
May 6, 2019 11:15 WSPC/S0219-4988 171-JAA 1950138

Journal of Algebra and Its Applications
Vol. 18, No. 7 (2019) 1950138 (13 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S021949881950138X

Locally isomorphic torsionless modules over
domains of finite character

Basak Ay Saylam∗,‡ and Lee Klingler†,§

∗Department of Mathematics
Izmir Institute of Technology

Urla-Izmir, Turkey

†Department of Mathematical Sciences
Florida Atlantic University

Boca Raton, FL, USA
‡basakay@iyte.edu.tr

§klingler@fau.edu

Received 2 March 2018
Accepted 6 July 2018

Published 20 August 2018

Communicated by B. Olberding

In a 2002 paper, P. Goeters and B. Olberding compare local, near, and stable isomor-
phisms of torsionless modules over h-local domains. In this paper, we compare these
weaker forms of isomorphisms of torsionless modules over domains of finite character.
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1. Introduction

Let R be a commutative ring with identity and C a class of indecomposable R-
modules. The Krull–Schmidt property holds for C if, whenever G1 ⊕ · · · ⊕ Gn

∼=
H1 ⊕ · · · ⊕ Hm for Gi, Hj ∈ C, then n = m and, after reindexing, Gi

∼= Hi for
all i ≤ n. This property fails broadly for modules over commutative rings, and
even the weaker property of cancellation A ⊕ B ∼= A ⊕ C ⇒ B ∼= C, holds only
in special situations. In [6], the authors discuss weaker forms of isomorphisms to
recover properties such as cancellation over h-local domains. They extend the notion
of near isomorphism from the theory of torsion-free finite rank abelian groups to
modules over commutative integral domains, studying its properties for the class
of torsionless modules (see below for definitions).

∗Corresponding author.
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We say that an integral domain R is of finite character if every nonzero element
of R is contained in only finitely many maximal ideals of R. An integral domain
R is called h-local if R is of finite character and each nonzero prime ideal of R is
contained in a unique maximal ideal of R. Thus, a domain R of finite character has
the property that R/I is a semilocal ring for each nonzero ideal I of R, while an
h-local domain R has the property that R/I is a finite direct sum of local rings for
each nonzero ideal I of R.

If R is a ring and A is a matrix over R, then the content of A is the ideal of R
generated by all the entries of A. Let B be a submodule of R(n). Then B is said to
be basic if the ideal of R generated by the contents of all vectors in B equals R. We
say that a commutative ring R has the BCS-property if for each finitely generated
projectiveR-module P and each basic submoduleB of P ,B contains a rank one pro-
jective summand of P . The BCS-property is equivalent to the UCS-property of [7].

We say that R is local-global if every polynomial over R in finitely many inde-
terminates which represents units locally, assumes a unit value when evaluated at
properly chosen elements of R [4]. Semi-local domains are local–global. A ring is
almost local–global if every of its proper factor ring is local–global. We note that
domains of finite character are almost local–global.

We call a module torsionless if it is isomorphic to a submodule of a finitely
generated free module. If R is an integral domain with quotient field Q and G is a
torsion-freeR-module, then the divisible hullQG ofG is Q⊗RG. We identify G with
its image in QG. The rank ofG is the dimension of the Q-vector space QG. We write
G(n) for a direct sum of n copies of G. Two torsionless R-modules G and H are said
to be nearly isomorphic if G and H are of the same rank and, for each nonzero ideal
I of R, there exists an embedding f : G→ H such that the ideal AnnR(Coker(f))
is comaximal with I. The R-modules G and H are called locally isomorphic if
GM

∼= HM for all maximal ideals M of R. It is easy to see that, if G and H are
torsionless nearly isomorphic R-modules, then G and H are locally isomorphic.
The R-modules G and H are stably isomorphic if G ⊕ R(n) ∼= H ⊕ R(n) for some
n > 0. These weaker forms of isomorphisms are equivalence relations. Furthermore,
for domains with nonzero Jacobson radical, near isomorphism implies isomorphism.
Also, stable isomorphism implies isomorphism for semilocal commutative rings [4,
Theorem 2.5]. So, for semilocal domains, near isomorphism and stable isomorphism
are equivalent to isomorphism.

