Bioengineering / Biyomühendislik
Permanent URI for this collectionhttps://hdl.handle.net/11147/4529
Browse
Browsing Bioengineering / Biyomühendislik by Publication Category "Kitap Bölümü - Uluslararası"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Book Part Astragalus sp.(CRC Press, 2023) Yakuboğulları, Nilgün; Bedir, ErdalAstragalus is one of the largest genera in Turkey and is widely distributed worldwide. The phytochemical studies on Turkish Astragalus species have presented 112 new compounds besides 63 known compounds. The overriding basis for biological activity studies is the traditional use of Astragalus roots in the Southeastern Region of Turkey to cure leukemia. As the isolated compounds did not show cytotoxic properties, a hypothesis that the biological activity of Astragalus saponins might result from the activation of the immune system came up. While Astragalus polysaccharides are used for their strong immunomodulatory activities in Chinese medicine, there are a few articles revealing the immunostimulatory properties of Astragalus saponins. Here, we summarized the compounds isolated from Turkish Astragalus species and concentrated on the immunomodulatory activities of these compounds to put forward their potential as saponin-based vaccine adjuvants. © 2024 selection and editorial matter, Ufuk Koca-Caliskan; individual chapters, the contributors.Book Part Citation - Scopus: 2Bioprinting of Hydrogels for Tissue Engineering and Drug Screening Applications(Elsevier, 2022) Özmen, Ece; Yıldırım, Özüm; Arslan Yıldız, AhuIn tissue engineering, the 3-dimensional (3D) bioprinting method that enables the production of 3D structures by combining bioinks and cells has become one of the most promising technique. Over the last few years, 3D cell culture models gained importance in the development of disease model and drug development studies. The successful production of the 3D structures by 3D bioprinting mostly depends on the properties of the bioink to be used. Hydrogels, which are natural or synthetic polymers, are generally preferred as bioink materials with their high swelling ability, biocompatibility, biodegradability, and easy gelation ability. The convenience of hydrogels for varied bioprinting applications make them proper bioink materials for bioprinting of artificial tissues, tumor models, and tissue grafts. Bioprinting of functional tissues is successfully performed for years, and hydrogels are utilized as bioink in bone, vascular, neural, cartilage, cardiac, skin tissue engineering, and drug screening. In this chapter, bioprinting methodology, bioinks, hydrogel bioinks, and their applications are discussed in detail. © 2023 Elsevier Inc. All rights reserved.Book Part Citation - Scopus: 9Differential Expression of Toxoplasma Gondii Micrornas in Murine and Human Hosts(Springer, 2016) Allmer, Jens; Saçar Demirci, Müşerref Duygu; Bağcı, CanerMicroRNAs are short RNA sequences involved in post-transcriptional gene regulation. MicroRNAs are known for a wide variety of species ranging from bacteria to plants. It has become clear that some cross-kingdom regulation is possible especially between viruses and their hosts. We hypothesized that intracellular parasites, like Toxoplasma gondii, similar to viruses would be able to modulate their host’s gene expression. We were able to show that T. gondii produces many putative pre-miRNAs which are actually transcribed. Furthermore, some of these expressed pre-miRNAs have a striking resemblance to host mature miRNAs. Previous studies indicated that T. gondii infection coincides with increased abundance of some miRNAs. Here we were able to show that many of these miRNAs have close relatives in T. gondii which may not be distinguishable using PCR. Taken together, the similarity to host miRNAs, their confirmed expression, and their upregulation during infection, it suggests that T. gondii actively transfers miRNAs to regulate its host. We conclude, that this type of cross-kingdom regulation may be possible, but that targeted analysis is necessary to consolidate our computational findings. © Springer International Publishing Switzerland 2016. All rights are reserved.Book Part Noncoding Way of the Metastasis(Elsevier, 2022) Göker Bağca, Bakiye; Kuşoğlu, Alican; Çeşmeli, Selin; Biray Avcı, ÇığırAccording to the World Health Organization statistics, the second leading cause of death globally is cancer. Together with this, metastasis is viewed as the leading cause of cancer death in patients with the disease due to the lack of treatment modalities for malignant tumors. One of the key mechanisms related to cancer metastasis is the epithelial-mesenchymal transition which enables epithelial cancer cells to gain mesenchymal cancer cell properties with elevated migration and invasion capacity that make it easy to spread distant tissues and survive from harsh conditions. Studies indicate that metastatic cancer cells have a gene expression signature that ensures those cells have increased migratory capacity as well as increased survival rate in circulation. Recently, the relationship of metastasis with two types of noncoding RNAs (ncRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) has been getting attention. In this chapter, the role of miRNAs and lncRNAs and treatment strategies regarding the role of ncRNAs in metastasis biology will be evaluated.Book Part Citation - WoS: 12Citation - Scopus: 15Single Cell Densitometry and Weightlessness Culture of Mesenchymal Stem Cells Using Magnetic Levitation(Humana Press, 2020) Anıl İnevi, Müge; Yılmaz, Esra; Sarıgil, Öykü; Tekin, Hüseyin Cumhur; Özçivici, EnginMagnetic levitation methodology enables density-based separation of microparticles/cells and sustains cell culture in different media. Levitation process can be accomplished via negative magnetophoresis (diamagnetophoresis), where the applied magnetic force compensates gravitational acceleration and the density of the diamagnetic object (e.g., cell) determines its levitation height. Here we describe a portable, sensitive, and cost-effective technology that uses the principles of magnetic levitation to measure single cell density and cell culture under desired conditions. © 2019, Springer Science+Business Media New York.Book Part Citation - Scopus: 3Tissue Engineering Applications of Marine-Based Materials(Springer, 2022) Polat, Hürriyet; Zeybek, Nuket; Polat, MehmetTissue engineering is a promising approach in replacing or improving tissues lost or has become nonviable due to disease or trauma by the use of scaffold materials by combining engineering and biochemical/physicochemical methods. Its purpose is to create suitable matrices that support cell differentiation and proliferation toward the formation of new and functional tissue. Marine-based natural compounds are potential scaffold feedstock material in tissue engineering owing to their biocompatibility and biodegradability while providing excellent biochemical/physicochemical properties. Numerous application areas and various fabrication routes techniques described in the literature attest to the importance of these materials in tissue regeneration. This review has been carried to merge the information from a large number of studies on the marine-based scaffold materials in tissue engineering into a coherent summary. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.
