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ARTICLE

Two dimensional bed deformation model in turbulent streams
Amin Gharehbaghia, Birol Kayaa and Gökmen Tayfurb

aCivil Engineering Department, DokuzEylül University, Izmir, Turkey; bCivil Engineering Department, Izmir Institute of Technology, Izmir,
Turkey

ABSTRACT
A coupled model is developed to simulate two dimensional water surface profile, suspended
sediment load and bed deformation in unsteady open channels. The hydrodynamical com-
ponent employs the two dimensional shallow water equations to obtain the hydraulic
variables. These, in turn, are used in the morphdynamical component to determine the bed
deformation. For the turbulence variables; two turbulence models are supervened to the
governing equations. Triangular meshes were developed to discretize the domain of open
channel. In order to discretize the governing equations, the explicit finite volume method is
used by the total variation diminishing (TVD) schemes. The performance of the developed
model is compared to that of the Flow3D software. The comparison results are in good
agreement.
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1. Introduction

To simulate the water surface profiles and bed defor-
mations, researchers employed the Navier–Stokes
equations (NSE) or the simplified version of NSE,
which are the shallow water equations (SWE). In
many of works, researchers preferred to simulate
bed deformations in One dimensional (1D) condition
(Gharehbaghi and Kaya 2011; Kaya and Gharehbaghi
2012; Seo, Jun, and Choi 2009; Tayfur and Singh
2006; Tayfur and Singh 2007; V´azquez-Cend´on,
Cea, and Puertas 2009; Wu, Vieira, and Wang 2004,
among many). Because of complexity in most of the
models, scientists have usually ignored the turbulence
models that can play key roles in the simulation of
flow in turbulent conditions.

Various numerical techniques are developed by
scientists to handle the computational fluid dynamic
(CFD) problems. Finite Difference Method (FDM),
Finite Element Method (FEM) and Finite Volume
Method (FVM) are popular in this domain. One of
the key steps in the numerical solutions is the meshing
step. In irregular and curvilinear geometry, developing
unstructured mesh is necessary. Applying an unstruc-
tured mesh to FDM is not easy. Moreover, FDM in the
same size of mesh and time steps can produce less
sensitive results than FEM or FVM (Kaya and
Gharehbaghi 2014). FEM could discretize the complex
geometry. However, applying FEM is more difficult
than the FVM. Moreover, FVM could keep the balance
of the amount of mass and momentum by solving the
integral form of the conservation equations
(Gharehbaghi, Kaya, and Saadatnejadgharahassanlou

2017). FVM does not require a continuous form of
computational domain (Gharehbaghi, Kaya, and
Saadatnejadgharahassanlou 2017).

Farsirotou, Soulis, and Dermissis (2002) proposed
a Two Dimensional (2D) numerical model that could
determine bed deformation in alluvial channels in
sub and/or supercritical conditions. In their work,
an explicit FVM was employed to discretize the
coupled model of vertically averaged free-surface
flow equations and sediment transport equation.
Liu, Landry, and García (2008), by solving SWE and
sediment transport equations, tried to simulate 2D
bed variation. In their model, FVM, by Godunov’s
scheme on unstructured mesh system, was applied to
solve the governing equations. Furthermore, Roe’s
approximate Riemann solver was used to determine
the inviscid fluxes. In their work, they enforced the
extrapolation method of the TVD scheme for the
upwind ratio of consecutive gradients that were
based on the virtual upwind node.

Castro Diaz et al. (2009), in order to simulate
water surface profile and sediment transport phe-
nomenon, proposed a 2D model. SWE and sediment
transport discharge formula were used to calculate
the hydrodynamic and morphodynamic components,
respectively. For the sake of discretizing the govern-
ing equations; in the first step, they considered a Roe-
type first order scheme as well as a variant based one
on the use of flux limiters. In the second step, these
first-order schemes were extended to second-order
accuracy by means of a novel MUSCL-type recon-
struction operator on unstructured meshes. In fact,
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they enforced a second order MUSCL reconstruction
operator in space and a second order TVD Runge-
Kutta method. Amoudry and Liu (2009) presented a
model that could calculate two-dimensional, two-
phase, and non-cohesive sediment transport. In
their model, they applied concentration-weighted
averaged equations of motion for both fluid and
sediment phases. Moreover, a collisional theory was
used to determine the sediment stresses, while mod-
ified k–ε turbulence model was employed. Kuang et
al. (2011) presented semi-implicit Eulerian–
Lagrangian method, unstructured SWAN model,
CurWaC2D-Sed and FVM to develop 2D morpholo-
gical model. Cea and Vázquez-Cendón (2012) pre-
sented a novel unstructured upwind FVM for
discretization of the bed friction term. Gharehbaghi,
Kaya, and Saadatnejadgharahassanlou (2017) estab-
lished a new depth-averaged 2D non-equilibrium
coupled model. This model can calculate water sur-
face profiles and bed profiles in alluvial channels and
rivers. In this research, they used two turbulence
models for examining the turbulence parameters.

