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The aim of this paper is to present new results and generalize some results about indi-
gent modules. The commutative rings whose simple modules are indigent or injective
are fully determined. The rings whose cyclic right modules are indigent are shown to
be semisimple Artinian. We give a complete characterization of indigent modules over
commutative hereditary Noetherian rings. We show that a reduced module is indigent
if and only if it is a Whitehead test module for injectivity over commutative hereditary

noetherian rings. Furthermore, Dedekind domains are characterized by test modules for
injectivity by subinjectivity.
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1. Introduction

Throughout, R will denote an associative ring with identity, and modules will be
unital right R-modules, unless otherwise stated. As usual, we denote by Mod − R

the category of right R-modules. A module M is said to be N -injective if for every
submodule K ≤ N and every morphism f : K → M there exists a morphism
f̄ : N → M such that f̄ |K = f . For a module M , the injectivity domain of M ,
In−1(M), is defined to be the collection of all modules N such that M is N -injective,
that is In−1(M) = {N ∈ Mod − R |M is N -injective}. It is evident that every
module is injective relative to semisimple modules. Thus, for any R-module M , the
injectivity domain In−1(M) = {N ∈ Mod−R |M is N -injective} of M contains all

§Corresponding author.
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semisimple right R-modules. For more information about the injectivity domains,
we refer the reader to [6]. In [1], Alahmadi et al. initiated the study of poor modules,
namely modules whose injectivity domains consist only of semisimple modules in
Mod − R.

The study of poor modules and rings they serve to characterize has experienced
growing interest in recent years (see [8, 11, 12, 19]). Searching for an alternative
notion which is also an opposite of injectivity, the notions of subinjectivity and
of subinjectivity domain were introduced in [8] and they served to introduce the
so-called indigent modules. Given two right modules M and N , M is said to be
N -subinjective if for every extension K of N and every homomorphism f : N → M

there exists a homomorphism h : K → M such that h|N = f . The subinjectivity
domain of M , In−1(M), is defined to be the collection of all modules N such that
M is N -subinjective, that is In−1(M) = {N ∈ Mod − R |M is N -subinjective}. It
is clear that a module M is injective if and only if In−1(M) = Mod − R. If N is
injective, then M is vacuously N -subinjective. So, the smallest possible subinjec-
tivity domain is the class of injective modules. A module with such a subinjectivity
domain is defined in [7] to be indigent. In recent years, there is a considerable inter-
est in indigent modules and rings defined via these modules (see [4, 7, 9, 10, 18]).

In [27], a module M is said to be a Whitehead test module for injectivity (or
i-test) if N is injective whenever Ext1R(M, N) = 0. In that paper, a non-semisimple
ring R is said to be fully saturated provided that all non-projective modules are
i-test. In [4, Theorem 16], the authors proved that if a ring R is not von Neumann
regular, then R is right fully saturated if and only if all non-injective modules are
indigent.

The aim of this paper is to present new results and to generalize some results
about indigent modules. In Sec. 2, we prove that ring is right hereditary if and only
if the subinjectivity domain of any right module is closed under factor modules
(Theorem 2.1). Recall that, a ring R is right small if it is a small submodule of its
injective hull. We prove that over a right small ring, the direct sum of a complete
set of representatives of simple modules is indigent if and only if every module
without maximal submodules is injective, in which case the (underlying) ring is
necessarily right hereditary and right Noetherian. We prove that over a right small
ring every simple right R-module is indigent or injective if and only if one of the
following cases hold: (i) R is a right V-ring, (ii) for any right R-module M , M is
indigent or, Soc(M) = Soc(N), where N is a maximal injective submodule of M .
A right module is called reduced if it has no nonzero injective submodule. Over
a commutative hereditary Noetherian ring, a module M is indigent if and only
if, the singular submodule Z(M) of M is indigent if and only if the reduced part
M ′ of M contains a copy of each singular simple module. Consequently, a reduced
module is indigent if and only if, it is an i-test module. In [7, Proposition 4.13], it
is shown that if every nonzero cyclic right R-module is indigent, then R is right
semiartinian. We prove that the rings whose cyclic right modules are indigent are
semisimple Artinian.
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In Sec. 3, we characterize commutative rings over which each simple module
is indigent or injective. Namely we prove that, over a commutative ring R, every
simple module is indigent or injective if and only if R is a V -ring, or R = A × B,
where B is semisimple, and A is the zero ring, a DVR, or a local QF -ring.

