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Abstract—In this paper, the stochastic excitations in single
machine infinite bus power systems have been modeled as
alpha-stable Levy processes. Through the simulations of the
corresponding stochastic differential equations, we have shown
that the impulsiveness and/or asymmetry in the distributions of
the load fluctuations can cause the instability of the rotor angle.
Hence, the synchronism is lost and the rotor angle although
it is stable in the sense of probability, it might not be stable
in the mean square sense. However, by properly choosing the
parameters of Levy type fluctuations the rotor angle stability
can be improved in the sense of probability as the beneficience
of noise.

I. INTRODUCTION

Stability in electrical power systems has been an important
old problem [1] and the power system stability is still a
major problem to prevent the large-scale blackouts in to-
day’s complex power grids [2]. The stability problem can be
categorized as the rotor angle stability, the voltage stability
and the frequency stability. Rotor angle stability is related
to the dynamics of generator rotor angles that is the ability
of interconnected synchronous machine of a power system
to remain in synchronism [3]. Frequency stability is related
with the active power balance between the generation and the
consumption in the grid and the voltage stability is the ability
of a power system subject to a given disturbance to maintain
acceptable voltages at all buses [3]. In 2015, the blackout that
was the third serious blackout in the Continental European
(CE) System within the last 15 years has occurred in Turkey
and it has been observed that the tripping of a line caused a loss
of angular stability and a loss of synchronism in the Turkish
power system [4]. To detect the loss of angular stability is
therefore necessary for critical operation conditions. In [5],
[6], [7], [8], [9] the variations in the reactive power demands
of the loads have been considered as stochastic perturbations
and some security measures to indicate the vulnerability to
the voltage collapse have been given in [5]. In [10] it has
been shown that random noise excitation can cause the single

machine infinite bus (SMIB) system to become unstable. The
p-moment stability of rotor angle in SMIB system and the
influences of noise in the excitation on the dynamical behav-
iors of a power system have been given in [11]. The Fokker-
Planck equation has been developed to model the evolution
of the probability density function in stochastic SMIB and the
impact of perturbations in the load on the rotor stability have
been analysed in [12]. In all the papers [5]-[12], the stochastic
fluctuations in electrical power systems either at the loads or
at the excitations have been considered as Brownian process
(Wiener process).

In this paper, the rotor angle stability phenomena of SMIB,
in the case of stochastic fluctuations of Lévy type at the load
have been investigated. The simulations show that the rotor
angle stability have been effected by the impulsiveness and/or
skewness (asymmetry) in the distributions of fluctuations. We
have assumed that the stochastic disturbances occurring in
power systems could be more realistically modeled by alpha-
stable (α-stable) Lévy process compared to the modelling
by Wiener process. The main motivation for our assumption
is that in [13] the stochastic model of the electricity prices
has been proposed as α-stable Lévy process and in which
the load has been considered as one of the main factors in
determining electricity prices because the sudden demand
or supply changes cause sharp spikes in electricity prices,
which are characterized by non-Gaussian and heavy-tailed
behaviour defined by stable law [17]. In [14] the electricity
market data have been also modeled by using the α-stable
periodic autoregressive model (PAR).

II. DETERMINISTIC SINGLE MACHINE INFINITE BUS
POWER SYSTEMS

The deterministic swing equations in [3] which governs the
rotational dynamics of the synchronous machine are given as

δ̇ = w

Mẇ = −Dw + Pm − Pe (1)
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where δ is the relative rotor angle of synchronous generator,
w is the rotor speed with respect to the synchronous reference,
Pm is the mechanical input power, Pe is the electrical power
output, M and D are the inertia and the damping coefficients,
respectively. Pe = Pmaxsin(δ) where the maximum output of
the synchronous generator is Pmax = E

′
EB/XT and E′∠δ

is the internal voltage of generator and EB∠0 is the infinite
bus voltage; XT is the total reactance of the transformer and
the line. In our study M = 1.0, E