In recent years, many researchers tried to apply
turbulence models in sediment transport phenom-
enon in open channels and rivers. Therefore, various
kinds of turbulence models have been developed.
Yafei and Wang (2001) developed 2D hydrodynamic
and sediment transport model for unsteady open
channel flows based on the FEM that is called
CCHE2D. In this model they implemented the
depth averaged parabolic Eddy viscosity model, the
mixing length model and the depth-integrated k-ε
model. Barrios-Piña et al. (2014) introduced Three
Dimensional (3D) model that focused on the effects
of vegetation on a fluid flow pattern. In their work,
they applied the horizontal mixing-length in explicit
conditions and they coupled it with the multi-layer
approach for the vertical mixing-length within a gen-
eral 3D Eddy-viscosity formulation.

In recent years, due to its advantages, TVD scheme
has become more popular in open channel flows and
rivers. The basic upwind differencing scheme intro-
duces a high level of false diffusion due to its low
order of accuracy (first-order) (Versteeg and
Malalasekera 2007). ‘Higher-order schemes such as cen-
tral differencing and Quadratic upwind differencing
(QUICK) can give spurious oscillations or ‘wiggles’
when the Peclet number is high. When such higher-
order schemes are used to solve turbulent quantities,
turbulence energy and rate of dissipation, wiggles can
give physically unrealistic negative values and instabil-
ity. TVD schemes are designed to address this undesir-
able oscillatory behaviour of higher-order schemes. In
TVD schemes, the tendency towards oscillation is coun-
teracted by adding an artificial diffusion fragment or by
adding a weighting towards upstream contribution’
(Versteeg and Malalasekera 2007). García-Navarro,

Alcrudo, and Savirón (1992) introduced an addition
of a dissipation step to the McCormack numerical
scheme for solving 1D open-channel flow equations.
This extra step is devised according to the theory of
TVD schemes. They presented results from several
computations and compared the results with the analy-
tical solutions for some test problems. As presented in
Castro Diaz et al. (2009), TVD scheme was applied in
2D model to determine water surface profile and sedi-
ment transport phenomenon. However, they did not
consider any turbulence models. Liu, Landry, and
García (2008) used the extrapolation method of the
TVD scheme for the upwind ratio of consecutive gra-
dients. Researchers have preferred to apply TVD
scheme by Riemann solver. In this study however it is
preferred to use TVD approximation directly. The
codes are developed in MATLAB. One of the novel
contributions of this paper is that TVD scheme has
been directly employed in the simulation of two dimen-
sional bed deformation and suspended sediment load
by two simple but useful turbulence models.

The main goal of this work is to develop 2D model
to determine water surface profile and bed deforma-
tion in unsteady open channels. Most of the devel-
oped models in this field have ignored the turbulent
models. In this study, two turbulent models (Depth
averaged parabolic eddy viscosity turbulence model
and mixing length turbulence model) are employed.
As stated previously, the authors of this paper in 2017
proposed a numerical model in this field. The men-
tioned model calculated the problems in non-equili-
brium conditions. Nevertheless, the overwhelming
majority of the researchers prefers to solve the pro-
blems in equilibrium conditions. Thus, in this study
we decided to modify the developed model, and solve
the problems in equilibrium conditions. One of the
advantages of the established model is that it could
perform the computations with a coarser mesh than
the Flow3D software and satisfies the required accu-
racy. The developed model in this study is a coupled
model that has the combination of hydrodynamical
and morphodynamical components. Two dimen-
sional SWE and empirical relations of sediment
transport phenomenon are employed. The model is
tested against the Flow3D software which is com-
monly employed in experimental and numerical stu-
dies (Acharya 2011; Afshar and Hoseini 2013;
Vasquez, Hurtig, and Hughes 2013; Vasquez and
Walsh 2009, among many).