In [6], the authors compare local, near, and stable isomorphisms for torsionless
modules over an h-local domain. The key to their results is [6, Lemma 2.1], where
they show that, over a finite direct sum R of local rings, if F is a finitely generated
free module, then an isomorphism F/G ∼= F/H (for submodules G and H of F )
can be lifted to an automorphism of F . The application to their results is obvious,
since a proper homomorphic image of an h-local domain is a finite direct sum of
local rings. The key to our results (Lemma 2.1 below) is that one can lift such
an isomorphism F/G ∼= F/H to an automorphism of F provided the ring R is
semilocal. Since a proper homomorphic image of a domain of finite character is
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semilocal, we hope for comparable results for local, near, and stable isomorphism
of torsionless modules over a domain of finite character.

We prove a generalization of [6, Lemma 2.6] (Lemma 3.2). In this generalization,
we show that F/G ∼= F/H (F is a finitely generated free module and G and H are
its submodules) when G and H are locally isomorphic under the assumption that
G is finitely generated. We do not have an example to show that this restriction is
necessary. Most of our main results are based on this lemma, and hence they are
limited to finitely generated torsionless modules (over an integral domain of finite
character).

This paper is organized as follows. In Sec. 2, we give some preliminary results
which will be handy in comparing local, near, and stable isomorphism. In Sec. 3,
we prove when local isomorphism implies isomorphism and when local, stable, and
near isomorphisms coincide. In Sec. 4, we provide some applications of the results
in Sec. 3.

2. Preliminary Results

Let R be a commutative ring. If P is a projective R-module, then PM is a free RM -
module for each maximal ideal M of R. We define the rank of P to be the maximum
of the ranks of the free modules PM and say that P has constant rank n if the rank
of PM , for each M , is n. The following is a generalization of [6, Lemma 2.1].

Lemma 2.1. Let R be a semilocal ring and F a finitely generated free R-module
of finite rank and G and H be submodules of F such that F/G ∼= F/H. Then there
exists an automorphism θ :F → F such that θ(G) = H.

Proof. Let φ be the isomorphism between F/G and F/H . Our aim is to show that
φ can be lifted to an automorphism of F which maps G onto H .

Let J be the Jacobson radical of R, G′ = G∩ JF , and H ′ = H ∩ JF . We claim
that the exact sequence

0 → G/G′ → F/G′ → F/G→ 0

is split. Let us consider the composition of the inclusion map ι : G/G′ → F/G′

with the natural map ρ : F/G′ → (F/G′)/J(F/G′) ∼= F/JF . Let g+G′ ∈ G/G′

such that its image is 0. Hence, g ∈ JF , so that g ∈ G′, implying that g+G′ = G′.
Thus, this composition is injective. Furthermore, F/JF is semisimple, and the
composition map α : G/G′ → F/JF is injective. So, α is split by a map β :
F/JF → G/G′, and ι is split by β ◦ ρ, so that the exact sequence is split. Since the
sequence is split exact, F/G′ ∼= G/G′ ⊕ F/G, implying that

F/JF ∼= (F/G′)/(J(F/G′)) ∼= (G/G′)/(J(G/G′)) ⊕ (F/G)/(J(F/G)).

Since J(G/G′) = 0, F/JF ∼= G/G′ ⊕ (F/G)/(J(F/G)). Similarly, the exact
sequence for F/H ′ is split, also, and hence F/JF ∼= H/H ′ ⊕ (F/H)/(J(F/H)).
Since the simple summands of F/JF have local endomorphism rings, we can cancel
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them from the direct sum [5, Corollary V.8.3], and hence G/G′ ∼= H/H ′. Since
F/G ∼= F/H , φ lifts to an isomorphism ψ : F/G′ → F/H ′.

Let µ :F � F/G′ and ν : F � F/H ′ be the natural maps. Since F is projective,
ψ lifts to a map θ : F → F . Thus, ψ◦µ = ν◦θ. Now ker(ν) = H ′ ⊆ JF , the Jacobson
radical of the finitely generated module F . So, it follows from Nakayama’s Lemma
that θ is surjective. Then by comparing ranks, θ must be injective as well. So,
θ :F → F is an isomorphism that induces the isomorphism ψ :F/G′ → F/H ′, which
induces the isomorphism φ :F/G → F/H . Thus, θ : F → F is an automorphism
such that θ(G) = H .

Next lemma is a generalization of [1, Lemma 3.1]. We recall that a square matrix
over a ring R is called a transvection if its diagonal entries are all ones and there is
at most one nonzero entry off the diagonal. We say that a ring R has stable range
one if αR + βR = R for α, β ∈ R implies (α + βγ)R = R for some γ ∈ R.

Lemma 2.2. Let R be a semilocal ring. Then any matrix of determinant 1 over R
is a product of transvections.