A right module N is said to be a test module for injectivity by subinjectivity
(t.i.b.s., for short) if whenever M is N -subinjective for some right module M ,
then M is injective (see [4]). In the last section, we give a characterization of
t.i.b.s. modules over Dedekind domains. We prove that, a commutative domain R

is Dedekind if and only if every nonzero ideal of R is a t.i.b.s. module if and only
if a nonzero R-module M is t.i.b.s. exactly when Hom(M, R) �= 0.

For a module M , Soc(M), and Rad(M) denote the socle and the Jacobson
radical of M , respectively. Z(M) will denote the singular submodule of M . For
any ring in our discussion, J will stand for the Jacobson radical of that ring. For
a module M , the character module HomZ(M, Q/Z) is denoted by M+, and the
injective hull is denoted by E(M). For all other basic or background material, we
refer the reader to [6, 17].

2. Indigent Modules Over Hereditary Noetherian Rings

In this section, we give a characterization of indigent modules over commutative
hereditary Noetherian rings. We prove that a right small ring is right hereditary
right Noetherian if the direct sum of simple right modules is indigent. We prove
that over a right small ring every simple right R-module is indigent or injective
if and only if R is a right V-ring or, for any right R-module M , M is indigent or
Soc(M) = Soc(N), where N is the largest injective submodule of M . We prove that
the rings whose cyclic right modules are indigent are semisimple Artinian.

We begin with the following result which is crucial for proving the structure
of indigent modules over commutative hereditary Noetherian rings. The injectivity
domain of any right module is closed under homomorphic images over any ring. The
following result shows that corresponding result for the subinjectivity domains holds
only over right hereditary rings. Note also that the following result generalize [7,
Proposition 2.5(3)].

Theorem 2.1. A ring R is right hereditary if and only if the subinjectivity domain
of each right module is closed under homomorphic images.

Proof. Suppose M is N -subinjective for right modules M and N . Let K ≤ N

and f : N/K → M be a homomorphism. Consider the canonical epimorphisms
π : N → N/K and π′ : E(N) → E(N)/K. Since M is N -subinjective, there is a ϕ :
E(N) → M such that ϕ|N = fπ. Clearly fπ(K) = 0, and so K ≤ Ker(ϕ). Then, by
factor theorem, there exist a ϕ′ : E(N)/K → M , given by ϕ′(a+K) = ϕ(a) for each
a ∈ E(N). Clearly, ϕ′

|N/K
= f . Then M is N/K-subinjective by [7, Lemma 2.2(4)].

This proves the necessity. Conversely suppose the subinjectivity domain of every
right module is closed under homomorphic images. Let E be an injective module
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and K ≤ E. Clearly E/K is E-subinjective. Therefore E/K is E/K-subinjective
by the assumption. Hence E/K is injective. Thus R is right hereditary.

If C is a class of modules, then TC = (TC ,FC), where TC = {M |Hom(M, C) = 0
for every C ∈ C} is said to be the torsion theory cogenerated by C.

We have the following for C = {M}, which can be verified easily.

Lemma 2.2. Let R be a ring and M be a right R-module. Assume that every
injective right R-module is in TM . Then M is N -subinjective if and only if
Hom(N, M) = 0.

Corollary 2.3. Let R be a right hereditary ring and M be a reduced right R-module.
Then M is N -subinjective if and only if Hom(N, M) = 0.

Proposition 2.4. Let R be a ring and M be a right R-module. Assume that every
injective right R-module is in TM . The following are equivalent.

(1) M is indigent.
(2) TM = {N |N is injective right R-module}.

In particular, R is right hereditary, right Noetherian.

A ring R is said to be right small if RR is a small submodule in its injective
hull E(R), i.e. RR � E(RR). Every commutative domain is a small ring (see [24,
Folgerung 5.3]). We recall the following characterization of small rings.

