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Abstract. A representation of one qubit state by points in complex plane is proposed, such
that the computational basis corresponds to two fixed points at a finite distance in the plane.
These points represent common symmetric states for the set of quantum states on Apollonius
circles. It is shown that, the Shannon entropy of one qubit state depends on ratio of probabilities
and is a constant along Apollonius circles. For two qubit state and for three qubit state in
Apollonius representation, the concurrence for entanglement and the Cayley hyperdeterminant
for tritanglement correspondingly, are constant on the circles as well. Similar results are obtained
also for n- tangle hyperdeterminant with even number of qubit states. It turns out that, for
arbitrary multiple qubit state in Apollonius representation, fidelity between symmetric qubit
states is also constant on Apollonius circles. According to these, the Apollonius circles are
interpreted as integral curves for entanglement characteristics. The bipolar and the Cassini
representations for qubit state are introduced, and their relations with qubit coherent states are
established. We proposed the differential geometry for qubit states in Apollonius representation,
defined by the metric on a surface in conformal coordinates, as square of the concurrence.
The surfaces of the concurrence, as surfaces of revolution in Euclidean and Minkowski spaces
are constructed. It is shown that, curves on these surfaces with constant Gaussian curvature
becomes Cassini curves.

1. Introduction
The multiple qubit states belong to multidimensional Hilbert space Cn and have entanglement
property, playing fundamental role in processing of quantum information. To develop
quantification of entanglement in terms of simple geometrical structures, in addition to the
traditional Bloch sphere, one can look for alternative representations of qubit. The stereographic
projection z = eiφ tan θ/2 from the south pole of unit sphere to complex plane C gives the
coherent qubit state representation

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiφ|1⟩ ⇒ |z⟩ = |0⟩+ z|1⟩√

1 + |z|2
. (1)

The ratio of probabilities p0 and p1, in this state,
√

p1
p0

= |z| ≡ r, p0 + p1 = 1, is constant along

concentric circles with radius r and it is related with the level of states randomness. Disadvantage
of this representation is that one of the computational basis states is at infinity. This makes
difficult to construct simple geometrical characteristics, related with distance between states
in the plane. Here we propose new representation of qubit by complex numbers, such that
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computational states are common symmetric states, placed at two finite points in complex
plane. Then the Möbius transformation of concentric circles determines the set of Apollonius
qubit states, with constant randomness along Apollonius circles.

2. Classification of two qubit states
The generic two qubit state in C2 × C2

|ψ⟩ =
∑
i,j=0,1

cij |i⟩ ⊗ |j⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩, (2)

where |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1, admits representation

|ψ⟩ = |0⟩ ⊗ |c0⟩+ |1⟩ ⊗ |c1⟩ = |0⟩ ⊗ (c00|0⟩+ c01|1⟩) + |1⟩ ⊗ (c10|0⟩+ c11|1⟩). (3)

2.0.1. Separability, linear dependence and determinant The state |ψ⟩ is separable iff states |c0⟩
and |c1⟩ are linearly dependent |c0⟩ = λ|c1⟩. This implies that it is separable if and only if the
determinant of the coefficients vanishes D ≡ c00 c11 − c01 c10 = 0.

2.0.2. Determinant and parallelogram area For real vectors c⃗0 = (c00, c01) and c⃗1 = (c10, c11)
this determinant describes area of the corresponding parallelogram

A = |⃗c0 × c⃗1| =
∣∣∣∣ c00 c01
c10 c11

∣∣∣∣ = |⃗c0||⃗c1| sin θ.

If A = 0 - the state is separable, and if A ̸= 0 - the state is entangled. Solving simple optimization
problem, to find possible values for area of this parallelogram with fixed sum (c⃗0)

2 + (c⃗1)
2 = 1,

we obtain that, 0 ≤ A ≤ 1
2 , and the double area C = 2A is bounded as 0 ≤ C ≤ 1.

