Show simple item record

dc.contributor.authorBüyükaşık, Engin
dc.contributor.authorChristian, Lomp
dc.date.accessioned2016-09-20T07:22:07Z
dc.date.available2016-09-20T07:22:07Z
dc.date.issued2008-10
dc.identifier.citationBüyükaşık, E, and Christian, L. (2008). On a recent generalization of semiperfect rings. Bulletin of the Australian Mathematical Society, 78(2), 317-325. doi:10.1017/S0004972708000774en_US
dc.identifier.issn0004-9727
dc.identifier.urihttp://doi.org/10.1017/S0004972708000774
dc.identifier.urihttp://hdl.handle.net/11147/2150
dc.description.abstractIn a recent paper by Wang and Ding, it was stated that any ring which is generalized supplemented as a left module over itself is semiperfect. The purpose of this note is to show that Wang and Ding's claim is not true and that the class of generalized supplemented rings lies properly between the classes of semilocal and semiperfect rings. Moreover, we propose a corrected version of the theorem by introducing a wider notion of 'local' for submodules. © 2008 Australian Mathematical Society.en_US
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionof10.1017/S0004972708000774en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneralized supplemented modulesen_US
dc.subjectSemiperfect ringsen_US
dc.subjectSupplemented modulesen_US
dc.subjectw-local modulesen_US
dc.titleOn a recent generalization of semiperfect ringsen_US
dc.typearticleen_US
dc.contributor.authorIDTR130906en_US
dc.contributor.institutionauthorBüyükaşık, Engin
dc.relation.journalBulletin of the Australian Mathematical Societyen_US
dc.contributor.departmentIzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume78en_US
dc.identifier.issue2en_US
dc.identifier.startpage317en_US
dc.identifier.endpage325en_US
dc.identifier.wosWOS:000261417000010
dc.identifier.scopusSCOPUS:2-s2.0-55249090207
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record