Proposition 2.5 ([26, 3.3: 24, 4.8]). Let R be a ring and let E(R) be the injective
hull of RR. Then the following conditions are equivalent.

(1) R is a right small ring.
(2) Rad(E) = E for every injective right R-module E.
(3) Rad(E(R)) = E(R).

Let C be a complete set of nonisomorphic simple right R-modules. Then TC =
{M |Rad(M) = M}. Over the ring of integers

⊕
Zp, where p ranges over the

prime integers, is indigent (see [7]). Over right small ring we have the following by
Lemma 2.2, Propositions 2.4 and 2.5.

Corollary 2.6. Let R be a right small ring and C be a complete set of nonisomor-
phic simple right R-modules. Set S =

⊕
U∈C U . The following are equivalent.

(1) S is indigent.
(2) Any module with Rad(N) = N is injective.

In particular, R is right hereditary, right Noetherian.

Proposition 2.7. Let R be a right small ring. The following are equivalent.

(1) Every simple right R-module is indigent or injective.
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(2) R is a right V-ring or, for any right R-module M, M is indigent or M has
a maximal injective submodule and Soc(M) = Soc(N), where N is a maximal
injective submodule of M .

Proof. (2)⇒ (1) is clear. (1)⇒ (2) Suppose every simple right R-module is indigent
or injective. If all simple modules are injective, then R is a V -ring. Now suppose,
there is a non-injective simple right R-module U . Then U is indigent by the hypoth-
esis. If U ′ is any simple module which is not isomorphic to U , then Hom(U ′, U) = 0.
That is, U is U ′-subinjective, and so U ′ must be injective because U is indigent. Thus
the ring has a unique non-injective simple module up to isomorphism, say U . By
Corollary 2.6, R is right hereditary, right Noetherian. Let M be a right R-module.
Then M = N ⊕ M ′ for some N, M ′ ≤ M , where M ′ is the reduced part of M and
N is a maximal injective submodule of M . Note that Hom(U ′, M ′) = 0 for every
injective simple right R-module U ′. Now, if Hom(U, M ′) = 0 then Soc(M ′) = 0,
and hence Soc(M) = Soc(N). Else M ′ contains a copy of U . In this case let
us see that M ′ is indigent. Assume the contrary that M ′ is not indigent. Then
M ′ is K-subinjective for some non-injective right module K. As U is indigent,
Hom(K, U) �= 0. Then M ′ is U -subinjective by Theorem 2.1. So Hom(U, M ′) = 0
by Corollary 2.3, a contradiction. Therefore, M ′ is indigent, and so is M .

Proposition 2.8. Let R be a commutative ring and S be a semisimple module.
Consider the following statements.

(1) S is injective.
(2) S is flat.
(3) S is projective.

Then (1) ⇒ (2) ⇐ (3). If R is also Noetherian, then (1) ⇔ (2) ⇔ (3).

Proof. (1) ⇒ (2) By ([28], Lemma 2.6) and by the fact that direct sum of flat
modules is flat. (3) ⇒ (2) Projective modules are flat, so this is clear. (2) ⇒ (1) Over
a Noetherian ring an arbitrary direct sum of injective modules is injective. So the
proof is clear by ([28, Lemma 2.6]). (2) ⇒ (3) If R is Noetherian, then each simple
module is finitely presented. Finitely presented flat modules are projective by [17,
Theorem 4.30]. Since direct sum of projective modules is projective, semisimple flat
modules are projective over Noetherian rings.

Theorem 2.9 ([21, Theorem 4.6]). A hereditary Noetherian ring R is a finite
direct sum of Artinian hereditary rings and hereditary Noetherian prime rings.

Proposition 2.10. Let R be a commutative hereditary Noetherian ring. Then every
module with Rad(N) = N is injective.

