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Abstract. The hydrodynamic flow in several bounded domains can be formulated by the
image theorems, like the two circle, the wedge and the strip theorems, describing flow by q-
periodic functions. Depending on geometry of the domain, parameter q has different geometrical
meanings and values. In the special case of the wedge domain, with q as a primitive root of unity,
the set of images appears as a regular polygon kaleidoscope. By interpreting the wave function
in the Fock-Barman representation as complex potential of a flow, we find modn projection
operators in the space of quantum coherent states, related with operator q-numbers. They
determine the units of quantum information as kaleidoscope of quantum states with quantum
group symmetry of the q-oscillator. Expansion of Glauber coherent states to these units and
corresponding entropy are discussed.

1. Introduction
The relation between hydrodynamics and quantum theory has long history starting probably
from Madelung representation of the Schrödinger equation in 1926. Here we propose another
type of relation based on Fock-Bargman representation of a quantum state by analytic function.
This function f(z) = φ(x, y)+iχ(x, y) can be interpreted as complex potential of incompressible
and irrotational hydrodynamic flow with complex velocity V̄ (z) = df(z)/dz. The problem is,
for given boundary curve C to find analytic function (complex potential) F (z) with boundary
condition ℑF |C = χ|C = 0, where χ is the stream function. This condition show that the
boundary curve is the stream curve and normal velocity across the boundary vanishes: vn|C = 0.
For simple geometry of boundary curves, several theorems solving this problem exist. The Miln-
Thomson circle theorem for one circle added to the planar flow, two circles theorem for the flow
in annular domain [1] and the strip theorem for the flow in a strip [2]. For two circle theorem
the flow is determined by q-periodic function, where parameter q is given by ratio of two circle
radiuses q = r22/r

2
1. The strip theorem corresponds to the limit q → 1, and the circle theorem

to q → ∞. In the case, when q is the root of unity, we have the wedge theorem [3].

2. Wedge theorem in hydrodynamics
For a given in plane flow f(z), introduction of boundary wedge with angle α = 2π

N = π
n , where

N = 2n - positive even number, produces the flow

Fq(z) =
n−1∑
k=0

f(q2kz) +
n−1∑
k=0

f̄(q2kz), (1)
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where q = ei
2π
N = ei

π
n is primitive root of unity qN = q2n = 1, [2]. This flow is q2-periodic

(rotation invariant), Fq(q
2z) = Fq(z), and corresponding complex velocity is rotation self-similar

V̄ (q2z) = q̄2V̄q(z), where q
2z = ei

2π
n z is rotation to angle 2π

n .

2.1. Vortex kaleidoscope
By this theorem for point vortex f(z) = iΓ

2π ln(z − z0) we have kaleidoscope of 2n vortices:

Fq(z) =
iΓ

2π

n−1∑
k=0

ln
z − z0q

2k

z − z̄0q2k
=
iΓ

2π
ln

n−1∏
k=0

z − z0q
2k

z − z̄0q2k
=
iΓ

2π
ln
zn − zn0
zn − z̄n0

,

with positive and negative strength Γ, located at z0, z0q
2, ..., z0q

2(n−1), and z̄0, z̄0q
2, ..., z̄0q

2(n−1),
correspondingly.

2.1.1. Trinity vortex flow For point vortex in wedge domain α = π
3 complex potential

F0(z) =
iΓ

2π
ln(z3 − z30)−

iΓ

2π
ln(z3 − z̄30),

describes the trinity flow shown in Figure 1a.

a) Classical trinity vortex flow b) Quantumqutrit flow

Figure 1. Classical and quantum flow with q6 = 1 symmetry

2.2. q-periodicity
The wedge theorem (1) determines kaleidoscope of images, which can be rewritten as

Fq(z) = (1 + q2z
d
dz + ...q2(n−1)z d

dz )(f(z) + f̄(z)) = [n]
q2z

d
dz
(f(z) + f̄(z)). (2)

This form implies that operator P0 =
1
n [n]q2z

d
dz

is the projection operator: P 2
0 = P0. Applied to

the half plane flow f(z) + f̄(z) this operator gives flow in the wedge domain.
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3. Dilatation and rotation operators in Fock-Bargman representation
The projection operator P0 is related with rotation and dilatation of coherent states in quantum
mechanics. The number operator N̂ = a+a, acting on m - particle states N̂ |m⟩ = m|m⟩,
m = 0, 1, ... implies following transformation of coherent state |z⟩:

q2N̂ |m⟩ = q2m|m⟩ → q2N̂ |z⟩ = |q2z⟩

(up to normalization factor) as multiplication of z with complex number q2: z → q2z. For
real q2 this is the dilatation transformation, and for q2 = eiθ it is rotation on angle θ. For an
arbitrary complex number q2 = |q2|ei arg q2 it is a combination of these two transformations.

