Bioengineering / Biyomühendislik
Permanent URI for this collectionhttps://hdl.handle.net/11147/4529
Browse
Browsing Bioengineering / Biyomühendislik by Access Right "info:eu-repo/semantics/embargoedAccess"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 7Connexin 32 Overexpression Increases Proliferation, Reduces Gap Junctional Intercellular Communication, Motility and Epithelial-To Transition in Hs578t Breast Cancer Cells(Springer, 2022-07) Uğur, Deniz; Güngül, Taha Buğra; Yücel, Simge; Özçivici, Engin; Yalçın Özuysal, Özden; Meşe Özçivici, GülistanConnexins (Cx) are primary components of gap junctions that selectively allow molecules to be exchanged between adjacent cells, regulating multiple cellular functions. Along with their channel forming functions, connexins play a variety of roles in different stages of tumorigenesis and their roles in tumor initiation and progression is isoform- and tissue-specific. While Cx26 and Cx43 were downregulated during breast tumorigenesis, Cx32 was accumulated in the cytoplasm of the cells in lymph node metastasis of breast cancers and Cx32 was further upregulated in metastasis. Cx32's effect on cell proliferation, gap junctional communication, hemichannel activity, cellular motility and epithelial-to-mesenchymal transition (EMT) were investigated by overexpressing Cx32 in Hs578T and MCF7 breast cancer cells. Additionally, the expression and localization of Cx26 and Cx43 upon Cx32 overexpression were examined by Western blot and immunostaining experiments, respectively. We observed that MCF7 cells had endogenous Cx32 while Hs578T cells did not and when Cx32 was overexpressed in these cells, it caused a significant increase in the percentages of Hs578T cells at the S phase in addition to increasing their proliferation. Further, while Cx32 overexpression did not induce hemichannel activity in either cell, it decreased gap junctional communication between Hs578T cells. Additionally, Cx32 was mainly observed in the cytoplasm in both cells, where it did not form gap junction plaques but Cx32 overexpression reduced Cx43 levels without affecting Cx26. Moreover, migration and invasion potentials of Hs578T and migration in MCF7 were reduced upon Cx32 overexpression. Finally, the protein level of mesenchymal marker N-cadherin decreased while epithelial marker ZO-1 and E-cadherin increased in Hs578T cells. We observed that Cx32 overexpression altered cell proliferation, communication, migration and EMT in Hs578T, suggesting a tumor suppressor role in these cells while it had minor effects on MCF7 cells.Article Citation - WoS: 5Citation - Scopus: 6Designing Robust Xylan/Chitosan Composite Shells Around Drug-Loaded Msns: Stability in Upper Git and Degradation in the Colon Microbiota(Elsevier, 2023-01) Zeybek, Nüket; Büyükkileci, Ali Oğuz; Güleç, Şükrü; Polat, Mehmet; Polat, Hürriyetong residence times, near-neutral pH values, and release triggered by the enzymatic action of the resident microbiota offer unique opportunities for improved drug delivery in the colon. The fact that a delivery agent must also pass through the complete GI tract without degradation presents a challenge due to widely changing pH conditions. In this study, a promising colon-targeted drug delivery system was composed of a xylan/chitosan composite shell formed on curcumin-loaded mesoporous silica nanoparticles (MSNs). A novel synthesis approach was employed to facilitate precipitation of negatively charged xylan on negatively charged MSNs by concurrent chitosan polymerization. Curcumin-loaded xylan/chitosan-coated MSNs (C-MSNs) were determined to contain nearly 42% xylan by the inclusion of chitosan in a one-to-one ratio with xylan. The xylan/chitosan composite shell demonstrated excellent stability in the acidic upper GI tract. The hydrolysis of glycosidic bonds by resident microbiota was the triggering mechanism for xylan degradation and curcumin release in the colon. The presence of xylan has the further benefit of increasing the number of beneficial bacteria and improving short-chain fatty acid production for improved colon health.Article Citation - WoS: 14Citation - Scopus: 16Development of a Hydrocolloid Bio-Ink for 3d Bioprinting(Royal Society of Chemistry, 2022-11) Yıldırım, Özüm; Arslan Yıldız, AhuA new generation of bio-inks that are soft, viscous enough, stable in cell culture, and printable at low printing pressures is required in the current state of 3D bioprinting