2.0.3. Two qubit characteristics In generic complex case for two qubit state (3), |ψ⟩ =
|0⟩|c0⟩+ |1⟩|c1⟩, this becomes definition of the concurrence

C =

∣∣∣∣2 ∣∣∣∣ c00 c01
c10 c11

∣∣∣∣∣∣∣∣ , 0 ≤ C ≤ 1. (4)

If C = 0 - the state is separable, and if C = 1 - it is maximally entangled state.

2.0.4. Concurrence and fidelity The concurrence can be represented as fidelity C = F =
|⟨ψ̃|ψ⟩| between two states, |ψ⟩ = c00|00⟩ + c01|01⟩ + c10|10⟩ + c11|11⟩ = |0⟩ ⊗ |c0⟩ + |1⟩ ⊗ |c1⟩
and |ψ̃⟩ = c̃00|00⟩+ c̃01|01⟩+ c̃10|10⟩+ c̃11|11⟩ = |0⟩ ⊗ |c̃0⟩+ |1⟩ ⊗ |c̃1⟩, if the symmetric state is
defined as

|ψ̃⟩ = −c̄11|00⟩+ c̄01|01⟩+ c̄10|10⟩ − c̄00|11⟩. (5)

This symmetric state |ψ̃⟩ results from application of Y gate and anti - unitary gate K [1],

|ψ̃⟩ = Y ⊗ Y |ψ̄⟩ = (Y ⊗ Y )K|ψ⟩.
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2.0.5. Concurrence and inner product metric Decomposition (3) determines complex
Hermitian inner product metric

(G)ij = gij = ⟨ci|cj⟩, ḡij = gji, i, j = 0, 1,

with elements g00 = |c00|2 + |c01|2, g11 = |c10|2 + |c11|2, g01 = c̄00 c10 + c̄01 c11, and g10 = ḡ01 =
c00 c̄10 + c01. Then, the concurrence becomes expressed by area determined by this metric

A ≡
(
c00 c01
c10 c11

)
, G = (AA†)ᵀ =⇒ detG = |detA|2,

so that C = 2|detA| = 2
√
detG.

2.0.6. Concurrence and Reduced Density Matrix The above geometrical interpretation of
concurrence can be completed by physical characteristics. The pure state has density matrix
ρ = |ψ⟩⟨ψ|, trρ = 1, and the reduced density matrix is ρA = trBρ. For pure state, tr (ρ2A) = 1,
and for mixed state, tr (ρ2A) < 1. Expansion (3) gives the reduced density matrix

ρA = |c0⟩⟨c0|+ |c1⟩⟨c1| =
(

|c00|2 + |c10|2 c00c̄01 + c10c̄11
c01c̄00 + c11c̄10 |c01|2 + |c11|2

)
,

as the inner product metric ρA = GT and the concurrence becomes determined by reduced
density matrix C = 2|detA| = 2

√
detG = 2

√
det ρA. The concurrence C and reduced density

matrix ρA satisfy the following Pythagoras theorem

ρ2A +
C2

2
= 1,

and as follows, condition of separability becomes related with property of reduced state to be
pure or mixed. For separable state C = 0 ⇒ tr ρ2A = 1 - the reduced state is pure state and for

entangled state C ̸= 0 ⇒ tr ρ2A = 1 − C2

2 < 1 - it is a mixed state. This leads to definition of
entanglement in terms of ρA [1]: the entanglement E for a pure two qubit state |ψ⟩ is defined
as von Neumann entropy E(ψ) = −tr(ρA log2 ρA). In terms of concurrence, this entanglement
takes form of the Shannon entropy

E(C) = −1 +
√
1− C2

2
log2

(
1 +

√
1− C2

2

)
− 1−

√
1− C2

2
log2

(
1−

√
1− C2

2

)
.

As an example, we have two qubit state and corresponding concurrence

|z⟩ = |00⟩+ z|11⟩√
1 + |z|2

, C =
2|z|

1 + |z|2
,

so that the concurrence is constant for states along concentric circles |z| = r. The states on unit
circle |z| = 1 are maximally entangled.