2. Governing equations

The general form of 2D SWE for simulation of water
surface profile and bed variation in Cartesian coordi-
nates could be found in several studies (V´azquez-
Cend´on, Cea, and Puertas 2009; Yulistiyanto 2009,
among many):
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(
(6a; b)

ε ¼ 1
1� P

(7)

�H ¼ H � z (8)

where; Q is the conserved vector (the time deri-
vative of the components); Fx and Fy are deriva-
tion of the components in the x- and y-
directions, respectively and S is the source term.
g is the gravity acceleration; h is the depth of
water; z is the thickness of the sediment layer
(see Figure 1); ρw is the flow density; P is the
sediment porosity; u and v are the components of
the depth averaged velocity in the x- and y-

directions, respectively. S0,x, S0,y are the bed
slopes and, Sf,x, Sf,y are the friction slopes in the
x- and y-directions, respectively. qb,x and qb,y are
the sediment transport discharge in the movable
bed layer in x- and y- direction, respectively. τbx
and τby are the bed shear stress in x- and y-
direction, respectively and Txx, Txy, Tyx, Tyy are
the depth averaged turbulence stresses. �H is the
difference between non-erodible bottom and
reference level, and H is the difference between
erodible bottom and reference level (see Figure 1).

τbx and τby are expressed as follows (Wu, Vieira, and
Wang 2004):

τbx ¼ ρw:cf :u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

τby ¼ ρw:cf :v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
(

(9a; b)

cf ¼ gn2
�
h
1=3 (10)

The Boussinesq’s assumptions for turbulent stresses
are given as:

Txx ¼ 2ρw vþ vtð Þ @u@x � 2
3 ρwk

Txy ¼ Tyx ¼ ρw vþ vtð Þ @u
@y þ @v

@x

� �
Tyy ¼ 2ρw vþ vtð Þ @v@y � 2

3 ρwk

8>><
>>: (11a; b; c)

where; v and vt are the kinematic and Eddy visc-
osity of water, respectively and k is the turbulence
energy. When considering zero-equation turbu-
lence models, this term can be ignored. Meyer-
Peter and Muller (1948) presented experimental
relations to determined sediment flux in open
channels and rivers. In this study, this relation
was selected to determine the solid transport dis-
charge and Chien (1956) proved that the original
formula can be reduced to the following
expression,

qb;x ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G� 1ð Þgd3i

p
uffiffiffiffiffiffiffiffiffi

u2þv2
p max τ� � τ�;c; 0

� �3=2
qb;y ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G� 1ð Þgd3i

p
vffiffiffiffiffiffiffiffiffi

u2þv2
p max τ� � τ�;c; 0

� �3=2
8<
:

(12a; b)

τ� ¼ γwn
2 u2 þ v2ð Þ3=2

Ps � Pð Þdih1=3 (13)

Sf ;x ¼ n2u
ffiffiffiffiffiffiffiffiffi
u2þv2

p
h4=3

Sf ;y ¼ n2v
ffiffiffiffiffiffiffiffiffi
u2þv2

p
h4=3

(
(14a; b)

where; τ� and τ�;c are the shear stress and critical bed
shear stresses in sediment transport phenomenon,
respectively; di is the size of bed materials; ρw is the
density of flow; n is the Manning coefficient; γw is the
specific weight of the fluid and G is the proportional
density that equal to density of sediment to density of
water.

Figure 1. Illustration of sediment layer in an open channel
(Gharehbaghi, Kaya, and Saadatnejadgharahassanlou 2017).
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3. Turbulence models

3.1. Depth-averaged parabolic eddy viscosity
model

Depth averaged parabolic eddy viscosity model can
be obtained by averaging the eddy viscosity, which
approximately yields a parabolic profile, over the flow
depth. The equations of depth-averaged parabolic
eddy viscosity model are given in Wu, Vieira, and
Wang (2004) as follows.

vt ¼ /tu�h (15)

where u� is the bed shear velocity and /t is an
empirical coefficient.

/t ¼ vk
6

(16)

u� ¼ cf u2 þ v2
� �2h i1=2

(17)

where vk is the van Karman’s constant (vk = 0.41). As
noted before by considering zero-equation turbulence
models, turbulence energy parameter can be ignored.

