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Abstract: A disease phenotype is often due to dysregulation of gene expression. Post-translational regulation of protein 
abundance by microRNAs (miRNAs) is, therefore, of high importance in, for example, cancer studies. 
MicroRNAs provide a complementary sequence to their target messenger RNA (mRNA) as part of a complex 
molecular machinery. Known miRNAs and targets are listed in miRTarBase for a variety of organisms. The 
experimental detection of such pairs is convoluted and, therefore, their computational detection is desired 
which is complicated by missing negative data. For machine learning, many features for parameterization of 
the miRNA targets are available and k-mers and sequence motifs have previously been used. Unrelated 
organisms like intracellular pathogens and their hosts may communicate via miRNAs and, therefore, we 
investigated whether miRNA targets from one species can be differentiated from miRNA targets of another. 
To achieve this end, we employed target information of one species as positive and the other as negative 
training and testing data. Models of species with higher evolutionary distance generally achieved better results 
of up to 97% average accuracy (mouse versus Caenorhabditis elegans) while more closely related species did 
not lead to successful models (human versus mouse; 60%). In the future, when more targeting data becomes 
available, models can be established which will be able to more precisely determine miRNA targets in host-
pathogen systems using this approach. 

1 INTRODUCTION 

Proteins have a large influence on the phenotype and, 
therefore, their abundance can be fine-tuned on 
several levels while their dysregulation may often 
lead to disease. The most direct regulators of protein 
abundance are microRNAs (miRNAs) which are 
involved in post-transcriptional gene regulation 
(Erson-Bensan, 2014). They modulate protein 
abundance via interacting with messenger RNA 
(mRNA) thereby fine-tuning translation rates (Saçar 
and Allmer, 2013). To achieve this, a short stretch of 
nucleotides (mature miRNA; ~20 nt) serves as a 
recognition sequence within the RNA induced 
silencing complex (RISC). Post-transcriptional 
regulation via miRNAs is found in a wide range of 
species ranging from viruses (Grey, 2015) to plants 
(Yousef et al., 2015). Experimentally determined 
mature miRNAs and pre-miRNAs (their sources) are 

stored in miRBase (Griffiths-Jones, 2010) and its 
release 21 contains about 28,000 mature miRNAs 
(~2,600 for human), but it has been estimated that 
more miRNAs may exist (Londin et al., 2015).  

Unfortunately, the experimental detection of 
miRNAs is difficult since they can only be analyzed 
when co-expressed with their target mRNAs which is 
impossible to achieve for all miRNA-mRNA pairs at 
the moment (Saçar and Allmer, 2013). Therefore, 
computational prediction of pre-miRNAs is 
employed and most approaches are based on machine 
learning using two-class classification (Allmer, 2014; 
M. Saçar and Allmer, 2014). Such ab initio models 
have been established for metazoan (Allmer and 
Yousef, 2012) and we have shown that similar models 
can be trained for plants (Yousef et al., 2015). 
Machine learning for pre-miRNAs depends on 
parameterization of the biological structure and many 
features are available (Sacar and Allmer, 2013). We 



have recently also added sequence motifs as 
additional features for describing pre-miRNAs 
(Yousef et al., 2016a). Parameterization is important 
to train classifiers which, based on a feature-value set, 
can learn to differentiate between the positive 
(miRNA) and the negative class. Many machine 
learning approaches like support vector machines 
(Ding, Zhou, & Guan, 2010) and random forest (Jiang 
et al., 2007) have been used but in general two-class 
classifications suffers from the lack of bona fide 
negative pre-miRNA examples (Khalifa et al., 2016). 
The same is true, if not worse, for negative examples 
of the targets of miRNAs. Such targets are short 
stretches of nucleotides complementary to the mature 
sequences incorporated into RISC. Experimentally 
supported, so called miRNA-mRNA duplexes, are 
available in miRTarBase (Hsu et al., 2011) and 
TarBase (Sethupathy et al., 2006), but there is no 
dataset for which it is clear that it does not contain 
target sites for even selected miRNAs. This is 
especially complicating the computational prediction 
of miRNA targets (Hamzeiy et al., 2014). Therefore, 
one-class classification has been used for miRNA 
target prediction (Yousef et al., 2016b).  

