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Abstract

Interfering noise severely degrades the performance of a speech recognition system. The Parallel Model Compensation
(PMC) technique is one of the most efficient techniques for dealing with such noise. Another approach is to use features
local in the frequency domain, such as Mel-Frequency Discrete Wavelet Coefficients (MFDWCs). In this paper, we inves-
tigate the use of PMC and MFDWC features to take advantage of both noise compensation and local features (MFDWCs)
to decrease the effect of noise on recognition performance. We also introduce a practical weighting technique based on the
noise level of each coefficient. We evaluate the performance of several wavelet-schemes using the NOISEX-92 database for
various noise types and noise levels. Finally, we compare the performance of these versus Mel-Frequency Cepstral
Coefficients (MFCCs), both using PMC. Experimental results show significant performance improvements for MFDWCs
versus MFCCs, particularly after compensating the HMMs using the PMC technique. The best feature vector among the
six MFDWCs we tried gave 13.72 and 5.29 points performance improvement, on the average, over MFCCs for �6 and
0 dB SNR, respectively. This corresponds to 39.9% and 62.8% error reductions, respectively. Weighting the partial score
of each coefficient based on the noise level further improves the performance. The average error rates for the best
MFDWCs dropped from 19.57% to 16.71% and from 3.14% to 2.14% for �6 dB and 0 dB noise levels, respectively, using
the weighting scheme. These improvements correspond to 14.6% and 31.8% error reductions for �6 dB and 0 dB noise
levels, respectively.
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1. Introduction

Real world applications require that speech
recognition systems be robust to interfering noise.
Unfortunately, though, the performance of a speech
recognition system drops dramatically when there is
a mismatch between training and testing conditions.
Many different approaches have been studied to
decrease the effect of noise on the recognition
.
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performance (Gong, 1995). These approaches can
be divided into three main groups: speech enhance-
ment techniques (Boll, 1979; Cung and Normandin,
1992; Lockwood and Boudy, 1991), inherently
robust speech features (Mansour and Juang, 1989;
Ghitza, 1986), and model-based compensation tech-
niques (Beattie and Young, 1991, 1992; Berstein and
Shallom, 1991; Klatt, 1979; Mellor and Varga, 1992;
Varga and Moore, 1990; Gales and Young, 1992,
1993a, 1995b, 1996).

One of the most effective and popular model-
based techniques for dealing with noisy speech is
Parallel Model Compensation (Gales and Young,
1992, 1993a, 1995b, 1996). This technique attempts
to estimate models of noisy given clean speech mod-
els and a noise model. Previous work (Gales and
Young, 1995a) has produced results near the opti-
mal (matched) condition (when training and testing
noise environments are identical).

In addition to the methods mentioned above, rec-
ognition systems based on features local in the fre-
quency domain, such as multiband (Bourlard and
Dupont, 1996; Hermansky et al., 1996; Tufekci
and Gowdy, 2001) and multiresolution (Vaseghi
et al., 1997; Chengalvarayan, 1999; Tufekci and
Gowdy, 2000; Gowdy and Tufekci, 2000) tech-
niques, have received great attention for dealing
with noisy speech. In this paper, the speech feature
vector will be referred to as local if some of the coef-
ficients of the vector represent local information in
the frequency domain, even though the other coeffi-
cients do not.

Conventional feature extraction methods use the
entire frequency band to extract speech features for
speech recognition. However, as pointed out by
Fletcher (1953) (and reviewed by Allen (1994)), the
Human Speech Recognition (HSR) system seems
to utilize partial recognition information across
frequencies, probably in the form of speech fea-
tures that are local in frequency. Fletcher’s work
(Fletcher, 1953) led to the subband-based speech rec-
ognizer (Bourlard and Dupont, 1996; Hermansky
et al., 1996). Hermansky et al. (1996) and Bourlard
and Dupont (1996) also proposed subband-based
speech recognition systems. They simply divided
the frequency band into subbands, extracted features
for each subband, and then calculated scores for
each subband. Finally, they combined each sub-
band’s recognition score by using merging
techniques.

There are three main motivations for local (in
frequency domain) feature-based recognizers:
• Some subbands of the speech spectrum are inher-
ently more relevant than others for the task of
speech recognition. Therefore, the contribution
of each subband to the overall recognition deci-
sion can be weighted depending on the informa-
tion that each subband conveys.

• Transitions between more stationary segments of
speech do not necessarily occur at the same time
across the different frequency bands. The local
feature-based approach may have the potential
of relaxing the synchrony inherent in current
HMM systems. A frame of speech may contain
information of two adjacent phonemes. If one
of these phonemes is voiced and the other is
unvoiced, then the low-frequency spectrum is
dominated by voiced-phoneme information, and
the high-frequency spectrum is dominated by
the unvoiced-phoneme information. In tradi-
tional feature extraction methods that are based
on extracting speech features using the full fre-
quency band, we inherently assume that a speech
frame conveys information about only one pho-
neme at a time. However, this is not always true.
Frequency-local features may help model the
possible asynchrony more accurately.