′
= 1.0, EB = 1.0,

XT = 1.0 are fixed which are typical in per-unit in power
systems. Defining the state variable

[
x1 x2

]T
=

[
δ w

]T
then

(1) becomes as

ẋ1 = x2

ẋ2 = −Dx2 + Pm − sin(x1) (2)

The fixed points of (2) satisfy x∗2 = 0 and sinx∗1 = Pm. By
linearizing the state equations around the equilibrium points
it can be easily seen that

[
x1
∗ x2

∗]T =
[
arcsin(Pm) 0

]T
corresponds to the stable equilibrium point (SEP) which is
indicated by green circle while the state

[
x1
∗ x2

∗]T =[
π − arcsin(Pm) 0

]T
corresponds to the saddle point which

is indicated by red diamond. The phase portraits of determin-
istic SMIB system shown in Fig. 1 have been obtained for
the inital values of “[−π, π] × [−10, 10]”. Since the relative
rotor angle δ is periodic with period 2π then there are multiple
equilibria in the state space, “δ − w plane”, and therefore in
the corresponding cylindrical state space “[−π, π]×R” there
is only one SEP and one saddle.

The similar analysis for Josephson junction which is anal-
ogous to the classical, driven pendulum can be found in [15].
It is clearly seen from (2) that there are no fixed points if
Pm > 1 and all trajectories converge to the unique rotating
orbit as shown Fig. 1a. When the mechanical power is fixed as
Pm = 0.5 then the responses have been obtained by varying
the damping parameter D relative to the critical damping level
Dc which corresponds to the value satisfying the equation
of homoclinic bifurcation curve Pm = 4Dc/π which can
be obtained by using Melnikov method given in [16]. For
Pm = 0.5 the critical damping level Dc is theoretically 0.3927
and numerically 0.414. In Fig. 1b the damping parameter D is
chosen to be greater than the critical damping level Dc and for
this case the trajectories converge to the SEP. In Fig. 1c the
damping parameter D is equal to the critical damping level
Dc, and all the trajectories converge to the SEP sooner or
later. In Fig. 1d the damping parameter D is chosen to be less
than the critical damping level Dc and the system has a SEP
and a stable limit cycle and in this bistable case depending
on the initial condition the trajectories converge either to the
SEP or to the stable limit cycle (rotating orbit). In the steady
state, there is a balance between the mechanical power input
and the electrical power output and the generator runs at a
constant speed which leads to a constant rotor angle (i.e., at
the equilibrium point δ̇ = 0). However, under any disturbance
such as random load change, line tripping and loss of generator
then an imbalance between the mechanical power input and

(a) (b) D = 0.8 > Dc = 0.414

(c) D = Dc = 0.414 (d) D = 0.36 < Dc = 0.414

Fig. 1. Phase portraits of deterministic SMIB system for (a) Pm > 1 and
(b)-(d) Pm = 0.5.

the electrical power output occurs and the synchronism is lost.
As we have mentioned in the introduction, our motivation of
choosing Lévy type fluctuations is that it admits impulsive
and asymmetric fluctuations which can be modeled by α-
stable random variable [17]. Therefore in the sequel Lévy type
fluctuations in the load have been considered.

III. STOCHASTIC SINGLE MACHINE INFINITE BUS POWER
SYSTEMS

The imbalance between the mechanical power input and the
electrical power output in the SMIB power system given in
(1) is modelled by α-stable Lévy process as PL(t) = σLα(t)
and Lα(t) is the alpha-stable Lévy process and σ is the noise
intensity and using state variables then the Itô form of SDE
can be written as :

dX(t) = f(t,X(t))dt+ gdLα(t) (3)

f(t,X(t) =

[
x2

−Dx2 + Pm − sinx1

]
; g =

[
0
σ

]
(4)