Proof. By Theorem 2.9 and the commutativity assumption, we have R = e1R ⊕
· · · etR ⊕ f1R ⊕ · · · fkR, where eiR are fields and fjR are Dedekind domains for
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1 ≤ i ≤ t and 1 ≤ j ≤ k. Let S =
⊕t

i=1 eiR and T =
⊕k

j=1 fjR. Let E be
a module with Rad(E) = E. Then E can not have a simple direct summand,
otherwise we would have Rad(E) �= E. Thus S.E = 0, and so E is a T -module.
So, E has a decomposition as E = f1E ⊕ f2E ⊕ · · · ⊕ fkE, where fjE is an fjR

module and Rad(fiR) = fiR for j = 1, . . . , k. Since fjR is a Dedekind domain and
Rad(fjE) = fjE, the modules fjE are injective fjR-modules for each j = 1, . . . , k

(see, [2, Lemma 4.4]). Thus E is injective both as a T -module and as R-module
(see, [17, Example 3.11A]).

Another consequence of Theorem 2.9, is the following proposition.

Proposition 2.11. Let R be a commutative hereditary Noetherian ring. Then R =
S ⊕ T, where S is semisimple, Soc(T ) = 0 and T is a right small ring.

Proof. By Theorem 2.9, R = S ⊕ T , where S = Soc(R) and T is a direct sum of
Dedekind domains. Now let us prove that T is a right small ring. Assume w.l.o.g.
that T �= 0. If T is not a small ring, then as T is cyclic T � Rad(E(T )). So
T + K = E(T ) for some maximal submodule K of E(T ). Then T/(T ∩ K) ∼=
E(T )/K is simple, and also injective by the hereditary condition. Thus T/(T ∩K)
is projective by Proposition 2.8, and so T = T ∩K ⊕U for some simple submodule
U of R. Then U ≤ Soc(T ) = 0, a contradiction. Therefore T is a small submodule
of E(T ), i.e. T is a right small ring.

Proposition 2.12. Let R be a commutative hereditary Noetherian ring and C be
the direct sum of nonisomorphic singular simple R-modules. Then C is indigent.

Proof. Let R = S ⊕T be as in Proposition 2.11. Since S is projective it is nonsin-
gular. Thus we have SC = 0, and so C is a T -module. Clearly every simple T -module
is singular. Therefore C is exactly the direct sum nonisomorphic singular simple
T -modules. Now T is a small ring. Thus C is an indigent T -module by Corollary 2.6
and Proposition 2.10. Now let us see that C is an indigent R-module. Suppose C is
N -subinjective for some R-module N . There is a decomposition N = N ·S ⊕N ·T .
Since S is projective it is injective by 2.8. Then N ·S is injective. Since C is N · T -
subinjective and C is indigent T -module, N · T is injective T -module. Now it is
straightforward to check that both N · S and N · T are injective as R-modules.
Hence their direct sum N = N · S ⊕ N · T is injective R-module (see [17, Exercise
3.11A]). Therefore C is an indigent R-module.

Proposition 2.13. Let R be a commutative Noetherian ring and M be an indigent
R-module. Let C be the direct sum of nonisomorphic singular simple R-modules.
Then M contains a submodule isomorphic to C.

Proof. Note that a singular simple module is non-injective by Proposition 2.8.
Suppose Hom(U, M) = 0 for some singular simple module U . This implies that M is
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U -subinjective. This contradicts the fact that M is indigent. Thus Hom(U, M) �= 0
for each singular simple module U . This implies that M contains a submodule
isomorphic to C.

Proposition 2.14. Let R be a commutative hereditary Noetherian ring and M an
R-module and M ′ be its reduced part. The following are equivalent.

(1) M is indigent.
(2) M ′ is indigent.
(3) M ′ contains a copy of each simple singular module.
(4) Z(M ′) is indigent.
(5) Z(M) is indigent.