• Local features are affected differently in noisy
environments. When one frequency band is
corrupted by noise, only a few coefficients are
affected if the coefficients represent local informa-
tion; otherwise, the noise affects all coefficients.
Even if the whole frequency band is corrupted
by noise, the SNR will likely be different for each
subband. Local features allow a SNR-weighted
contribution of each coefficient to the global score.

Previous work on a phoneme-recognition task
showed that local features (Tufekci and Gowdy,
2000, 2001; Gowdy and Tufekci, 2000) outperform
MFCCs for recognition of clean speech. This
indicates that some subbands of the speech spec-
trum are inherently more relevant than others
to the task of speech recognition. Asynchrony
between frequency bands has been studied
(Mirghafori and Morgan, 1998; Cerisara et al.,
1998; Tomlinson et al., 1997; Bourlard and Dupont,
1996), and it has been shown that accommodating
asynchrony between frequency bands also improves
performance.

The subband-based recognizer (Bourlard and
Dupont, 1996; Hermansky et al., 1996) is one of
the most popular recognizers based on local
features. Linear Predictive Cepstral Coefficients
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(LPCCs) or MFCCs (Davis and Mermelstein, 1980)
for each subband are typically used as subband fea-
tures. Therefore, the resulting features are a Cosine
Transform (CT) of a preprocessed log magnitude
spectrum of subbands or Discrete Cosine Trans-
form (DCT) of mel-scaled log filterbank energies
of subbands. Subband based recognizers have two
drawbacks:

• The length and shape of basis vectors determine
the resolution capability of a transformation
(Mallat, 1998). For longer basis vectors the trans-
formation will have better frequency resolution
but worse time resolution. The basis vector that
is well concentrated (because of its shape) in time
and frequency domain will have better resolution
in time and frequency than the basis vector that is
not well concentrated in time and frequency for a
given basis vector length.
In this paper, the DCT is applied to the mel-
scaled log-filterbank energies of a speech frame.
The basis vectors of the DCT (CT) have approx-
imately the same resolution in time and fre-
quency since same length windows are used in
calculating the cepstral coefficients. That is, the
frequency resolution of vector-1 is approximately
equal to the frequency resolution of vector-
2, . . . , vector-N and the time resolution of vec-
tor-1 is approximately equal to the time resolu-
tion of vector-2, . . . , vector-N. However, basis
vectors with different time–frequency resolutions
capability are needed to capture the changes in
time and frequency.

• Basis vectors of the DCT also have the problem
that high frequency artifacts (Mallat, 1998) can
be introduced due to abrupt changes at window
boundaries.

To overcome the former problem, Vaseghi et al.
(1997) suggested multi-resolution features. How-
ever, since they use the same basis vectors as the
DCT, the latter problem was still present. In our
previous work (Tufekci and Gowdy, 2000; Gowdy
and Tufekci, 2000), we proposed the use of DWT
which has good time and frequency resolution,
instead of the DCT, to solve the problems men-
tioned above. Also based on mel-frequency scaled
bands, the resulting features are called MFDWCs.
One important property of the DWT is that the
inverse DWT exists, which is necessary for the
PMC technique. Our previous work (Tufekci and
Gowdy, 2000; Gowdy and Tufekci, 2000) has shown
that MFDWCs outperform subband features,
multiresolution features and MFCCs for clean
speech and also for noisy speech.

It is known that the recognizer is optimal (Gales
and Young, 1996) if the training and testing
conditions are identical. A practical method for
approaching the optimal recognizer for different
noise conditions is PMC. This technique allows
for estimation of HMM parameters in new environ-
ments. Since the features involved are local, the esti-
mated HMM parameters for the new environment
will represent local information. This is very impor-
tant because the estimated parameters for a particu-
lar coefficient will be affected only if that particular
coefficient is corrupted by noise.

In this work the PMC technique was imple-
mented along with MFDWCs to test the perfor-
mance of MFDWCs for noisy conditions. A
proposed weighting method based on the noise level
was also tested. The paper is organized as follows.
The wavelet transform and MFDWCs are intro-
duced in Section 2. Application of PMC to
MFDWCs is explained in Section 3. Weighting the
partial score of each coefficient based on the noise
level is explained in Section 4. Section 5 gives the
experimental setup and results, and conclusions
are presented in Section 6.

2. Wavelet transform and MFDWCs

MFDWCs are obtained by applying the DWT to
the mel-scaled log-filterbank energies of a speech
frame. For information about the Wavelet Trans-
form (WT) and implementations of the WT, inter-
ested readers may refer to Mallat (1998) and
Vetterli and Kovacevic (1995). The WT uses short
basis functions to measure the high frequency
content of the signal and long basis functions to
measure the low frequency content of the signal.
This property of the WT distinguishes it from the
Short Time Fourier Transform (STFT) and the
Fourier Transform (FT). For an example, consider
a field with different sizes of rocks as shown in
Fig. 1. Consider that we want to know information
about the location and size of the rocks, and assume
that we have three different transformations to
obtain information about the location and size of
the rocks. The first one has resolution similar to
the FT, which uses the entire field to obtain infor-
mation. The second one has resolution similar to
the STFT, which divides the field into same size
subfields using rectangular windows and extracts
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Fig. 1. A field with different sizes of rocks, illustrating differences
between the FT, STFT, and WT.
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features from each subfield. The third one has reso-
lution similar to the WT, which divides the field into
subfields using different sizes of windows that may
overlap, and extracts features from each subfield.
Fig. 1 illustrates division of the field into subfields
for the three different transformations mentioned
above.

If we use a transform which has resolution simi-
lar to the FT, we get information only about the
number of rocks for each size but not about the
locations of the rocks. If we use a transform which
has resolution similar to the STFT, we also get loca-
tion information, but we do not get good location
information for small rocks (since the window size
is large). Also, the rock size may be larger than
the window size, so that we lose information for
large rocks. However, since the transform that has
resolution properties similar to the WT uses small
windows to obtain information about small rocks,
and large windows (which may overlap) to obtain
information about the large rocks, we have a more
effective approach to determining size and location
of the rocks. This informal discussion presents the
main motivation for using the WT for feature
extraction.

A wavelet is a function WðtÞ 2 L2ðRÞ (space of
square-integrable functions) of zero average and
unit norm so thatZ þ1

�1
WðtÞdt ¼ 0; ð1Þ

kWðtÞk ¼ 1: ð2Þ
Filterba
Analys|.|2DTFTBlock into

Frames
s(n)

Fig. 2. Extraction of the M
The analysis function of wavelet transform at scale s

and translation u is given by

Wu;sðtÞ ¼
1ffiffi
s
p W

t � u
s

� �
: ð3Þ

The wavelet transform of a function f ðtÞ 2 L2ðRÞ at
the time u and scale s is given by

WF ðu; sÞ ¼
Z þ1

�1
f ðtÞ 1ffiffi

s
p W�

t � u
s

� �
dt

¼
Z þ1

�1
f ðtÞW�u;sðtÞdt; ð4Þ

where * denotes complex conjugate. Theoretically,
any function with zero mean and finite energy can
be a wavelet. There are many criteria, though, by
which to choose a wavelet. Since we cannot imple-
ment a wavelet of infinite duration, we need
compactly supported wavelets for practical applica-
tions. Decay of the wavelet in the frequency and
time domains is important. We want the wavelet
to decay quickly in time and frequency in order to
have good locality in both these domains. Filter-
bank-based wavelets can be implemented efficiently.
Since our signals are of finite length, the wavelet
coefficients will have unwanted large variations at
the borders because of the associated discontinuities
(Mallat, 1998). We can use folded wavelets that re-
quire symmetric or anti-symmetric wavelets such as
the spline wavelet to decrease the effect of disconti-
nuities at the borders, or we can use border wave-
lets. Because of considerations given above, the
options for choosing a wavelet are limited. In addi-
tion we need to use the Discrete Wavelet Transform
instead of the Continuous Wavelet Transform since
our signal is discrete. Fig. 2 illustrates extraction of
the MFCCs and MFDWCs. The first five steps are
the same for both as shown in Fig. 2. Only the last
step is different in that we take the Discrete Cosine
Transform (DCT) of the mel-scaled log-filterbank
energies to calculate MFCCs or the DWT of the
log-filterbank energies to calculate MFDWCs. The
first step is to divide the speech signal into blocks
using overlapping smooth windows such as
Hamming, Hanning, etc. The next step is to take
nk
is Log(.)

DWT

DCT MFCCs

MFDWCs

FCCs and MFDWCs.
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the Discrete Time Fourier Transform (DTFT) of
the windowed signal. Next, the square of the DTFT
of the windowed signal is calculated. The outputs of
the fourth step are the mel-scaled filterbank ener-
gies. The fifth step involves calculating the loga-
rithm of the mel-scaled filterbank energies.

2.1. Localization property of the wavelet transform

and cosine transform

In general, we take the transformation of a signal
to get a more useful representation of the signal.
However, this has different meanings depending
upon the application. For coding, a goal is to repre-
sent the signal with fewer coefficients. For recogni-
tion, the objective is to separate the signals
belonging to different categories in the new domain
better than in the original domain. One of the
important properties of certain linear transforma-
tions is localization which may lead to better repre-
sentation when the signal is noisy. In this section,
the localization property of a transform is
explained. Let {/k(t)} be a set of functions on
L2ðRÞ (space of square-integrable functions) associ-
ated with transformation T. k is an index which may
be multidimensional. Then define the transforma-
tion of f(t) as

Tf ðtÞ ¼ F ðkÞ ¼
Z þ1

�1
f ðtÞ/�kðtÞdt ¼ hf ðtÞ/kðtÞi;

ð5Þ

where h i denotes inner product and * denotes com-
plex conjugate. Parseval’s theorem states that

Tf ðtÞ ¼
Z þ1

�1
f ðtÞ/�kðtÞdt ¼ 1

2p

Z þ1

�1
F ðXÞU�kðXÞdX;

ð6Þ

where F(X) and Uk(X) are the FT of f(t) and /k(t),
respectively. As seen from Eqs. (5) and (6) the trans-
form of the signal depends on both /k(t) and the FT
of /k(t), so the locality of f(t) in the time and fre-
quency domains depends on the spread of /k(t) in
time and frequency, respectively. Therefore, it is
desirable that /k(t) be well concentrated in the time
and frequency domains to decrease the effect of
noise. There are many ways to define the measure
of locality of a function in the time and frequency
domains. One approach (Mallat, 1998) uses of the
variance of the function ðr2

t Þ and the variance of
the FT of the function ðr2

XÞ. r2
t represents the spread

of the function in time which is the measure of local-
ity of the function in the time domain. The value r2
x

represents the frequency spread of the function,
which is the measure of locality of the function in
the frequency domain.

The locality of a transformation of a signal is
important in two ways for pattern recognition.
First, different parts of the signal may convey differ-
ent amount of information. When the coefficients
represent local information, we can adjust the con-
tribution of each coefficient to the total recognition
rate depending on the information that each coeffi-
cient conveys. Second, when our signal is corrupted
by noise that is local in time and/or in frequency,
this noise affects only a few coefficients if our coef-
ficients represent local information in time and
frequency. Therefore, we can decrease the contribu-
tion of noise-corrupted coefficients to the overall
recognition score depending on the SNR for noise
corrupted coefficients.

Figs. 3–5 show the spread of wavelet basis func-
tions in the time and frequency domains. All the
wavelets shown in Figs. 3–5, which are labeled
wavelet1 through wavelet6, were used in this study.
Filterbank coefficients for these wavelets can be
found in (Cohen et al., 1992). The cosine basis func-
tion is also included in the figures since the discrete
version of the cosine transform is used to calculate
the MFCC. The cosine basis functions are given as

kk

ffiffiffiffi
2

T

r
cos

pkt
T

� �
; ð7Þ

where k 2 N (natural number). kk = 1 if k 5 0 and
kk ¼ 1=

ffiffiffi
2
p

if k = 0. Fig. 3 shows the cosine basis
function for T = 2 and k = 4.

As seen from Eqs. (5) and (6), if the basis func-
tions are local, the resulting coefficients will repre-
sent local information. If the features represent
local information, corruption of a frequency band
will affect only a few coefficients which may lead
to better performance. If we look at Figs. 3–5, it
appears that wavelet1 is better concentrated in the
frequency and time domains than the others. Theo-
retically, we expect a wavelet that is more concen-
trated in the frequency and time domains to
perform better than the others. However, as will
be shown in Section 5 where a comparison is given,
this is not necessarily true. wavelet4 has the worst
concentration in the frequency domain. Wavelet5
and wavelet6 have similar localization in the time
and frequency domain, suggesting they may have
similar performances. As shown in Fig. 6 the cosine
basis function has discontinuities at the border
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Fig. 3. Spreads of the basis functions in the time and frequency domains: (a) and (b) for wavelet1; (c) and (d) for wavelet2.
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which may cause large variation (Mallat, 1998) at
some coefficients. It is also not well concentrated
in the frequency domain.

3. The PMC technique applied to the MFCCs and
MFDWCs

In this section the PMC technique is briefly
reviewed. Ideally, the training and testing conditions
for a speech recognition system should be the same
(this is the ‘‘matched system’’ condition). A logical
approach to implementing such a system would be
to retrain the system for each new test environment.
However, it is often not practical to do this.

The PMC (Gales and Young, 1992, 1993a,
1995b, 1996) technique was proposed by Gales
and Young to deal with new testing conditions by
estimating the noisy speech model using a combina-
tion of clean speech and noise models. The PMC
technique is very effective and less time consuming
compared to retraining the system using the training
data for a new environment. There are three PMC
techniques for estimating the noisy speech parame-
ters: numerical integration (Gales and Young,
1995b), a data-driven approach (Gales and Young,
1995a), and log-normal approximation (Gales and
Young, 1992). We chose the log normal approxima-
tion approach since it demands the least computa-
tion for comparable performance.

When the noise is stationary, a single state noise
model with one mixture may be sufficient to model
it. When the noise is non-stationary or quasi-
stationary, it may be necessary to use multiple mix-
tures (Yang and Haavisto, 1995) for the noise
model. For example, the single mixture model may
be sufficient for speech noise and Lynx helicopter
noise. However, more mixtures are typically needed
to model F16 and factory noise. STITEL noise is a
periodic noise which may be better modeled by
multi-state noise model (Gales and Young, 1993a).
A multi-state noise model can be approximated with
a single-state multiple mixture noise model. There-
fore, in this paper, the noise was modeled by a single
state with multiple mixture components. It is com-
mon practice to use delta coefficients to achieve bet-
ter performance. Therefore, we also estimated the
delta coefficients (Gales and Young, 1993b; Yang
and Haavisto, 1996) using the PMC technique.
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A series of assumptions, (Gales and Young,
1996) given below, are required to estimate the noisy
speech parameters using the PMC technique:

• The speech and noise are independent.
• The speech and noise are additive in the time

domain. In addition, it is assumed that there is
sufficient smoothing of the spectral estimate so
that speech and noise may be assumed to be addi-
tive at the power spectrum level.