3.2. Mixing length model

Depth averaged parabolic eddy viscosity model is the
simple turbulence model. This model is applicable in
the region of main flow, but it does not account for
the influence of the horizontal gradient of velocity.
Significant errors may exist when it is applied in the
region close to rigid walls (Wu, Vieira, and Wang
2004). In order to improve this problem mixing
length model can be employed as Yafei and Wang
(2001):

vt ¼ l2n
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2
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h
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ς
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¼ 1
h

ð
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@z

dz ¼ u�
vk:h

ðη
z0

1
z
dz ¼ Cm

u�
vk:h

(20)

where ln is the horizontal mixing length, h is the
depth of water, u� is the bed shear velocity, U is the
total velocity. ς is the relative depth of the flow and
Cm is a coefficient (2.34,375). The value of turbulence
energy is ignored.

4. Discretisation technics by FVM

The main goal of this research is to develop a model
to simulate 2D water surface profile and bed defor-
mation in open channels and rivers. One of the key
steps in the numerical solution is about the discreti-
zation techniques that are applied to the governing
equations. In this work; Total Variation Diminishing
(TVD) scheme is applied in FVM. By considering the
divergence theorem; Equation (1) can be written as:ðð

Ω

dQ
dt

þ
ð
@Ω

F:ndl ¼
ðð

Ω
SdW (21)

where n, dl, dW, Ω; and F are the unit outward
vector normal to the boundary elements, sides and
areas of triangular meshes, control volume and the
vector of normal flux that is equal to F = [Fx,Fy]

T,
respectively.

If we assume that Q is constant in the centre of
each cell, the result of discretisation can be given in
basic form as:

A
dQ
dt

þ
XM

m¼1
Fmn :L

m ¼ AS (22)

where A, m, Lm and Fn
m are the area, number of side,

length of the mth component and normal of flux to
each side of each cells, respectively. The illustration of
FVM triangular domain is given in Figure (2).

By considering the angle between x- axis and n
direction, which can be called as (;) in counter clock-
wise, and by applying the rotational invariance to the
governing equations the normal of intercell flux for
each side of cells is given as:

Fn Qð Þ ¼ Fx cos ; þ Fy sin ; ¼ T ;ð Þ�1F T ;ð ÞQ½ �
¼ T ;ð Þ�1F �;� �

(23)

�Q ¼
h
hun
hvn
z

2
664

3
775 (24)

Figure 2. Illustration of FV triangular domain (Gharehbaghi,
Kaya, and Saadatnejadgharahassanlou 2017).

76 A. GHAREHBAGHI ET AL.



ks ¼ ε:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G� 1ð Þgd3i

q
max τ� � τ�;c; 0

� �3=2
(25)

F �Qð Þ ¼

hun
1
2 gh

2 þ hun2 � h
ρTnn

hunvn � h
ρTnr

εks
unffiffiffiffiffiffiffiffiffi
u2nþv2n

p

2
6664

3
7775 (26)

T ;ð Þ ¼
1000

0cos;sin;0
0� sin;cos;0

0001

2
664

3
775 (27)

T ;ð Þ�1 ¼
1000

0cos; � sin;0
0sin;cos;0

0001

2
664

3
775 (28)

un ¼ ucos; þ vsin;
vn ¼ vcos; � usin;



(29)

Txx ¼ Tnncos;
Tyy ¼ Tnnsin;
Tyx ¼ Tnrsin;
Txy ¼ Tnrcos;

8>><
>>: (30a; b; c; d)

where F �Qð Þ is the transformed form of normal flux

and T ;ð Þ and T ;ð Þ�1 are the transformation and
inverse transformation matrices, respectively. By
applying some substitutions and manipulations on
Equation (22), this relation can be rewritten as:

A
dQ
dt

þ
XM
m¼1

T ;ð Þ�1F �Qð ÞLm ¼ AS (31)

It is worth noting that, in Equation (31), the key
point is to develop a method to determineF �Qð Þ.

5. TVD scheme

Considering the illustration of 1D standard control
volume in Figure 3, the east face value of upwind
differencing (UD) scheme is expressed by the follow-
ing expression

"e ¼ "P (32)

The east face value of linear upwind differencing
(LUD) scheme is given as:

"e ¼ "P þ δx
2

"P � "Wð Þ
δx

¼ "P þ 1
2

"P � "Wð Þ
(33)

The east face value of Quadratic upwind differencing
(QUICK) scheme can be written as

"e ¼ 6
8
"P þ 3

8
"E � 1

8
"W

¼ "P þ 1
8

3"E � 2"P � "Wð Þ (34)

This can be thought of as a second-order extension of
the original UD estimate of "e with a correction
based on an upwind-biased estimate ("P � "W)/δx
of the gradient of " multiplied by the distance δx/2
between node P and the east face (Versteeg and
Malalasekera 2007).