Proof. Suppose that R is a semilocal ring. Then R has stable range one by [5,
Lemma V.8.2]. Let A be an n×n matrix of determinant 1 over R. Then the entries
of each row of A generate R, and hence A can be reduced to a matrix whose each
row and each column contain a unit. Now, the lemma follows from the proof of
[1, Lemma 3.1].

Next we give a generalization of [6, Lemma 2.2].

Lemma 2.3. Let R be an integral domain of finite character, F a finitely generated
free R-module and I a nonzero ideal of R. If φ is an R/I-automorphism of F/IF
such that detφ = 1, then φ lifts to an automorphism of F .

Proof. Since R is of finite character, R/I is a semilocal ring. By assumption φ can
be represented by a matrix of determinant 1. Since R/I is a semilocal ring, matrices
of determinant 1 are products of transvections by Lemma 2.2. So, φ is a product of
transvections with each transvection lifting to an automorphism of F ; the product
of these lifted automorphisms is an automorphism.

Proposition 2.4. Let R be an almost local–global integral domain and P a finitely
generated projective R-module of finite rank. Then P is isomorphic to a finite rank
free module direct sum with an invertible ideal.

Proof. Let J and I be invertible ideals of R. Since R is almost local–global, R/IJ
is local–global. Since I is invertible, by [5, Proposition V.4.4], I/IJ is cyclically
generated. Since J is invertible, by [5, Proposition I.2.1], [IJ : J ] = I, and hence
AnnR/IJ (I/IJ) = I/IJ . Thus, I/IJ ∼= R/I. By [7, Proposition 1], I ⊕J ∼= R⊕ IJ .
Since R is almost local-global, by [7, Theorem 3], R has the UCS-property, and
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hence the BCS-property. So, by [11, Lemma 1.6], P is isomorphic to the direct sum
of rank one projective R-modules, and so the direct sum of invertible (integral)
ideals of R, say P = I1 ⊕ · · · ⊕ In. If n = 2, then P = I1 ⊕ I2 ∼= R⊕ I1I2. If n = 3,
then P = (I1 ⊕ I2)⊕ I3 ∼= R⊕ (I1I2 ⊕ I3) ∼= R⊕R⊕ I1I2I3. By continuing this way,
we conclude that P is a direct sum of a finite rank free module with an invertible
ideal.

In [6, Lemma 2.3], given two finitely generated free modules of the same rank F1

and F2, over an h-local domain R, it is investigated when, for submodules G ⊆ F1

and H ⊆ F2 of full rank, an isomorphism F1/G ∼= F2/H lifts to an isomorphism
F1 ⊕ R ∼= F2 ⊕ R. Now, we are ready to prove a generalization of [6, Lemma 2.3]:
given a finitely generated free module F and a finitely generated projective module
P of the same rank, over an integral domain of finite character R, we investigate
when, for submodules G ⊆ F and H ⊆ P of full rank, an isomorphism F/G ∼= P/H

lifts to an isomorphism F ⊕R ∼= P ⊕A, for some projective rank one R-module A.

Lemma 2.5. Let R be an integral domain of finite character, F a finitely generated
free R-module of rank n, and P a finitely generated projective R-module of rank n.
Suppose that G is an R-submodule of F with rank n and H is a rank n R-submodule
of P . If F/G ∼= P/H, then there is an isomorphism α :F ⊕ R → P ⊕ A for some
rank one projective R-module A such that α(G ⊕R) = H ⊕A.

Proof. Let R be an integral domain of finite character. Then, by Proposition 2.4,
P ∼= R(n−1)⊕J for some invertible ideal J of R. Since J⊕J−1 ∼= R⊕JJ−1 ∼= R(2),
P ⊕ J−1 is a free R-module of rank n + 1. Let F ′ = F ⊕ R, P ′ = P ⊕ A, where
A = J−1. Since both F ′ and P ′ have the same rank, there is an isomorphism
ψ : P ′ → F ′. Let I = AnnR(F/G).

We first claim that P/IP is a free R/I-module of rank n. Since P is a finitely
generated projective R-module of rank n, PM is a free RM -module of rank n for
all maximal ideals M of R containing I, and hence (P/IP )M

∼= PM/IPM is a free
RM/IM -module of rank n. So, P/IP is a projective R/I-module which is locally
free of constant rank, and hence, by [9, Theorem IV.30], P/IP is free of rank n.
So, there is an isomorphism β :P/IP → F/IF .