technology. Hydrogels can meet these features and can mimic the microenvironment of soft tissues easily. Hydrocolloids are a group of hydrogels which have a suitable gelling capacity and rheological properties. According to the literature, polysaccharide-based hydrocolloids are used in the food industry, wound healing technologies, and tissue engineering. Quince seed hydrocolloids (QSHs), which consist of mostly glucuronoxylan, can easily be obtained from quince seeds by water extraction. In this study, the use of a QSH as a bio-ink was investigated. The suitability of QSH for the printing process was assessed by rheological, uniformity and pore factor analyses. Appropriate printing parameters were determined and the characterization of the bioprinted QSHs was performed by SEM analysis, water uptake capacity measurement, and protein adsorption assay. The bioprinted QSHs had excellent water uptake capacity and showed suitable protein adsorption behaviour. Analyses of the biocompatibility and cellular viability of bioprinted QSHs were conducted using NIH-3T3 fibroblast cells and the results were found to be high during short and long-term cell culture periods. It was proved that QSH is a highly promising bio-ink for 3D bioprinting and further tissue engineering applications.Article Citation - Scopus: 3Development of Chrono-Spectral Gold Nanoparticle Growth Based Plasmonic Biosensor Platform(Elsevier, 2024) Sözmen, Alper Baran; Elveren, Beste; Erdoğan, Duygu; Mezgil, Bahadır; Baştanlar, Yalın; Yıldız, Ümit Hakan; Arslan Yıldız, AhuPlasmonic sensor platforms are designed for rapid, label-free, and real-time detection and they excel as the next generation biosensors. However, current methods such as Surface Plasmon Resonance require expertise and well-equipped laboratory facilities. Simpler methods such as Localized Surface Plasmon Resonance (LSPR) overcome those limitations, though they lack sensitivity. Hence, sensitivity enhancement plays a crucial role in the future of plasmonic sensor platforms. Herein, a refractive index (RI) sensitivity enhancement methodology is reported utilizing growth of gold nanoparticles (GNPs) on solid support and it is backed up with artificial neural network (ANN) analysis. Sensor platform fabrication was initiated with GNP immobilization onto solid support; immobilized GNPs were then used as seeds for chrono-spectral growth, which was carried out using NH2OH at varied incubation times. The response to RI change of the platform was investigated with varied concentrations of sucrose and ethanol. The detection of bacteria E.coli BL21 was carried out for validation as a model microorganism and results showed that detection was possible at 102 CFU/ml. The data acquired by spectrophotometric measurements were analyzed by ANN and bacteria classification with percentage error rates near 0% was achieved. The proposed LSPR-based, label-free sensor application proved that the developed methodology promises utile sensitivity enhancement potential for similar sensor platforms. © 2024 The Author(s)Article Citation - Scopus: 1Exploring the Heterogeneity of Ige-Mediated Food Allergy Through Latent Class Analysis(S. Karger AG, 2022) Akarsu, Ayşegül; Öksel Karakuş, Ceyda; Ocak, Melike; Oral, Nihan; Bilgi, Eyüp; Şahiner, Ümit Murat; Soyer, Özge; Şekerel, Bülent EnisIntroduction: Food allergy (FA) is a heterogeneous disease with multiple morbidities and a huge burden for patients and healthcare systems. Variable manifestations, comorbidities (atopic dermatitis [AD], asthma, and/or allergic rhinitis [AR]), severity (anaphylaxis), and outcomes suggest the existence of different endotypes that cluster analyses may reveal. In this study, we aimed to investigate distinct subgroups among patients with FAs using data from 524 children/adolescents. Methods: 524 patients with IgE-mediated FA (353 male [67%]; median age 4.4 years [IQR:3.0-6.8]), 354 (68%) had multiple FA. The history of AD, asthma, AR, and anaphylaxis was recorded in 59.4%, 35.5%, 24.2%, and 51.2% of the patients, respectively. Latent class analysis was carried out to distinguish clinical FA phenotypes using five potential markers of allergy severity (single/multiple FA, never/inactive/current asthma and AD, AR, and anaphylaxis). Results: Three distinct phenotypes were identified: (1) multiple FA with eczema and respiratory multimorbidity (42%), (2) multiple FA with persistent eczema (34%), and (3) single FA