Continuum Damage Mechanics Based Modelling of Laminated Fiber Reinforced Composites

dc.contributor.advisor Özdemir, İzzet
dc.contributor.author Yaşayanlar, Süleyman
dc.date.accessioned 2023-10-11T08:23:13Z
dc.date.available 2023-10-11T08:23:13Z
dc.date.issued 2023-06
dc.description Thesis (Doctoral)--İzmir Institute of Technology, Civil Engineering, Izmir, 2023 en_US
dc.description Includes bibliographical references (leaves. 81-91) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract Multiscale modeling, which merges the worlds of macro- and micromechanics, is establishing itself as a viable alternative to experimental procedures in the characterization of the mechanical behavior of complex materials. Advanced composite materials are a perfect field for the application of such modeling concepts. This thesis focuses on failure mechanics of fiber reinforced composites and addresses the modeling of failure processes at both micro- and macro-scales. First, a novel damage-plasticity model is developed and implemented within finite element software Abaqus as a user defined element. It is verified that the model gives mesh objective results, and the model is calibrated with experimental stress-strain curves from the literature. Representative volume elements (RVEs) based micro-mechanical models are constructed where damage-plasticity model and cohesive surfaces are employed to capture failure in matrix and matrix-fiber interface, respectively. A sufficiently large number of RVE analysis results are used to generate discrete failure envelopes. These failure envelopes are compared with continuous ones resulting from Puck's criteria. Furthermore, the influence of microstructural imperfections is investigated systematically, and an extended version of Puck's criteria is assessed from a micro-mechanical perspective as well. In the last part of the thesis, a macroscopic model is proposed which combines Puck's criteria with localizing implicit gradient damage model. It is shown that the model provides consistent results such that the failure angle obtained at material point and the orientation of the emerging macroscopic damage band match provided that sufficiently small internal length scale parameter is used. en_US
dc.description.abstract Çok ölçekli modelleme, mikromekanik ve makromekanik ölçekleri birleştirmektedir. Bu sebeple, kompleks malzemelerin özelliklerinin belirlenmesinde deneysel prosedürlere iyi bir alternatif olmaktadır. Kompozit malzemenin modellenmesi çok ölçekli modelleme konsepti için uygun bir alandır. Bu tez, fiberle güçlendirilmiş kompozitlerin kırılma mekaniğine hem mikro ölçekte hem de makro ölçekte yoğunlaşmaktadır. İlk olarak mikro ölçekli modellerde kullanılmak üzere hasar-plastisite modeli geliştirilmiş ve sonlu elemanlar programı Abaqus'e kullanıcı elemanı olarak entegre edilmiştir. Modelin ağdan bağımsız sonuçlar verdiği gösterilmiş ve model parametreleri literatürden elde edilen farklı yükleme durumlarındaki deneysel stres-gerinim eğrileri ile kalibre edilmiştir. Temsili hacim elemanları (THE) kullanılarak mikromekanik modeller oluşturulmuştur. Bu modellerde hasar-plastisite modeli ve yapışkan kontak yüzeyleri, epoksi ve epoksi-fiber arayüzlerindeki hasarı takip etmek için kullanılmıştır. Çok sayıda THE analizi yapılmış ve bunların sonuçlarıyla kesikli kırılma zarfları oluşturulmuştur. Bu kırılma zarfları Puck'ın kırılma teorisinden elde edilen sürekli kırılma zarfları ile karşılaştırılmıştır. Ayrıca, mikro ölçekteki kusurların, örneğin epoksi-fiber ayrışması gibi, etkisi sistematik bir şekilde incelenmiş ve Puck'ın geliştirilmiş kırılma teorisinin mikromekanik ölçekteki başarısı araştırılmıştır. Tezin son kısmında makromekanik ölçeğe geçilmiştir. Bu kısımda, Puck'ın kırılma teorisini ve lokalize olan örtük gradyant hasar yaklaşımını birleştirerek kompozitlerin ilerleyici kırılma analizi yapabilecek bir model oluşturulmuştur. Model Abaqus'e kullanıcı elemanı olarak entegre edilmiştir ve modelin başarısı literatürden alınan tek eksenli sıkıştırma testi ile araştırılmıştır. Modelin malzeme noktalarında tahmin ettiği kırılma açıları ve makro ölçekte görülen hasar dağılımının tutarlı olduğu anlaşılmıştır. Bu tutarlılığı sağlamak için eleman boyutunun ve içsel uzunluk ölçeğinin uygun seçilmesi gerektiği görülmüştür. en_US
dc.format.extent xi, 104 leaves
dc.identifier.uri https://hdl.handle.net/11147/13876
dc.language.iso en en_US
dc.publisher 01. Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fiber reinforced composites en_US
dc.subject Puck’s criteria en_US
dc.subject Representative volume elements en_US
dc.subject Damage mechanics en_US
dc.title Continuum Damage Mechanics Based Modelling of Laminated Fiber Reinforced Composites en_US
dc.title.alternative Fiberle Güçlendirilmiş Çok Katmanlı Kırılmanın Hasar Mekaniği ile İncelenmesi en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-2579-6426
gdc.author.id 0000-0002-2579-6426 en_US
gdc.author.institutional Özdemir, İzzet
gdc.coar.access open access
gdc.coar.type text::thesis::doctoral thesis
gdc.description.department Thesis (Doctoral)--İzmir Institute of Technology, Civil Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.yoktezid 812854 en_US
relation.isAuthorOfPublication d295e2ad-9de0-44c6-968a-bf28a19cbcb4
relation.isAuthorOfPublication.latestForDiscovery d295e2ad-9de0-44c6-968a-bf28a19cbcb4
relation.isOrgUnitOfPublication 9af2b05f-28ac-4020-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4020-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10552084.pdf
Size:
7.04 MB
Format:
Adobe Portable Document Format
Description:
Doctoral Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: