$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/342304533$

Effect of COVID-19 Pandemic on Ambient Air Quality and Excess Risk of Particulate Matter in Turkey

Preprint · June 2020

DOI: 10.13140/RG.2.2.29212.72326

ATIONS	READS
	106
uthors, including:	
Ayşegül Yağmur Gören	Mesut Genişoğlu
Izmir Institute of Technology	Izmir Institute of Technology
21 PUBLICATIONS 37 CITATIONS	25 PUBLICATIONS 21 CITATIONS
SEE PROFILE	SEE PROFILE
Sait C. Sofuoglu	
Izmir Institute of Technology	
69 PUBLICATIONS 1,280 CITATIONS	
SEE PROFILE	
SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Uluslararası Tarım Çevre ve Sağlık Kongresi-Ekim 2018- Aydın Adnan Menderes Üniversitesi View project

 $\mathsf{SOC}\ \mathsf{gas}\text{-}\mathsf{particle}\ \mathsf{partitioning}\ \mathsf{prediction}\ \mathsf{using}\ \mathsf{multiphase}\ \mathsf{ppLFER}\ \mathsf{model}\ \mathsf{View}\ \mathsf{project}$

1	
2	
3	
4 5	Effect of COVID-19 Pandemic on Ambient Air Quality and Excess Risk of Particulate Matter in Turkey
6	
7	
8	Aysegul Yagmur Goren Kara ¹ , Mesut Genisoglu ^{1*} , Hatice Eser Okten ¹ , Sait Cemil Sofuoglu ¹
9	
10	¹ Izmir Institute of Technology, Environmental Engineering Department
11	ORCID (in order of authors): 0000-0003-1114-6059, 0000-0002-4618-279X, 0000-0001-7511-940X, 0000-0001-6990-0275
12	
13	
14	*Corresponding Author
15	Phone +90-232-750 6671
16	Fax +90-232-750 6801
17	mesutgenisoglu@iyte.edu.tr
18	
19	

20 HIGHLIGHTS

- Actions taken in COVID-19 pandemic in Turkey produced mixed effects on air quality
- Variable effects observed among cities and among studied stations in a city
- PM_{2.5} and PM₁₀ concentrations not significantly affected by curfew policies
 - Significant reductions observed in NO, NO₂, and NO_x concentrations
- Excess Risk posed by PM_{2.5} and PM₁₀ were slightly decreased
- 26

24

28 Abstract

The COVID-19 pandemic, which has reached 4 million global cases as of March 10, 2020, has 29 become a worldwide problem. Turkey is one of the most affected (9th in the world) country with 30 139 771 cases. An intermittent curfew policy that differ for three age groups, and an intercity travel 31 ban varying within the country have been implemented. The effects of changes in social life and 32 industrial activity in terms of environmental pollution are not yet known. The short-term effects on 33 PM_{2.5}, PM₁₀, SO₂, NO₂, NO₂, NO₃, O₃ and CO concentrations measured at 51 air quality 34 35 measurement stations (AQMS) in 11 cities in March – April period of 2020 were statistically 36 compared with that of the previous year. While PM_{2.5} (9/14 AQMS) and PM₁₀ (29/35 AQMS) concentrations were not significantly affected, NO (12/24 AQMS), NO₂ (20/29 AQMS), NO_X 37 38 (17/25 AQMS) concentrations were decreased, SO₂ concentrations at half of the AQMSs (11/25) 39 did not show a significant change. There were stations at which higher pollutant concentrations were measured in the study period in 2020 compared to that of 2019. Excess risks associated with 40 PM_{2.5} and PM₁₀ were estimated to be variable, albeit with a small difference. In conclusion, the 41 42 heterogeneous actions taken in response to the COVID-19 pandemic resulted in mixed effects on 43 ambient air quality.

44

45 Keywords: Air quality, COVID-19, Excess Risk, Turkey

47 **1. Introduction**

COVID-19 pandemic has been identified as one of the worst global health crises that human 48 race faced so far. Since the report of the first one, there had been 4,013,728 confirmed cases, 49 278,993 of which ended in loss of life (WHO, 2020). The most affected regions are Americas and 50 Europe, and the most affected countries are listed as United States of America, Spain, Italy, 51 Germany, United Kingdom, and France. After the first report in March 10, case number in Turkey 52 has risen to 107,773 as of April 26, 2020. Turkey acted promptly and took action to prevent the 53 54 spread of the infection. These actions included closing of educational institutions at all levels 55 (March 16), enforcing curfew on citizens older than age of 65 (March 21), enforcing curfew on 56 citizens younger than age of 20 (March 28), travel restriction to enter and leave 30 metropolitan 57 cities and Zonguldak (due to being in a province with coal mining, thermal power plants, and iron-58 steel industry, and having a higher rate of respiratory diseases) (April 3), enforcing general curfew 59 on weekends (April 11), and continuous stay-at-home calls to general population. Furthermore, mobility between all cities was gradually decreased to the point of security forces controlling 60 61 entries and exits. In order to prevent congregation of people in indoor spaces, most of the public 62 sector has started to provide services online, leaving minimum staff in office buildings. Private sector was strongly encouraged to follow the example of the public sector. As a result, a large 63 64 proportion of the population stayed at home, minimizing use of public transportation services and sustaining only basic commercial activities. Similar to global news reports on nature's regenerative 65 power, Turkish media reported increased air quality based on visibility (Figure SM-1). 66

In this study, we investigated the combined effect of the preventive measures taken in COVID-19 pandemic on air quality of 11 cities in Turkey, seven of which were metropolitan cities. Data for the years of 2019 and 2020 were acquired from governmental air quality monitoring network that conduct real-time measurements of $PM_{2.5}$, PM_{10} , SO_2 , NO_2 , NO_3 , NO_3 and CO_3 Concentrations measured in March 1-April 21 period in 2019 and 2020, and PM-associated excess health risks were compared to elucidate the effect of decreased human mobility and activity due to COVID-19 on air quality. This is the first study that investigates air pollution behavior and estimates excess risk levels of $PM_{2.5}$ and PM_{10} during COVID-19 pandemic period in Turkey.

75

76 **2. Methods**

77 2.1. Study area and air quality parameters

Eleven cities, Ankara (A), Bursa (B), Corum (C), Istanbul (I), Izmir (IZ), Kars (K), Kocaeli 78 (KO), Konya (KON), Kutahya (KU), Trabzon (T), and Zonguldak (Z) were selected for 79 investigating impact of COVID-19 on air quality (Figure 1). Selected cities represent 42.8% of 80 Turkey's population. Istanbul, Kocaeli, and Bursa are heavily industrialized zones with energy, 81 steel, automotive, chemical and textile sectors. Metropolitan cities are A, B, I, IZ, KO, KON, and 82 T. Although Zonguldak is a non-metropolitan city, it was included in the travel restriction along 83 with the metropolitan cities, due to having a higher rate of respiratory diseases (Table 1). Measured 84 concentrations of air quality parameters (PM_{2.5}, PM₁₀, SO₂, NO₂, NO₃, NO, O₃, and CO) were 85 obtained from the Air Quality Monitoring Database of the Ministry of Environment and Urban 86 Urbanization in Turkey (URL1). Number of Air Quality Monitoring Stations (AQMS) in the 87 selected cities are presented in the descriptive statistic tables for each air quality parameter (Table 88 89 SM 1-4). Since measured values for any given parameter at a given city can be quite scattered, overall median, minimum and maximum values were used in assessment instead of mean values. 90

Figure 1. Investigated cities in Turkey (Adopted from Google Maps)

City	Population (n)	Provincial Surface Area (km²)	Population Density (n/km²)	Road Motor Vehicles (n)	Industry
Ankara	5639076	25632	220	2064501	Construction, Furniture, Metal, Defence, Printing
Bursa	3056120	10813	283	913154	Automotive, Textile, Cement, Energy, Chemical, Furniture
Corum	530864	12428	43	172622	Tile and brick, Roasted Chickpea
Istanbul	15519267	5343	2905	4222821	Textile, Tourism, Metal, Chemical Printing
Izmir	4367251	11891	367	1440392	Dye, Iron and steel, Petrochemical, Metal, Chemical, Food and beverage, Cement, Tourism
Kars	285410	10193	28	45111	Food, Wood
Kocaeli	1953035	3397	575	403209	Automotive, Pulp and paper, Iron and steel, Cement, Petrochemical, Energy, Aluminum, Waste, Chemical
Konya	2232374	40838	55	729076	Food and beverage, Tourism, Energy, Plastic, Base metal and casting, Automotive, Machinery
Kutahya	579257	11634	50	211463	Ceramic
Trabzon	808974	4628	175	200385	Cement, Printing, Metal and casting, Food
Zonguldak	596053	3342	178	156125	Energy, Cement, Mining
Turkey	82003882	780043	105	23361062	

97 2.2. Excess risk

Health risks due to change in ambient air PM_{2.5}, PM₁₀, SO₂, NO, O₃, and CO concentrations
between March 1-April 21 in 2019 and 2020 were determined by estimating the excess risk (ER).
The relative risk (RR) and ER were calculated using Eqs. 1 and 2, respectively.

102 RR=exp[
$$\beta$$
(C_i-C_t)], C_i>C_t Eq. 1

103

104 ER (%)=(RR-1)×100 Eq. 2

105

where, C_i and C_t are contaminant concentration and threshold concentration, respectively. Threshold concentrations for PM_{2.5}, PM₁₀, SO₂, NO₂, O₃, and CO were 25 µg/m³ (24-h average), 50 µg/m³ (24-h average), 20 µg/m³ (24-h average), 200 µg/m³ (1-h average), 100 µg/m³ (8-h average), and 4000 µg/m³ (1-h average), respectively (WHO, 2005; Sharma et al., 2020). If the concentration of a pollutant (C_i) is equal or below the threshold concentration (C_t), it has no excess risk. β values were 0.38 % for PM_{2.5}, 0.32 % for PM₁₀, 0.81 % for SO₂, 1.30 % for NO, 0.48 % O₃, and 3.7 % for CO (Shang et al., 2013).

113

114 *2.3. Statistical*

Shapiro-Wilk normality test was conducted with the significance level of 0.05, which was rejected for most of the air quality parameters at all stations. Therefore, nonparametric Mann-Whitney U-test (M-W test) was used to compare the concentrations. Significance level of M-W test was 0.05. Criterion of inclusion in this study for a pollutant measured at a station was <25 % missing values.

120

121 **3. Results and discussion**

122 *3.1. Effect of COVID-19 on levels of air quality parameters*

Values for air quality parameters (PM_{2.5}, PM₁₀, SO₂, NO₂, NO_x, NO, O₃, and CO) were downloaded for the period of March 1 to April 21 in 2019 and 2020 for 11 cities in Turkey. Boxplots for the studied periods at each station are presented in Figure SM 2-46.

126

127 *3.1.1. PM*_{2.5}

PM_{2.5} emissions are mainly originate from traffic, combustion of fossil fuels and biomass for energy production, and industrial facilities (Sharma et al., 2016; Guo et al., 2019). Exposure to high levels of PM_{2.5} may cause adverse human health effects, such as respiratory and cardiovascular diseases, premature death, and lung cancer (WHO, 2013). Furthermore, since particles comprising PM_{2.5} may be suspended in ambient air for prolonged periods of time, it may serve as an important vector in spread of infection (Zhu et al., 2020). Therefore, PM_{2.5} may be the most important air quality parameter to be investigated.

