Friday, 17 October 2014

HALL – C [ThS25]-Geothermal

Structural Controls on Gülbağçe Geothermal System and Its Hydrogeochemical Properties (Western Turkey)
Taygun Üzelli¹, Gamze Gül Mungab², Alper Baba², Hasan Sözbilir³

¹Hacettepe University, Department of Geological Engineering, Ankara, Turkey
²Izmir Institute of Technology, Geothermal Energy Research and Application Center, Izmir, Turkey
³Dokuz Eylül University, Department of Geological Engineering, Izmir, Turkey

Gülbağçe Geothermal Field (GGF) is located in eastern parts of the Karaburun Peninsula and is about 45 km away from the city of Izmir, Turkey. The stratigraphy around the GGF is represented by a Miocene volcano-sedimentary succession, including several sedimentary and volcanic units. These units overlie the basement rocks of the Karaburun Platform Carbonates and Bornova Flysch Zone which consists of carbonate blocks embedded in sandstone and mudstone alternations. GGF is located on the Gülbağçe Fault Zone, and are composed of series of NW-SE to NE-SW trending faults, extending from Sığacık Bay to Gülbağçe Bay. While most of the geothermal systems in western Turkey are controlled by normal faults, geothermal systems at the Gülbağçe are controlled by NE/NW-trending strike-slip faults and NE/NW-trending oblique-slip normal faults. An association of these active faults accommodating deep circulation of hydrothermal fluids of sea water origin is the primary control mechanisms of geothermal systems of Gülbağçe.

The hydrogeochemical properties of GGF show that surface temperature of fluid range from 31 to 37°C. Geothermal fluids of GGF have high salinity (EC > 34 mS/cm) and low enthalpy. Piper and Schoeller diagrams indicated that geothermal fluid is in NaCl facies. The isotopic data (oxygen-18, deuterium and tritium) represent that geothermal fluid are formed by local recharge and deep circulation of sea waters.

Keywords: Geothermal fluid, Gülbağçe Fault Zone, Isotope, High salinity, Western Turkey

Hydrothermal Alteration Studies in Balçova Geothermal Field

Mine Alacali¹

¹Atatürk University, Oltu Faculty of Earth Sciences, Dept. of Petroleum and Natural Gas Engineering

Balçova Geothermal Field is located 10 km western part of Izmir city. The lithology in the field, from oldest to youngest, are the Upper Cretaceous Izmir Flysch, Miocene aged Yeniköy Formation consist of sandstone, claystone and limestone, Pliocene aged Cumaovalı Volcanites consist of agglomerates, tuff, andesites and rhyolites, Quaternary alluvium and debris flows. By examining the structural, hydrogeological, geochemical properties of the Balçova Geothermal Field, the relationship between these and geothermal potential of the field has been searched. Hot water samples have been taken from the deep wells of the Balçova Geothermal Field. The analysis of the samples have been run in the computer program named “Aquachem 3.70” and classified by the diagrams obtained. Afterwards the examination of the well-logs of the several deep wells; cutting samples and well-cores have been taken from the appropriate levels and have been studied by the means of petrology and hydrothermal alteration. As a result; 3 zones have been determined in the field. These are; montmorillonite + kaolinite zone (100-200°C), transition zone (150-200°C) and chlorite + illite zone (200-250°C).

Keywords: Balçova, Geothermal, Hydrothermal alteration