• A multiple Gaussian mixture component model
contains sufficient information to represent the
distribution of the observation vectors in the
cepstral or mel-scaled log filterbank energy
domain.

• The frame/state alignment used to generate the
speech models from the clean speech data is not
altered by the addition of noise.

Three additional assumptions (Gales and Young,
1992, 1993b) are needed to use log normal approx-
imation for estimating noisy-speech static and delta
parameters as given below.
• The sum of two log-normally distributed random
variables is approximately a log-normally distrib-
uted random variable.

• The variances of Si
S1þNi

� �
and Ni

SiþNi

� �
are negligi-

ble where Si and Ni are the ith components of
the speech observation vector and noise observa-
tion vector, respectively, in the mel-scaled filter-
bank energy domain.

•
E

Si

Si þ N i

� �
� li

li þ ~li

� �
¼ ci; ð8Þ

E
N i

Si þ N i

� �
� ~li

li þ ~li

� �
¼ gi; ð9Þ
where E is expectation operator, li and ~li are the
ith components of the clean speech and noise
mean vectors in the mel-scaled filterbank energy
domain.

For the rest of the paper, superscripts will be used to
denote the domain of the observation or distribu-
tion, thus lc is the clean speech mean in the cepstral
domain for the MFCCs or in the wavelet domain
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for the MFDWCs and ll is the mean in the mel-
scaled filterbank log-energy domain. Absence of a
superscript indicates the mel-scaled filterbank
energy domain, e.g., l represents the mean for this
case. The symbols ~ andˆ indicate noise and esti-
mated noisy speech parameters, respectively. All
variables in bold are matrices or vectors, and sub-
scripts indicate elements of the vectors or matrices.
T is the Discrete Cosine Transformation matrix
for calculating the MFCCs or the Discrete Wavelet
Transformation Matrix for the MFDWCs. T�1 is
inverse transformation matrix for the DCT or
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DWT. XT represents transpose of X where X may be
a matrix or vector. The PMC technique can be
summarized for HMMs with multiple mixtures,
diagonal covariance matrices, static and delta coef-
ficients as follows.

Let Ms and Mn be the numbers of mixtures in a
state for the clean speech and noise models, respec-
tively. Then there will be Ms * Mn mixtures in each
noisy speech state. Let wsi, wnj, wk be the ith, jth and
kth mixture weights of clean speech, noise and noisy
speech states, respectively, where k = (Ms � 1) *
i + j.

Then the kth mixture weight for the noisy speech
is

wk ¼ wsi � wnj: ð10Þ

Noisy speech state parameters for each mixture can
be calculated using a speech mixture and a noise
mixture using the following steps:

(1) Inverse transformation to get to the log-
energy domain:
ll ¼ T�1lc; ð11Þ
Dll ¼ T�1Dlc; ð12Þ
Rl ¼ T�1RcðT�1ÞT; ð13Þ
DRl ¼ T�1DRcðT�1ÞT: ð14Þ
(2) Exponential transformation:
li ¼ exp ll
i þ Rl

ii=2
� �

; ð15Þ
Dli ¼ exp Dll

i þ DRl
ii=2

� �
; ð16Þ

Rij ¼ lilj exp Rl
ij

� �
� 1

h i
; ð17Þ

DRij ¼ DliDlj exp DRl
ij

� �
� 1

h i
: ð18Þ
(3) Composition:
l̂ ¼ lþ g~l; ð19Þ
where g is a gain matching term which is given
by

g ¼ Ens � En

Es

; ð20Þ

where Ens, En and Es are average noisy speech
signal energy, average noise energy and aver-
age clean training speech energy, respectively.

Dl̂i ¼ ciDli þ ggiD~li; ð21ÞbR ¼ Rþ g2 ~R; ð22Þ
DbR ij ¼ cicjDRij þ g2gigjD~Rij: ð23Þ
(4) Logarithm transformation:
l̂l
i ¼ logðl̂iÞ �

1

2
log

bRii

l̂2
i
þ 1

 !
; ð24Þ

Dl̂l
i ¼ logðDl̂iÞ �

1

2
log

DbRii

Dl̂2
i
þ 1

 !
; ð25Þ

bRl
ij ¼ log

bR ii

l̂il̂j
þ 1

 !
; ð26Þ

DbR l
ij ¼ log

DbR ii

Dl̂i Dl̂j
þ 1

 !
: ð27Þ
(5) Linear transformation:
l̂c ¼ T l̂l; ð28Þ
Dl̂c ¼ TDl̂l; ð29Þ
Rc ¼ T bRlT T; ð30Þ
DbRc ¼ TDbRlT T: ð31Þ
4. Weighting the contribution of coefficients for

the total score based on the noise level of

coefficients

Noise affects each coefficient differently. This is
especially true for features that are local in the
frequency domain such as MFDWCs. When one
frequency band is corrupted by noise, only a few
coefficients will be affected if the speech features rep-
resent local information as in MFDWCs. Even if
the entire frequency band is corrupted, the noise
level can be different for each frequency interval
for real applications, so the various coefficients will
be affected differently. Therefore, it may be neces-
sary to weight the contribution of each coefficient
to the total score based on the noise level of the
coefficients.