with respiratory multimorbidity without eczema (24%). Compared with the single FA cluster, the prevalence of AD was significantly higher in multiple FA groups. Cluster 1 had the highest frequency of AR and allergic asthma, and the lowest rate of total tolerance of FA. Discussion: We put forward the hypothesis of underlying pathogenesis according to the clinical phenotypes. While skin barrier defect may play a dominant role in the pathogenesis in Cluster 2, immune dysregulation may be dominant in Cluster 3. In Cluster 1, the most severe group, a combination of both skin barrier defects and immune dysregulation may be responsible for the clinical features.Article Citation - WoS: 7Citation - Scopus: 8Fabrication and Development of a Microfluidic Paper-Based Immunosorbent Assay Platform (μpisa) for Colorimetric Detection of Hepatitis C(Royal Society of Chemistry, 2023) Özefe, Fatih; Arslan Yıldız, AhuPaper-based microfluidics is an emerging analysis tool used in various applications, especially in point-of-care (PoC) diagnostic applications, due to its advantages over other types of microfluidic devices in terms of simplicity in both production and operation, cost-effectiveness, rapid response time, low sample consumption, biocompatibility, and ease of disposal. Recently, various techniques have been developed and utilized for the fabrication of paper-based microfluidics, such as photolithography, micro-embossing, wax and PDMS printing, etc. In this study, we offer a fabrication methodology for a microfluidic paper-based immunosorbent assay (μPISA) platform and the detection of Hepatitis C Virus (HCV) was carried out to validate this platform. A laser ablation technique was utilized to form hydrophobic barriers easily and rapidly, which was the major advantage of the developed fabrication methodology. The characterization of the μPISA platform was performed in terms of micro-channel properties using bright-field (BF) microscopy, and surface properties using scanning electron microscopy (SEM). At the same time, sample volume and liquid handling capacity were analyzed quantitatively. Ablation speed (S) and laser power (P) were optimized, and it was shown that one combination (10P60S) provided minimal deviation in micro-channel dimensions and prevented deterioration of hydrophobic barriers. Also, the minimum hydrophobic barrier width, which prevents cross-barrier bleeding, was determined to be 255.92 ± 10.01 μm. Furthermore, colorimetric HCV NS3 detection was implemented to optimize and validate the μPISA platform. Here, HCV NS3 in both PBS and human blood plasma was successfully detected by the naked eye at concentrations as low as 1 ng mL−1 and 10 ng mL−1, respectively. Moreover, the limit of detection (LoD) values for HCV NS3 were acquired as 0.796 ng mL−1 in PBS and 2.203 ng mL−1 in human blood plasma with a turnaround time of 90 min. In comparison with conventional ELISA, highly sensitive and rapid HCV NS3 detection was accomplished colorimetrically on the developed μPISA platform.Article Citation - WoS: 25Citation - Scopus: 28Fabrication of 3d Printed Poly(lactic Acid) Strut and Wet-Electrospun Cellulose Nano Fiber Reinforced Chitosan-Collagen Hydrogel Composite Scaffolds for Meniscus Tissue Engineering(SAGE Publications, 2022) Güneş, Oylum Çolpankan; Kara, Aylin; Baysan, Gizem; Hüsemoğlu, Reşit Buğra; Akokay, Pınar; Ziylan Albayrak, Aylin; Ergür, Bekir Uğur; Havitçioğlu, HasanThe main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.1, 0.3, and 0.5%) had an interconnected microporous structure with a swelling ratio of about 400% and water content values between 77 and 83% which is similar to native cartilage extracellular matrix. The compressive strength of all the hydrogel composite scaffolds was found to be similar (∼32 kPa) and suitable for cartilage tissue engineering applications. Besides, the hydrogel composite scaffold comprising 0.3% (w/v) genipin had the highest tan δ value (0.044) at a frequency of 1 Hz which is around the walking frequency of a person. According to the in vitro analysis, this hydrogel composite scaffold did not show any cytotoxic effect on the rabbit mesenchymal stem cells and enabled cells to attach, proliferate and also migrate through the inner area of the scaffold. In conclusion, the produced hydrogel composite scaffold holds great promise for meniscus tissue engineering.Article Citation - WoS: 3Citation - Scopus: 4Frequency-Specific Sensitivity