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Effective stress principle for saturated fractured porous media 
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Abstract. An effective stress principle for saturated fractured porous media is proposed 
based on the double-porosity representation. Both the solid grains and the fractured 
porous medium are assumed to be linearly elastic materials. The derivation employs 
volume averaging technique to obtain macroscopic scale expressions. Two parameters, the 
bulk modulus of the fractured medium and bulk modulus of the porous matrix, are 
introduced in the formulation. The final expression reduces to the one obtained by Blot 
and Willis [1957], Skempton [1960], Nur and Byeerle [1971], and Verruijt [1984] when the 
volume fraction of the fractures vanishes, that is, for a nonfractured porous medium. 

Introduction 

The effective stress principle is extensively used in many 
disciplines, such as groundwater hydrology and soil and rock 
mechanics. Terzaghi [1925] terms the pore water pressure as 
the "neutral stress" and effective stress as the "excess" over the 

neutral stress. It has been shown by various researchers that 
the original form of Terzaghi's effective stress expression has 
two fundamental assumptions: solid grains are incompressible, 
and the shear deformation of the solid matrix is independent of 
the pore water pressure [Skempto n, 1960]. A derivation of the 
effective stress principle was presented by Bear and Pinder [1983] 
and Bear et al. [1984] for a porous medium constituted by incom- 
pressible grains. 

The extension of the effective stress principle to porous 
media with compressible grains has been studied by Biot and 
Willis [1957], Skempton [1960], Nur and Byeerle [1971], and 
Verruijt [1984]. Although these researchers used different 
methodologies, their conclusions are similar. For a porous 
medium with compressible grains, the form of the effective 
stress principle is the same as that of Terzaghi's effective stress 
principle except a correction factor for the pore fluid pressure. 
This correction factor is a function of the bulk moduli of the 

solid grains and the porous matrix. When the bulk modulus of 
the grains is very large compared with the bulk modulus of the 
matrix, this coefficient converges to unity, and the expression 
reduces to that of Terzaghi. A discussion on the role of Ter- 
zaghi's effective stress in linearly elastic deformation was pre- 
sented by Carroll and Katsube [1983]. Carroll and Katsube 
showed that the total strain is the sum of the average strain and 
a component due to change in the pore geometry that is de- 
termined by Terzaghi's effective stress. We should note that all 
expressions are limited to linearly elastic materials and are not 
applicable to inelastic media. 

The single-porosity models are shown to be fairly successful 
to describe the behavior of porous materials. However, single- 
porosity models are not suitable for fractured (or fissured) 
porous materials (Figure 1). In such systems, although most of 
the fluid mass is stored in the pores, the fracture permeability 
is much higher than the permeability of the pores. This leads to 
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two distinct pressure fields: one in the fractures and the other 
in the pores. Barenblatt et al. [1960] appear to be first research- 
ers proposing a double-porosity model to represent naturally 
fractured porous media. A double-porosity model can be con- 
sidered as a three-phase system, that is, solid phase, fluid phase 
in the pores, and fluid phase in the fractures, with fluid mass 
exchange between the pores and fractures. Although flow in 
fractured porous media has been studied quite extensively 
[Barenblatt et al., 1960; Barenblatt, 1963; Warren and Root, 
1963; Kazemi, 1969; Bear and Berkowitz, 1987], the work on 
deformable fractured porous media is limited. This might be 
attributed to lack of an effective stress principle in a double- 
porosity medium. Such an expression would allow us to model 
the behavior of deformable fractured porous media by using 
the drained material parameters. 

In this study, we investigate the effective stress principle for 
a fractured porous medium based on the double-porosity rep- 
resentation. We assume that both the solid grains and the 
fractured medium are linearly elastic. These assumptions allow 
application of the superposition principle. Two macroscopic 
material constants, drained (frame) bulk modulus of the frac- 
tured porous medium and dra•ined bulk modulus of the solid 
matrix, are introduced in the formulation. The later is equiv- 
alent to the bulk modulus of h nonfractured porous medium 
extracted from the fractured medium. Following Terzaghi and 
others, we assume that shear deformation is not effected by 
fluid pressures. Our final expression reduces to the one ob- 
tained by Blot and Willis [1957], Skempton [1960], Nur and 
Byeerle [1971], and Verruijt [1984] when the volume fraction of 
the fractures vanishes. 