In Fock-Bargman representation the number operator and corresponding eigenvalue problem
are N̂ = z d

dz , N̂zn = nzn, so that for any analytic function we have

q2z
d
dz zn = q2nzn → q2z

d
dz f(z) = f(q2z).

This allows us to rewrite projection operator (2) in Fock space as operator valued q2-number.

4. mod 3 states
4.1. Projection mod 3 operators in Fock space
The orthogonal and Hermitian operators

P0 =
1

3
(I + q2N + q4N ) =

1

3
[3]q2N =

∞∑
k=0

|3k⟩⟨3k|, (3)

P1 =
1

3
(I + q2N−2 + q4N−4) =

1

3
[3]q2(N−1) =

∞∑
k=0

|3k + 1⟩⟨3k + 1|, (4)

P2 =
1

3
(I + q2N−4 + q4N−2) =

1

3
[3]q2(N−2) =

∞∑
k=0

|3k + 2⟩⟨3k + 2|, (5)

satisfy algebra of projection operators: PiPj = δijPi, P †
i = Pi, i, j = 0, 1, 2. Due to

completeness relation P0 + P1 + P2 = I, the Fock space can be decomposed to orthogonal
subspaces HF = H0 +H1 +H2, where for any |ψi⟩ ∈ Hi, i = 0, 1, 2,

|ψi⟩ = Pi|ψ⟩ =
∞∑
k=0

c3k+i|3k + i⟩ =
∞∑

n=imod 3

cn|n⟩,

and |ψ⟩ = |ψ0⟩+ |ψ1⟩+ |ψ2⟩.

4.2. q-number operators and quantum Fourier transform
Combining these state vectors as column matrix we get |ψ0⟩

|ψ1⟩
|ψ2⟩

 =

 P0

P1

P2

 |ψ⟩ = 1

3

 I q2N q4N

I q2N−2 q4N−4

I q2N−4 q4N−2

 |ψ⟩
|ψ⟩
|ψ⟩


or  |ψ0⟩

|ψ1⟩
|ψ2⟩

 =
1

3

 1 1 1
1 q̄2 q̄4

1 q̄4 q̄2

 |ψ⟩
q2N |ψ⟩
q4N |ψ⟩

 . (6)
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4.3. Glauber trinity States
Let |α⟩ is the Glauber coherent state, then q2N |α⟩ = |q2α⟩, q4N |α⟩ = |q4α⟩ and due to (6) |α0⟩

|α1⟩
|α2⟩

 =
1

3

 1 1 1
1 q̄2 q̄4

1 q̄4 q̄2

 |α⟩
|q2α⟩
|q4α⟩

 .

This gives three orthonormal states, s = 0, 1, 2, as a basis in H:

|s⟩α =
|αs⟩√
⟨αs|αs⟩

=
Ps|α⟩√
⟨α|Ps|α⟩

,

where

|αs⟩ = Ps|α⟩ = e−
1
2
|α|2

∞∑
k=0

α3k+s√
(3k + s)!

|3k + s⟩.

The states |s⟩α we called as kaleidoscope of mod 3 coherent states [6].

4.4. Fock-Bargman decomposition
For arbitrary state |ψ⟩ in Fock-Bargman representation we have decomposition ⟨α|ψ⟩ =
⟨α0|ψ0⟩ + ⟨α1|ψ1⟩ + ⟨α3|ψ3⟩, implying ψ(ᾱ) = ψ0(ᾱ) + ψ1(ᾱ) + ψ2(ᾱ) for the wave function

ψ(ᾱ) = e|α|
2/2⟨α|ψ⟩. This is just expansion of analytic function ψ(z) = ψ0(z)+ψ1(z)+ψ2(z) to

the sum of three analytic functions ψ0(z)
ψ1(z)
ψ2(z)

 =
1

3

 1 1 1
1 q̄2 q̄4

1 q̄4 q̄2

 ψ(z)
ψ(q2z)
ψ(q4z)

 ,

with mod 3 symmetry: ψ0(q
2z) = ψ0(z), ψ1(q

2z) = q2ψ1(z), ψ2(q
2z) = q4ψ2(z). These

functions result from application of projection operators (3)-(5) in space of analytic functions

P0 =
1

3
(I + q2z

d
dz + q4z

d
dz ) =

1

3
[3]

q2z
d
dz
,

P1 =
1

3
(I + q2z

d
dz

−2 + q4z
d
dz

−4) =
1

3
[3]

q2(z
d
dz

−1) ,

P2 =
1

3
(I + q2z

d
dz

−4 + q4z
d
dz

−2) =
1

3
[3]

q2(z
d
dz

−2) ,

with properties q2z
d
dzPs = q2sPs, s = 0, 1, 2 and explicitly we have

ψs(z) =

∞∑
k=0

c3k+s
z3k+s√
(3k + s)!