of 3t3-L1 Preadipocytes To Low-Intensity Vibratory Stimulus During Adipogenesis(Springer, 2022-06) Baskan, Öznur; Sarıgil, Öykü; Meşe Özçivici, Gülistan; Özçivici, EnginAdipocyte accumulation in the bone marrow is a severe complication leading to bone defects and reduced regenerative capacity. Application of external mechanical signals to bone marrow cellular niche is a non-invasive and non-pharmaceutical methodology to improve osteogenesis and suppress adipogenesis. However, in the literature, the specific parameters related to the nature of low-intensity vibratory (LIV) signals appear to be arbitrarily selected for amplitude, bouts, and applied frequency. In this study, we performed a LIV frequency sweep ranging from 30 to 120 Hz with increments of 15 Hz applied onto preadipocytes during adipogenesis for 10 d. We addressed the effect of LIV with different frequencies on single-cell density, adipogenic gene expression, lipid morphology, and triglycerides content. Results showed that LIV signals with 75-Hz frequency had the most significant suppressive effect during adipogenesis. Our results support the premise that mechanical-based interventions for suppressing adipogenesis may benefit from optimizing input parameters.Article Citation - WoS: 11Citation - Scopus: 11Immunogenicity of a Xenogeneic Multi-Epitope Her2+ Breast Cancer Dna Vaccine Targeting the Dendritic Cell Restricted Antigen-Uptake Receptor Dec205(Elsevier, 2022-04) Gül, Ayten; Döşkaya, Mert; Can, Hüseyin; Karakavuk, Muhammet; Anıl İnevi, Müge; Sağlam Metiner, Pelin; Atalay Sahar, EsraBreast cancer was ranked first in global cancer incidence in 2020, and HER2 overexpression in breast cancer accounts for 20–30% of breast cancer patients. Current therapeutic strategies increase the survival rate, but resistance to them occurs frequently, and there is an urgent need to develop novel treatments such as DNA vaccines which can induce a specific and long-lasting immune response against HER2 antigens. To enhance the immunogenicity of DNA vaccines, dendritic cells (DCs) can be targeted using multi-epitope proteins that provide accurate immune focusing. For this purpose, we generated a DNA vaccine encoding a fusion protein composed of 1) in silico discovered antigenic epitopes of human and rat HER2 proteins (MeHer2) and 2) a single-chain antibody fragment (ScFv) specific for the DC-restricted antigen-uptake receptor DEC205 (ScFvDEC). The xenogeneic multi-epitope DNA vaccine (pMeHer2) encodes three only T-cell epitopes, two only B-cell epitopes, and two T and B cell epitopes, and pScFvDEC-MeHer2 vaccine additionally encodes ScFvDEC introduced at the N terminus of the MeHer2. Then, mouse groups were immunized with pScFvDEC-MeHer2, pMeHer2, pScFvDEC, pEmpty, and PBS to determine the elicited immune response. pScFvDEC-MeHer2 vaccinated mice showed a strong IgG response (P < 0.0001) and pScFvDEC-MeHer2 induced a significant IgG2a increase (P < 0.01). The percentages of both IFN-γ secreting CD4 and CD8 T cells were higher in mice immunized with pScFvDEC-MeHer2 compared with the pMeHer2. pScFvDEC-MeHer2 and pMeHer2 secreted significantly higher levels of extracellular IFN-γ compared with to control groups (P < 0.0001). In addition, the IFN-γ level of the pScFvDEC-MeHer2 vaccine group was approximately two times higher than the pMeHer2 group (P < 0.0001). Overall, this study identified the pScFvDECMeHer2 construct as a potential DNA vaccine candidate, supporting further studies to be conducted on HER2+ animal models.Article Citation - WoS: 4Citation - Scopus: 3Is Telomerase a Hidden Player? Therapeutic Potential of Natural Telomerase Activators Against Age-Related Diseases(Springer, 2022-07) Kuru, Gülten; Üner, Göklem; Bedir, ErdalThere is a huge demand for novel treatment and/or prevention approaches for age-related diseases, which reduce life quality and one of the main reasons for death worldwide. Many age-related diseases were found to be associated with dysfunctional telomeres, which accelerate aging process due to the decrease in repair potential of tissues. An enzyme called telomerase is mainly responsible for keeping telomeres healthful. In the last two decades, the progress in the field, including in vitro studies, preclinical data, and human trials, demonstrated that telomerase and related genes might be powerful targets for the treatment of those diseases. Considering telomerase reactivation as a treatment strategy in