3. Apollonius qubit states
3.1. Apollonius one qubit states

Applying Hadamard gate H = 1√
2

(
1 1
1 −1

)
to state |z⟩ in (1) gives symmetric Apollonius state

H|z⟩ = (z − 1)|0⟩+ (z + 1)|1⟩√
|z − 1|2 + |z + 1|2

.
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Computational basis states |0⟩ and |1⟩ are located now in complex plane at points z = −1
and z = 1, correspondingly. These points can be transformed to arbitrary points in plane. To
have more close analogy with classical bits as integer numbers 0 and 1, we can use another
representation. We place |0⟩ and |1⟩ states at values of z = 0 and z = 1, by scaling and shifting
z → 2z − 1, then we get non-symmetric Apollonius qubit

|a⟩ = (z − 1)|0⟩+ z|1⟩√
|z − 1|2 + |z|2

.

The ratio of probabilities to measure states |0⟩ and |1⟩ as level of randomness, is equal to ratio
of distances in plane, coinciding with Apollonius definition of circles

p1
p0

=
|z|2

|z − 1|2
≡ r2,

so that the states are common symmetric states for these circles. The Shannon entropy for
Apollonius qubit state is completely determined in terms of r only and is constant for states

along the circles: S(r2) = log2(1 + r2)− r2

1+r2
log2 r

2.

Figure 1. Apollonius qubit states

3.2. Apollonius two qubit states
1) The non-symmetric Apollonius two qubit state, Figure 1, is generated by circuit

|a⟩ ⊗ |0⟩ CNOT |A⟩

and is written below with corresponding concurrence

|A⟩ = (z − 1)|00⟩+ z|11⟩√
|z − 1|2 + |z|2

, C =
2|z||z − 1|

|z − 1|2 + |z|2
. (6)

2) The symmetric Apollonius state and corresponding concurrence are

|Z⟩ = (z − 1)|00⟩+ (z + 1)|11⟩√
|z − 1|2 + |z + 1|2

, C =
2|z2 − 1|

|z − 1|2 + |z + 1|2
.
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3.3. Concurrence distribution for Apollonius two qubit states
The entanglement for state (6) is completely determined by ratio of distances, as shown in Figure
2 and Figure 3 and it is a constant for states along Apollonius circles:

E(r2) = log2(1 + r2)− r2

1 + r2
log2 r

2,

∣∣∣∣ z

z − 1

∣∣∣∣ = r.

Figure 2. Entanglement for Apol-
lonius two qubit state - Contour
plot

Figure 3. Entanglement for
Apollonius two qubit state - 3D plot

3.4. Multiple qubit Apollonius states
The multiple qubit Apollonius states are generated by circuit

|a⟩ ⊗ |0⟩...|0⟩ ⊗ |0⟩ CNOT ⊗ ...I ⊗ I ... I ⊗ I...⊗ CNOT |A⟩

The state and its symmetric one,

|A⟩ = (z − 1)|00...0⟩+ z|11...1⟩√
|z − 1|2 + |z|2

, |Ã⟩ = −z̄|00...0⟩+ (1− z̄)|11...1⟩√
|z − 1|2 + |z|2

,

are giving fidelity

F = |⟨Ã|A⟩| = 2|z||z − 1|
|z − 1|2 + |z|2

=
2r

1 + r2
,

which is a constant on Apollonius circles.

4. Entanglement for multiqubit states
4.1. Concurrence determinant and Levi Civita symbols
For two qubit state (2) the concurrence determinant (4) can be rewritten in terms of Levi-Civita
tensors

C = 2 |⃗c0 × c⃗1| = 2|c00c11 − c01c10| = 2 | ϵij (c⃗0)i (c⃗1)j | = 2

∣∣∣∣ 12 ϵij ϵkl cik cjl
∣∣∣∣ .
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4.2. Cayley hyperdeterminant and 3 - tangle
For three qubit state |ψ⟩ =

∑
i,j,k cijk|ijk⟩, the analog of determinant is the hyperdeterminant

(A.Cayley, 1889)

detψ = −1

2
ϵi1i2 ϵj1j2 ϵi3i4 ϵj3j4 ϵk1k3 ϵk2k4 ci1j1k1 ci2j2k2 ci3j3k3 ci4j4k4 .