.

5. Wedge theorem and q2 periodic states
5.1. q2 periodic quantum state
By analogy with the wedge theorem (1) we can construct q2-periodic quantum state as
superposition of coherent states

|0⟩α ≡ |α⟩+ |q2α⟩+ |q4α⟩+ ...+ |q2(n−1)α⟩ = (I + q2N̂ + q4N̂ + ...+ q2(n−1)N̂ )|α⟩ = [n]
q2N̂

|α⟩,

where due to q2nN̂ = I we have q2N̂ |0⟩α = |0⟩α.
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5.2. Self-similar quantum states
In addition to q2-periodic quantum state |0⟩α, exists the set of q2- self-similar quantum states
as superpositions of coherent states, determined by q2-operator numbers

|1⟩α ≡ [n]
q2N̂+2 |α⟩, |2⟩α ≡ [n]

q2N̂+4 |α⟩, ... , |n− 1⟩α ≡ [n]
q2N̂+2(n−1) |α⟩.

These states are orthogonal quantum states, satisfying the following self-similarity conditions:

q2N̂ |1⟩α = q2|1⟩α, q2N̂ |2⟩α = q4|2⟩α, ... , q2N̂ |n− 1⟩α = q2(n−1)|n− 1⟩α.

5.3. Wedge theorem for quantum states
Now we can formulate quantum analog of the wedge theorem (1). For arbitrary state

|ψ⟩ =
∞∑
n=0

cn |n⟩, |ψ̄⟩ =
∞∑
n=0

c̄n |n⟩, (7)

where ⟨ψ|ψ⟩ =
∑∞

n=0 |cn|2 = 1, by replacing ᾱ → z in the wave functions ⟨α|ψ⟩ =

e−
|α|2
2 ψ(ᾱ), ⟨α|ψ̄⟩ = e−

|α|2
2 ψ̄(ᾱ), the kaleidoscope expansion is definite by modn analytic

function, ψ0(z) ≡ 0ψ(z), where

ψ0(z) =
1

n
(ψ(z) + ψ(q2z) + ψ(q4z) + ...+ ψ(q2(n−1)z),

ψ̄0(z) =
1

n
(ψ̄(z) + ψ̄(q2z) + ψ̄(q4z) + ...+ ψ̄(q2(n−1)z).

Then for the state

|Ψ⟩ = |ψ⟩+ |ψ̄⟩ = 2
∞∑
n=0

ℜ(cn) |n⟩

expansion coefficients are real. Corresponding wave function ⟨α|Ψ⟩ = e−
|α|2
2 (ψ(ᾱ) + ψ̄(ᾱ))

determines the kaleidoscope of q2 - periodic function

Ψ0(z) = ψ0(z) + ψ̄0(z) =

=
1

n
(ψ(z) + ψ(q2z) + ψ(q4z) + ...+ ψ(q2(n−1)z) + ψ̄(z) + ψ̄(q2z) + ψ̄(q4z) + ...+ ψ̄(q2(n−1)z),

which is just the wedge theorem (1). This way we have identification of Fock-Bargman state ψ(z)
with complex potential f(z) in plane. In the wedge domain with q2n = 1, complex potential F (z)
corresponds to Fock-Bargman state Ψ0(z). Both, the wave function and the complex potential
are real on the wedge boundaries. For the wave function it means that the state is from real
vector space, like for the rebit state[4], and for the complex potential, that the stream function
vanishes on real line and the flow is along this line.

6. Coherent state decompositions
6.1. Even and odd mod 2 decomposition
For arbitrary vector in Fock space (7) the wave function is

⟨±α|ψ⟩ = e−
|α|2
2 (

√
cosh |α|2 α⟨0|ψ⟩ ±

√
sinh |α|2 α⟨1|ψ⟩),

and ⟨±α|ψ⟩ ≡ e−
|α|2
2 ψ(±ᾱ), where Fock-Bargman cat states are:

α⟨0|ψ⟩ =
ψ0(ᾱ)√
cosh |α|2

=
ψ(ᾱ) + ψ(−ᾱ)
2
√

cosh |α|2
, α⟨1|ψ⟩ =

ψ1(ᾱ)√
sinh |α|2

=
ψ(ᾱ)− ψ(−ᾱ)
2
√

sinh |α|2
.