age-related degenerative diseases, telomerase activators obtained from natural products stand out as promising agents. Although various research showed that those activators have protective/therapeutic activity against age-related diseases, the role of telomerase activation is often neglected in studies. In this context, we focused on the natural products as telomerase activator and their activities on age-related diseases, specifically neurodegenerative, cardiovascular, and osteodegenerative disorders, in which telomere dysfunction plays a causal role. Thus, this review aims to draw attention to the possibility of telomerase activation in therapy, in which some well-known natural products such as telomerase activators might play a role.Article Citation - WoS: 56Citation - Scopus: 64Nanoparticle-Protein Corona Complex: Understanding Multiple Interactions Between Environmental Factors, Corona Formation, and Biological Activity(Taylor & Francis, 2021) Öksel Karakuş, Ceyda; Tomak, Aysel; Çeşmeli, Selin; Hanoğlu, Berçem Dilan; Winkler, DavidThe surfaces of pristine nanoparticles become rapidly coated by proteins in biological fluids, forming the so-called protein corona. The corona modifies key physicochemical characteristics of nanoparticle surfaces that modulate its biological and pharmacokinetic activity, biodistribution, and safety. In the two decades since the protein corona was identified, the importance of nano particles surface properties in regulating biological responses have been recognized. However, there is still a lack of clarity about the relationships between physiological conditions and cor ona composition over time, and how this controls biological activities/interactions. Here we review recent progress in characterizing the structure and composition of protein corona as a function of biological fluid and time. We summarize the influence of nanoparticle characteristics on protein corona composition and discuss the relevance of protein corona to the biological activity and fate of nanoparticles. The aim is to provide a critical summary of the key factors that affect protein corona formation (e.g. characteristics of nanoparticles and biological environ ment) and how the corona modulates biological activity, cellular uptake, biodistribution, and drug delivery. In addition to a discussion on the importance of the characterization of protein corona adsorbed on nanoparticle surfaces under conditions that mimic relevant physiological environment, we discuss the unresolved technical issues related to the characterization of nano particle-protein corona complexes during their journey in the body. Lastly, the paper offers a perspective on how the existing nanomaterial toxicity data obtained from in vitro studies should be reconsidered in the light of the presence of a protein corona, and how recent advances in fields, such as proteomics and machine learning can be integrated into the quantitative analysis of protein corona components.Article Citation - WoS: 6Citation - Scopus: 6Neo-Clerodanes From Teucrium Divaricatum Subsp. Divaricatum and Their Biological Activity Assessment(Elsevier, 2023-04) Aydoğan, Fadime; Ali, Zülfiqar; Zülfiqar, Fazila; Karaalp, Canan; Khan, Ikhlas A.; Bedir, ErdalFifteen neo-clerodane diterpenoids (1–15), including two undescribed glycosides, teudivaricosides A (1) and B (2), together with a known iridoid glycoside (16) and a phenylpropanoid glycoside (17) from the whole plant of Teucrium divaricatum subsp. divaricatum were isolated. Their structures were determined by spectral data analysis including 1D and 2D NMR and HRESIMS. Neo-clerodane diterpenoids were evaluated for their anti-inflammatory, and antimicrobial activities. None of them showed significant antimicrobial activity against various bacterial and fungal strains (up to 20 µg/mL). All tested compounds were inactive up to the highest tested concentration of 50 µM on iNOS inhibitory activity.Article Citation - WoS: 8Citation - Scopus: 9Neuroprotective Metabolites Via Fungal Biotransformation of a Novel Sapogenin, Cyclocephagenol(Nature Research, 2022) Küçüksolak, Melis; Üner, Göklem; Ballar Kırmızıbayrak, Petek; Bedir, ErdalCyclocephagenol (1), a novel cycloartane-type sapogenin with tetrahydropyran unit, is only encountered in Astragalus species. This rare sapogenin has never been a topic of biological activity or modification studies. The objectives of this study were; (i) to perform