and the increments of the Lévy process dLα(t) is α-stable
random variable [17] and its distribution is denoted by α-
stable distribution Sα (γ,β,µ) which is characterized by the
four parameters: µ denotes the location, γ is scale parameter,
the characteristic exponent α (0 < α ≤ 2) which measures the
impulsiveness, and the skewness parameter β which measures
the symmetry of the distribution, where β = 0 refers to
symmetric distribution, β < 0 to left-skewed distribution
and β > 0 to right-skewed distribution. As the value of
characteristic exponent “α” decreases then the impulsiveness
increases and hence the tails of the corresponding distributions
become heavier. Also, the increase in the absolute value of the
β results in the more asymmetric (skewed) distribution.
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Lα(t) : t ≥ 0 stands for α-stable Lévy motion in [18], [19]:
• Lα(0) = 0 almost surely (a.s.), and Lα(t) has the

independent and stationary increments “dLα(t)”,
• dLα(t)

.
= Lα(t)−Lα(s) ∼ Sα((t−s)1/α, β, 0) , s < t.

Under the load fluctuations of Gaussian type, (2) have been
analyzed in [10] and in [11] where PL = σW (t).

Remark : Brownian motion is the special case of α-stable
Lèvy motion with α = 2, β = 0 “ i.e., S2(γ, 0, µ) =
N(µ, 2γ2) ” Normal (Gaussian) distribution with mean µ and
variance 2γ2 [17].

The approximate numerical solution of (3) can be obtained
by applying the Euler-Maruyama approximation given in [18],
[20] as

Xti=Xti−1
+f(ti−1,X(ti−1))τ+g(ti−1,X(ti−1))4Lτα,i (5)

where the increment of the Lévy process is α-stable ran-
dom variable 4Lτα,i defined by 4Lτα,i = Lα([ti−1, ti]) ∼
Sα(τ1/α, β, µ) with τ = ti− ti−1 have been generated by the
method given in [18].

IV. NUMERICAL RESULTS IN THE CASE OF LEVY TYPE
FLUCTUATIONS AT THE LOAD

As mentioned in Section II for the deterministic SMIB
system when the damping parameter D is less than critical
damping level Dc a stable limit fixed point and a limit cycle
coexist and in this bistable case, depending on the initial
conditions, the trajectories converge either to SEP or to the
rotating orbit (limit cycle) which is undesired for the rotor
angle stability of SMIB. In this paper, based on a single initial
condition, the variation of the basin of attraction of the SEP
and the limit cycle under the stochastic load fluctuations have
been observed. However, by choosing all initial conditions in
the basin of attraction of deterministic SMIB system as in [21],
the variation of the basin of attraction over the impulsiveness
and skewness parameters will be further investigated. In the
sequel, the numerical solutions of the phase portraits of
generator angle and speed responses have been obtained for
1000 realizations for 200 seconds with the step size τ = 0.01
and the noise intensity σ = 0.01.

A. Variation of basin of attraction of SEP by increasing
impulsiveness and/or skewness

In this part, we have chosen an initial condition whose
trajectory converges to the SEP for the deterministic SMIB
and then for this initial condition we have obtained 1000
trajectories which correspond to the realizations of stochastic
SMIB.

1) “Gaussian type fluctuations” (Fig. 2a): Under the Gaus-
sian type fluctuations in the load (α = 2, β = 0) the angle
responses converge to the SEP and the SEP is stable in the
mean square sense.

2) “Increasing the impulsiveness” (Fig. 2b): However, at
the load fluctuations by increasing the impulsiveness by choos-
ing α = 1.8 while preserving the symmetry at the fluctuations
(i.e., β = 0) and hence aparting from the Gaussian fluctuations
although the majority of 1000 realizations converge to the SEP

(a) α = 2.0 β = 0 (b) α = 1.8 β = 0

(c) α = 1.95 β = 0 (d) α = 1.95 β = 1

Fig. 2. (a) Wiener type fluctuation (b)-(d) Lévy type fluctuations in the load
with various α and β parameters.

but for few of realizations sudden jumps occur in the rotor
speed and these trajectories converge to the rotating orbit (limit
cycle) which is undesired for the rotor angle stability.