Overall median concentrations of PM_{2.5} were in the range of 10.2-23.7 μ g/m³ (2019) and 17.3-135 $30.4 \,\mu g/m^3$ (2020) (Table SM1 and Figure SM2-5). The median values showed a slight increase in 136 Ankara, Bursa, Istanbul, Kocaeli, Kutahya, Trabzon, and Zonguldak, while there was only a slight 137 reduction in Istanbul. Furthermore, the M-W test results indicate that the differences in PM_{2.5} 138 concentrations were either not significant for all stations in Kocaeli and Bursa, and for 3/4 stations 139 140 in Istanbul, or higher in 2020 for Ankara, Kutahya, Trabzon, and Zonguldak. There was only one station (in Istanbul) that had a significantly higher $PM_{2.5}$ median concentration in 2019 compared 141 to 2020. 142

A significant reduction in $PM_{2.5}$ concentrations was observed in other countries during the COVID-19 pandemic period due to strict curfew policies. For instance, the average $PM_{2.5}$ concentration reduction in northern region of Malaysia was found to be 23.7 % through a ban of business operation except for essentials and suspension of activities in several industries as well as

enforcing curfew on citizens (Abdullah et al., 2020). In India, PM_{2.5} and PM₁₀ concentrations in 22 147 cities in different regions of the country were analyzed and overall decreases of 43% and 31% were 148 reported, respectively (Sharma et al., 2020). With the strict traffic restrictions and self-quarantine 149 implementations, the reduction in PM_{2.5} concentration was also reported to be 20-30% in majority 150 of China during the COVID-19 pandemic period compared with the same period in years 2017, 151 2018, and 2019 (Zambrano-Monserrate, et al., 2020). In comparison, curfew policy partly 152 153 excluding public service and production based working population (ages between 20 and 65) in Turkey allowed continuation of industrial and construction activities, which also necessitated 154 transportation activities. Furthermore, curfew on ages >65 and <20 may have increased residential 155 heating emissions. These could be the main reasons for not observing reductions in the median 156 PM_{2.5} concentrations. 157

158

159 *3.1.2. PM*₁₀

Diesel engines, industry, resuspension of soil particles, industrial activities and residential 160 161 fossil fuel heating are the main sources of PM_{10} pollution (Lenshow et al., 2001). Overall median concentrations of PM₁₀ ranges were 24.2-55.2 μ g/m³ (2019) and 27.6-76.5 μ g/m³ (2020) (Table 162 SM1 and Figure SM6-11). Reduction in overall median PM_{10} concentrations were 13.1%, 15.0%, 163 164 2.82%, 11.0%, 2.77%, and 8.79% in Corum, Bursa, Istanbul, Kars, Kocaeli, and Konya respectively. On the other hand, the overall median PM_{10} concentrations increased in Ankara 165 (31.8%), Izmir (38.8%), Kutahya (9.80%), and Trabzon (11.6%). M-W test indicated that, in 166 general, PM₁₀ concentration distributions were not significantly affected by the actions taken 167 against COVID-19 in Turkey. The median PM_{10} concentrations at all stations in Bursa (n=3), 168 Corum (n=2), Kars (n=1), Kocaeli (n=9), and Kutahya (n=1), 1/3 stations in Ankara, 10/11 stations 169 in Istanbul and 2/3 stations in Trabzon were not significantly different. There were only five 170

stations with significantly differing concentrations: one in Ankara and Istanbul with 2019>2020,
and one in Ankara, Trabzon, and Zonguldak with 2019<2020.

Partial lockdown has decreased the PM₁₀ concentrations in Milan-Italy by 32.7-40.5% 173 (Collivignarelli, 2020). Additional reductions were observed during the total lockdown period. In 174 Turkey, white collar employees were allowed to work home-office and the traffic density decreased 175 due to curfew policies in the business center(s) of the cities, which may be the reason for the 176 177 reductions observed at two stations in Istanbul and Ankara but the remaining stations (10/11 in Istanbul and 2/3 in Ankara) did not support this observation. Industrial production (for Istanbul, 178 Kocaeli, Bursa, and Ankara,) and shipping traffic (for Istanbul, Kocaeli, and Bursa) were not 179 interrupted during the study period, which probably played a role in the not significantly differing 180 concentrations between 2019 and 2020. Higher PM₁₀ concentrations in Izmir in 2020 might be due 181 to the increase in industrial production and shipping traffic to meet the demand in food sector. The 182 increasing in PM₁₀ concentrations at Besirli station in Trabzon might be due to combustion of fossil 183 fuels for residential heating. The median concentration in Zonguldak was tripled from 2019 to 184 2020. We do not have the data to reasonably explain this sharpest change in PM_{10} concentrations 185 other than to speculate that an increased residential heating may had a role while emissions of the 186 seven thermal power plants and the iron-steel plant also continued. 187

188

189 *3.1.3. NO_X*

Overall median concentrations of NO₂ for seven cities (29 stations) were in the range of 24.9-191 77.9 μ g/m³ (2019) and 23.2-59.1 μ g/m³ (2020) (Table SM2 and Figure SM12-17). Results showed 192 a significant decrease in COVID-19 pandemic period compared with the same period in 2019. The 193 highest reduction was 40.9 % in Trabzon, while the lowest reduction was 6.83 % in Kocaeli. 194 Concentrations did not significantly change from 2019 to 2020 at 1/4 stations in Bursa, 2/11

stations in Istanbul, 4/6 stations in Kocaeli, and 1/4 stations in Trabzon. On the other hand, they 195 were significantly higher in 2019 at 20 stations (in A, B, I, K, KO, T, and Z). We have found that 196 station location is a determining factor: NO₂ concentrations at stations in heavily 197 industrialized/commercial areas or at transportation connection hubs did not differ significantly, 198 most probably due to emissions from traffic despite preventive measures. Dantas et al. (2020) 199 studied effect of COVID-19 pandemic period on air quality of Rio de Janeiro, Brazil. They found 200 201 that the median NO₂ concentration was 24.1-32.9 % lower when compared with the same period in 2019. They also reported that the least reduction was observed for NO₂ most probably due to 202 diesel combustion and industrial activities. The NO₂ reductions were found to be 20-30 % in 203 Wuhan, China, Europe, Italy, France, Spain, and USA following lockdown periods (NASA, 2020; 204 ESA, 2020). 205

Overall median NO concentrations were in the range of 6.24-31.8 μ g/m³ (2019) and 8.57-20.9 206 $\mu g/m^3$ (2020) (Table SM2 and Figure SM18-23). Similar to NO₂, a significant decrease was 207 observed in NO concentrations. There were 12 stations at which reduced concentrations were 208 209 measured (2 in Ankara and Kocaeli, 4 in Istanbul, 1 in Kars, and 3 in Trabzon) during the COVID-19 period. For the remaining stations, the difference in NO concentrations were not significant at 210 7 stations (2/4 in Bursa, 4/9 in Istanbul, 1/4 in Trabzon) and higher in 2020 at 4 stations (1/4 in 211 Bursa, 1/9 in Istanbul, and 2/4 in Kocaeli). Furthermore, the overall median NO_x concentrations 212 were 36.4-89.6 μ g/m³ (2019) and 33.8-72.1 μ g/m³ (2020) (Table SM3 and Figure SM24-29). The 213 concentrations were lower in 2020 at 17 stations, no significant difference at 6 stations, and higher 214 in 2020 at 2 stations (2/8 in Kocaeli). 215

216

217 *3.1.4. SO*₂

The overall median concentrations of SO₂ were 4.52-34.1 μ g/m³ and 4.31-12.6 μ g/m³ in 2019 218 and 2020 for nine cities (Table SM3 and Figure SM30-36). Furthermore, changes in overall median 219 SO₂ concentrations were as follows: 15.4-61.9% reduction (Trabzon, Zonguldak, Kars, Izmir, 220 Bursa, and Corum) and 7.74-63.7 % increase (Istanbul, Kocaeli, and Ankara). The highest 221 reduction was 61.9 % (from 11.3 μ g/m³ to 4.31 μ g/m³) in Trabzon while the highest increase was 222 63.7 % in Istanbul (from 4.90 μ g/m³ to 8.02 μ g/m³). M-W test results indicated that the 223 concentrations did not significant change in Corum, Izmir, Ankara (1/2 stations), Bursa (4/5 224 stations), Istanbul (2/9 stations), and Kocaeli (2/4 stations), whereas, increased concentrations were 225 observed in 2020 in 1/2, 6/9, 2/4, and 1/1 stations in Ankara, Istanbul, Kocaeli, and Zonguldak 226 respectively. 227

SO₂ concentration increase was significant in Ankara, Istanbul, and Kocaeli, which have a large number of industrial facilities and high population density. These results point to continuation of industrial activities and dense population as probable causes for the increased SO₂ concentrations during COVID-19 pandemic period.

232

233 *3.1.5. CO*

CO concentrations could be analyzed in seven cities because the inclusion criterion was not met at many stations. The overall median concentration ranges were 463-926 μ g/m³ and 1.09-2282 μ g/m³ in 2019 and 2020, respectively (Table SM4 and Figure SM37-41). Reduction in overall median CO concentrations were 3.82 %, 15.4 %, and 28.4 %, in Kars, Trabzon, and Zonguldak, respectively. On the other hand, the overall median CO concentrations almost doubled in Ankara, Bursa, and Istanbul. According to the M-W tests, the median CO concentrations were higher in 2019 compared to 2020 at 1/2 stations in Kars, 3/4 stations in Kocaeli, and all stations in Trabzon and in Zonguldak. However, the median CO concentrations were lower in 2019 compared to 2020
for all stations in Bursa and Istanbul, while the difference in CO concentrations were not significant
in Ankara.

Based on the results, CO emissions significantly decreased in Kars, Trabzon, and Zonguldak as 244 these cities had fewer industrial activities except for Zonguldak. Ankara, Istanbul, and Bursa are 245 considered as the metropolitan cities with high industrial capacity and registered motor vehicles. 246 247 No reduction in CO concentrations were observed in these cities during the COVID-19 pandemic period. The reason of the increase and/or no significant change in CO concentrations in these cities 248 might be the continuation of industrial activities and associated transportation. Similar results 249 observed in southern India, such that a significant increase was observed in CO concentration, 250 while a significant decrease was observed in other pollutants concentrations (NO, NO₂, and O₃) 251 during the COVID-19 pandemic period (Sharma et al., 2020). 252

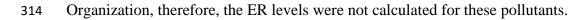
253

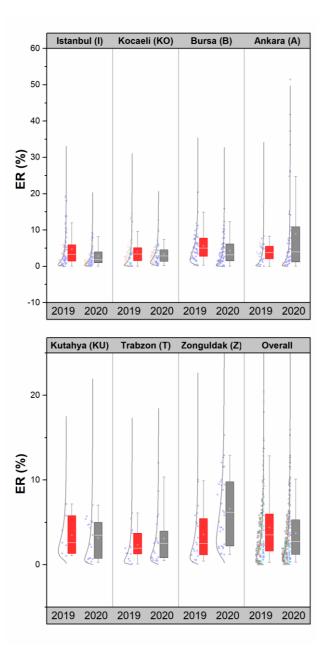
254 *3.1.6. O*₃

O₃ was the parameter with the least available data. Its concentrations are presented in Table 255 SM4 and Figure SM42-46. In Bursa, reduction in overall median O₃ concentration was 3.08% (45.5 256 $\mu g/m^3$ in 2019 and 44.1 $\mu g/m^3$ in 2020). Changes in median O₃ concentrations were lower during 257 258 COVI-19 period at 1/3 stations in Bursa, while the difference was not significant at the meaning two stations. Studies on atmospheric O_3 concentrations revealed that the decrease in NO_x 259 concentrations may be attributed to the increase in O_3 concentrations (Geraldino et al., 2020; 260 Dantas et al., 2019). Moreover, the decrease in PM concentrations, which increasing sunlight 261 passing through atmosphere, may be attributed the production of O_3 with photochemical activities 262 (Dang and Liao, 2019). During the COVID-19 pandemic period, the decrease in PM and NO₂ 263 concentrations were attributed to increase in O₃ concentrations. For instance, the median O₃ 264

concentration increased by 6.34%, while PM₁₀ and NO₂ median concentrations decreased by 14.0 265 % and 37.5 %, respectively at Uludag station, Bursa. On the other hand, at Kestel station, again 266 Bursa but close to its Organized Industrial Zone, the median O₃ concentration decreased by 18.8%, 267 268 while the PM_{10} concentration increased by 6.47%. Wang et al. (2020) reported significant increases in O₃ concentrations probably due to lower fine particle loadings, which cause less scavenging by 269 HO₂, and thus observation of O₃ concentrations for longer periods. A similar trend was reported 270 271 by Mahato et al. (2020) for megacity Delhi, India. They found that O₃ concentrations increased significantly during the COVID-19 pandemic period possibly due to decrease in NO_x and NO 272 273 concentrations, and increase in insolation and temperature.