In TVD scheme, all of the UD, LUD and QUICK
schemes are written as follows:

"e ¼ "P þ ψ

2
"E � "Pð Þ (35)

It is easy to see that the upwind differencing scheme
leads to function ψ ¼ 0. But by looking at the other
schemes, it can be seen that linear upwind differen-
cing can be rearranges as:

"e ¼ "P þ 1
2

"P � "W

"E � "P

� 	
"E � "Pð Þ (36)

where ψ is equal to "P � "W="E � "P
and for

QUICK approximation expression, this can be rewrit-
ten as:

"e ¼ "P þ 1
2

3þ "P � "W

"E � "P

� 	
1
4

� 	
"E � "Pð Þ (37)

Hence, ψ is equal to 3þ "P � "W="E � "P

� �
1
4 .

According to the Equations 36 and 37, the rela-
tions of upwind-side gradient to downwind-side gra-
dient calculate the value of function ψ. Therefore, it
can be written as ψ ¼ ψ rð Þ where

r ¼ "P � "W

"E � "P
(38)

The general form of the east face value "e can be
written as

"e ¼ "P þ ψ rð Þ
2

"E � "Pð Þ (39)

Figure 3. One dimensional discretization of FVM (Gharehbaghi 2017).
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In unstructured conditions Equation 39 can be
rewritten as follows:

"i ¼ "U þ ψ rð Þ
2

"D � "Uð Þ (40)

where; "i;"U ;"D are the values in face of the cell,
upstream node point and downstream node point,
respectively.

The illustration of node point in unstructured grid
system by considering the direction of flow is given in
Figure (4). More detail about r in unstructured con-
dition can be found in the Darwish and Moukalled
(2003).

6. Solution of governing equations

The final form of the governing equations is pre-
sented in this section. All of the equations are solved
in explicit conditions. In order to develop the codes,
MATLAB software is used.

6.1. Continuity equation

The explicit final form of the continuity equation is
given as:
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6.2. Momentum equation in flow direction (x)

The last configuration of the momentum equation in
the flow direction (x-) is obtained as:
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6.3. Momentum equation in transect direction (y)

The final form of the momentum equation in the
transect direction (y-) is obtained as:
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A ½PM

m¼1

1
2gL

m h2Usin; þ ψ rð Þ h2Usin; � h2Dsin;ð Þð Þ=2ð Þ

þ PM
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� hv2sin;ð ÞDÞ=2Þ þ
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� �
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� �
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8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

=htþ1

(43)

6.4. Sediment transport equation

The final form of sediment transport equation is
obtained as:

zð Þtþ1 ¼ zð Þt � t
A

XM
m¼1

Lmð Þi
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2
666664

3
777775

(44)

7. Numerical investigations

Two hypothetical cases were employed to examine
the numerical results of developed models. In this
research, Flow3D software is employed to verify the
accuracy and reliability of the proposed model. This
software derives rectangular cells to simulate the flow
domain. Among the existing turbulence models in

Figure 4. Illustration of node point in unstructured grid system
(Gharehbaghi, Kaya, and Saadatnejadgharahassanlou 2017).
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the software, Renormaliation Group (RNG) method
is employed. The chief difference between RNG
model and k-ε model is that equation constants that
are calculated empirically in the standard k-ε model
are derived explicitly in the RNG model.
Additionally, the number of meshes that are used in
Flow3D software are 33ˣ201ˣ16 (transect directionˣ-
flow directionˣdepth of the flow direction). The cali-
bration of Flow3D software has been done according
to the values of the first two authors’ study in 2012.

7.1. Hypothetical case 1

In hypothetical case 1, a rectangular channel with 4 m
length and 1m width is considered. In the cannel, it is
assumed that the thickness of sediment layer is 3 cm.
The size and porosity of sediment particles are selected
as 0.0032 mm, and 0.5, respectively. The Manning
roughness coefficient is chosen as 0.025 for the bed
layer and 0.009 for the wall respectively. The channel
slopes are assumed to be 0.005 and 0.002 in flow (x-)
and transect (y-) directions, respectively. Note that
small value for a particle diameter and a large value
for the Manning’s coefficient are employed. In an ideal
(or real) case, larger sediment particle and lower rough-
ness coefficient could be more realistic. However, since
the objective is to test the performances of the models

for the same hypothetical cases, the chosen values could
not prevent the achievement of this goal.