Here we employ two class classification, but 
avoid the problem of missing negative data since 
instead of trying to determine miRNA targets we 
investigate the difference among miRNA targets 
among species. Thus, it is our aim to differentiate 
between miRNA targets of one species by using 
another species as negative training data employing 
only sequence-based features, which means that 
positive and negative classes derived from known 
miRNA targets. Our approach is further supported by 
the finding that miRNA targets are not highly 
conserved within vertebrate, fly, and nematode 
3’UTRs (Chen and Rajewsky, 2006). For family 
classification of pre-miRNAs Ding et al. used n-
grams (Ding et al., 2011) which is somewhat related 
to the problem investigated here. Ding et al. aimed to 
assign a miRNA to a family of miRNAs while we are 
determining to which species a miRNA target 
belongs. We further aimed to establish the 
evolutionary distance which allows differentiation 
between targets of different species. We observed a 
slight trend to better differentiation for species that 
are further apart evolutionarily, but especially mouse 
and rat examples present unexpected outliers which 
may be due to low quality data and low relative 
amount of data available for rat. Facilitating the 
differentiation of miRNA targets among species may 
in the future allow the investigation of 
communication between host and parasite (Saçar et 
al., 2014; Saçar Demirci et al., 2016). 

2 MATERIALS & METHODS 

2.1 Datasets 

We downloaded all microRNAs’ targets for all 
species available on miRTarbase with about 500 
targets or more. Data for Homo sapiens (has), 
Caenorhabditis elegans (Cel), Mus musculus (Mmu), 
Rattus norvegicus (Rno), and Bos taurus (Bta) were 
downloaded from miRTarBase (Release 6.0: Sept. 15, 
2015); for details see Table 1. 

The miRNA-mRNA duplexes, representing 
miRNA targets were filtered according to sequence 
similarity using USEARCH (Edgar, 2010) on the 
sequences of each species and also on a per species 
basis to ensure that there is no bias due to multiple 
identical target sequences. We only found 74 similar 
sequences between Hsa and Mmu, which were 
removed. 

Table 1: List of the species whose known miRNA mRNA 
duplexes were used in this study and their amounts 
available on miRTarBase. 

Species 
Number of 
target sites 

After 
Cleaning 

Average 
Duplex 
Length 

Cel 4,029 2,233 23.2 
Mmu 54,951 9,278 29.0 
Hsa 317,542 89,752 25.2 
Rno 658 532 22.5 
Bta 489 393 24.1 

2.2 Parameterization of MicroRNA 
Targets 

2.2.1 K-mers 

These are short stretches of nucleotides of length k 
which are also termed n-grams or words. Such 
sequence-based features were used for ab initio pre-
miRNA detection, and may also be useful for target 
prediction (Yousef et al., 2016b). Formally, a k-mer 
is one element of the relevant alphabet, here {A, U, 
C, G}. A 2-mer can generate 16 different elements: 
AA, AC, …, UU. Higher k have also been used (Çakır 
and Allmer, 2010), but here we limited k to 1 ≤ k ≤ 3 
leading to 84 features. As features k-mer frequencies 
were calculated from the target sequences divided by 
the k-mers in the sequence given by len(sequence) - k 
+ 1. 

2.2.2 Motif Features Describing MicroRNA 
Targets 

Instead  of  describing  exact  sub  sequences,  motifs 



allow for approximate matches including some 
degree of error tolerance. The MEME (Multiple 
Expectation Maximization for Motif Elicitation) 
Suite (Bailey, T. L. et al., 2009) was used to establish 
motifs which are short stretches of nucleotides that 
occur more frequently than expected by chance 
within the given set of sequences. MEME is based on 
(Bailey and Elkan, 1994) which repeatedly searches 
for ungapped sequence motifs within the input 
sequences which explains its long runtime. MEME 
provides regular expressions and sequence profiles to 
represent the motifs. Profiles are more informative 
than regular expressions, which is why, different from 
our previous works (Yousef et al., 2016a, 2015), we 
decided to use profiles for feature creation. For each 
species we discovered 100 motifs serving either as 
positive or negative data thus 200 motifs were 
available for each experiment in addition to 84 k-
mers. To calculate feature scores, profiles were 
aligned with the target sequence and shifted along 
until the end of the profile reached the end of the 
sequence or vice versa in case the profile was longer 
than the sequence. At each position, a score was 
calculated by adding up the frequencies in the profile 
for matching nucleotides at their respective positions. 