Then ψ(α) = ψ0(α) + ψ1(α), which means that every analytic function is superposition of even
and odd functions.
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6.2. Kaleidoscope mod n decomposition
The Glauber coherent state

|α⟩ = e−
|α|2
2

n−1∑
s=0

√
se|α|

2 |s⟩α

and rotated states can be decomposed to modn states as Quantum Fourier Transform,
|α⟩
|q2α⟩
...

|q2(n−1)α⟩

 =
1

n


1 1 ... 1

1 q2 ... q2(n−1)

. . ... .

1 q2(n−1) ... q2(n−1)2

N


|0⟩α
|1⟩α
...

|n− 1⟩α

 , (8)

with normalization matrix N = diag[
√

0e|α|
2 ,
√

1e|α|
2 , ...,

√
n−1e|α|

2 ]. This determines the set of
entire complex functions

α⟨s|ψ⟩ =
1√
se|α|

2
ψs(ᾱ),

s = 0, 1, ..., n − 1, and ⟨α|ψ⟩ = e−
|α|2
2 ψ(ᾱ). By changing argument notation ᾱ → z it can be

seen as Discrete Fourier Transform coming from Quantum Fourier Transform (8),
ψ0(z)
ψ1(z)
...

ψn−1(z)

 =
1

n


1 1 ... 1

1 q̄2 ... q̄2(n−1)

. . ... .

1 q̄2(n−1) ... q̄2(n−1)2




ψ(z)
ψ(q2z)
...

ψ(q2(n−1)z)

 .

Then, an arbitrary analytic function is superposition of kaleidoscope functions

ψ(z) = ψ0(z) + ψ2(z) + ...+ ψn−1(z)

with self-similar (rotation) symmetry

ψ0(q
2z) = ψ0(z), ψ1(q

2z) = q2ψ1(z), ... , ψn−1(q
2z) = q2(n−1)ψn−1(z).

7. Quantum group structure
7.1. Clock and shift matrices
The dilatation (rotation) operator

q2N̂ = I ⊗ Σ3 = I ⊗


1 0 ... 0
0 q2 ... 0
. . ... .

0 0 ... q2(n−1)


is related with Sylvester clock and shift matrices Σ3 = HΣ†

1H
†, where

Σ1 =


0 0 ... 0 1
1 0 ... 0 0
. . ... .
0 0 ... 1 0

 , H =
1√
n


1 1 ... 1

1 q̄2 ... q̄2(n−1)

. . ... .

1 q̄2(n−1) ... q̄2(n−1)2

 .

The matrices are q2-commutative Σ1Σ3 = q2Σ3Σ1 and satisfy Σn1 = I, Σn3 = I. From dilatation

operator q2N̂ we have q2-number operator

[N̂ ]q̃2 =
q2N̂ − q−2N̂

q2 − q−2
= I ⊗ diag([0]q̃2 , [1]q̃2 , ..., [n− 1]q̃2)
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for the symmetric calculus, as matrix with diagonal elements given by q-numbers: [n]q̃2 =
q2n−q−2n

q2−q−2 . The operator can be factorized as [N̂ ]q̃2 = B̂+B̂, [N̂ + 1]q̃2 = B̂B̂+, where B̂n = 0,

(B̂+)n = 0, and

B̂ = I ⊗ â

√
[N ]q̃2

N
.

Explicitly in matrix form it is

B̂ = I ⊗


0

√
[1] 0 ... 0

0 0
√

[2] ... 0
...

...
...

. . .
...

0 0 0 ... 0

 , B̂+ = I ⊗


0 0 ... 0√
[1] 0 ... 0

0
√

[2] ... 0
...

...
. . .

...
0 0 ... 0

 .

7.2. Quantum q2 oscillator
The operators satisfy quantum algebra

B̂B̂+ − q2B̂+B̂ = q−2N̂ , B̂B̂+ − q−2B̂+B̂ = q2N̂

and determine quantum q2-oscillator with Hamiltonian

Ĥ =
~ω
2

(
[N̂ ]q̃2 + [N̂ + I]q̃2

)
.