274


275 *3.2. Excess risk assessment of air quality parameters*


Exposure to PM_{2.5} mainly causes respiratory and cardiovascular system problems. Hence, it may 276 aggravate the COVID-19 infection symptoms and may increase mortality rate. Wu et al. (2020) 277 studied the relationship between air pollution and COVID-19 mortality in the United States and 278 279 found that comorbidities related to $PM_{2.5}$ dramatically increased the risk in COVID-19 patients. Overall and city-based excess risks (ER) were compared for PM_{2.5} and PM₁₀ median concentrations 280 (Fig. 2 and 3). Comparisons of ER_{PM2.5} values revealed decreases for Bursa, Istanbul, and Kocaeli, 281 282 and increases for Trabzon, Kutahya, and Zonguldak (Fig. 2). Since Bursa, Istanbul, and Kocaeli are densely populated metropolitan cities, decrease in traffic and industrial activities due to 283 progressive prevention measures during the COVID-19 pandemic period resulted in decrease of 284 ER values. For the capital city of Ankara, the median ER values were similar (Table 2). The most 285 significant increase in median ER values was calculated for Zonguldak, where coal mining is the 286 major source of livelihood. Furthermore, the overall ER values decreased from 2019 to 2020 (Fig. 287 2). Sharma et al. (2020) compared the effect of restricted emissions during COVID-19 on air quality 288

in India with previous three years. They reported that there was a considerable health risks related 289 to $PM_{2.5}$ and PM_{10} in all the regions during the lockdown period of COVID-19 pandemic. However, 290 the mean ER values for PM_{2.5} and PM₁₀ decreased by almost 52% on average in India compared 291 292 with previous years. Relationship between COVID-19 infection and short-term exposure to $PM_{2.5}$, PM₁₀, CO, NO₂ and O₃ were investigated in China (Zhu et al., 2020), showing that daily counts of 293 confirmed cases increased by 2.24 %, 1.76 %, 6.94 %, and 4.76 % with a 10 μ g/m³ increase in 294 295 $PM_{2.5}$, PM_{10} , NO_2 , and O_3 , respectively. The median ER value associated with PM_{10} decreased in Corum, Ankara, Bursa, Kocaeli, and Kutahya, while it increased in Istanbul, Izmir, Kars, Konya, 296 297 Trabzon, and Zonguldak from 2019 to 2020. The most pronounced increase was calculated for Zonguldak. 298

It should be noted that although both increases and decreases in concentrations were observed 299 for the studied cities, they were mostly small changes (for PM₁₀ median ER changed between -300 2.01% and +3.21% except for Zonguldak; for PM_{2.5} ER changed between -1.87% and +3.68%). 301 Due to the enforced partial curfews and calls for staying at home, emissions from transportation 302 and industrial activities might have been limited because a portion of the population kept working. 303 On the other hand, emissions from residential heating were probably increased because the 304 remaining portion of the population were forced to stay at home. In Turkey, 15 °C is generally the 305 306 threshold temperature for residential heating. For our study period (March 1-April 21), the highest average temperature was measured as 18.9 °C in Izmir, while the lowest average temperature was 307 9.5 °C in Kars. Despite the extensive infrastructure of natural gas in cities of Istanbul, Ankara, 308 Bursa and Kocaeli, there are parts of these cities that still use coal and fuel oil for residential 309 heating. The probable effect of fossil fuel based residential heating was most readily observed in 310 Zonguldak for PM_{2.5} and PM₁₀. Overall median ER values for PM_{2.5} and PM₁₀ decreased slightly 311 during the COVID-19 pandemic period in Turkey based on the 11-city data. Atmospheric SO₂, 312

NO₂, NO₃, NO, O₃, and CO concentrations were below the limits recommended by World Health

316

317

Figure 2. Excess risks related to PM_{2.5} in 2019 and 2020.

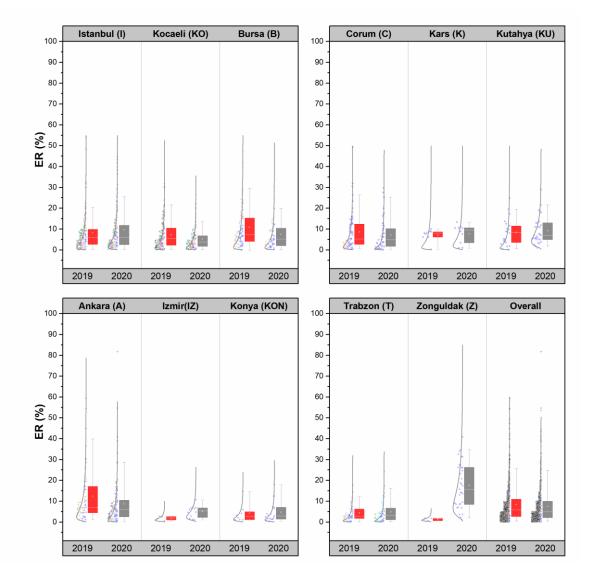


Figure 3. Excess risks of PM_{10} in 2019 and 2020.

Table 2. Descriptive statistics of excess risk levels (%) of PM_{2.5} and PM₁₀

Parameter	City	Number of AQMS	Year	Median	Mean	Min	Max		
	Ankara	4	2019	3.71	3.85	0.004	8.29		
	AllKala	4	2020	3.96	8.90	0.03	51.4		
	Bursa	2	2019	5.02	5.65	0.27	20.4		
	Dursa	2	2020	3.15	4.26	0.01	15.9		
	Istanbul	4	2019	3.28	4.72	0.03	19.3		
	Istanbul	4	2020	1.85	2.80	0.01	9.25		
PM2.5	Kocaeli	4	2019	3.40	4.13	0.03	14.7		
1 1912.5	Kocaeli	4	2020	2.84	3.39	0.13	12.7		
	Vatahaa	1	2019	2.59	3.46	1.04	7.16		
	Kutahya	1	2020	3.50	3.15	0.28	7.03		
	T 1	1	2019	1.95	2.36	0.09	6.11		
	Trabzon	1	2020	2.53	3.06	0.46	12.0		
	7 111	1	2019	2.49	3.56	0.31	10.0		
	Zonguldak	1	2020	6.17	6.62	1.18	15.3		
	C	a	2	2019	5.31	8.60	0.08	49.4	
	Corum	3	2020	4.83	7.12	0.06	29.8		
	Ankara	Ambrana	Ankoro	7	2019	7.04	12.4	0.25	59.4
		7	2020	5.98	8.69	0.05	81.8		
	Bursa	D	4	2019	7.33	10.8	0.002	47.2	
		4	2020	5.32	7.40	0.11	30.6		
	T (1 1	11	2019	5.89	8.19	0.03	54.1		
	Istanbul	11	2020	6.18	9.76	0.13	53.5		
	1	2019	2.04	1.85	0.54	2.78	
	Izmir	1	2020	5.36	5.01	1.11	10.7		
DM	V	1	2019	8.05	7.14	0.22	10.1		
PM10	Kars	1	2020	9.59	7.76	0.88	13.3		
	V 1'	11	2019	5.37	7.25	0.04	31.8		
	Kocaeli	11	2020	3.87	5.27	0.03	32.9		
	V	2	2019	2.72	4.20	1.08	14.7		
	Konya	2	2020	3.01	4.77	0.33	18.0		
	V.,	1	2019	8.40	8.38	0.06	24.8		
	Kutahya	1	2020	7.03	9.30	1.01	28.9		
	T h	5	2019	2.91	4.38	0.04	17.7		
	Trabzon	5	2020	3.27	4.92	0.04	24.0		
	Zanguldala	1	2019	1.76	1.43	0.62	1.89		
	Zonguldak	1	2020	15.7	17.6	1.26	40.8		

324 **4.** Conclusion

This study shows the effects of curfew policies on air quality parameters in Turkey. Selected AQMSs represents 42.8 % of the population in Turkey (Ankara, Bursa, Corum, Istanbul, Izmir, Kars, Kutahya, Kocaeli, Konya Trabzon, and Zonguldak). Statistical comparison shows that, in general, there were no significant difference in PM concentrations, and at half of the stations for SO₂ between March-April periods of 2019 and 2020, whereas, overall NO_x, NO₂, and NO

concentrations were significantly decreased. While the highest NO₂ reduction was determined in a 330 non-industrial city with 40.9 %, the lowest reduction was in a heavily industrialized one with 6.83 331 %. Similar trends were observed for NO and NO_x. While the CO emissions were increased in 332 metropolitan cities, others were decrease since fewer industrial activities. Current available ozone 333 data was only in Bursa, with an overall insignificant decrease. There were stations at which 334 concentration increases were observed, such as tripling of PM in a non-metropolitan but with dense 335 336 coal mining and thermal power plants city and a 63.7 % in SO₂ in Istanbul. Excess risk (ER) associated with PM is important for the spread of the virus because it may act as a transport media. 337 ER could only be estimated for PM_{2.5} and PM₁₀ since concentrations of the other pollutants were 338 below their threshold levels. Overall countrywide median ER values for PM2.5 and PM10 decreased 339 slightly during the investigated period. In conclusion, the heterogeneous actions taken in response 340 to the COVID-19 pandemic resulted in mixed effects on ambient air quality. 341

342

343 ACKNOWLEDGMENT

The Air Quality Monitoring Database of the Ministry of Environment and Urban Urbanization of
Turkey is acknowledged for publicly available monitoring concentrations.

346 **DECLARATIONS**

347 The authors declare that there is no conflict of interest.

349 **REFERENCES**

- Abdullah, S., Mansor, A.A., Napi, N.N.L.M., Mansor, W.N.W., Ahmed, A.N., Ismail, M., Ramly,
- 351 Z.T.A., 2020. Air quality status during 2020 Malaysia Movement Control Order (MCO) due to
- 2019 novel coronavirus (2019-nCoV) pandemic. Science of the Total Environment 729, 139022.
- 353 Collivignarelli, M.C., Abba, A., Bertanza, G., Pedrazzani, R., Ricciardi, P., Miino, M.C., 2020.
- Lockdown for CoViD-2019 in Milan: What are the effets on air quality?. Science of the Total Environment 732, 139280.
- 356 Dang, R., Liao, H., 2019. Radiative forcing and health impact of aerosols and ozone in China as
- the consequence of clean air actions over 2012–2017. Geophys. Res. Lett. 46, 12511–12519.
- Dantas, G., Siciliano, B., França, B.B., Silva, C.M., Arbilla, G., The impact of COVID-19 partial
 lockdown on the air quality of the city of Rio de Janeiro, Brazil, Science of the Total Environment
 729, 139085.
- Dantas, G., Siciliano, B., Freitas, L., Seixas, E.G. de, da Silva, C.M., Arbilla, G., 2019. Why did
 ozone levels remain high in Rio de Janeiro during the Brazilian truck driver strike? Atmos. Pollut.
 Res. 10, 2018–2029.
- ESA, 2020. . ESA, 2020. doi. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/
 Sentinel-5P.
- Geraldino, C.G., Arbilla, G., da Silva, C.M., Corrêa, S.M., Martins, E.M., 2020. Understanding
 high tropospheric ozone episodes in Bangu, Rio de Janeiro, Brazil. Environ.Monit. Assess. 192,
 156.

- Guo, H., Kota, S.H., Sahu, S.K., Zhang, H., 2019. Contributions of local and regional sources to
- PM2. 5 and its health effects in north India. Atmos. Environ. 214, 116867.
- Lenschow P., Abraham H.-J., Kutzner K., Lutz M., PreuB J.D., Reichenbacher W., 2001. Some
 ideas about the sources of PM10. Atmospheric Environment. 35. 23-33.
- Mahato, S., Pal, S., Ghosh, K.G., 2020. Effect of lockdown amid COVID-19 pandemic on air
 quality of the megacity Delhi, India. Science of the Total Environment. 730, 139086.

375 NASA, 2020. NASA, 2020. https://earthobservatory.nasa.gov/images.

- Nie, D., Chen, M., Wu, Y., Ge, X., Hu, J., Zhang, K., Ge, P., 2018. Characterization of fine
 particulate matter and associated health burden in Nanjing. Int. J. Environ. Res. Public Health 15,
 602.
- Shang, Y., Sun, Z.W., Cao, J.J., Wang, X.M., Zhong, L.J., Bi, X.H., et al., 2013. Systematic review
 of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Int. 54,
 100–111.
- Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., Kota, S.H., 2020. Effect of restricted
 emissions during COVID-19 on air quality in India. Science of the Total Environment, 728,
 138878.
- Sharma, S.K., Mandal, T.K., Jain, S., Saraswati, Sharma, A., Saxena, M., 2016. Source
 apportionment of PM2.5 in Delhi, India using PMF model. Bull. Environ. Contam. Toxicol. 97,
 286–293.

- 388 URL1. https://www.havaizleme.gov.tr/ Ministry of Environment and Urbanization, Turkey
 389 (retrieved date: 22.04.2020)
- Wang, Y., Yuan, Y., Wang, Q., Liu, C.G., Zhi, Q., Cao, J., 2020. Changes in air quality related to
- the control of coronavirus in China: Implications for traffic and industrial emissions. Science of
- the Total Environment, 731, 139133.
- 393 WHO, 2005. Air Quality Guidelines. Global update 2005, Europe
- WHO, 2013. Health effects of particulate matter. WHO Regional Office for Europe.
- WHO, 2020. WHO Coronavirus Disease (COVID-19) Dashboard (https://covid19.who.int) Data
 last updated: 2020/5/11
- World Health Organization (September 2016), Ambient (outdoor) air quality and health: fact sheet.
- Wu, X., Nethery, R.C., Sabath, M.B., Braun, D., Dominici, F., 2020. Exposure to air pollution and
 COVID-19 mortality in the United States. medRxiv, preprint.
 https://doi.org/10.1101/2020.04.05.20054502
- Zambrano-Monserrate, M.A., Ruano, M.A., Sanchez-Alcalde, L., 2020. Indirect effects of
 COVID-19 on the environment. Science of the Total Environment 728, 138813.
- Zhu, Y., Xie, J., Huang, F., Cao, L., 2020. Association between short-term exposure to air pollution
- and COVID-19 infection: Evidence from China. Science of the Total Environment 727, 138704.