When all assumptions are true for estimating the
noise and noisy speech model parameters, there is
no need to weight the contribution of each coeffi-
cient to the total recognition score based on SNR.
However, the assumptions involved in estimating
the noisy speech parameters prevent perfect estima-
tion. Therefore, it may be better to weight the con-
tribution of each coefficient based on the noise level.

Let Oc(t) be observation vector at time t. Then
the state observation likelihood for the diagonal
covariance case will beXM

k¼1

wk

YN
i¼1

1ffiffiffiffiffiffi
2p
p

r̂c
i

exp � 1

2

Oc
i ðtÞ � l̂c

i

r̂c
i

� �2
( )( )

;

ð32Þ
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where wk is the kth mixture weight, M is the number
of mixtures, and N is the number of coefficients.
Each mixture of the noisy speech states is estimated
using a pair of mixtures, one of the noise state and
one of a clean speech state. Therefore, the SNR
value will be different for each mixture of the esti-
mated noisy speech states. The weighting must thus
be performed at the mixture level. One approach for
weighting for a given mixture can be expressed asYN
i¼1

1ffiffiffiffiffiffi
2p
p

r̂c
i

exp � 1

2

Oc
i ðtÞ � l̂c

i

r̂c
i

� �2
( )( )ai

; ð33Þ

where ai is the weighting factor for the ith coefficient
for a given mixture of a state. A smaller value of ai

means less weight for that coefficient. The value ai

must be chosen based on the SNR value of the coef-
ficient. Instead of using Eq. (33), changing the variance
r̂c

i

� �2
based on the noise level will have a similar effect.

In this case we increase the noisy speech variance
r̂c

i

� �2
in proportion to the variance of the noise in the

cepstral domain. The variance rc
i

� �2
can be updated as

r̂c
i

� �2  r̂c
i

� �2 þ a ~̂rc
i

� �2
; ð34Þ

where a is a scalar and ~̂rc
i

� �2
is the compensated

noise variance (explained later) for the ith coefficient.
There is no exact method for choosing the optimal a
value. The choice of a depends on how well the noisy
speech parameters are estimated. If every parameter
is well estimated, 0 can be chosen for a. Choosing too
large a value for a may degrade results.

It is more practical to update the covariance
matrix in the log-energy domain. The covariance
matrix can be updated in log-energy domain asbRl

ij  bRl
ij þ a ~̂Rl

ij ð35Þ

and

DbRl
ij  DbRl

ij þ aD ~̂Rl
ij; ð36Þ

where
beR l

ij and DbeR l
ij are the compensated noise

covariance coefficients. The difference between
beR l

ij

and eRl
ij is that l̂i is used instead of ~li to calculatebeR l

ij. Similarly, Dl̂i is used instead of D~li for calculat-

ing DbeR l
ij. This is necessary because the contribution

of the noise variance to the noisy speech variance
will be based on l̂i and Dl̂i not ~li and D~li.

5. Experimental setup and results

As in the earlier PMC work by Gales and Young,
we used the NOISEX-92 (Varga et al., 1992) data-
base to evaluate and compare the performance of
MFDWCs with MFCCs. It consists of separate
training and test utterances in a single-speaker
setup. The training and test files include 10 digits
spoken 10 times each with approximately 1 s gap
between them. Background noises include speech,
STITEL, Lynx, F16, Car, Factory, and Operations
Room recordings. The same test and training files
were used for all experiments.

The speech signal was sampled at 16 kHz and
analyzed with 32 ms hamming windows stepped by
10 ms. The FFT of each frame was used to calculate
the power spectrum of the signal. For the computa-
tion of mel-scaled log filter-bank energies, 33 trian-
gular mel-scaled band-pass filters were designed and
implemented.

Our previous experimental results (Tufekci and
Gowdy, 2000; Gowdy and Tufekci, 2000) using
the TIMIT database have shown that symmetric
wavelets give better results than antisymmetric
wavelets, so we used symmetric wavelets for this
work. The folded DWT was used to compute
MFDWCs to decrease the high frequency artifact
caused by discontinuities (Mallat, 1998) at border
boundaries. All the wavelets used in this paper are
shown in Figs. 3–5. MFDWC-1s to MFDWC-6s
are computed using the filters associated with wave-
let1 to wavelet6 (Cohen et al., 1992) shown in Figs.
3–5. The folded DWT for symmetric wavelets
requires (Mallat, 1998) the input vector size to be
2N + 1, where N is an integer, and the output vector
size to be 2M + 1, where M is an integer. In our case
2N + 1 = 33 and 2M + 1 = 17. Eight coefficients at
scale four, four coefficients at scale eight, two coef-
ficients at scale sixteen, and two coefficients at scale
thirty two and the zeroth coefficient were used. The
total number of static coefficients used was therefore
seventeen. MFCCs were computed by taking the
DCT of mel-scaled log filterbank energies. The first
sixteen of the MFCCs as well as the zeroth coeffi-
cient were used to make the number of parameters
equal for MFCCs and MFDWCs. All feature
vectors also include delta coefficients.