The motif position leading to the highest score is 
reported as the final score for that input sequence. 

2.2.3 Feature Vector and Feature Selection 

For each experiment 284 features were available, but, 
not all features are equally effective to train a machine 
learning classifier and therefore, we used KNIME 
(Berthold et al., 2008) to calculate information gain 
(Yang and Pedersen, 1997) on a per experiment basis 
and accepted the 100 features with highest 
information gain. This feature set was used during 
model establishment to select from the possible 
features in this study: A … U (k=1), AA … UU (k=2), 
AAA … UUU (k=3), Motif1, Motif2, Motif3, …, 
Motifn; where n=200. 

2.3 Classification Approach 

Random Forest (RF) was used for classification in 
this study since it outperformed support vector 
machines (Vapnik, 1995), decision trees (DT), and 
Naive Bayes (NB) in tests preceding the study. The 
classification   approach   was  setup  using  the  data 
analytics platform KNIME (Berthold et al., 2008). 

 

Figure 1: Workflow for model establishment. Data was transformed into a feature vector and the best 100 were selected. 
During the 100-fold MCCV training and testing scheme 80% randomly selected examples were used to train the classifier 
and 20% were used for testing. All performance measures for testing and holdout data were collected during CV and reported 
at the end of the workflow. 



Models were trained and tested using 100 fold Monte 
Carlo Cross Validation (Xu and Liang, 2001) and in 
each fold of the cross validation (CV) the data were 
split into 80% training and 20% testing. During 
random selection, negative and positive examples 
were sampled in equal amounts since we showed that 
this approach is beneficial for model establishment in 
pre-miRNA detection (Sacar and Allmer, 2013). For 
each of the 100-fold Monte Carlo cross validation 
(MCCV) the performance was recorded (Figure 1). 

Table 2: Number of motifs and k-mers among the top 100 
features during training and testing according to the training 
scheme in Figure 1. 

 # of motifs # of k-mers
Mmu vs Cel 23 77

Rno vs 24 76
Hsa vs Cel 22 78
Rno vs Hsa 24 76
Bta vs mmu 26 74
Bta vs Hsa 26 74
Bta vs Cel 71 29
Rno vs Cel 65 35
Rno vs Bta 33 67

Hsa vs Mmu 63 37

2.3.1 Model Performance Evaluation 

For each established model we calculated a number 
of performance measures for the evaluation of the 
classifier such as sensitivity, specificity and accuracy 
according to the following formulations (with TP: 
true positive, FP: false positive, TN: true negative, 
and FN referring to false negative classifications): 

Sensitivity = TP / (TP + FN); (SE, Recall)  
Specificity = TN / (TN + FP); (SP) 
Precision = TP / (TP + FP) 
F-Measure = 2 (precision * recall) / (precision + 

recall) 
Accuracy = (TP + TN) / (TP + TN + FP + FN); 

(ACC)  

MCC
TP TN FP FN

TP FP TP FN TN FN TN FP
; Matthews 

Correlation Coefficient (Matthews, 1975). 
All reported performance measures refer to the 

average of 100-fold Monte Carlo Cross Validation 
(MCCV). 

3 RESULTS AND DISCUSSION 

The random forest classifier was used to establish 
machine learned models using an 80/20 split from 
random sampled and stratified training and testing 

data during 100-fold MCCV (Figure 1). During 
feature selection generally few motifs (22-33%) were 
selected, but for Bta vs Cel, Rno vs Cel, and Has vs 
Mmu 63-71% were selected (Table 2).  