SUPPLEMENTARY MATERIAL

410 Figure SM1. Uludağ mountain could be seen from Istanbul after the partial curfew period (URL

SM1)

Parameter	City	Number of AQMS	Year	Median	Mean	Min	Max		
	Ankara	4	2019	10.2	14.7	0.82	46.0		
PM2.5 (μg/m ³)	7 tiikara	4	2020	17.3	22.1	3.43	134		
	Bursa	2	2019	23.7	26.7	6.87	73.9		
	Duisa	2	2020	25.6	27.8	8.08	63.9		
	Istanbul	4	2019	20.5	23.1	5.34	71.5		
	Istanoui	4	2020	19.9	20.9	5.20	48.3		
	Kocaeli	4	2019	16.6	19.6	2.56	61.0		
	Kocaeli	4	2020	17.9	20.3	4.42	56.5		
(µg/m)			2019	10.9	12.7	1.73	43.2		
	Kutahya	1							
			2020	19.2	20.1	1.99	42.8		
	Trabzon	1	2019	20.0	20.5	6.68	40.0		
	Tradzon	1	2020	24.8	26.0	9.46	54.9		
	Zonguldak	1	2019	20.3	21.8	3.47	50.		
		1	2020	30.4	30.7	3.23	62.		
	Corum	3	2019	45.1	49.1	7.6	176		
		5	2020	39.2	45.0	10.3	131		
	Ankara	7	2019	33.0	43.1	4.82	196		
		7	2020	43.5	47.8	2.95	237		
	D	Durco	Bursa	4	2019	55.2	59.6	10.9	171
	Dursa	4	2020	46.9	49.3	9.2	133		
	Istanbul	11	2019	39.0	44.6	6.1	185		
	Istandui	11	2020	37.9	44.9	9.4	184		
	Izmia	1	2019	30.7	33.7	11.7	58.0		
	Izmir	1	2020	42.6	44.5	17.4	81.8		
PM_{10}	Kars	1	2019	31.0	34.9	7.6	80.0		
$(\mu g/m^3)$	Kars	1	2020	27.6	34.3	7.72	89.2		
	V 1:	1.1	2019	32.5	39.1	4.55	136		
	Kocaeli	11	2020	31.6	36.7	6.07	409		
	V	2	2019	30.7	34.0	9.83	928		
	Konya	2	2020	28.0	32.9	8.48	102		
	TZ (1	1	2019	55.1	57.3	14.05	119		
	Kutahya	1	2020	60.5	60.0	14.7	129		
	T1	F	2019	34.5	37.6	11.5	101		
	Trabzon	5	2020	38.50	42.3	17.6	117		
	7 111	1	2019	24.2	26.1	4.63	55.9		
	Zonguldak	1	2020	76.5	77.2	8.11	157		

Table SM1. Descriptive statistics of atmospheric PM_{2.5} and PM₁₀ concentrations.

Parameter	City	Number of AQMS	Year	Median	Mean	Min	Max
	Ankara	5	2019	14.7	25.3	0.19	155
	Alikara	5	2020	12.6	24.6	1.90	164
	Bursa	4	2019	10.9	21.9	0.29	178
	Buisa	4	2020	11.1	18.8	1.50	139
	Istanbul	11	2019	19.1	28.9	0.28	229
	Istanbul	11	2020	18.2	25.5	0.49	210
	Kars	1	2019	13.1	13.9	4.56	31.0
NO	Kars	1	2020	8.57	10.2	2.98	27.8
$(\mu g/m^3)$	Kocaeli	11	2019	6.24	15.8	0.24	170
	Kocaen	11	2020	11.9	35.3	0.40	376
	Vastalaas	1	2019	6.84	10.6	2.46	35.5
	Kutahya	1	2020	9.75	13.2	2.18	38.5
	Trabzon	5	2019	18.5	22.3	1.42	115
		5	2020	10.6	19.8	1.02	158
	Zonguldak	1	2019	31.8	33.0	11.8	60.7
		1	2020	20.9	25.4	9.52	73.6
	C	1	2019	77.9	85.9	40.1	167
	Corum	1	2020	59.1	57.9	34.3	90.3
	Ankara	5	2019	49.2	48.8	3.95	110
		5	2020	38.0	40.9	10.8	90.1
	D	4	2019	37.8	44.0	1.20	132
	Bursa	4	2020	31.5	33.3	4.87	98.7
	T-41	10	2019	32.9	40.0	0.84	164
	Istanbul	12	2020	27.7	28.0	0.27	120
NO ₂	Vana	1	2019	29.0	29.9	15.7	55.9
$(\mu g/m^3)$	Kars	1	2020	25.2	27.4	12.9	53.5
	Kocaeli	11	2019	24.9	29.1	0.73	191
	Kocaen	11	2020	23.2	26.8	0.20	78.3
	V.,	1	2019	29.4	30.0	13.0	53.5
	Kutahya	1	2020	41.4	40.3	12.3	71.1
	T 1	5	2019	46.5	48.1	19.6	86.5
	Trabzon	5	2020	27.5	38.5	8.94	99.7
	7 111	1	2019	41.3	44.6	24.4	65.1
	Zonguldak	1	2020	32.9	33.4	18.1	63.3

Parameter	City	Number of AQMS	Year	Median	Mean	Min	Max
	Corum	1	2019	89.6	106	46.2	234
	Corum	1	2020	72.1	80.2	40.5	147
	Ambono	5	2019	63.3	74.1	4.62	254
	Ankara	5	2020	51.7	65.6	13.9	254
	D	~	2019	49.9	74.8	1.19	405
NO	Bursa	5	2020	51.5	67.7	13.0	306
	T (1 1	10	2019	66.2	85.5	3.24	516
	Istanbul	12	2020	43.9	59.7	1.08	438
NOx (µg/m ³)	17	1	2019	41.8	43.7	22.7	86.8
	Kars	1	2020	33.8	37.6	15.9	81.3
	TT 11		2019	36.8	55.3	0.83	337
	Kocaeli	11	2020	39.4	76.1	1.09	683
	17 . 1		2019	36.4	40.6	16.5	81.5
	Kutahya	1	2020	53.8	53.5	14.4	103
	Trabzon	-	2019	66.3	70.3	22.7	195
		5	2020	48.3	58.3	10.7	257
	Zonguldak		2019	74.6	78.1	41.3	126
		1	2020	53.8	58.9	28.5	137
	~		2019	10.1	12.9	2.25	38.3
	Corum	1	2020	7.52	10.6	5.88	24.6
	Ankara		2019	4.52	8.86	0.25	34.4
		6	2020	4.87	5.32	0.73	20.4
		_	2019	9.41	11.4	0.81	59.3
	Bursa	5	2020	7.08	9.95	0.79	83.2
			2019	4.90	6.48	0.66	43.2
	Istanbul	10	2020	8.02	13.02	0.23	71.5
	. .		2019	9.25	10.3	3.71	30.4
	Izmir	1	2020	7.83	8.78	3.76	16.1
SO_2			2019	8.80	10.9	3.04	27.1
(µg/m ³)	Kars	1	2020	4.37	5.08	2.12	11.4
		-	2019	5.19	7.88	0.43	49.7
	Kocaeli	7	2020	7.44	11.4	0.69	75.0
		<i>.</i>	2019	13.9	14.6	5.47	39.8
	Konya	2	2020	7.36	8.89	3.02	26.1
			2019	34.1	30.4	11.9	62.5
	Kutahya	1	2020	12.6	13.1	4.28	31.5
			2019	11.3	16.2	2.56	66.3
	Trabzon	4	2020	4.31	5.46	1.87	16.2
			2019	12.8	15.4	1.83	36.7
	Zonguldak	1	2019	5.06	6.61	1.01	26.5

Parameter	City	Number of AQMS	Year	Median	Mean	Min	Max
	Ambrana	2	2019	463	773	128	3833
	Ankara	2	2020	655	795	200	2569
	Bursa	1	2019	926	1104	442	3284
	Dursa	1	2020	2282	2386	1437	3905
	T-th1	6	2019	564	608	177	2208
	Istanbul	6	2020	1342	2266	219	10527
	Vora	2	2019	498	501	274	965
CO	Kars	2	2020	479	496	297	936
(µg/m ³)	Kocaeli	4	2019	612	794	409	2321
			2020	1.09	608	0.29	2721
	Kutahya	1	2019	822	861	552	1361
			2020	640	606	180	1002
		2	2019	752	768	379	1587
	Trabzon		2020	636	652	290	1130
	Zanguldak	1	2019	870	904	378	1576
	Zonguldak	1	2020	623	667	151	1793
	Comm	1	2019	23.9	26.9	17.5	43.1
	Corum	1	2020	36.5	32.3	6.58	44.4
O 3	Ankara	2	2019	57.5	57.6	43.5	79.4
(µg/m ³)	Alikala	2	2020	22.5	29.8	4.88	83.6
	Dumo	4	2019	45.5	47.4	11.4	97.9
	Bursa	4	2020	44.1	46.6	13.0	91.7

Table SM5. Hypothesis and p-values of Mann-Whitney tests of PM_{2.5}.

AQMS	Null hypothesis	Alternative Hypothesis	p-value	
Bahcelievler-Ankara	2019=2020	2019>2020	1	
Uludag-Bursa	2019=2020	2019≠2020	0.533	
City Center-Bursa	2019=2020	2019≠2020	0.438	
Umraniye-Istanbul	2019=2020	2019≠2020	0.289	
Kagithane-Istanbul	2019=2020	2019>2020	0.004	
Sultangazi-Istanbul	2019=2020	2019≠2020	0.656	
Silivri-Istanbul	2019=2020	2019≠2020	0.637	
City Center-Kocaeli	2019=2020	2019≠2020	0.067	
Kandira-Kocaeli	2019=2020	2019≠2020	0.836	
Golcuk-Kocaeli	2019=2020	2019≠2020	0.860	
Korfez-Kocaeli	2019=2020	2019≠2020	0.901	
Kentpark-Kutahya	2019=2020	2019>2020	0.999	
Besirli-Trabzon	2019=2020	2019>2020	0.999	
Trafik-Zonguldak	2019=2020	2019>2020	0.998	

427	Table SM6. Hypothesis and	l p-values of Mann-	Whitney tests of PM_{10} .
-----	---------------------------	---------------------	------------------------------

AQMS	Null hypothesis	Alternative Hypothesis	p-value
Kecioren-Ankara	2019=2020	2019≠2020	0.552
Kayas-Ankara	2019=2020	2019>2020	0.0004
Bahcelievler-Ankara	2019=2020	2019>2020	1
Inegol-Bursa	2019=2020	2019≠2020	0.582
Kestel-Bursa	2019=2020	2019≠2020	0.128
Beyazit-Bursa	2019=2020	2019≠2020	0.072
Bahabey-Corum	2019=2020	2019≠2020	0.498
Mimarsinan-Corum	2019=2020	2019≠2020	0.069
Kandilli-Istanbul	2019=2020	2019≠2020	0.616
Uskudar-Istanbul	2019=2020	2019≠2020	0.842
Sirinevler-Istanbul	2019=2020	2019≠2020	0.609
Mecidiyekoy-Istanbul	2019=2020	2019>2020	0.009
Umraniye-Istanbul	2019=2020	2019≠2020	0.542
Basaksehir-Istanbul	2019=2020	2019≠2020	0.516
Esenyurt-Istanbul	2019=2020	2019≠2020	0.512
Sultanbeyli-Istanbul	2019=2020	2019≠2020	0.630
Sultangazi-Istanbul	2019=2020	2019≠2020	0.227
Silivri-Istanbul	2019=2020	2019≠2020	0.749
Sile-Istanbul	2019=2020	2019≠2020	0.063
Gaziemir-Izmir	2019=2020	2019>2020	0.999
Istasyon-Kars	2019=2020	2019≠2020	0.739
Gebze-Kocaeli	2019=2020	2019≠2020	0.759
Dilovasi-2-Kocaeli	2019=2020	2019≠2020	0.308
Dilovasi-1-Kocaeli	2019=2020	2019≠2020	0.699
City Center-Kocaeli	2019=2020	2019≠2020	0.394
Yenikoy-Kocaeli	2019=2020	2019≠2020	0.296
Golcuk-Kocaeli	2019=2020	2019≠2020	0.062
Alikahya-Kocaeli	2019=2020	2019≠2020	0.896
Korfez-Kocaeli	2019=2020	2019≠2020	0.604
Izmit-Kocaeli	2019=2020	2019≠2020	0.495
Kentpark-Kutahya	2019=2020	2019≠2020	0.250
Fatih-Trabzon	2019=2020	2019≠2020	0.311
Akcaabat-Trabzon	2019=2020	2019≠2020	0.234
Besirli-Trabzon	2019=2020	2019>2020	0.999
Trafik-Zonguldak	2019=2020	2019>2020	1

Table SM7. Hypothesis and p-values of Mann-Whitney tests of NO.