The kaleidoscope states for arbitrary state (7) are the eigenstates of operators:

q2N̂ |ψs⟩ = q2s|ψs⟩, [N̂ ]q̃2 |ψs⟩ = [n]q̃2 |ψs⟩,

and eigenstates of Hamiltonian

Ĥ|ψs⟩ = Es|ψs⟩ =
~ω
2

(
[n]q̃2 + [n+ 1]q̃2

)
|ψs⟩,

with finite spectrum, s = 0, 1, ..., n− 1,

Es =
~ω
2

sin 2π
n (s+ 1

2)

sin π
n

. (9)

The same spectrum was obtained in [5] for description of physical system of two anyons.

In Fock-Bargman representation, the operators B =→ Dz, B
+ → z and [N̂ ]q̃2 = B+B → zDz

are acting on analytic functions ψ(z), so that for modn functions ψs(z) we have eigenvalue
problem

zDzψs(z) =
q2z

d
dz − q−2z d

dz

q2 − q−2
ψs(z) =

ψs(q
2z)− ψs(q

−2z)

q2 − q−2
=
q2s − q−2s

q2 − q−2
ψs(z) = [n]q̃2ψs(z).

For every kaleidoscope function in this representation the spectrum of Hamiltonian is (9):

Hψs(z) =
~ω
2
(zDz +Dzz)ψs(z) = Esψs(z).

In particular case of the Glauber coherent states, the wave function ψ(z) = eαz can be
decomposed on the set of kaleidoscope wave functions, given by modn exponential functions
ψs(z) =s e

αz, as eigenfunctions of this Hamiltonian.
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7.2.1. Qutrit flow As an example, in mod 3 case with q6 = 1, the wave function

ψ0(z) =0 e
αz =

1

3
(eαz + 2e−

1
2
αz cos(

√
3

2
αz)),

implies the flow in the wedge domain α = π
3 according to the complex potential

Ψ0(z) = ψ0(z) + ψ̄0(z),

satisfying the wedge theorem in this domain. The stream function of this flow for α = 1 + i is
shown in Figure 1b.

8. Entropy of kaleidoscope expansion
8.1. Cat states and entropy in Fock space
The even and odd states (the cat states) can be introduced for any vector in Fock space (7), by
projection operators to even and odd states, P0 =

∑∞
k=0 |2k⟩⟨2k|, P1 =

∑∞
k=0 |2k + 1⟩⟨2k + 1|,

P0 + P1 = I. The expansion is

|ψ⟩ = |ψ0⟩+ |ψ1⟩ =
√

⟨ψ|P0|ψ⟩ |0⟩ψ +
√

⟨ψ|P1|ψ⟩ |1⟩ψ, (10)

where even and odd states are:

|ψ0⟩ = P0|ψ⟩ =
∞∑
k=0

c2k |2k⟩, |ψ1⟩ = P1|ψ⟩ =
∞∑
k=0

c2k+1 |2k + 1⟩.

After normalization, the cat states become:

|0⟩ψ =
|ψ0⟩√

⟨ψ|P0|ψ⟩
, |1⟩ψ =

|ψ1⟩√
⟨ψ|P1|ψ⟩

.

The expansion (10) represents an arbitrary state as a qubit, with probabilities to measure even
and odd outcome states: p0 = ⟨ψ|P0|ψ⟩ and p1 = ⟨ψ|P1|ψ⟩, p0 + p1 = 1. As a random variable,
this state can be characterized by the level of randomness. The Shannon entropy

S = −p0 log2 p0 − p1 log2 p1 = −⟨ψ|P0|ψ⟩ log2⟨ψ|P0|ψ⟩ − ⟨ψ|P1|ψ⟩, log2⟨ψ|P1|ψ⟩

is measuring the level of randomness for state |ψ⟩ to be in even or odd part of Fock space, and
we call is as mod 2 entropy.