Eight-state left-to-right (with no skip), single-
mixture continuous-density HMM models with
diagonal covariance matrices were constructed for
each digit. The silence model is a one-state, five-
mixture, continuous density HMM model. There-
fore, each state of each digit model has five mixtures
after utilizing the PMC technique. The same setup
was also used for the matched system. Single
mixture components were used for the matched



Table 2
Recognition accuracies for the MFCCs and MFDWCs both
utilizing the PMC technique and weighting algorithm for noisy
speech

Noise type MFCCs MFDWC-2 s

�6 dB 0 dB +6 dB �6 dB 0 dB +6 dB

Speech
noise

65 90 100 86 98 100

Lynx noise 60 91 100 79 99 100

STITEL
noise

70 97 100 87 100 100

F16 noise 73 94 98 86 99 99

Factory
noise

67 89 98 81 98 100

Car noise 80 95 99 93 98 100

O. Room
noise

56 94 96 71 93 98

Average 67.29 92.86 98.71 83.29 97.86 99.57
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digit models of the single speaker, and five mixture
components were used for the silence model. The
HTK toolkit (Young et al., 1997) was used for train-
ing and testing. HMMs are first trained using the
Viterbi algorithm. Then the Baum–Welch algorithm
is used for fine tuning. The grammar consists of
three silences followed by a digit in a loop. The
silence model for each test condition was trained
using the silence interval of the test files. The
accuracy is calculated as 100 * [(N � S � D � I)/N]
where N is the number of tokens. S, D, I are the
number of substitution, deletion, and insertion
errors, respectively. We conducted a series of exper-
iments involving different noise types, different noise
levels using MFCCs, and 6 different MFDWCs uti-
lizing the PMC technique. Table 1 shows the results
for 7 different noise types and 3 noise levels using
MFCCs and MFDWC-2s (which gave the best
results on average). The average recognition rates
for each noise level was also included in Table 1.
As seen from Table 1, the MFDWC-2s dramatically
improved the performance for all noise types and
for almost all noise levels. Improvement is especially
significant for the �6 dB noise level. A comparison
of the average recognition rates of the MFCCs and
MFDWC-2s demonstrates significant overall
improvement. As shown in Table 1, MFDWC-2s
yielded 13.72 and 5.29 points improvement over
MFCCs for �6 and 0 dB noise levels, respectively.

The recognition results for MFCCs and
MFDWC-2s utilizing the weighting algorithm are
given in Table 2. The value 0.2 was chosen as the
weighting factor a for all experiments that utilize
the weighting algorithm. After testing a range of
Table 1
Recognition accuracies for the MFCCs and MFDWCs both
utilizing the PMC technique for noisy speech

Noise type MFCCs MFDWC-2s

�6 dB 0 dB +6 dB �6 dB 0 dB +6 dB

Speech
noise

65 88 99 83 97 100

Lynx noise 57 87 100 75 97 99

STITEL
noise

65 95 99 83 100 100

F16 noise 76 93 98 87 95 99

Factory
noise

71 96 99 78 98 100

Car noise 75 94 99 89 97 100

O. Room
noise

58 88 94 68 94 99

Average 66.71 91.57 98.29 80.43 96.86 99.57
values for a on the training data, the best average
performance was obtained using a value of 0.2. It
is likely that there is an optimal a value for each
noise type and noise level. Overall, weighting is
shown to improve performance. As shown in Table
2, weighting improved the performance for both
MFCCs and MFDWC-2s on the average. For
example the recognition rate increased from
80.43% to 83.29% for MFDWC-2s for �6 dB noise
on the average, which represents a 14.6% error
reduction. We also conducted experiments for the
matched case (where training and testing conditions
are the same). Table 3 shows the results for the
matched case. As seen from Table 3 the matched
system performed poorly compared to the PMC-
based system for MFCCs and for MFDWC-2s.
Table 3
Recognition accuracies for the matched system for the MFCCs
and MFDWCs for noisy speech