AQMS	Null hypothesis	Alternative Hypothesis	p-value	
Demetevler-Ankara	2019=2020	2019>2020	0.021	
Bahcelievler-Ankara	2019=2020	2019>2020	0.010	
Inegol-Bursa	2019=2020	2019≠2020	0.919	
Kestel-Bursa	2019=2020	2019>2020	< 0.001	
Uludag-Bursa	2019=2020	2019>2020	1	
Beyazıt-Bursa	2019=2020	2019≠2020	0.144	
Kandilli-Istanbul	2019=2020	2019≠2020	0.102	
Uskudar-Istanbul	2019=2020	2019>2020	0.998	
Sirinevler-Istanbul	2019=2020	2019≠2020	0.103	
Mecidiyekoy-Istanbul	2019=2020	2019>2020	< 0.001	
Umraniye-Istanbul	2019=2020	2019>2020	0.001	
Basaksehir-Istanbul	2019=2020	2019≠2020	0.745	
Esenyurt-Istanbul	2019=2020	2019>2020	0.014	
Sultangazi-Istanbul	2019=2020	2019≠2020	0.166	
Silivri-Istanbul	2019=2020	2019>2020	0.953	
Trafik-Kars	2019=2020	2019>2020	0.001	
Gebze-Kocaeli	2019=2020	2019>2020	< 0.001	
Dilovasi 1-Kocaeli	2019=2020	2019>2020	0.999	
Dilovasi 2-Kocaeli	2019=2020	2019>2020	1	
City Center-Kocaeli	2019=2020	2019>2020	< 0.001	
Fatih-Trabzon	2019=2020	2019>2020	0.024	
Akcaabat-Trabzon	2019=2020	2019>2020	< 0.001	
Besirli-Trabzon	2019=2020	2019>2020	< 0.001	
City Square-Trabzon	2019=2020	2019≠2020	0.267	

432	Table SM8. Hypothe	sis and p-values of Ma	nn-Whitney tests of N	NO ₂ at significance value of 0.0)5.
-----	--------------------	------------------------	-----------------------	--	-----

AQMS	Null hypothesis	Alternative Hypothesis	p-value
Demetevler-Ankara	2019=2020	2019>2020	0.014
Bahcelievler-Ankara	2019=2020	2019>2020	0.041
Inegol-Bursa	2019=2020	2019≠2020	0.820
Kestel-Bursa	2019=2020	2019>2020	< 0.001
Uludag-Bursa	2019=2020	2019>2020	< 0.001
Beyazıt-Bursa	2019=2020	2019>2020	<0.001
Kandilli-Istanbul	2019=2020	2019>2020	<0.001
Uskudar-Istanbul	2019=2020	2019≠2020	0.131
Sirinevler-Istanbul	2019=2020	2019>2020	<0.001
Mecidiyekoy-Istanbul	2019=2020	2019>2020	<0.001
Umraniye-Istanbul	2019=2020	2019>2020	< 0.001
Basaksehir-Istanbul	2019=2020	2019>2020	< 0.001
Esenyurt-Istanbul	2019=2020	2019>2020	< 0.001
Sultanbeyli-Istanbul	2019=2020	2019≠2020	0.398
Kagithane-Istanbul	2019=2020	2019>2020	< 0.001
Sultangazi-Istanbul	2019=2020	2019>2020	< 0.001
Silivri-Istanbul	2019=2020	2019>2020	0.010
Trafik-Kars	2019=2020	2019>2020	0.013
Dilovasi 1-Kocaeli	2019=2020	2019>2020	0.998
Dilovasi 2-Kocaeli	2019=2020	2019≠2020	0.799
Dilovasi 3-Kocaeli	2019=2020	2019≠2020	0.968
City Center-Kocaeli	2019=2020	2019>2020	< 0.001
Korfez-Kocaeli	2019=2020	2019≠2020	0.103
Izmit-Kocaeli	2019=2020	2019≠2020	0.195
Fatih-Trabzon	2019=2020	2019≠2020	0.211
Akcaabat-Trabzon	2019=2020	2019>2020	< 0.001
Besirli-Trabzon	2019=2020	2019>2020	< 0.001
City Square-Trabzon	2019=2020	2019>2020	< 0.001
Trafik-Zonguldak	2019=2020	2019>2020	< 0.001

Table SM9. Hypothesis and p-values of Mann-Whitney tests of NO_x.

AQMS	Null hypothesis	Alternative Hypothesis	p-value
Demetevler-Ankara	2019=2020	2019>2020	0.033
Bahcelievler-Ankara	2019=2020	2019>2020	0.015
Inegol-Bursa	2019=2020	2019≠2020	0.936
Kestel-Bursa	2019=2020	2019>2020	< 0.001
Beyazıt-Bursa	2019=2020	2019>2020	0.003
Kandilli-Istanbul	2019=2020	2019>2020	0.003
Uskudar-Istanbul	2019=2020	2019≠2020	0.900
Sirinevler-Istanbul	2019=2020	2019>2020	0.004
Mecidiyekoy-Istanbul	2019=2020	2019>2020	< 0.001
Umraniye-Istanbul	2019=2020	2019>2020	< 0.001
Basaksehir-Istanbul	2019=2020	2019>2020	0.004
Esenyurt-Istanbul	2019=2020	2019>2020	< 0.001
Sultanbeyli-Istanbul	2019=2020	2019≠2020	0.131
Kagithane-Istanbul	2019=2020	2019>2020	< 0.001
Sultangazi-Istanbul	2019=2020	2019>2020	< 0.001
Silivri-Istanbul	2019=2020	2019≠2020	0.431
Trafik-Kars	2019=2020	2019>2020	0.001
Gebze-Kocaeli	2019=2020	2019>2020	< 0.001
Dilovasi 1-Kocaeli	2019=2020	2019>2020	< 0.001
Dilovasi 2-Kocaeli	2019=2020	2019≠2020	0.109
City Center-Kocaeli	2019=2020	2019>2020	0.002
Kandira-Kocaeli	2019=2020	2019≠2020	0.225
Yenikoy-Kocaeli	2019=2020	2019>2020	< 0.001
Korfez-Kocaeli	2019=2020	2019>2020	1
Izmit-Kocaeli	2019=2020	2019>2020	1

Table SM10. Hypothesis and p-values of Mann-Whitney tests of SO₂.

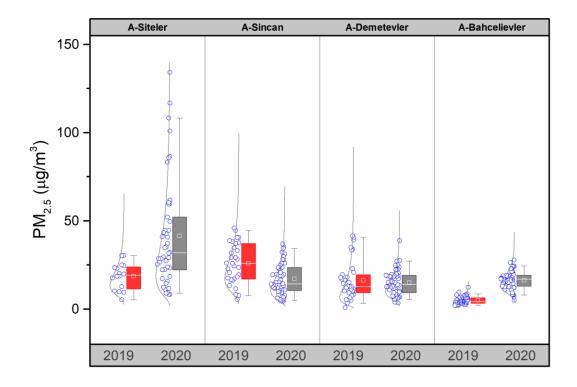
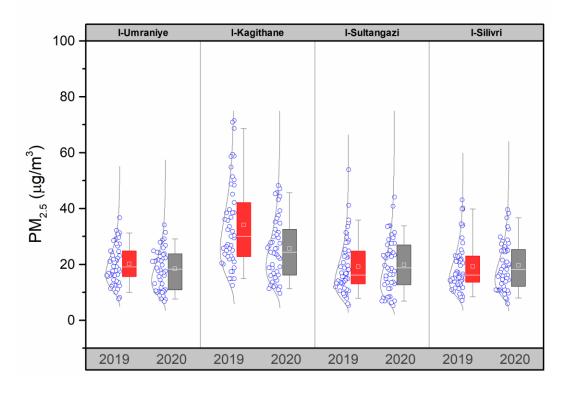
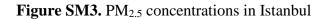
AQMS	Null hypothesis	Alternative Hypothesis	p-value
Demetevler-Ankara	2019=2020	2019≠2020	0.169
Bahcelievler-Ankara	2019=2020	2019>2020	1
Inegol-Bursa	2019=2020	2019≠2020	0.490
Kestel-Bursa	2019=2020	2019≠2020	0.715
Uludag-Bursa	2019=2020	2019≠2020	0.704
Beyazıt-Bursa	2019=2020	2019>2020	<0.001
Kultur-Bursa	2019=2020	2019≠2020	0.868
Corum	2019=2020	2019≠2020	0.354
Kandilli-Istanbul	2019=2020	2019≠2020	0.944
Sirinevler-Istanbul	2019=2020	2019>2020	1
Umraniye-Istanbul	2019=2020	2019>2020	0.999
Basaksehir-Istanbul	2019=2020	2019>2020	1
Esenyurt-Istanbul	2019=2020	2019>2020	< 0.001
Sultanbeyli-Istanbul	2019=2020	2019>2020	1
Sultangazi-Istanbul	2019=2020	2019>2020	1
Sile-Istanbul	2019=2020	2019>2020	0.002
Silivri-Istanbul	2019=2020	2019≠2020	0.642
Gaziemir-Izmir	2019=2020	2019≠2020	0.368
Trafik-Station	2019=2020	2019>2020	< 0.001
City Center-Kocaeli	2019=2020	2019≠2020	0.198
Yenikoy-Kocaeli	2019=2020	2019>2020	0.999
Golcuk-Kocaeli	2019=2020	2019>2020	0.995
Korfez-Kocaeli	2019=2020	2019≠2020	0.414
Akcaabat-Trabzon	2019=2020	2019>2020	< 0.001
Trafik-Zonguldak	2019=2020	2019>2020	< 0.001

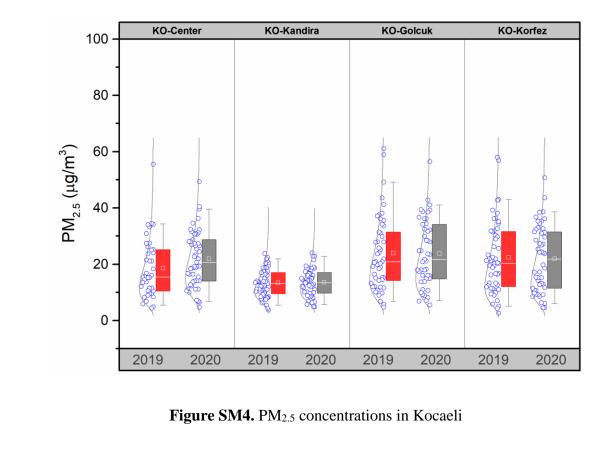
Table SM11. Hypothesis and p-values of Mann-Whitney tests of CO.

AQMS	Null hypothesis	Alternative Hypothesis	p-value
Bahcelievler-Ankara	2019=2020	2019≠2020	0.171
Beyazıt-Bursa	2019=2020	2019>2020	1
Kandilli-Istanbul	2019=2020	2019>2020	1
Uskudar-Istanbul	2019=2020	2019>2020	1
Sirinevler-Istanbul	2019=2020	2019>2020	1
Umraniye-Istanbul	2019=2020	2019>2020	1
Basaksehir-Istanbul	2019=2020	2019>2020	1
Trafik-Kars	2019=2020	2019>2020	< 0.001
Station-Kars	2019=2020	2019≠2020	0.142
Dilovasi 1-Kocaeli	2019=2020	2019>2020	< 0.001
Dilovasi 2-Kocaeli	2019=2020	2019>2020	< 0.001
Dilovasi 3-Kocaeli	2019=2020	2019>2020	0.999
Izmit-Kocaeli	2019=2020	2019>2020	0.999
Akcaabat-Trabzon	2019=2020	2019>2020	< 0.001
Besirli-Trabzon	2019=2020	2019>2020	< 0.001
Trafik-Zonguldak	2019=2020	2019>2020	< 0.001

Table SM12. Hypothesis and p-values of Mann-Whitney tests of O₃.