Let φ be the isomorphism from F/G onto P/H . We note that IP ⊆ H and
β(H/IP ) = H1/IF for some submodule H1 of F such that IF ⊆ H1, so that β
induces an isomorphism β̄ :P/H → F/H1. So, there are two exact sequences

0 �� H/IP �� P/IP

β

��

�� P/H

β̄

��

�� 0

0 �� H1/IF �� F/IF �� F/H1
�� 0

where β̄ and β are isomorphisms. Hence, β̄◦φ :F/G→ F/H1 is an isomorphism. By
Lemma 2.1, β̄◦φ lifts to an automorphism λ of F/IF such that λ(G/IF ) = H1/IF .
So, θ = β−1 ◦ λ : F/IF → P/IP is an isomorphism such that θ(G/IF ) = H/IP .
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Since J−1/IJ−1 is a free R/I-module, there is an isomorphism γ : R/I →
J−1/IJ−1. Hence, θ ⊕ γ :F ′/IF ′ → P ′/IP ′ is an isomorphism. Also, the iso-
morphism ψ :P ′ → F ′ induces an isomorphism ψ̄ :P ′/IP ′ → F ′/IF ′, so that
ψ̄ ◦ (θ ⊕ γ) is an automorphism of F ′/IF ′. Since u = det(ψ̄ ◦ (θ ⊕ γ)) is a unit in
R/I, we can define an automorphism (1 ⊕ u−1) on F ′/IF ′ = F/IF ⊕R/I. Hence,
ψ̄◦(θ⊕γ)◦(1⊕u−1) is an automorphism of F ′/IF ′ of determinant 1. By Lemma 2.3,
this automorphism lifts to an automorphism δ of F ′. Let α = ψ−1 ◦ δ. Then
α(IF ′) = IP ′. We note that, modulo I, α induces ᾱ = ψ̄−1 ◦ ψ̄◦(θ⊕γ)◦(1⊕u−1) =
θ⊕(γ◦u−1) such that ᾱ(G/IF⊕R/I) = H/IP⊕J−1/IJ−1. Therefore, α(G⊕R) =
H ⊕ J−1.

3. Main Results

The following two lemmas are the main tools which are used widely in a series of
results to compare local, stable, and near isomorphism of torsionless modules over
integral domains of finite character.

Lemma 3.1. Let R be an integral domain of finite character and G a torsionless
R-module. If GM is a free RM -module for all maximal ideals M of R, then G is a
projective R-module, and if the rank(G) ≥ 2, then G is isomorphic to a direct sum
of a free R-module and an invertible ideal ideal of R.

Proof. If G is a torsionless R-module, then there is an embedding ρ :G → R(n).
If GM is free for all maximal ideals M of R, then GM is finitely generated for all
M . Hence, each coordinate of ρ(G), which is an ideal of R, is finitely generated and
proper in the localizations of R at only finitely many maximal ideals of R since
R is of finite character. Hence, by [5, Lemma V.2.11], each coordinate becomes a
finitely generated ideal in R. Thus, ρ(G) is a finitely generated submodule of R(n),
and so, G is finitely generated. Since GM is free of constant rank for all M of R,
G is projective. If G has rank one, then G is isomorphic to an invertible ideal of R.
If rank(G) ≥ 2, then, by Proposition 2.4, G is isomorphic to a direct sum of a free
R-module and a projective R-module, that is an invertible ideal of R.

Lemma 3.2. Let R be an integral domain of finite character and F a finitely
generated free module of rank n. If G is a rank n R-submodule of F and H is a
torsionless R-module such that either H is nearly isomorphic to G, or G is finitely
generated and H is locally isomorphic to G, then there exists a finitely generated
projective R-submodule P of QH such that H ⊆ P and F/G ∼= P/H.

Proof. Since F is a free module of rank n, F ∼= R(n). Then aF ⊆ G for some
nonzero element a ∈ R because F is finitely generated and QF = QG. Since H is
torsionless and locally isomorphic to G (because nearly isomorphic implies locally
isomorphic), H is of rank n and a submodule of a finitely generated free module.
Thus, there exists an injection from H into F , so we can assume that H ⊆ F . Since
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H ∼= aH ⊆ aF ⊆ G, we can further assume that H ⊆ aF ⊆ G ⊆ F . Since H
has rank n, QF = QH . So, there is some nonzero b ∈ R such that bF ⊆ H . Since
R is of finite character, b is contained in finitely many maximal ideals of R, say
M1, . . . ,Mt. Let S = R− ⋃t

i=1Mi.
If G and H are nearly isomorphic, then there is an injection ψ : G → H such

that Ann(H/ψ(G)) and Rb are comaximal. So, localizing these ideals at Mi, for
each i = 1, . . . , t, we get HMi = (ψ(G))Mi , and hence ψMi is surjective for all
i. Since ψ is injective, so is the homomorphism S−1ψ : S−1G → S−1H . Since
S−1M1, S