Derivation of the Effective Stress Principle 
The development is based on the double-porosity represen- 

tation of a fractured porous medium which is characterized by 
three volume fractions: as, Otp, and otf corresponding to the 
solid phase, fluid phase in the pores, and fluid phase in the 
fractures, respectively. We assume that the solid phase is linearly 
elastic, isotropic, homogeneous, and experiencing small deforma- 
tions. Then the microscopic constitutive relations are given as 

xs=KsV' UsI + G ( Vus + (Vus)r- 2 ) s 5V'us (•) 

where Us, 'rs, Ks, G s, and I are the displacement vector, incre- 
mental stress tensor, bulk modulus, and shear modulus of the 
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Fractures 

Figure 1. Conceptual model of a saturated fractured porous 
medium. 

solid phase, and the unit tensor, respectively. The superscript T 
denotes the transpose operator. Applying volume-averaging tech- 
nique to (1) (see appendix for the averaging rules), we obtain 

(x s) = Ks V. (-sas) + • Us .n dA I 
st 

+ Gs V(asfis) + (V(asfis)) r- 5 V. (asfis) 

+ • U sns + nsUs - 5 Us' ns dA i = f, p (2) 

where angle brackets and overbars indicate volume-averaged 
and intrinsic-averaged quantities, respectively. Notation is de- 
scribed in the appendix. If we assume that there is no mass 
exchange between the solid and fluid phases, then the velocity 
of the solid/fluid interface is equal to the velocity of a point at 
the interface, that is, material surface. By employing (A8), we 
can write 

1 fs o Aas i f,p (3) V Us 'nsdA = as- as= = 
st 

where superscript 0 refers to a reference configuration and Aas 
is the change in volume fraction of the solid phase from the 
reference configuration. Since the displacements fis are as- 
sumed to be small, by definition 

ils. Vas•0 (4) 

Then volume-averaged constitutive relations for the solid 
phase (2) simplify to 

[ 
_ 2 

as'rs = Ks(asV ß fis + Aas)I + asGs X7fis + (va0 r- 5 v. as 

+ as• Usns + n sUs - 5 Us' ns dA i = f, p (5) 
st 

The total stress is the sum of the volume averaged stresses of 
individual phases 

. ('l't) = as• s q- ap•p q- af•f (6) 

where 'l'f and ,p are the intrinsic averaged incremental stress 
tensor in the fractures and pores, respectively. For an inviscid 
fluid, •f and ,p are equal to the fluid pressures in the fractures, 
Pf, and in the pores, Pp, respectively. Consequently, we assume 
that all shear resistance is provided by the solid matrix. In 
other words, the fluid pressures affect the volume change be- 
havior of the fractured porous medium only. We define a mean 
solid stress P s as 

trace((,s)) 
-af's = 3 = Ks(asV' fis + Aas) (7) 

In this study we take the stress tensor positive for tension and 
fluid pressures positive for compression. 

To incorporate/•s,/•f, and/•p in the effective stress expres- 
sion, we analyze three different stress state conditions individ- 
ually. In each of these cases we obtain an expression for the 
dilatation of the solid matrix X7 ß fis by introducing macroscopic 
material coefficients when necessary. Then we will superpose 
these expressions to obtain a relation for X7 ß fis when Ps, Pf, 
and Pp are simultaneously present. Superposition is justified by 
the linearity of the system. 

In the first case, we consider a drained porous medium, that 
is, Pf = Pp = 0 (In this study the term "drained" refers to the 
complete dissipation of excess pore pressures). Introducing the 
drained bulk modulus of the fractured porous medium Kfr, we 
write 

-asps = gfr•7 

By substituting (8) in (7), we obtain 

as=- gir/Vs 

(8) 

(9) 

Kfr can be evaluated experimentally by testing a drained frac- 
tured porous sample with standard techniques. 

In the second case we consider a stress state where Ps = 
Pf = Pp. This case corresponds to a fractured porous medium 
immersed in a fluid subjected to external pressure. Because of 
the homogeneity and isotropy of the medium, all volume frac- 
tions remain constant, and (7) yields 

-Ps = KsV. fis (10) 

In the third case, which is a thought experiment, we assume 
that the volume fraction change of the fractures is zero and 
furthermore that Pp = 0. AS in the second case, the fractured 
porous sample is immersed in a fluid. The pressure in the 
fractures Pf is equal to the applied pressure. Then from (6) and 
(7) we can write 

Pf = asps + afPf or Ps = -- Pf (11) 
as 

Introducing K• as the drained bulk modulus of the nonfrac- 
tured porous matrix, we write 

- m 
- asps = KfrV' as (12) 

Experimentally, K• can be determined by extracting a non- 
fractured sample from the fractured porous medium. The ex- 
tracted sample of porous medium can be tested by standard 
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techniques to determine K• experimentally. The third case will 
be discussed in more detail after the superposition of three 
cases. The volume fraction change of the solid phase can be 
solved from (7) and (12) as 

as=- Ps (13) KfrJ 

The stress states can be summarized as 

Case 1 

Ps = P• Pp = 0 Pf = 0 (14a) 
Case 2 

Ps = P2 Pp = P2 Pf = P2 (14b) 
Case 3 

i -- O/f 
Ps = --P3 Pp = 0 Pf = P3 (14C) 

O/s 

where subscripts 1, 2, and 3 refer to cases 1, 2, and 3, respec- 
tively. Since we seek expressions when/'s,/'p and/'f are si- 
multaneously present in the system, P •, P2 and P3 must satisfy 

1 -- O/f 
P• + P2 + --P3 = 

O/s 

P2 = Pp (15) 

P3 + P2 = Pf 

Solution of (15) for P•, P2, and P3 yields 

P• = Ps- •p 1 -- O/f (•f_ •p) 
O/s 

P2 -- Pp (16) 

P3 = Pt- P p 

In the third case, we observe that P3 = /•f - /•p' Hence case 
3 corresponds to the dilatation of the fractured solid matrix 
due to the pressure difference between the pores and fractures. 
In other words, there are three components of the matrix 
dilatation associated with three bulk moduli, K s, Kfr, and KW. 