microbial transformation studies on cyclocephagenol (1) using Astragalus endophyte, Alternaria eureka 1E1BL1, followed by isolation and structural characterization of the metabolites; (ii) to investigate neuroprotective activities of the metabolites; (iii) to understand structure–activity relationships towards neuroprotection. The microbial transformation of cyclocephagenol (1) using Alternaria eureka resulted in the production of twenty-one (2–22) previously undescribed metabolites. Oxidation, monooxygenation, dehydration, methyl migration, epoxidation, and ring expansion reactions were observed on the triterpenoid skeleton. Structures of the compounds were established by 1D-, 2D-NMR, and HR-MS analyses. The neuroprotective activities of metabolites and parent compound (1) were evaluated against H2O2-induced cell injury. The structure–activity relationship (SAR) was established, and the results revealed that 1 and several other metabolites had potent neuroprotective activity. Further studies revealed that selected compounds reduced the amount of ROS and preserved the integrity of the mitochondrial membrane. This is the first report of microbial transformation of cyclocephagenol.Article Citation - WoS: 8Citation - Scopus: 9Optimization of the Algal Species Chlorella Miniata Growth: Mathematical Modelling and Evaluation of Temperature and Light Intensity Effects(Elsevier, 2022-01) Sözmen, Alper Baran; Ata, Ayça; Övez, BikemGrowth of Chlorella miniata, a green microalga was investigated during this study under various temperature and light intensity values with the purpose of determining growth rate changes of the microalgae with cultivation parameters, experiments were carried out using airlift photobioreactors with a study volume of 6 L. Culturing conditions were between 66 and 385 μmol photon m−2 s−1 and between 14 and 30 °C for light intensity and ambient temperature, respectively. Acquired data were then used to test various mathematical models for coherency with experimental results. Aiba Model for light intensity and Skewed Normal Distribution Model for temperature parameters performed superior compared to the rest of the mathematical models used during the study. Utilizing both mathematical models a novel model was deduced to express effects of both light intensity and temperature parameters in combination on algal growth. Then the developed model was used to calculate the optimum growth condition of the species. The proposed mathematical model showed good coherency with experimental data and an average relative error of 1.97% for both temperature and light intensity effects on algal growth. The theoretical optimum temperature and light intensity for the maximum specific growth rate were calculated to be 22.43 °C and 291.5 μmol photon m−2 s−1 respectively.Article Citation - WoS: 16Citation - Scopus: 21Protein Corona Formation on Silver Nanoparticles Under Different Conditions(Elsevier, 2022-07) Tomak, Aysel; Yılancıoğlu, Buket; Winkler, David; Öksel Karakuş, CeydaThe surfaces of nanoparticles become covered by biomolecules in biological fluids. This protein ‘corona’ modifies materials’ characteristics and biological activity. The composition of the protein corona is dynamic, abundant biomolecules that bind first are subsequently replaced by less abundant but more tightly bound ones. Here, we explore the formation of the silver nanoparticle protein corona on exposure to cell culture media containing 10 % fetal bovine serum supplemented Dulbecco's Modified Eagle's medium. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry analysis were used to monitor how different parameters such as incubation time, heating duration, cell culture medium, incubation temperature, and the number of washes affect the nanoparticle–protein corona complex. silver nanoparticles with and without bound proteins were characterized by electron microscopy, dynamic light scattering, and ultraviolet-visible-near-IR spectroscopy. The tetrazolium-based MTT assay was used to determine viability of A549 human lung adenocarcinoma cells treated with silver nanoparticles. Characterization of the nanoparticles before and after protein binding provided insights into their changing morphology on corona formation. Our results confirmed that the physiological environment directly affects protein corona formation on nanoparticle surfaces. In particular, incubation condition-dependent differences in the amount of bound