8.1.1. Glauber coherent states as qubits As an example we consider mod 2 qubit expansion of
Glauber coherent state:

|α⟩ = |α0⟩+ |α1⟩ = e−
|α|2
2

√
cosh |α|2 |0⟩α + e−

|α|2
2

√
sinh |α|2 |1⟩α,

to the pair of cat states

|0⟩α =
P0|α⟩√
⟨ψ|P0|ψ⟩

=
e|α|

2/2√
cosh |α|2

∞∑
k=0

α2k√
(2k)!

|2k⟩,

|1⟩α =
P1|α⟩√
⟨ψ|P1|ψ⟩

=
e|α|

2/2√
sinh |α|2

∞∑
k=0

α2k+1√
(2k + 1)!

|2k + 1⟩.
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The ratio p1/p0 = tanh |α|2, of probabilities p0 = e−|α|2 cosh |α|2, p0 = e−|α|2 sinh |α|2, related
with level of randomness, is constant on circles |α|2 = r2, giving number of photons in state |α⟩.
The Shannon entropy of the state is

S =
|α|2

ln 2
− e−|α|2

ln 2
(cosh |α|2 ln cosh |α|2 + sinh |α|2 ln sinh |α|2)

and it is shown in Figure 2. The minimal value of entropy corresponds to the limit α→ 0, |α⟩ →
|0⟩α, S → 0. The maximal value is at the Hadamard state α→ ∞, |α⟩ → |0⟩α+|1⟩α√

2
, S → 1.

8.2. Entropy of qutrit in Fock Space
The qutrit or mod 3 expansion of arbitrary state is

|ψ⟩ =
√

⟨ψ|P0|ψ⟩ |0⟩ψ +
√
⟨ψ|P1|ψ⟩ |1⟩ψ +

√
⟨ψ|P2|ψ⟩ |2⟩ψ,

where projection operators to trinity states are given in (3)-(5) and three orthonormal states
are

|0⟩ψ =
P0|ψ⟩√
⟨ψ|P0|ψ⟩

, |1⟩ψ =
P1|ψ⟩√
⟨ψ|P1|ψ⟩

, |2⟩ψ =
P2|ψ⟩√
⟨ψ|P2|ψ⟩

.

The corresponding mod 3 Shannon entropy

S = −⟨ψ|P0|ψ⟩ log2⟨ψ|P0|ψ⟩ − ⟨ψ|P1|ψ⟩ log2⟨ψ|P1|ψ⟩ − ⟨ψ|P2|ψ⟩ log2⟨ψ|P2|ψ⟩

is measure of randomness for state |ψ⟩ to be in 0,1 or 2 (mod 3) parts of Fock space.

8.2.1. Glauber coherent state as qutrit For Glauber coherent state the expansion is

|α⟩ = e−
|α|2
2 (

√
0e|α|

2 |0⟩α +
√

1e|α|
2 |1⟩α +

√
2e|α|

2 |2⟩α),

with probabilities ps = e−|α|2
se

|α|2 , s = 0, 1, 2.
The Shannon entropy (rotational invariant) is

S =
|α|2

ln 2
− e−|α|2

ln 2
(0e

|α|2 ln 0e
|α|2 +1 e

|α|2 ln 1e
|α|2 +2 e

|α|2 ln 2e
|α|2)

and it is shown in Figure 2. For α → 0, |α⟩ → |0⟩α, S → 0 and maximal value is

α→ ∞, |α⟩ → |0⟩α+|1⟩α+|2⟩α√
3

, S → ln 3
ln 2 .

Figure 2. Entropy of qubit (blue) and qutrit (yellow) expansions
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8.3. Entropy of qudit in Fock Space
The above expansion can be extended to arbitrary kaleidoscope states

|ψ⟩ =
n−1∑
s=0

|ψs⟩ =
n−1∑
s=0

√
⟨ψ|Ps|ψ⟩ |s⟩ψ,

where projection operators to modn states are Ps =
∑∞

k=0 |nk + s⟩⟨nk + s|, and qudit basis
states, s = 0,1,...,n-1, are

|s⟩ψ =
Ps|ψ⟩√
⟨ψ|Ps|ψ⟩

.

The modn entropy

S = −
n−1∑
s=0

ps log2 ps = −
n−1∑
s=0

⟨ψ|Ps|ψ⟩ log2⟨ψ|Ps|ψ⟩

is measure of randomness for state |ψ⟩ to be in 0,1,...,n-1 modn kaleidoscope in Fock space.

8.3.1. Glauber coherent state as qudit For Glauber state the kaleidoscope modn expansion is

|α⟩ = e−
|α|2
2

n−1∑
s=0

√
se|α|

2 |s⟩α,

with probabilities ps = e−|α|2
se

|α|2 , s = 0, 1, ..., n− 1. The Shannon entropy

S =
|α|2

ln 2
− e−|α|2

ln 2

n−1∑
s=0

se
|α|2 ln se

|α|2

is minimal for α → 0, |α⟩ → |0⟩α, S → 0 and maximal for α → ∞, |α⟩ →
|0⟩α+|1⟩α+...+|n−1⟩α√

n
, S → lnn

ln 2 .
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