AQMS	Null hypothesis	Alternative Hypothesis	p-value
Kestel-Bursa	2019=2020	2019>2020	< 0.001
Uludag-Bursa	2019=2020	2019≠2020	0.248
City Center-Bursa	2019=2020	2019≠2020	0.061



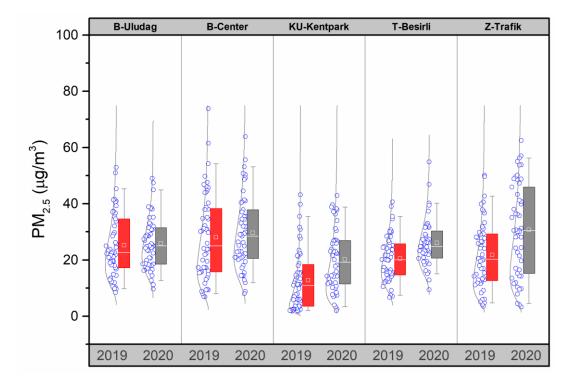
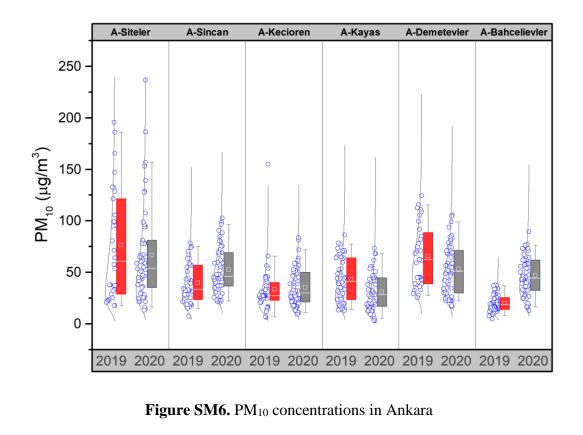
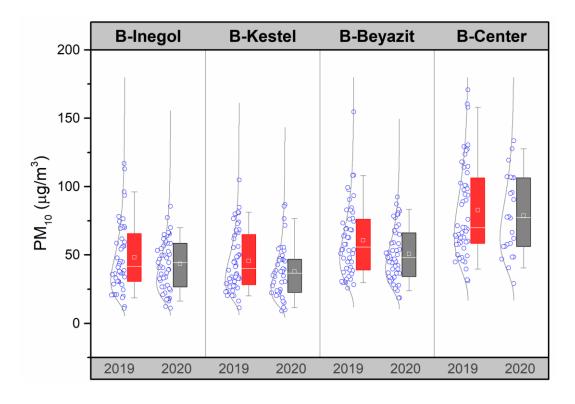


Figure SM2. PM_{2.5} concentrations in Ankara





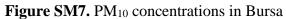


Figure SM5. PM_{2.5} concentrations in Bursa, Kutahya, and Zonguldak

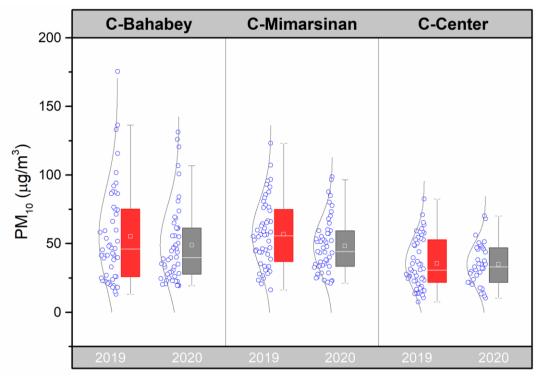
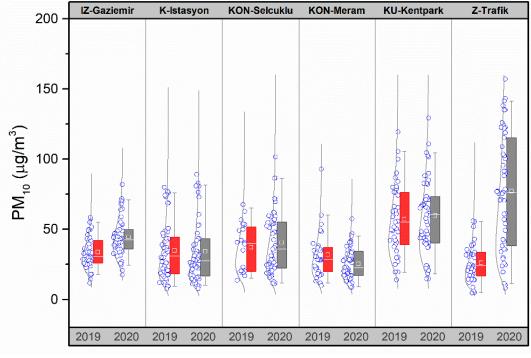



Figure SM8. PM₁₀ concentrations in Corum

471

Figure SM9. PM₁₀ concentrations in Izmır, Kars, Konya, Kutahya, and Zonguldak

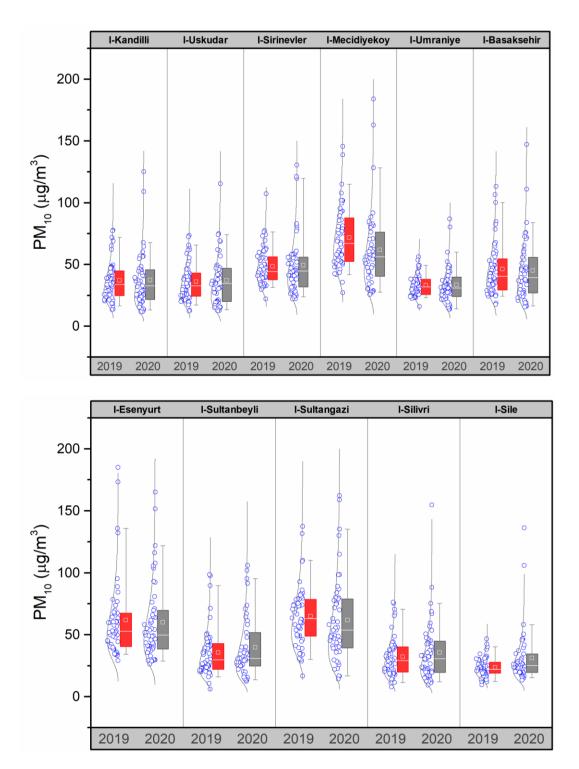


Figure SM10. PM₁₀ concentrations in Istanbul

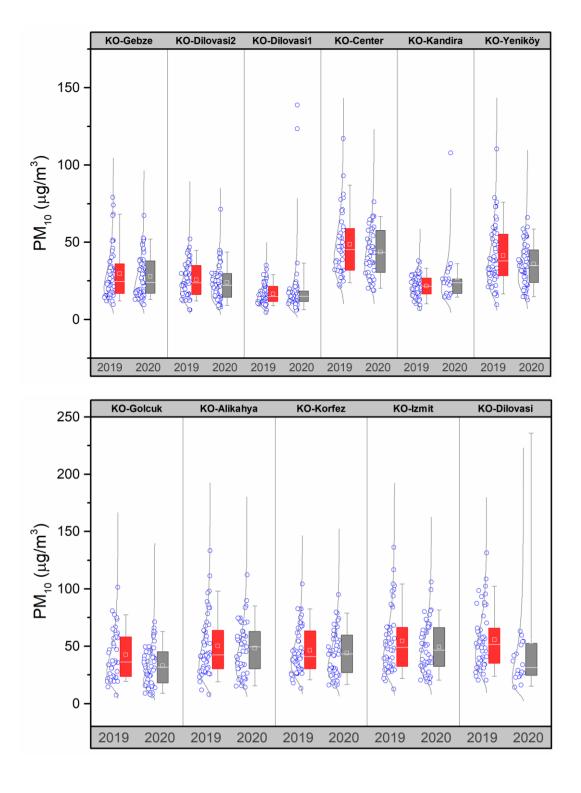
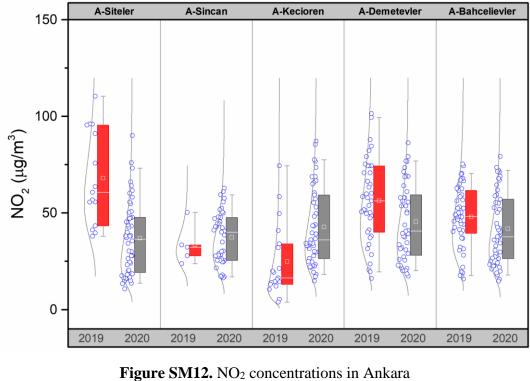
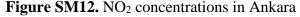




Figure SM11. PM₁₀ concentrations in Kocaeli

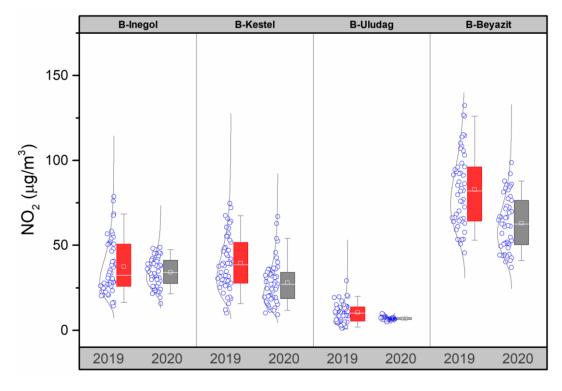
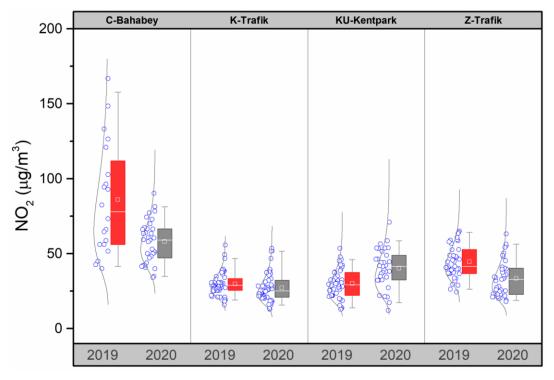
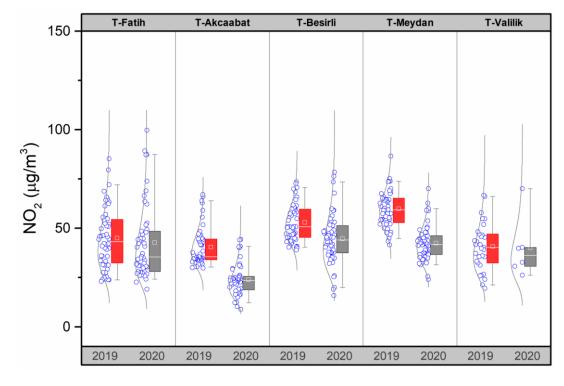
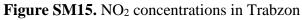
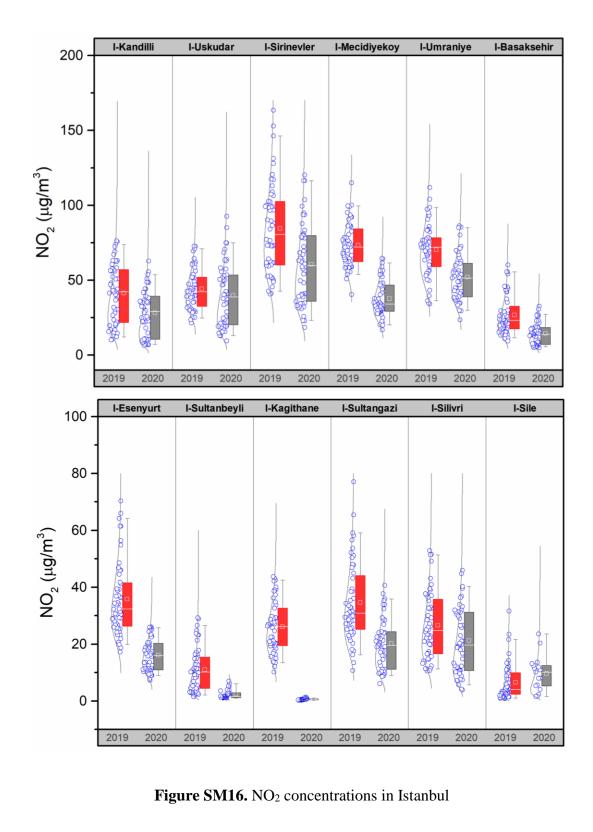
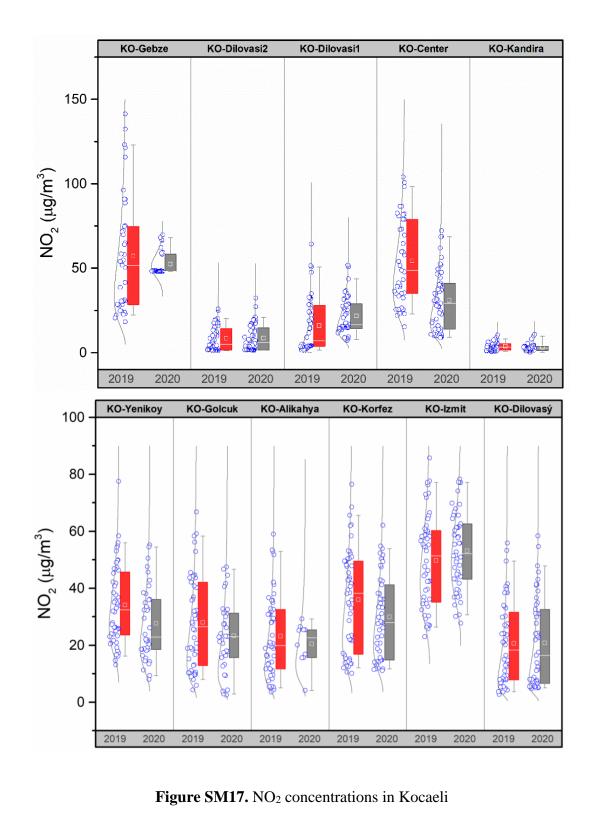