proteins were observed. This work highlights the importance of environmental drivers of protein adsorption, which should be considered when predicting and/or controlling protein targets of silver nanoparticles.Article Citation - WoS: 3Citation - Scopus: 5Rational Design of Thermophilic Cyp119 for Progesterone Hydroxylation by in Silico Mutagenesis and Docking Screening(Elsevier, 2023-01) Kestevur Doğru, Ekin; Güralp, Gülce; Uyar, Arzu; Sürmeli, Nur BaşakSteroid-based chemicals can affect the metabolism, immune functions, and development of sexual characteristics. Because of these effects, steroid derivatives are widely used in the pharmaceutical industry. Progesterone is a steroid-based hormone that mainly controls the ovulation period of women but is also a precursor molecule for the synthesis of important hormones like testosterone and cortisone. Cytochrome P450 (CYP) enzymes are important for the production of hydroxyprogesterones in the industry since they can catalyze regio- and enantioselective hydroxylation reactions. Although human CYP enzymes can catalyze hydroxyprogesterone synthesis with high selectivity, these enzymes are membrane bound, which limits their application for industrial production. CYP119 is a soluble and thermophilic enzyme from the archaea Sulfolobus acidocaldarius. Even though the native substrate of the enzyme is not known, CYP119 can catalyze styrene epoxidation, lauric acid hydroxylation, and Amplex®Red peroxidation. In this work, an in silico mutagenesis approach was used to design CYP119 mutants with high progesterone affinity. Energy scores of progesterone docking simulations were used for the design and elimination of single, double, and triple mutants of CYP119. Among designed 674 mutants, five of them match the criteria for progesterone hydroxylation. The most common mutation of these five mutants, L69G mutant was analyzed using independent molecular dynamics (MD) simulations in comparison with the wild-type (WT) enzyme. L69G CYP119, was expressed and isolated from Escherichia coli; it showed 800-fold higher affinity for progesterone compared to WT CYP119. L69G CYP119 also catalyzed progesterone hydroxylation. The novel designed enzyme L69G CYP119 is a potential versatile biocatalyst for progesterone hydroxylation that is expected to be stable under industrial production conditions.Article Citation - WoS: 2Citation - Scopus: 3Structural and Functional Analyses of Gh51 Alpha-L of Geobacillus Vulcani Gs90 Reveal Crucial Residues for Catalytic Activity and Thermostability(Wiley, 2022) Sürmeli, Yusuf; Şanlı Mohamed, GülşahAlpha-L-arabinofuranosidase (Abf) is of big interest in various industrial areas. Directed evolution is a powerful strategy to identify significant residues underlying Abf properties. Here, six active variants from GH51 Abf of Geobacillus vulcani GS90 (GvAbf) by directed evolution were overproduced, extracted, and analyzed at biochemical and structural levels. According to the activity and thermostability results, the most-active and the least-active variants were found as GvAbf51 and GvAbf52, respectively. GvAbf63 variant was more active than parent GvAbf by 20% and less active than GvAbf51. Also, the highest thermostability belonged to GvAbf52 with 80% residual activity after 1 h. Comparative sequence and structure analyses revealed that GvAbf51 possessed L307S displacement. Thus, this study suggested that L307 residue may be critical for GvAbf activity. GvAbf63 had H30D, Q90H, and L307S displacements, and H30 was covalently bound to E29 catalytic residue. Thus, H30D may decrease the positive effect of L307S on GvAbf63 activity, preventing E29 action. Besides, GvAbf52 possessed S215N, L307S, H473P, and G476C substitutions and S215 was close to E175 (acid–base residue). S215N may partially disrupt E175 action. Overall effect of all substitutions in GvAbf52 may result in the formation of the C–C bond between C171 and C213 by becoming closer to each other.Article Citation - WoS: 40Citation - Scopus: 42Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (polyhipe) Scaffolds for Tissue Engineering(American Chemical Society, 2022) Aldemir Dikici, Betül; Malayeri, Atra; Sherborne, Colin; Dikici, Serkan; Paterson, Thomas; Dew, Lindsey; Claeyssens, FrederikHighly porous emulsion templated polymers (PolyHIPEs) provide a number of potential advantages in the fabrication of scaffolds for tissue engineering and regenerative medicine. Porosity