−1M2, . . . , SMt ’s are precisely the maximal ideals of S−1R and ψMi is
surjective for each i, S−1ψ is surjective. Therefore, S−1ψ is an isomorphism. Since
ψ(aF ) ⊆ aF implies ψ(F ) ⊆ F , S−1ψ(S−1F ) ⊆ S−1F .

Suppose that G is finitely generated and H is locally isomorphic to G. Let
φi : GMi → HMi be an isomorphism for each i. Since G is finitely generated, there
exists a bi �∈ Mi such that, taking ψi = biφi, ψi(G) ⊆ H , and (ψi)Mi is an isomor-
phism from GMi to HMi . For each i, there exists ri ∈M1 · · ·Mi−1 ·Mi+1 · · ·Mt−Mi.
Let ψ = r1ψ1+ · · ·+rtψt. Note that (riψi)Mi(GMi) = HMi since ri is a unit in RMi .
For j �= i, (rjψj)Mi(GMi) ⊆ MiHMi . So, ψMi = (r1ψ1)Mi + · · · + (rtψt)Mi induces
a surjective map ψMi :GMi/MiGMi → HMi/MiHMi . By Nakayama’s Lemma,
ψMi :GMi → HMi is surjective. We note that S−1ψ :S−1G→ S−1H is an R-module
homomorphism. Since the maximal ideals of S−1R are precisely S−1M1, . . . , S

−1Mt

and ψMi is surjective for each i, S−1ψ is surjective. Now G and H are torsionless
R-modules of the same (finite) rank. So tensoring up to Q gives a surjection of
vector spaces of the same (finite) rank. Thus, S−1ψ must be injective. As in the
case of the previous paragraph, S−1ψ(S−1F ) ⊆ S−1F . Since we can extend ψ to
an automorphism of QF , we denote this automorphism (and all of its restrictions)
just by ψ.

Let F ′ = ψ(S−1F ) and P = F ′ ∩ Fb. For a maximal ideal M not containing
b, (Fb)M = FM , and FM ⊆ (F ′)M , so PM = FM is free. For each maximal ideal
Mi, i = 1, 2, . . . , t, containing b, FMi ⊆ (Fb)Mi , and (F ′)Mi = ψ(FMi) ⊆ FMi ,
so that PMi = ψ(FMi) is free. So, P is locally free of finite constant rank. Since
PM ⊆ FM for every maximal ideal M , it follows that P is torsionless, so P is
projective by Lemma 3.1. Since H ⊆ F ⊆ Fb and H ⊆ S−1H = ψ(S−1G) ⊆ F ′,
H ⊆ P .

Since bF ⊆ H ⊆ G, b(F/G) = 0. Also, for all s ∈ S, there is no maximal
ideal of R that contains both s and b. Thus, Rb + Rs = R for all such s ∈ S.
Let η : F/G → S−1(F/G) be the natural map. Then η is an isomorphism. So,
S−1(F/G) ∼= (S−1F )/(S−1G) ∼= F ′/(S−1H). Similarly, P/H ∼= (S−1P )/(S−1H) ∼=
(S−1F ′ ∩ S−1Fb)/(S−1H). Now S−1F ′ = F ′ = ψ(S−1F ) ⊆ S−1F ⊆ S−1Fb. Thus,
P/H ∼= F ′/(S−1H), which is isomorphic to F/G.

Lemma 3.2 is a generalization of [6, Lemma 2.6]. As the proof of [6, Lemma 2.6]
notes, over h-local domains, one does not need that G is finitely generated, when G
and H are locally isomorphic. At this point, we know of no example to show that
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the assumption of G being finitely generated is necessary, over integral domains of
finite character.

In [6, Proposition 2.8], two locally isomorphic torsionless modules over an h-local
domain with a trivial Picard group are proven to be isomorphic when one of them
contains a direct summand isomorphic to a nonzero ideal. Next we prove this in
the more general case in which the domain has finite character and trivial Picard
group. Moreover, we see that the finitely generated assumption is not needed if
these modules are nearly isomorphic.