Figure SM13. NO2 concentrations in Bursa


Figure SM14. NO₂ concentrations in Corum, Kars, Kutahya, and Zonguldak

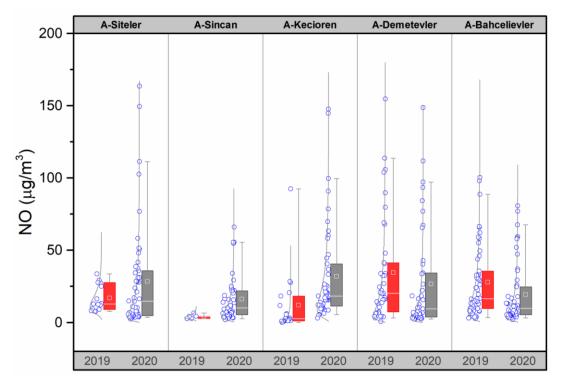


Figure SM18. NO concentrations in Ankara

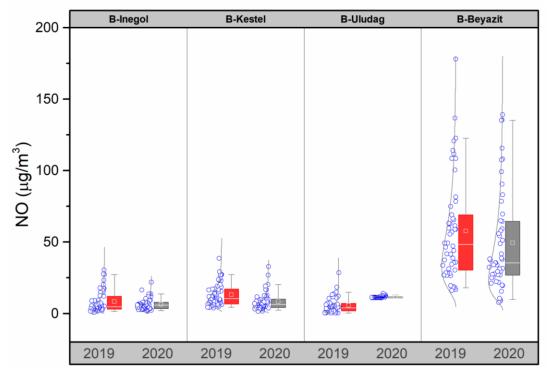
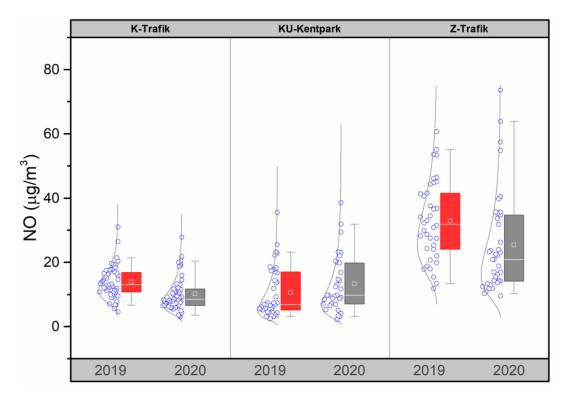
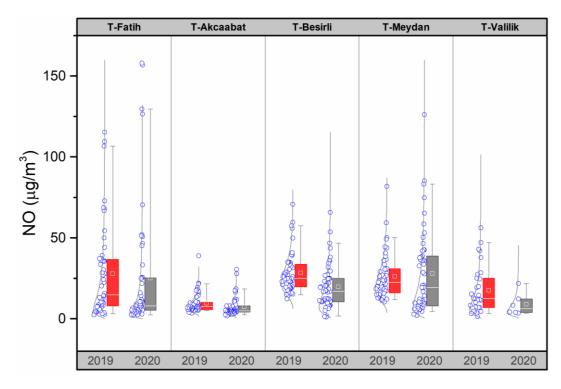
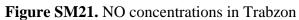
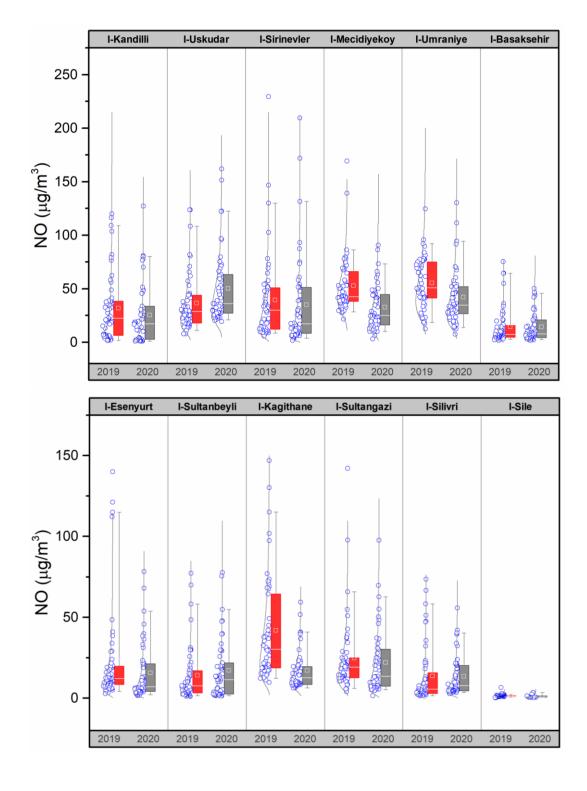


Figure SM19. NO concentrations in Bursa

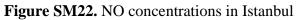


Figure SM20. NO concentrations in Kars, Kutahya, and Zonguldak

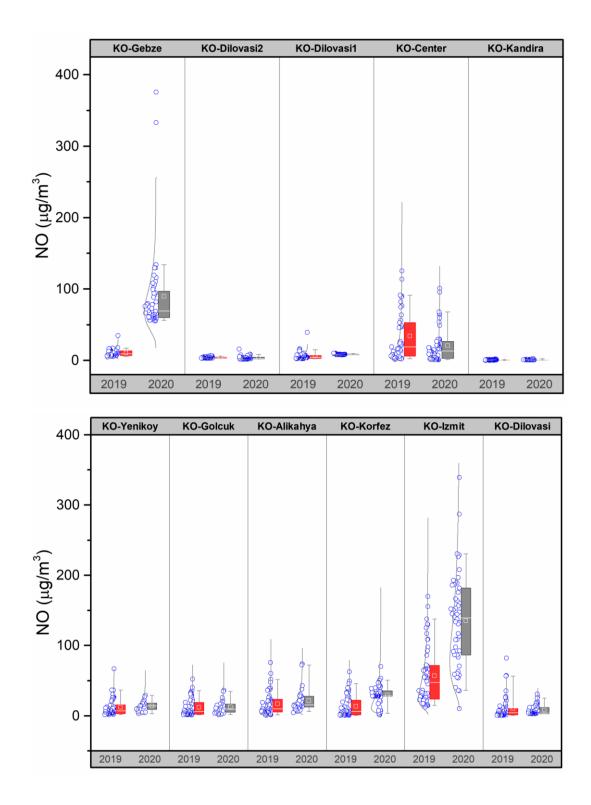


Figure SM23. NO concentrations in Kocaeli

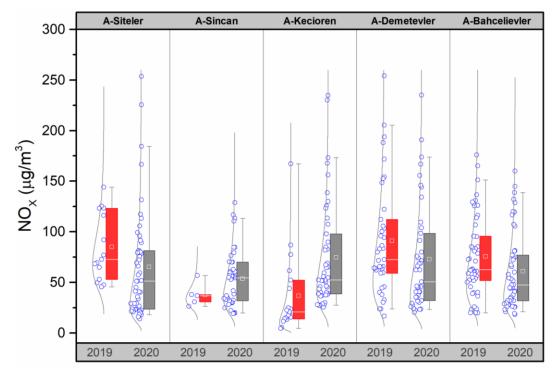
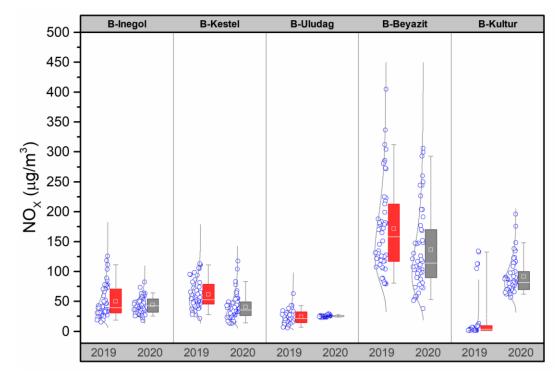
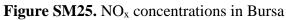




Figure SM24. NO_x concentrations in Ankara

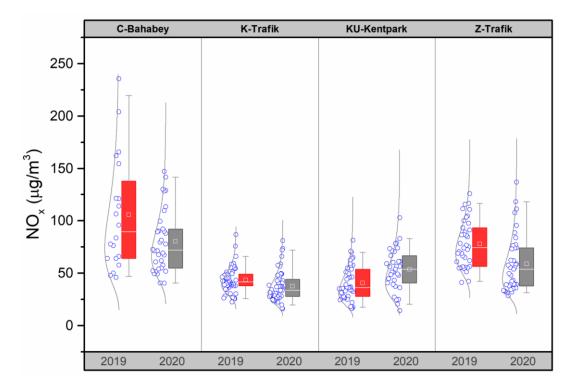


Figure SM26. NO_x concentrations in Corum, Kars, Kutahya, and Zonguldak

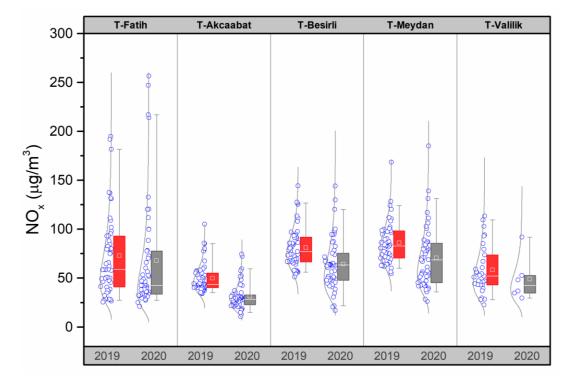
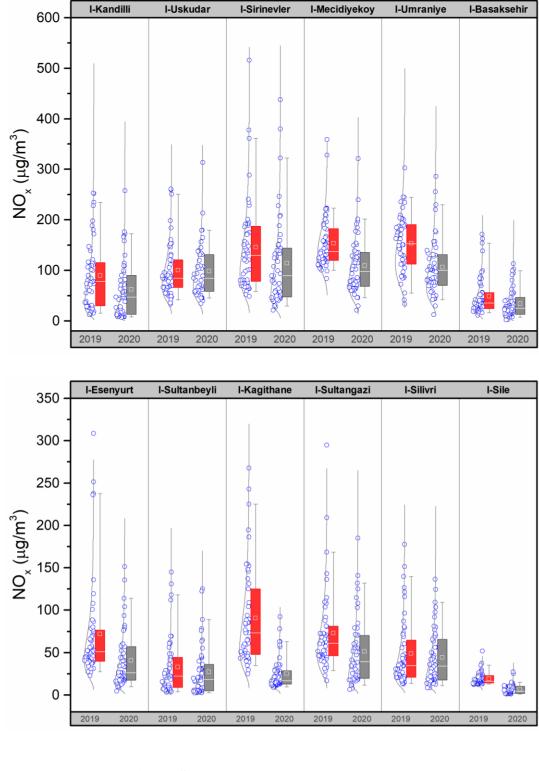
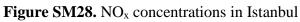
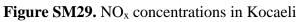





Figure SM27. NO_x concentrations in Trabzon

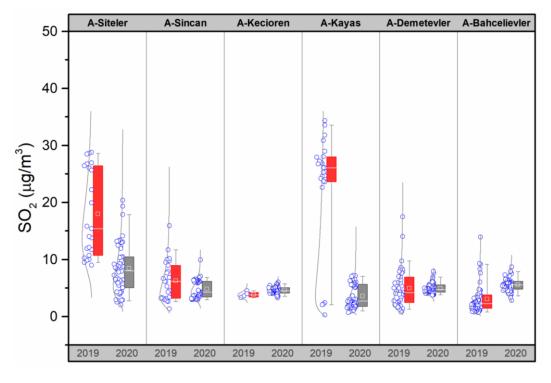


Figure SM30. SO₂ concentrations in Ankara

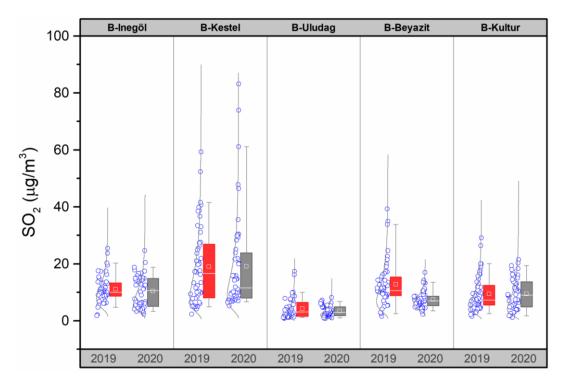


Figure SM31. SO₂ concentrations in Bursa

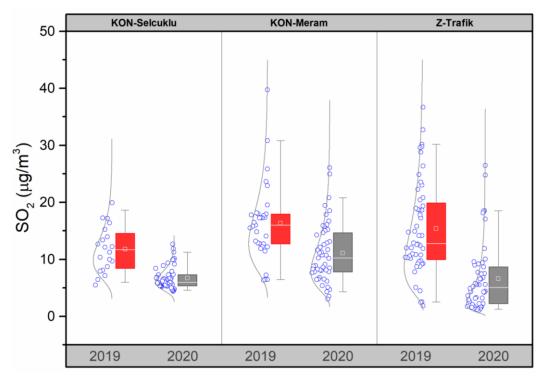
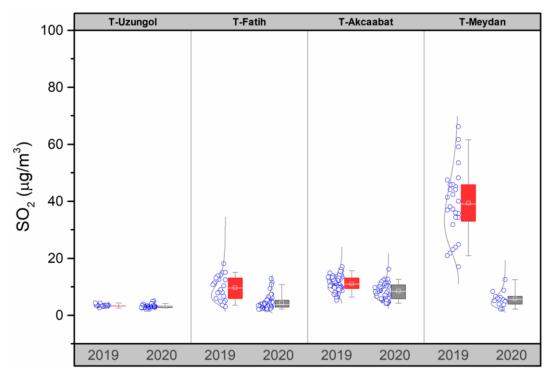
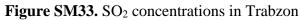