Proof. (1) ⇔ (2) Since R is Noetherian, the module M has a maximal injective
submodule, say N . Then M = M ′ ⊕N , for some M ′ ≤ M . Now it is easy to see that,
for a right module K, M is K-subinjective if and only if M ′ is K-subinjective. Thus
M is indigent if and only if M ′ is indigent. (2) ⇒ (3) Follows by Proposition 2.13.
(3) ⇒ (2) Suppose M ′ is K-subinjective for some R-module K. Assume that K is
not injective. Then w.l.o.g. we can assume that K has no nonzero injective submod-
ule by the Noetherian condition. Note that Rad(K) �= K by Proposition 2.10. By
Proposition 2.8 and our assumption K essentially contains a maximal submodule
L. Since M ′ is K-subinjective, M ′ is K/L-subinjective by Theorem 2.1. Moreover,
by (3) we have Hom(K/L, M ′) �= 0. Thus there is a nonzero g : E(K/L) → M ′.
Then g(E(K/L)) is a nonzero injective submodule of M ′. Contradiction, because
M ′ is reduced. Therefore K must be injective and so M ′ is indigent. (3) ⇒ (4)
Similar to the proof of (3) ⇒ (2). (4) ⇒ (3) By Proposition 2.13. (4) ⇔ (5) Since
M = M ′ ⊕ N , Z(M) = Z(M ′) ⊕ Z(N). Since Z(N) is closed submodule of the
injective module N , it is also injective. Therefore, the subinjectivity domains of
Z(M) and Z(M ′) are the same. Hence, Z(M) is indigent if and only if Z(M ′) is
indigent.

In [27], Trlifaj defined what he called a Whitehead test module for injectivity
(i-test module) as follows: A module M is an i-test module if N is injective whenever
Ext1R(M, N) = 0. A ring R is called right V -ring if each simple right R-module is
injective. A ring R is called a right GV -ring if every simple right module is either
injective or projective.

Proposition 2.15. Let R be a two-sided hereditary Noetherian ring which is not
GV -ring. A reduced indigent right R-module is an i-test.

Proof. Let M be a reduced indigent right R-module. Then Hom(S, M) �= 0 for
every singular simple right R-module S. Then, M is i-test by [5, Theorem 4.19].

1950188-7

J.
 A

lg
eb

ra
 A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

L
O

U
IS

IA
N

A
 A

T
 o

n 
11

/1
1/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

November 1, 2018 6:28 WSPC/S0219-4988 171-JAA 1950188
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The following result follows by Propositions 2.14, and 2.15 and [5, Theo-
rem 4.19].

Corollary 2.16. Let R be a commutative hereditary Noetherian ring. An R-module
M is indigent if and only if the reduced part M ′ of M is indigent if and only if the
reduced part M ′ of M is an i-test.

In [7, Proposition 4.13], it is shown that if every nonzero cyclic right R-module
is indigent, then R is right semiartinian. We have the following result.

Proposition 2.17. Let R be ring. Every nonzero cyclic right R-module is indigent
if and only if R is semisimple artinian.

Proof. Sufficiency is clear. To prove the necessity suppose every nonzero cyclic
right R-module is indigent. Let A and B be two simple right R-modules. Assume
that A and B are not isomorphic. Then, A is clearly B-subinjective. As A must be
indigent by the hypothesis, B is then injective. But, by our assumption, B is also
indigent. Then R is semisimple artinian since B is both an injective and indigent
module. So, assume w.l.o.g, R has a unique simple module A up to isomorphism. If
A is projective, then R is semisimple artinian. Hence, we may assume w.l.o.g. that A

is singular. Note that R is also indigent by our assumption. Hence Hom(A, R) �= 0,
otherwise A is injective, a contradiction. Then R has a minimal right ideal, which
is isomorphic to A, i.e. R is a right Kasch ring. We have the following two cases:

Case I: Hom(E(R), A) = 0. Then R is right small ring by Proposition 2.5. By
Corollary 2.6, R is right hereditary, contradicting the singularity of A.

Case II: Hom(E(R), A) �= 0. In this case we will show that R is a right self-injective
ring: Consider the following diagram

0 �� R

u
���

�
�

�
π

��

ι �� E(R)

v
��� � � � � � �

E(R)
f �� A �� 0,

where π is an arbitrary (and w.l.o.g. nonzero) map and f is a fixed epimorphism. By
projectivity of R, there exists a homomorphism u : R → E(R) such that fu = π.
Now, by injectivity of E(R), there exists a homomorphism v : E(R) → E(R) such
that vι = u. Then fvι = fu = π, and so A is R-subinjective. But A is indigent, so
R is right self-injective. On the other hand, R is also indigent by the hypothesis.
Therefore R is semisimple artinian.