Proposition 3.3. Let R be an integral domain of finite character with trivial Picard
group. Suppose that G and H are torsionless R-modules such that either H is nearly
isomorphic to G, or G is finitely generated and H is locally isomorphic to G. If G
has a direct summand isomorphic to a nonzero ideal of R, then G ∼= H.

Proof. Let G = A ⊕ Je, where A has rank n − 1 and J �= 0 is an ideal of R.
Then let A ⊆ F ′ ⊆ QA for some free R-module F ′ of rank n− 1. Let F = F ′ ⊕Re

be a free R-module with G ⊆ F . By Lemma 3.2, there is a projective torsionless
R-submodule P of QH such that F/G ∼= P/H .

Since R has the BCS-property, P is the direct sum of rank one projective mod-
ules. So, P has to be free because R has trivial Picard group. Thus, F ∼= P , and
hence we may assume that H ⊆ F and F/G ∼= F/H . We note that AnnR(F/G) =
AnnR(F/H). Let I = AnnR(F/G). Since F/G is finitely generated and torsion,
I �= 0, implying that F/G and F/H are isomorphic as R/I-modules. Since R is of
finite character, R/I is a semi-local ring. We note that F/IF is a finitely generated
free R/I-module with F/G ∼= (F/IF )/(G/IF ) ∼= F/H ∼= (F/IF )/(H/IF ), so by
Lemma 2.1, there exists an automorphism φ :F/IF → F/IF such that φ(G/IF ) =
H/IF . Thus, u = detφ is a unit in R/I. Since F = F ′⊕Re, F/IF = F ′/IF⊕Re/Ie.
We can define an isomorphism θ : F ′/IF ⊕ Re/Ie → F ′/IF ⊕ R/I such that
θ = 1 ⊕ u−1, where 1 is the identity map on F ′/IF and u−1 is the multiplica-
tion by u−1 from Re/Ie to R/I. Let ψ = φ ◦ θ, then detψ = u · u−1 = 1. Also,
ψ(G/IG) = φ(θ(A/IF ′⊕Je/Ie)) = φ(A/IF ′⊕Je/Ie) = φ(G/IG) = H/IH . So, by
Lemma 2.3, ψ lifts to anR-automorphism Ψ of F . Therefore, Ψ(IF ) = IΨ(F ) = IF ,
and ψ(G/IG) = H/IH , where ψ(x+IF ) = Ψ(x)+IF for each x ∈ F , which implies
that Ψ(G) = H .

Lemma 3.4. Let R be an almost local-global domain. If I is an ideal of R and
n > 0, then In ∼= R if and only if I(n) ∼= R(n).

Proof. Suppose that In ∼= R. Then In is a principal ideal of R, say In = Ra for
some a ∈ I. So, Ina−1 = R implies that I · In−1a−1 = R. Thus, I is invertible,
and hence finitely generated and projective, so is I(n). Since I(n) is a torsionless
R-module and locally free at every maximal ideal of R, by Lemma 3.1, I(n) ∼=
R(n−1) ⊕ J for some invertible ideal J . By [8, Lemma 1], In ∼= J , and hence
J ∼= In ∼= R. The converse follows directly from [8, Lemma 1].
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In [6, Proposition 2.10], given two locally isomorphic torsionless modules, G and
H , over an h-local domain with a torsion Picard group, it is proven thatG(n) ∼= H(n)

for some n > 0. Next we prove this when one of these modules is finitely generated
over an integral domain of finite character with a torsion Picard group. Moreover,
we see that the finitely generated assumption is not needed if these modules are
nearly isomorphic.

Proposition 3.5. Let R be an integral domain of finite character with torsion
Picard group. Suppose that G and H are torsionless R-modules such that either H
is nearly isomorphic to G, or G is finitely generated and H is locally isomorphic to
G. Then there exists n > 0 such that G(n) ∼= H(n).

Proof. By Lemma 3.2, there exist finitely generated projective R-modules P1 and
P2 such that P1/G ∼= P2/H . By Lemma 3.1, P1 and P2 are each isomorphic to a
direct sum of a free R-module and an invertible ideal of R. Thus, by Lemma 3.4 and
the assumption that Pic(R) is torsion, there exists k > 0 such that P (k)

1 and P
(k)
2

are free R-modules of the same rank, and so isomorphic. Let F = P
(k)
1 , A = G(k)

and B = H(k).
As in the proof of Lemma 3.2, we may reduce to the case that A and B are

submodules of F and F/A ∼= F/B. Let I = AnnR(F/A). By Lemma 2.1, there
exists an automorphism φ : F/IF → F/IF such that φ(A/IA) = B/IB. Set
u = detφ, and let m be the rank of F/IF as a free R/I-module. Since u is a
unit in R/I, we may define an automorphism Ψ : F (m)/IF (m) → F (m)/IF (m) by
Ψ(x1, . . . , xm) = (u−1Φ(x1),Φ(x2), . . . ,Φ(xm)) for all (x1, . . . , xm) ∈ F (m)/IF (m).
Then det Ψ = u−m(detΦ)m = u−mum = 1, and hence, by Lemma 2.3, Ψ lifts to
an automorphism of F (m) with Ψ(A(m)) = B(m).