enables cell ingrowth and nutrient diffusion within, as well as waste removal from, the scaffold. The properties offered by emulsion templating alone include the provision of high interconnected porosity, and, in combination with additive manufacturing, the opportunity to introduce controlled multiscale porosity to complex or custom structures. However, the majority of monomer systems reported for PolyHIPE preparation are unsuitable for clinical applications as they are nondegradable. Thiol-ene chemistry is a promising route to produce biodegradable photocurable PolyHIPEs for the fabrication of scaffolds using conventional or additive manufacturing methods; however, relatively little research has been reported on this approach. This study reports the groundwork to fabricate thiol- and polycaprolactone (PCL)-based PolyHIPE materials via a photoinitiated thiolene click reaction. Two different formulations, either three-arm PCL methacrylate (3PCLMA) or four-arm PCL methacrylate (4PCLMA) moieties, were used in the PolyHIPE formulation. Biocompatibility of the PolyHIPEs was investigated using human dermal fibroblasts (HDFs) and human osteosarcoma cell line (MG-63) by DNA quantification assay, and developed PolyHIPEs were shown to be capable of supporting cell attachment and viability.Article Citation - WoS: 5Citation - Scopus: 6Undescribed Polyether Ionophores From Streptomyces Cacaoi and Their Antibacterial and Antiproliferative Activities(Elsevier, 2022-03) Gezer, Emre; Üner, Göklem; Küçüksolak, Melis; Kurt, Mustafa Ünver; Doğan, Gamze; Ballar Kırmızıbayrak, Petek; Bedir, ErdalPolyether ionophores represent a large group of naturally occurring compounds mainly produced by Streptomyces species. With previously proven varieties of bioactivity including antibacterial, antifungal, antiparasitic, antiviral and anti-tumor effects, the discovery of undescribed polyethers leading to development of efficient therapeutics has become important. As part of our research on polyether-rich Streptomyces cacaoi, we previously performed modification studies on fermentation conditions to induce synthesis of specialized metabolites. Here, we report four undescribed and nine known polyether compounds from S. cacaoi grown in optimized conditions. Antimicrobial activity assays revealed that four compounds, including the undescribed (6), showed strong inhibitory effects over both Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA) growth. Additionally, K41-A and its C15-demethoxy derivative exhibited significant cytotoxicity. These results signified that selectivity of C15-demethoxy K41-A towards cancer cells was higher than K41-A, which prompted us to conduct mechanistic experiments. These studies showed that this uninvestigated compound acts as a multitarget compound by inhibiting autophagic flux, inducing reactive oxygen species formation, abolishing proteasome activity, and stimulating ER stress. Consequently, the optimized fermentation conditions of S. cacaoi led to the isolation of undescribed and known polyethers displaying promising activities.Article Citation - WoS: 1Citation - Scopus: 1Viability of 3t3-L1 Preadipocytes Is Modulated by the Applied Frequency but Not the Exposure Duration of Low Intensity Vibratory Stimulation(World Scientific Publishing, 2022-03) Baskan, Öznur; Özçivici, EnginMechanical forces are the integral determinants in cell and tissue homeostasis and regeneration, and they can affect numerous biological process from proliferation to fate determination. Mechanical forces that possess low magnitude and high frequency characteristics are also known as low intensity vibrations (LIVs). These signals were studied widely on many cell types for regenerative purposes, however most of these studies select components of LIV signals (e.g., magnitude, frequency, duration, etc.) arbitrarily. Here, we addressed the effect of LIV applied frequency, LIV daily exposure time and fate induction on the viability of preadipocyte 3T3-L1 cells. For this, we performed a frequency sweep that was ranging from 30Hz to 120Hz with 15Hz increments applied for 5, 10 or 20min during quiescent growth or adipogenesis for up to 10 days. Results suggest that the applied frequency and fate induction was an important determinant of cell viability while daily exposure time had no effect. These findings contribute to the effort of optimizing a relevant mechanical stimulus that can inhibit adipogenesis.