3) “Distorting the symmetry” (Fig. 2d): Although the rotor
angle responses converge to the SEP for α = 1.95, β = 0 as
shown in Fig. 2c by increasing the skewness β = 1 few of
realizations converge to the rotating orbit as in section IV-A2.

From the above observations we can conclude that if the
load fluctuations apart from the Gaussian type fluctuations
either by increasing impulsiveness and/or distorting the sym-
metry then the basin of attraction of the SEP changes and
the SEP becomes no more stable in the mean square sense
and some of the trajectories converge to the limit cycle. This
important observation is distinct from the observation in [11]
which states that under the Wiener type fluctuations at the load
the SEP is stable in the mean square sense.

B. Variation of basin of attraction of limit cycle by increasing
impulsiveness and/or skewness

In this part, we have chosen an initial condition whose
trajectory converges to the limit cycle for the deterministic
SMIB and then for this initial condition we have obtained 1000
trajectories which correspond to the realizations of stochastic
SMIB.

1) “Gaussian type fluctuations” (Fig. 3a): When the ran-
dom fluctuations in the load are modeled as Wiener process,
all realizations converge to the rotating orbit and the rotor
angle of the system is unstable both in the mean square sense
and in the sense of probability.

2) “Increasing the impulsiveness” (Fig. 3b): When the
random fluctuations in the load are modeled as symmetric
Lévy process with α = 1.8, β = 0 although a few of the
trajectories converge to the SEP as shown in Fig. 3b (i.e.
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(a) α = 2.0 β = 0 (b) α = 1.8 β = 0

Fig. 3. (a) Wiener type fluctuation (b) Lévy type fluctuations in the load.

TABLE I
PERCENTAGE OF STOCHASTIC TRAJECTORIES CONVERGE TO THE SEP

H
HHHβ

α 1.9 1.8 1.6 1.5 1.4 1.2

0 1.2% 3.3% 10.8% 12.7% 24.5% 43.7%

-1 1.7% 4.8% 19.3% 26.4% 38.1% 61.0%

zoomed version of red area) the majority of trajectories still
converge to the rotating orbit (limit cycle) and hence the
rotor angle is still unstable both in the sense of probability
and in the mean square sense. However, with the increase of
impulsiveness the percentage of trajectories which converge to
the SEP for 1000 realizations increases as shown in Table I
and hence the stability of the rotor angle improves in the sense
of probability. This important observation is distinct from the
reponse of Wiener type fluctuations where the rotor angle is
unstable in the sense of probability which has been observed
in section IV-B1.

3) “Distorting the symmetry”: The similar behavior can be
observed in the case of the deviation from the symmetry in
the distributions of the load fluctuations. As shown in Table I
under the asymmetric load fluctuations with β = −1, the
percentage of trajectories which converge to the SEP increases
with the increase of impulsiveness and hence the stability of
the rotor angle improves in the sense of probability. However,
for β = 1 the trajectories do not converge to the SEP, all
trajectories converge to the limit cycle. This observation shows
us that the tendency of the distribution of load fluctuations is
also important for the rotor angle stability in the sense of
probability.

V. CONCLUSION

In this paper, the fluctuations in the load of SMIB systems
have been modeled as α-stable Lévy process and comparing
with Gaussian type fluctuations in the load, the effect of the
impulsiveness and/or skewness (asymmetry) in distributions
of fluctuations have been analyzed numerically. The aparting
from the Gaussianity in distributions of load fluctuations either
by increasing impulsiveness and/or distorting symmetry cause
the instability of rotor angle in the mean square sense for
the basin of attraction of SEP as observed in section IV-A
whereas for the basin of attraction of limit cycle as observed
in section IV-B, Lévy type fluctuations improve the stability

of rotor angle in the sense of probability and this result can
be considered as the benefit of noise. As a future work, the
variation of the basin of attraction of deterministic SMIB
system under Lévy type perturbations will be investigated.
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