Our next result states that two torsionless modules are locally isomorphic if and
only if they are stably isomorphic over an integral domain of finite character with
a trivial Picard group when one of the modules is finitely generated, and hence,
generalizes [6, Theorem 2.11] under this finitely generated assumption.

Theorem 3.6. Let R be an integral domain of finite character with trivial Picard
group. Suppose that G and H are rank n torsionless R-modules. If G is finitely
generated, then the following are equivalent.

(a) G and H are locally isomorphic.
(b) F1/G ∼= F2/H for some free R-modules F1 and F2 with G ⊆ F1 ⊆ QG and

H ⊆ F2 ⊆ QH.
(c) G and H are stably isomorphic.
(d) G⊕A ∼= H ⊕A for some finitely generated R-module A.
(e) G(m) ∼= H(m) for some m > 0.
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Proof. (a) ⇒ (b): By Lemma 3.1 and the assumption that R has trivial Picard
group, every finitely generated projective R-module is free. Hence, by Lemma 3.2,
F1/G ∼= F2/H for some free R-modules F1 and F2 with G ⊆ F1 ⊆ QG and
H ⊆ F2 ⊆ QH .

(b) ⇒ (c): Follows from Lemma 2.5.
(c) ⇒ (d): Immediate.
(d) ⇒ (a): Follows immediately from the fact that finitely generated modules

cancel over local rings [4, Theorem 2.5].
(a) ⇒ (e): Proposition 3.5.
(e) ⇒ (a): Proved in [4, Theorem 2.11].

Corollary 3.7. Let R be a Bézout domain of finite character. Suppose that G and
H are torsionless R-modules and that G is finitely generated. G is locally isomorphic
to H if and only if there exists a torsion-free finite rank R-module A such that
G⊕A ∼= H ⊕A.

Proof. If G andH are locally isomorphic, then, by Theorem 3.6(c), G⊕R ∼= H⊕R.
For the converse, since a Bézout domain is a Prüfer domain, it is locally a valuation
domain. Since a torsion-free module over a valuation domain has the cancellation
property [12, Theorem 5.4], A cancels locally from the isomorphism G⊕A ∼= H⊕A,
so that G is locally isomorphic to H .

Before we prove when local, stable, and near isomorphism coincide over an
integral domain of finite character, we show that two torsionless modules are locally
isomorphic if and only if they are nearly isomorphic when one of the modules
is finitely generated, and hence, generalize [6, Theorem 2.11] under this finitely
generated assumption.

Theorem 3.8. Let R be an integral domain of finite character. Suppose that G and
H are torsionless R-modules of rank n. If G is finitely generated, then the following
are equivalent.

(a) G and H are locally isomorphic.
(b) F/G ∼= P/H for some finitely generated projective R-modules F and P with

G ⊆ F ⊆ QG and H ⊆ P ⊆ QH.
(c) G⊕R ∼= H ⊕ J for some invertible ideal J of R.
(d) G⊕A ∼= H ⊕B for some finitely generated projective R-modules A and B.
(e) G is nearly isomorphic to H.

Proof. (a) ⇒ (b): This is Lemma 3.2.
(b) ⇒ (c): This is Lemma 2.5.
(c) ⇒ (d): Clear.
(d) ⇒ (a): Since projective modules over a local domain are free and stably

isomorphic modules are locally isomorphic [4, Theorem 2.5], (a) follows.
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(e) ⇒ (a): If G is nearly isomorphic to H , then for any maximal ideal M there
is an embedding f : G → H such that M + AnnR(H/f(G)) = R, and hence
fM : GM → HM is an isomorphism.