Figure SM32. SO₂ concentrations in Konya and Zonguldak

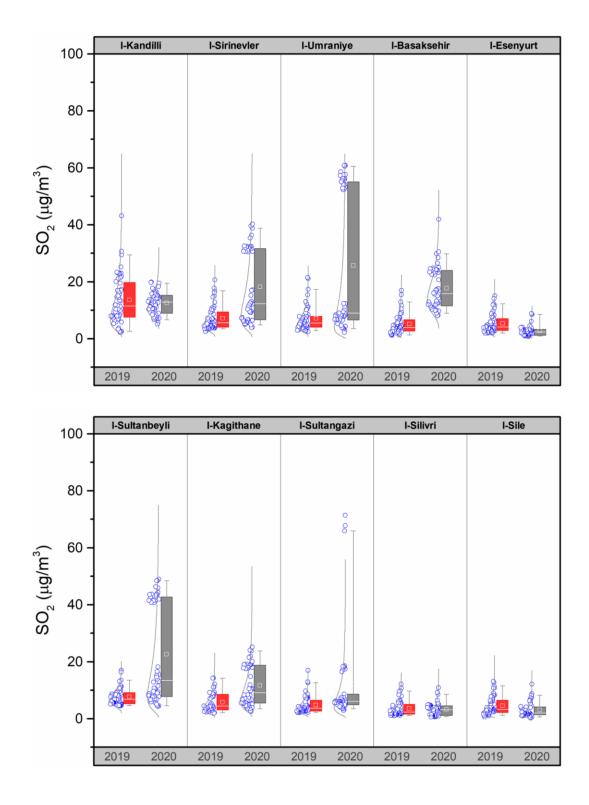
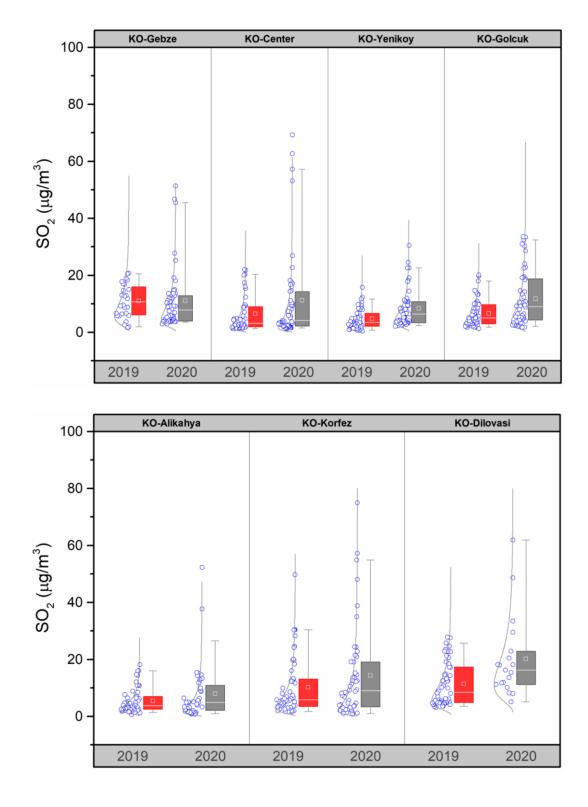
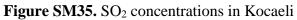




Figure SM34. SO₂ concentrations in Istanbul

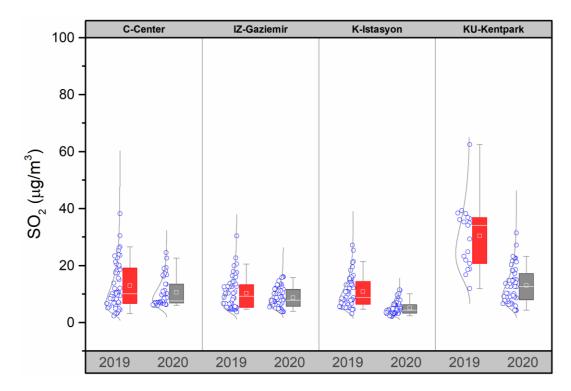
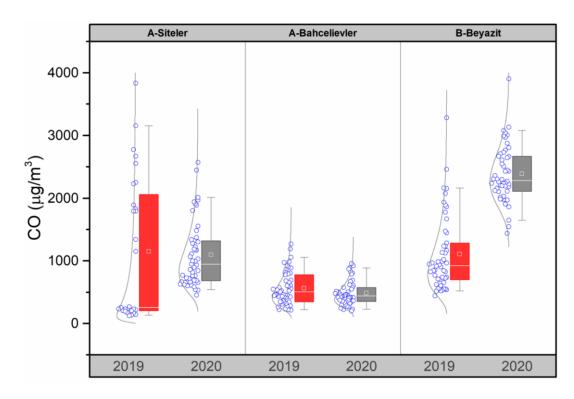



Figure SM36. SO₂ concentrations in Corum, Izmir, Kars, and Kutahya

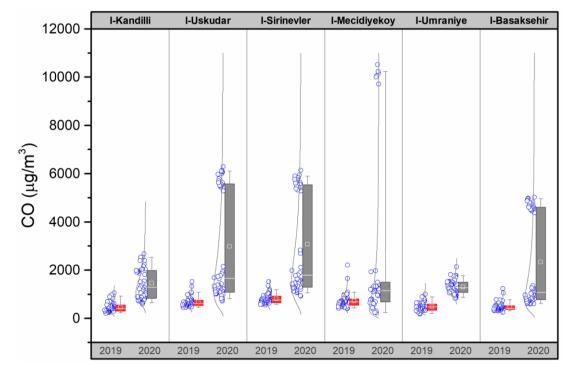
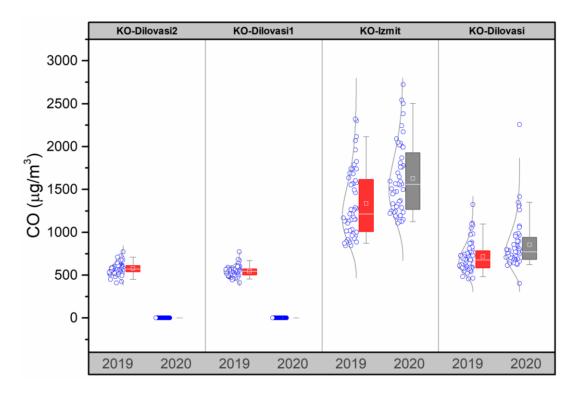
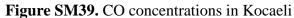




Figure SM38. CO concentrations in Istanbul

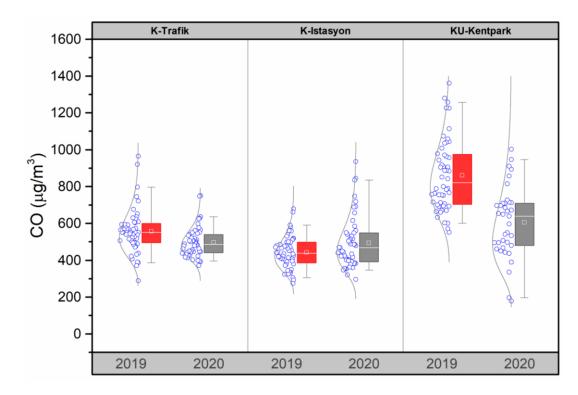


Figure SM40. CO concentrations in Kars and Kutahya

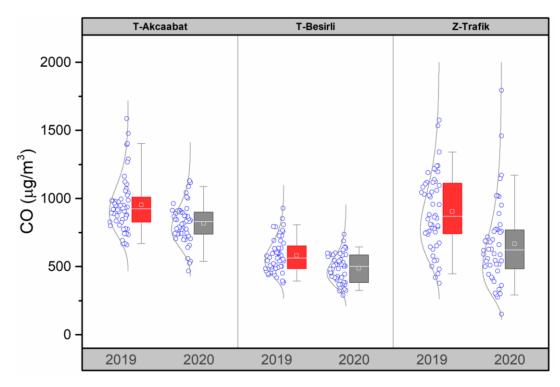


Figure SM41. CO concentrations in Trabzon and Zonguldak

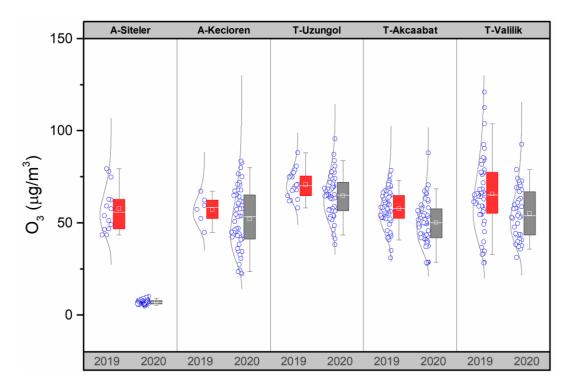
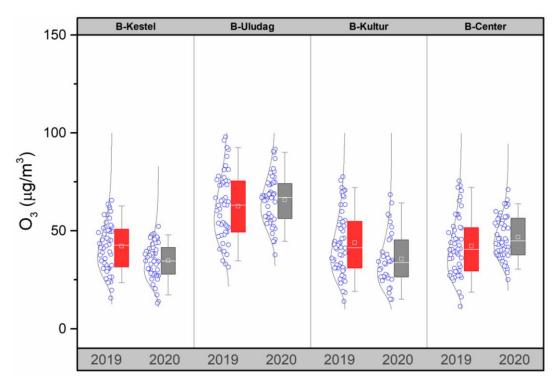
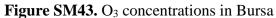




Figure SM42. O3 concentrations in Ankara and Trabzon

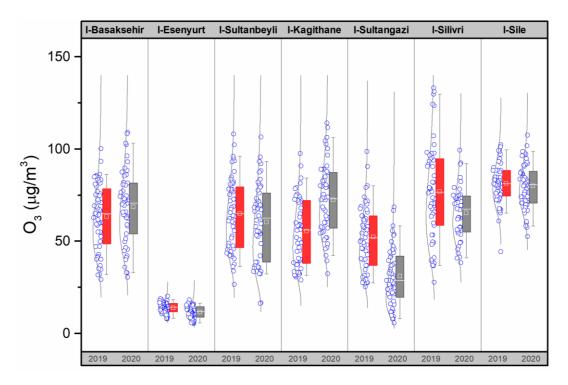
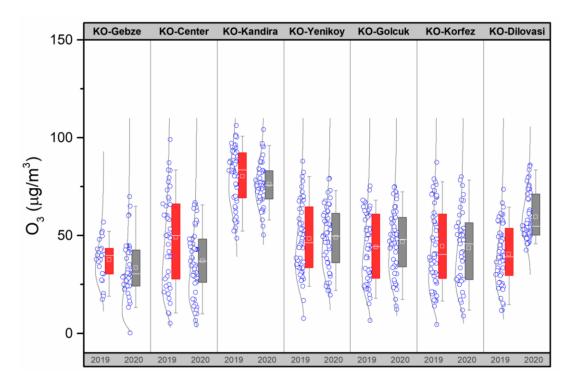
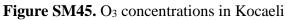




Figure SM44. O₃ concentrations in Istanbul

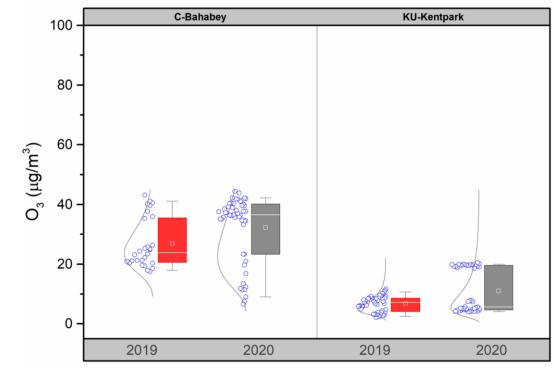


Figure SM46. O3 concentrations in Corum and Kutahya

590 SM References

- 591 URL SM1. Newspaper headline, <u>https://www.takvim.com.tr/yasam/2020/04/18/istanbul-evlere-</u>
- 592 <u>kapandi-uludagin-zirvesi-gorundu</u> (retrieved date: 25.04.2020)