanocomposites. Materials Chemistry and Physics, 118(1), 234-242. doi:10.1016/j.matchemphys.2009.07.045 | Abstract: | In this study, the cure kinetics of Cycom 977-20, an aerospace grade toughened epoxy resin, and its suspensions containing various amounts (1, 3 and 5 wt.%) of vapor grown carbon nanofibers (VGCNFs) with and without chemical treatment were monitored via dynamic and isothermal dynamic scanning calorimetry (DSC) measurements. For this purpose, VGCNFs were first oxidized in nitric acid and then functionalized with 3-glycidoxypropyltrimethoxy silane (GPTMS) coupling agent. Fourier transform infrared (FTIR) spectroscopy was subsequently used to verify the chemical functional groups grafted onto the surfaces of VGCNFs. Sonication technique was conducted to facilitate proper dispersion of as-received, acid treated and silanized VGCNFs within epoxy resin. Dynamic DSC measurements showed that silanized VGCNF modified resin suspensions exhibited higher heat of cure compared to those with as-received VGCNFs. Experimentally obtained isothermal DSC data was then correlated with Kamal phenomenological model. Based on the model predictions, it was found that silanized VGCNFs maximized the cure reaction rates at the very initial stage of the reaction. Accordingly, an optimized curing cycle was applied to harden resin suspensions. Fracture testing was then carried out on the cured samples in order to relate the curing behavior of VGCNF modified resin suspensions to mechanical response of their resulting nanocomposites. With addition of 1 wt.% of silanized VGCNFs, the fracture toughness value of neat epoxy was found to be improved by 12%. SEM was further employed to examine the fracture surfaces of the samples. | URI: | http://dx.doi.org/10.1016/j.matchemphys.2009.07.045 http://hdl.handle.net/11147/2317 |
ISSN: | 0254-0584 0254-0584 1879-3312 |
Appears in Collections: | Mechanical Engineering / Makina Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
25
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
24
checked on Oct 26, 2024
Page view(s)
318
checked on Dec 16, 2024
Download(s)
376
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.