In general, about 25% of the informative features 
were motifs which, given the low amount of examples 
available for some species (Table 2), was to be 
expected. The number of features that should 
optimally be used for classification was tested (Figure 
2). For many tests even low number of features lead 
to relatively good results. To select the most suitable 
number of features we used species combinations 
which lead to slightly above 70% average accuracy 
since lower and higher accuracies may be biased. 
Therefore, we selected 100 features since for Bta vs 
Cel and for Rno vs Cel this number of features led to 
the best average accuracy (Figure 2).  

The feature sets consisting of 100 parameters 
were then used to establish models to differentiate 
between miRNA targets from one versus the other 
species (Table 3).  

Table 3 indicates that distantly related species 
(Figure 3) are easier to differentiate using the trained 
models. Examples are Mmu vs Cel, Hsa vs Cel, Bta 
vs Cel, and Rno vs Cel. However, Rno vs Mmu which 
are the perhaps most closely related species (Figure 
3) in this study achieved an unexpectedly high 
accuracy whereas Hsa vs Mmu and Rno vs Bta were 
according to expectations. Table 3 provides the 
average accuracy and other model performance 
measures. To confirm that the 100 fold model training 
and testing is of low variance, accuracy was recorded 
at each step (Figure 4). The distribution was best for 
Mmu vs. Cel and worst for Rno vs. Bta judged by the 
interquartile distance. Interestingly, all tests 
involving Bta contain large interquartile ranges. 

According to the results in Table 3 both Rno and 
Mmu may contain foreign examples in their datasets 
such that they 1) become different from each other 
and 2) do not fit to the general expectation. For Mmu 
we previously discovered that filtering their pre-
miRNAs by a very simple measure (RPM > 100) 
leads to a 10% increase in average model accuracy for 
pre-miRNA detection (Saçar Demirci and Allmer, 
manuscript in preparation). It seems likely, that the 
effect of this may be even more pronounced in 
dependent datasets like miRNA targets since pre-
miRNAs that are unlikely true lead to targets which 
are impossibly true. This seems to strongly affect 
classification accuracy in this case. 

 
 
 
 



 
Figure 2: Average accuracy in respect to number of selected features. 

 

Figure 3: Phylogenetic relationship among organisms and groups used in this study was established using phyloT 
(http://phylot.biobyte.de). Itol (http://itol2.embl.de/) was used to create this graph (Letunic & Bork, 2011). 

 

Figure 4: Accuracy distribution over 100 fold MCCV for models establishment to differentiate miRNA targets between 
selected species. 
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4 CONCLUSIONS 

Machine learning has become an important tool for 
miRNA and miRNA target detection; however, 
missing negative data poses an obstacle (Allmer and 
Yousef, 2012). The general aim for miRNA target 
prediction is to determine the targets in the 3’UTRs 
of known genes. In this work we intended to study 
whether it is possible to establish machine models 
that can differentiate between miRNA targets from 
different species. A somewhat related approach 
previously categorized miRNAs into families, 
thereby, showing that miRNAs can be related (Ding 
et al., 2011). Contradicting this approach is that 
miRNAs can evolve rapidly (Liang and Li, 2009). 
Our aim is further supported by the finding that 
3’UTRs (the most abundant targets for miRNAs) are 
not highly conserved (Chen and Rajewsky, 2006). 
Machine learning was performed using an 80/20 100-
fold MCCV approach and it was shown that 100 
selected features and among them generally about 
30% motifs was a successful mixture for model 
establishment. While in general the results reflected 
our expectations and we can conclude that given 
proper examples miRNA targets can be differentiated 
if the phylogenetic distance is high and that it is not 
possible to distinguish between miRNA targets of 
closely related species. Additionally, we were able to 
show that it seems likely that among rat and mouse 
examples in miRTarBase there seem to be many 
incorrect target assignments. Nonetheless, it is our 
contention that miRNA targets can be distinguished 
between unrelated species which will be especially 
useful for the detection of targets in host-pathogen 
systems (Saçar et al., 2014; Saçar Demirci et al., 
2016). 
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