For the initial conditions, the depth of water is
assumed as 0.06 m while the velocities of water in
flow (x-) and transect (y-) directions to be 0.435 m/s
and 0 m/s, respectively. For boundary conditions; the
hydrograph that is given in Figure (5) is considered
as inlet hydrograph. The illustration of comparison
between the developed model by the depth-averaged
parabolic eddy viscosity model and mixing length
model are given in Figures 6–11.

In Figures 6–11, the abbreviations of Flow3D,
EVMTVD, MLMTVD stand for the numerical results
of depth of water in Flow3D software, depth-averaged
parabolic eddy viscosity turbulence model, mixing
length turbulence model, respectively. The abbrevia-
tions of Flow3DZ, EVMTVDZ MLMTVDZ refers to
the results of bed deformation in Flow3D software,
depth-averaged parabolic eddy viscosity turbulence
model and mixing length turbulence model, respec-
tively. It is worth pointing out that the illustration of
water surface profile is just given along the middle of
the channel (x- direction) while the illustration of bed
deformation is given in both of length and width of
the channel (x- and y- directions).

The illustration of water surface profiles and bed
variations at 5th and 10th s along the middle of the
channel (y = 0.5m) are given in Figure 6–7.
According to Figure 6; the depth-averaged parabolic
eddy viscosity turbulence model and mixing length
turbulence model predict water surface profile with
good agreement. Yet, the numerical results of mixing
length turbulence model are closer to the numerical
results of Flow3D software. As seen, both models also
satisfactorily simulate bed profiles, including the
scour at the upper part of the cannel.

The numerical results of water surface profile and
bed variations by depth-averaged parabolic eddy visc-
osity turbulence model and mixing length turbulence
model against the numerical results of Flow3D soft-
ware are also satisfactory at the 10th second of the
simulation (Figure 7). The mixing length turbulence

Figure 6. Illustration of water surface profile and bed deformation in flow direction in 5th s (y = 0.5).

Figure 5. Inlet hydrograph of hypothetical case 1.
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model shows slightly better results than depth-aver-
aged parabolic eddy viscosity turbulence model.

In order to compare the numerical results of trans-
ect bed deformation (y- direction), between depth-
averaged parabolic eddy viscosity turbulence model
and mixing length turbulence model the dimension-
less bed deformation is calculated as:

DBD ¼ ðBdpara� BdflowÞ=Bdflow (45)

where; DBD = Dimensionless Bed Deformation,
Bdpara = Bed deformation of depth-averaged

parabolic eddy viscosity turbulence model or mixing
length turbulence model, and Bdflow = Bed deforma-
tion of Flow3D software.

The illustration of dimensionless bed deformation at
the same time and in the two different transect of the
channel (x = 1 m and x = 3 m) are given in Figure 8–11.
According to these figures, it can be seen clearly that
both of the turbulence models could predict bed defor-
mation. The numerical results of mixing length turbu-
lencemodel aremore reliable than the numerical results
of depth-averaged parabolic eddy viscosity turbulence
model.

Figure 7. Illustration of water surface profile and bed deformation in flow direction in 10th s (y = 0.5).

Figure 8. Dimensionless differences between Flow 3D and
turbulence models in 1th m and 5th.

Figure 9. Dimensionless differences between Flow 3D and
turbulence models in 1th m and in 10th s.

Figure 10. Dimensionless differences between Flow 3D and
turbulence models in3th m and in 5th s.

Figure 11. Dimensionless differences between Flow 3D and
turbulence models in 3th m and in 10th s.
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7.2. Hypothetical case 2

A channel with 5 m length and 0.8 m width is
assumed as hypothetical case for which 3 cm erodible
layer with 0.0032 mm diameter and 0.5 porosity of
sediment particles are assumed. The required values
of manning roughness coefficient for separated sedi-
ment, manning roughness coefficient of wall, and
slope of the channel in flow direction (x-) and trans-
ect direction (y-) are assumed to be 0.04, 0.009, 0.005
and 0.002, respectively. Note that small value for a
particle diameter and a large value for the Manning’s
coefficient are employed. In an ideal (or real) case,
larger sediment particle and lower roughness coeffi-
cient could be more realistic. However, since the
objective is to test the performances of the models
for the same hypothetical cases, the chosen values
could not prevent the achievement of this goal.