The dilatation of the fractured solid matrix is obtained by 
superposing (8), (10), and (12) and substituting the expressions 
for Ps (equation (14)) as 

asP• P2 as (1- O/f) 
- •7'fis- Kfr Ks Kfr• Ors 

Substitution of (16) in (17) yields 

o/s (_ 1 -- o/f _ ) •7. fis = Kfr Ps- Pp as (Pf- Pp) 
Pp 1 - olf 
Ks Kfr• (Pf- /:}p) (18) 

Similarly, Aas is obtained from (9) and (13) as 

Aas=- Ks •rJ Ps-•p ørs 

O/s O/52/1 -- O/f - Ks -•" (/:}f- /:}p) KfrJ as 
(19) 

Employing the definition of total stress given in (6), (18) can be 
rewritten as 

trace((•'t)) 
+ •pDp + •f/:}f-- gfrV ß a s (2O) 

where 

( 1 -- O/f) Kfr Kfr (1 - a f) Kfr 
/•P = Kfr Ks •3f-- I- rn (21) rn Kf r 

We recall that Kfr is the drained bulk modulus of the fractured 
porous medium. Then we can write the following equation for 
a drained fractured porous medium 

trace((-rs)) 
= gfrV' fis (22) 

Comparing (20) and (22), we conclude that the effective stress 
is given by 

('l'eft) : (q't) + •pPp + •fPf (23) 

Substituting (21) in (23) and rearranging, we obtain 

('l't) -- ('l'eff) -- ( ( 1 -- 12/f) Kfr Kfrh Kfr• Ks/ 

-- (1 -- (1 -- øtf)Kfr)Df (24) Kf'• 

Conclusions 

Equation (24) is the effective stress principle for a saturated 
fractured porous medium. It expresses the macroscopic total 
stress (-rt} in terms of effective stress ('re•}, pore fluid pressure 
•'p, fracture fluid pressure Pf and bulk moduli of nonfractured 
porous blocks (K•), fractured porous medium (Kfr), and solid 
grains (Ks). These three bulk moduli can be determined ex- 
perimentally by employing standard soil mechanics tests. As 
can be seen in (24), when Pf = Pp or the volume fraction of the 
fractures is zero, that is, af = 0, K• = Kfr, (24) reduces to 

( ('l't)-- ('l'eft) -- 1 -- KsJDp (25) 
Equation (25) is the same expression obtained by Biot and 
Willis [1957], Skempton [1960], Nur and Byeerle [1971], and 
Verruijt [1984] for a saturated nonfractured porous medium. 
When the bulk modulus of the grains is much greater than the 
bulk modulus of the frame, that is, gfr/g s --> O, (25) reduces to 
Terzaghi's effective stress principle. 

Appendix: Volume-Averaging Theorems 
Let L, I and r be the characteristic lengths of the macro- 

scopic scale, averaging volume, and pore scale, respectively. 
The required condition for the volume averaging is [Slattery, 
1981] 

r <</<<L (A1) 

In this study, we assume that this requirement is satisfied. We 
continue with the definitions used in volume averaging litera- 
ture. Let B i be a field quantity of phase i; then volume average 
of B i is defined as 
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(Bi) -- • B i dV (A2) 
t 

where V is the averaging volume and R i is the region occupied 
by phase i. The intrinsic volume average of B i, that is, the 
mean value of B i in Ri, is given by 

Bi = •ii B i dV (A3) 
t 

where Vi is the volume of phase i in the averaging volume. 
These two averages are related by 

(Bi) = oliB i (m4) 

where ai is the volume fraction of phase i. Now, we set the 
volume average theorem for a gradient and a time derivative 
[Slattery, 1981] 

(VBi) = V(Bi) +p Bit't idA (A5) 
q 

i:/:j /=i,...,N 

( OB,X) a(Bi) 1rs -•-/ = at V Biu . ni dA (A6) 

i•j j=i,..',N 

where S o is the interface between phase i and phase j, n i is the 
outward normal of S O and u. n i is the speed of displacement 
of S q into other phases. The theorem of volume average of a 
divergence is stated as 

(v . Bi) = V . (Bi) + p Bin, d•4 (A7) 
q 

i•j j=i,...,N 

If B is taken to be a constant, (A6) takes the following forms 

Oai 1 fs a•- = + P u. ni d•4 i • j j = • ,..., N (A8) 
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