Proposition 2.18. Let R be ring. If every nonzero proper cyclic right R-module
is indigent, then R is semisimple artinian or R is a local QF ring.

Proof. As in the proof of the previous proposition, R is semisimple artinian or
R has a unique simple module which is singular and noninjective. We have the
following two cases:
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Case I: Hom(E(R), A) = 0. Then R is right small ring by Proposition 2.5. We have
either Hom(A, R) �= 0 or Hom(A, R) = 0. In the former case, by Proposition 2.6, R

is right hereditary ring, and so the simple module A is nonsingular, contradicting
the singularity of A. In the latter one, Hom(A, I) = 0 for every nonzero cyclic right
ideal of R. Then, by our assumption, A is injective, and so R is semisimple artinian.

Case II: Hom(E(R), A) �= 0. Following the proof of Proposition 2.17, one can show
that A is P–subinjective for each projective right R-module P . But A is indigent,
and so R is a QF-ring.

3. When Simple Modules are Indigent or Injective

In this section, we give a characterization of the commutative rings whose simple
modules are indigent or injective. The following Lemma is well known. We include
it for completeness.

Lemma 3.1. If R is a commutative ring, then every simple R-module is pure-
injective.

Proof. Let C be an injective cogenerator. Then

U+ = Hom(U, C) = Hom(U, E(U)) ∼= U.

Since U+ is pure-injective, U is pure-injective, too.

By Theorem 2.9, a commutative hereditary Noetherian ring is a direct prod-
uct of fields and hereditary Noetherian prime rings. Every commutative hereditary
Noetherian prime ring is a Dedekind domain. Thus a commutative local heredi-
tary Noetherian ring is a field or DVR. Note that a commutative local hereditary
Noetherian ring is a DVR (i.e. a local Dedekind domain). A ring R is called right
H-ring if every right module is a direct sum of an injective module and a small
module. Every QF -ring is a right H-ring by [23, Theorem 4.3].

Theorem 3.2. Let R be a commutative ring. The following are equivalent.

(1) Every simple module is indigent or injective.
(2) R is a V -ring, or R = A × B, where B is semisimple, and A is the zero ring,

a DVR, or a local QF -ring.

Proof. (1) ⇒ (2) Suppose every simple module is indigent or injective. If all simple
modules are injective, then R is a V -ring. Now suppose, there is a non-injective
simple module U . Then U is indigent by the hypothesis. If U ′ is any simple module
which is not isomorphic to U , then Hom(U ′, U) = 0. That is, U is U ′-subinjective,
and so U ′ must be injective because U is indigent. Thus the ring has a unique non-
injective simple module, up to isomorphism. Let {Ei}i∈I be an arbitrary family of
injective modules. Then

⊕
i∈I Ei is a pure submodule of

∏
i∈I Ei. By Lemma 3.1
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the simple module U is pure-injective. Thus U is
⊕

i∈I Ei-subinjective. As U is
indigent,

⊕
i∈I Ei must be injective. So that the ring R is Noetherian. Now let, B

be the sum of the injective simple ideals of R. Then B is injective, because the ring
is Noetherian. Thus, there is a ring decomposition R = A⊕B and UB = 0, so that
U is the unique (noninjective) simple A-module.

If X is a simple A-module, then we must have X ∼= U . Otherwise X would be
injective by the hypothesis. Then X must be projective by Proposition 2.8. Which
implies that A = X ′ ⊕Y for some X ′ ∼= X . But then X ′ ≤ A∩B = 0. Contradic-
tion. Therefore A has a unique simple module, and this simple is isomorphic to U .
By the commutativity condition, we get that A is a local ring. We have the follow-
ing two cases: Case I: A is a small ring, i.e. A � E(A). Then Rad(E/K) = E/K

for each injective A-module E and K ≤ E. Thus Hom(E/K, U) = 0, and so U is
E/K-subinjective. Hence E/K is injective. This proves that R is hereditary. Being
local, hereditary and Noetherian implies that, R is a DVR. Case II: A is not small
i.e. Rad(E(A)) �= E(A). Let us prove that A is QF by showing that A is injec-
tive. We know that A is local and non small. Since A is finitely generated, we
have A � Rad(E(A)). Thus there is a maximal submodule K of E(A) such that
A + K = E(A). Then A/A ∩ K ∼= E(A)/K is simple, and so A ∩ K is the unique
maximal submodule of A. Moreover,

E(A)/A ∩ K = A/A ∩ K ⊕ K/A ∩ K.