Noise Type MFCCs MFDWC-2s

�6 dB 0 dB +6 dB �6 dB 0 dB +6 dB

Speech
noise

79 100 100 76 100 100

Lynx noise 76 98 99 73 100 100

STITEL
noise

31 79 99 43 78 99

F16 noise 68 98 100 73 96 100

Factory
noise

52 93 99 52 93 97

Car noise 88 98 100 82 98 100

O. Room
noise

49 89 99 52 91 99

Average 63.29 93.57 99.43 64.43 93.71 99.29
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These results suggest that the matched system is not
the optimal system. There are two possible reasons
that the matched system performed poorly. (1)
The estimated noisy speech parameters are not reli-
able, since it is difficult to get a good estimate in
extremely noisy cases. (2) The noise may be quasi-
stationary. One stationary part of the noise and a
particular digit may overlap in the training set,
but they may not overlap in the test set, causing
mistraining. However, there is no such a problem
for estimating the noisy speech parameters using
the PMC technique. We also conducted a series of
experiments using different wavelets to find the
wavelet that gives the best result and to examine if
there is a relationship between performance and
locality in the frequency and time domain. We know
that MFDWCs represent local information in the
frequency domain, but MFCCs do not. Therefore
we expect that the noise affects the MFDWCs differ-
ently (some coefficients will be affected more and
some coefficients will be affected less) but MFCCs
will be affected at the same level since the full fre-
quency band is used to extract the MFCCs. There-
fore, we expect the MFDWCs perform better than
MFCCs for noisy speech recognition both using
the PMC technique.

From Figs. 3–5 it can be seen that some of the
wavelets used to calculate the MFDWCs have better
time–frequency resolutions than the other wavelets.
However, there are not major time–frequency reso-
lution differences between different wavelets com-
pared to the time–frequency resolution differences
between the wavelet basis functions and cosine basis
functions.

The average recognition results are given in
Table 4. All MFDWCs gave better performance
than the MFCCs as expected. This result suggest
that using local features (MFDWCs) improves the
performance. The MFDWC-2s gave the best result
Table 4
Average recognition accuracies for the MFCCs and MFDWCs
all of them utilizing the PMC technique

Feature Average accuracies

�6 dB 0 dB +6 dB

MFCCs 66.71 91.57 98.29
MFDWC-1s 76.85 96.43 99.14

MFDWC-2s 80.43 96.86 99.57

MFDWC-3s 76.43 96.3 99.57

MFDWC-4s 77.42 95.29 99.71

MFDWC-5s 78.14 96.86 99.43

MFDWC-6s 78.71 97.14 99.43
on the average. It seems that the wavelet used to
calculate the MFDWC-1s is more local than the
others in the time and frequency domains as seen
from the Fig. 3. However, the MFDWC-1s did
not give the best results. The wavelet used to calcu-
late the MFDWC-4s is less local than the others in
the time and frequency domains as seen from Fig. 4,
but there is no big difference between the perfor-
mance of the MFDWCs-4 and the others. These
results suggest that being jointly local in the
frequency and time domains is not too critical.
However, having different time and frequency reso-
lutions is important as seen from big performance
differences between MFCCs and MFDWCs. Recall
that MFCCs have approximately same time and fre-
quency resolutions but MFDWCs have different
time and frequency resolutions. It seems that the
experimental results contradict with what was
claimed (better localization in the time and fre-
quency domains will result in better performance
for noisy speech recognition). The significant
performance differences between the MFDWCs
and MFCCs experimentally demonstrates that the
use of local features in the frequency domain
improves the performance for the noisy speech
recognition using the PMC technique. However
there are not big performance differences between
different MFDWCs. We know that there are big
differences between time–frequency localization of
MFDWCs and MFCC but small time–fre-
quency localizations differences between different
MFDWCs used in this paper. The experimental
results suggests that small differences between the
time–frequency localization property of the fea-
tures (MFDWCs) do not change the performance
significantly as we see from Table 4. There are not
big performance differences between different
MFDWCs.
Table 5
Average recognition accuracies for the MFCCs and MFDWCs
that all of them utilizing the PMC technique and weighting
algorithm

Feature Average accuracies

�6 dB 0 dB +6 dB

MFCC 67.29 92.86 98.71
MFDWC-1s 79.43 97 99.43

MFDWC-2s 83.29 97.86 99.57

MFDWC-3s 80.57 97.57 99.57

MFDWC-4s 79.29 97.14 99.57

MFDWC-5s 81.43 97.86 99.57

MFDWC-6s 81.43 98.14 99.57
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The performances of the MFCCs and MFDWCs
utilizing the weighting algorithm are given in Table
5. As seen from Tables 4 and 5, the weighting algo-
rithm significantly improved the performance, on
the average, for the MFCCs and MFDWCs. These
results suggest that weighting the contribution of
each coefficient to the recognition score based on
the noise level improves the performance.
6. Conclusion

In this paper we described a speech recognition
system based on the PMC architecture and using
MFDWCs parameters. It was shown that
MFDWCs are superior to MFCCs for speech recog-
nition in noisy environments when they are used in
conjunction with the PMC technique. It was also
shown that weighting the contribution of each coef-
ficient, based on the noise level corresponding to
that coefficient, further improves performance. The
weighting scheme is based upon changing the vari-
ances of the mixtures of the HMM states based on
each noise level. We tried six different wavelets
which have different time–frequency resolutions
for extraction of MFDWCs. All of them signifi-
cantly improved the performance in comparison to
MFCCs. MFDWC-2s gave superior results among
the six MFDWCs types. We have also shown that
a matched system may not yield better results than
the PMC-based system because of training issues
for the matched system.
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