Suspended-sediment load is a key indicator for
assessing the effect of land use changes and engineer-
ing practices in water courses (24). In this hypothe-
tical case, it is assumed that suspended sediment load
has been added in the beginning of the channel to the
clear water. The initial and boundary conditions that
has been enforced to the channel are given as follows:

Initial water depth conditions: 0.1 m
Initial sediment concentration conditions: 0 kg/m3

Velocity of water in flow (x-) and transect (y-)
directions: 1.044 m/s and 0 m/s

Figure 13. Inlet sediment concentration of hypothetical case 2.

Figure 12. Inlet hydrograph of hypothetical case 2.

Figure 14. Illustration of water surface profile and bed deformation in flow direction in 4th s (y = 0.4).

Figure 15. Illustration of water surface profile and bed deformation in flow direction in 8th s (y = 0.4).
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For boundary conditions; the hydrographs given
in Figures (12 and 13) are considered as inlet hydro-
graphs of water and suspended sediment. Moreover,
in this hypothetical case, like in hypothetical case 1,
the dimensionless bed deformation is calculated by
Equation 45.

In Figures 20–21, the abbreviations of Flow3DC,
EVMTVDC, MLMTVDC stand for the numerical
results of sediment concentration in Flow3D soft-
ware, depth-averaged parabolic eddy viscosity turbu-
lence model and mixing length turbulence model,
respectively.

Figures 14 and 15 are the illustration of water
surface profile and bed deformation along the middle
of the channel (y = 0.5 m) at 4th and 8th seconds of
the simulation period. As seen, both turbulence mod-
els could predict water surface profile and bed defor-
mation. The mixing length turbulence model presents
slightly better numerical results.

The variation of erodible bed layer along the mid-
dle transect of the channel at 4th and 8th seconds are
presented in Figures 16–19. Based on these illustra-
tions; although the numerical results of two turbu-
lence models are compatible, the mixing length

Figure 16. Dimensionless differences between Flow 3D and
turbulence models in 2m and in 4th s.

Figure 18. Dimensionless differences between Flow 3D and
turbulence models in 4m and in 4th s.

Figure 17. Ddimensionless differences between Flow 3D and
turbulence models in 2 m and in 8th s.

Figure 19. Ddimensionless differences between Flow 3D and
turbulence models in 4 m and in 8th s.

Figure 20. Illustration of sediment concentration in flow
direction in 4th s. (y = 0.4).

Figure 21. Illustration of sediment concentration in flow
direction in 6th s. (y = 0.4).

82 A. GHAREHBAGHI ET AL.



turbulence model presents better performance.
Figures 20 and 21 present predictions of suspended
sediment loads. As seen, the turbulence models could
predict suspended-sediment loads satisfactorily.

8. Conclusions

The presented model is composed of two components
– hydrodynamic and morphodynamic. The class of
TVD schemes is specially formulated to achieve oscil-
lation-free solutions and it is proved to be useful in
CFD calculations (Versteeg and Malalasekera 2007).
One of the novels of this paper is that the Total
Variation Diminishing (TVD) scheme is employed in
the simulation of two dimensional bed deformation
and suspended sediment load by two turbulence mod-
els. The finite volume approach in explicit conditions
by TVD scheme is selected to solve the governing
equations. In spite of other researchers that employ
TVD schemes by Riemann solvers, in this paper this
scheme is directly applied to the governing equations.
Moreover, the governing equations solved in equili-
brium conditions. Two turbulence models, namely
the depth-averaged parabolic eddy viscosity turbulence
model and the mixing length turbulence model are
employed. The numerical results are compared to
those of FLOW3D software. Two hypothetical cases
were considered for the numerical investigation. In
these hypothetical cases; water surface profile, bed
deformation and suspended-sediment load were
simulated.

Both of the turbulence models could predict water
surface bed profiles although the mixing length tur-
bulence model presents better performance. Both
models could simulate the scour in the channel as
well. Both the models could predict suspended sedi-
ment load successfully. It can be concluded that
numerical results of mixing length turbulence model
are more reliable.
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