Let f : A → U be a nonzero homomorphism. Since U is simple Ker(f) = A ∩ K is
maximal. Let π′ : A → A/A∩K and π : E(A) → A/A∩K be the natural projec-
tions, and f : A/A ∩ K → U be the map satisfying f = fπ′. It is straightforward
to check that the map g = fπ : E(A) → U extends f i.e. g|A = f . Thus U is
A-subinjective, and so A is injective. Being Noetherian and injective, A is QF .

(2) ⇒ (1) If R is a V -ring, then each simple module is injective. So that (1) holds.
Now assume that A is a DVR. By Proposition 2.8 B is an injective R-module. Let
U be a non-injective simple R-module. Then B · U = 0, and so U is an A-module.
Since A is a local ring, U is the unique simple A-module up to isomorphism. Hence
U is an indigent A-module by Proposition 2.12. It is routine to see that U is an
indigent R-module. Now assume that A is a local QF -ring. As in the proof of
previous part, the ring R has a unique non-injective simple module, say U which
is also the unique simple A-module, up to isomorphism. Then since A is local and
QF , U is an indigent A-module by [4, Proposition 32; 23, Theorem 4.4.] Then U is
an indigent R-module. This completes the proof.

If R is a right Kasch ring which has a simple projective indigent module then,
R is semisimple Artinian by [7, Theorem 4.22]. We have the following result on
commutative Kasch rings.

Corollary 3.3. Let R be a commutative ring. R is Kasch ring which has a simple
singular indigent module if and only if R is local QF .
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Corollary 3.4. Let R be commutative ring. The following are equivalent :

(1) Every simple module is indigent.
(2) R is semisimple, or R is a local ring that is a V -ring, a DVR or a QF -ring.

4. T.I.B.S. Modules Over Commutative Rings

A right module N is said to be a test module for injectivity by subinjectivity (t.i.b.s.,
for short) if whenever M is N–subinjective for some right module M , then M is
injective (see [4]). The following lemma can be easily proved by using the properties
of subinjectivity (see [7]). The proof is omitted here.

Lemma 4.1. The following statements are equivalent for a right R-module M :

(1) M is t.i.b.s.
(2) Mn is t.i.b.s. for some n ∈ Z+.
(3) Mn is t.i.b.s. for all n ∈ Z+.
(4) M ⊕ N is t.i.b.s. for any right module N .

The structure of t.i.b.s. Z-modules is completely characterized in [4]. The fol-
lowing theorem is a generalization of [4, Theorem 21].

Theorem 4.2. The following are equivalent for a commutative domain R:

(1) R is Dedekind.
(2) R is t.i.b.s.
(3) Every nonzero ideal of R is t.i.b.s.
(4) A nonzero R-module M is t.i.b.s. exactly when Hom(M, R) �= 0.

Proof. (1) ⇔ (2) By [4, Corollary 20].
(2) ⇒ (3). Let I be nonzero ideal of R. Note that R is Dedekind by the equiva-

lence (1) ⇔ (2). Then I ⊕ I ∼= R ⊕ (I · I) by [25, Lemma 7.6(i)]. Then (3) follows
by Lemma 4.1(2) and (4).

(3) ⇒ (2) is clear.
(3) ⇒ (4) This follows immediately from the equivalence (1) ⇔ (2) ⇔ (3) and

Lemma 4.1.
(4) ⇒ (2) Hom(R, R) �= 0. So R is t.i.b.s. by (4). This proves (2).
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[10] Y. Durğun, An alternative perspective on flatness of modules, J. Algebra Appl. 15(8)
(2016) 1650145.
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[18] S. R. López-Permouth, J. Mastromatteo, Y. Tolooei and B. Üngör, Pure-injectivity
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