(a) ⇒ (e): Let I �= 0 be an ideal of R. Since R is of finite character, I is contained
in finitely many maximal ideals, sayM1, . . . ,Mt. Let S = R−∪t

i=1Mi, so that S−1R

is a semilocal domain. Moreover, S−1G and S−1H are locally isomorphic S−1R-
modules of the same rank with S−1G finitely generated. By Theorem 3.6, S−1G

and S−1H are stably isomorphic S−1R-modules. Then, by semi-local cancellation
[5, Corollary V.8.3], ψ : S−1G ∼= S−1H .

Since G is finitely generated, there is an element s ∈ S such that sψ(G) ⊆ H .
Hence, we have a short exact sequence 0 → G → H → Coker(sψ) → 0. Since
sψ is an isomorphism locally at S, we get S−1(Coker(sψ)) = 0. Now H is finitely
generated, so Coker(sψ) is as well, and hence r · Coker(sψ) = 0 for some r ∈
S. Since r �∈ Mi for i = 1, . . . , t, it follows that AnnR(Coker(sψ)) is relatively
prime to I.

Corollary 3.9. Let R be an integral domain of finite character with trivial Picard
group. Suppose that G and H are rank n torsionless R-modules. If G is finitely
generated, then the following are equivalent.

(a) G and H are locally isomorphic.
(b) G and H are nearly isomorphic.
(c) G and H are stably isomorphic.

Proof. Follows immediately from Theorems 3.6 and 3.8.

4. Applications

In this section, we provide some applications of the results in the previous section.

Proposition 4.1. Let R be an integral domain of finite character such that for
almost all maximal ideals M of R, RM is a valuation domain. Let A,B, and C be
torsionless R-module. Suppose A is finitely generated and every homomorphic image
of A is finitely presented. If A and B⊕C are locally isomorphic, then A = B′ ⊕C′

for some submodules B′ and C′ locally isomorphic to B and C, respectively.

Proof. Since A is a torsionless R-module, we may assume that there exists a free
F such that A ⊆ F ⊆ QA. Since R is of finite character, AnnR(F/A) is contained
in only finitely many maximal ideals of R. We note that AM , BM and CM are
free RM -modules for all but finitely many maximal ideals of R. Let N be the
set of maximal ideals N of R such that AN is a free RN -module and RN is a
valuation domain. Let M be the set of maximal ideals of R not contained in N .
If M is empty, then by Lemma 3.1, the result follows. Otherwise, if M is not
empty, we write M = {M1, . . . ,Mt} and let J = M1 · · ·Mt. Then, by Theorem 3.8,
there is an embedding f : A → B ⊕ C such that J and AnnR(Coker(f)) are
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relatively prime. Let g = π ◦ f , where π is the projection map π :B ⊕ C → B,
and I = Im(g) and K = Ker(g). We claim that I and K are locally isomorphic
to B and C, respectively. We note that fMi is surjective for each index i because
J and AnnR(Coker(f)) are relatively prime. Then IMi = BMi , for each i, since
IMi = g(A)Mi = gMi(AMi) = (π ◦ f)Mi(AMi) = πMi(BMi ⊕ CMi ) = BMi . Thus,
rank(I) = rank(B). Since RN is a valuation domain for all N ∈ N and IN and
BN are finitely generated torsion-free, hence free, RN -modules of the same rank, it
follows that I and B are locally isomorphic.

Next, we claim that the exact sequence 0 → K → A → I → 0 splits. Since RN

is a valuation domain for all maximal ideals N ∈ N and IN is finitely generated
torsion-free, IN is projective, so the map gN splits. On the other hand, for each
M1, . . . ,Mt, gMi = πMiofMi , where fMi is an isomorphism, while πMi is a split sur-
jection, so that the map gMi splits. By assumption, I = Im(g) is finitely presented,
so the map g splits [2, Exercise 2.13]. Thus, A ∼= I ⊕K, where I is locally isomor-
phic to B. By [3, Theorem 2], locally at each maximal ideal of R, we can cancel
those summands from both sides of the isomorphism, so K is locally isomorphic
to C.

We note that an example of a ring satisfying the hypotheses of the previous
proposition is a Prüfer domain of finite character. Since R is a Prüfer domain, R is
coherent. So, by [5, Lemma IV.2.5], any torsionless module over R is coherent, and
hence any homomorphic image of a finitely presented module is finitely presented.

Corollary 4.2. Let R be as in Proposition 4.1. If G is a finitely generated tor-
sionless R-module, and every homomorphic image of G is finitely presented then
G is indecomposable if and only if G is locally isomorphic to an indecomposable
torsionless R-module.

Proof. Immediately follows from Proposition 4.1. We just note that, following the
proof of Proposition 4.1, I = G, which is finitely presented.
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