It determines the 3-tangle formula for three qubit state τ = 4 |detψ|.

4.3. 3 - tangle for Apollonius three qubit state
For Apollonius 3-qubit state

|A⟩ = (z − 1)|000⟩+ z|111⟩√
|z − 1|2 + |z|2

,

it gives tritangle

τ = 4|c2000 c2111| = 4
|z − 1|2|z|2

(|z − 1|2 + |z|2)2
= C2,

which is a constant along Apollonius circles.

4.4. n - tangle of n - qubit states
The 3- tangle determinant formula can be generalized to even number of multiple qubit states
[2]. For even n = 2k - qubit state

|ψ⟩ =
∑

i1i2...in

ci1i2...in |i1i2...in⟩

the n-tangle is defined by contraction of 4n-rank tensor ci1i2...in , and 2n - Levi Civita tensors

τ12...n = 2

∣∣∣∣∑
0,1

cα1α2...αn cβ1β2...βn cγ1γ2...γn cδ1δ2...δn ϵα1β1 ϵα2β2 ...

ϵαnβn ϵγ1δ1 ϵγ2δ2 ...ϵγn−1δn−1 ϵαnγn ϵβnδn

∣∣∣∣.
4.5. n - tangle for Apollonius n = 2k qubit state
For n = 2k multiqubit Apollonius state it gives n-tangle as square of concurrence

|z⟩ = (z − 1) |00...0⟩+ (z + 1) |11...1⟩√
|z − 1|2 + |z + 1|2

, τ12...n =
4 |z2 − 1|2

(|z − 1|2 + |z + 1|2)2
= C2,

which is a constant along Apollonius circles as is shown in Figure 4 and Figure 5.

5. Cassini Qubit States
5.0.1. Conformal mapping from Cassini curves to Apollonius circles The Cassini curve is
defined as a constant product of distances from fixed complex points −c and c,

|z − c||z + c| = a2.

For w = z2 it is a circle: |w − c2| = a2 =⇒ |w|2 − c2(w + w̄) + c4 = a4. Translating the
origin ξ = w − c2, the equation becomes |w − c2| = |ξ| = a2. In ξ plane, 0 and ∞ are
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Out[3]=

-2 -1 0 1 2

-2

-1

0

1

2

Figure 4. n-tangle of Apllonius
n=2k states - contour plot

Figure 5. n-tangle of Apllonius
n=2k states - 3D plot

symmetric points with respect to concentric circles. Corresponding Möbius transformation is

η = −c ξ+c
2

ξ−c2 =⇒ ξ = c2 η−cη+c , and for circle |ξ| = a2, it gives the Apollonius circle

|η − c|
|η + c|

=
a2

c2
.

Combining all transformations w = z2, ξ = w− c2, η = −c ξ+c
2

ξ−c2 we get relation between Cassini

curves and Apollonius circles:

η = −c z2

z2 − 2c2
. (7)

6. Cassini Qubit State

Due to transformation (7), the Apollonius qubit state |η⟩ = (η−c)|0⟩+(η+c)|1⟩√
|η−c|2+|η+c|2

can be represented

as the Cassini qubit state

|z⟩ = (z2 − c2)|0⟩+ c2|1⟩√
|z2 − c2|2 + c4

=
1√

|z2 − c2|2 + c4

(
z2 − c2

c2

)
.

Probabilities p0 =
|z2−c2|2

|z2−c2|2+c4 and p1 =
c4

|z2−c2|2+c4 , with ratio

p1
p0

=
c4

|z2 − c2|2
=
c4

a4
= r2

give the Shannon entropy S(r2) = log2(1 + r2)− r2

1 + r2
log2 r

2. This entropy is constant along

Cassini curves. For r = 1, the states are maximally random states, and the curve becomes the
Bernoulli lemniscate. The similar observations are valid for the concurrence, the 3-tangle and
the n- tangle for multiple qubit Cassini states. The maximally n-tangled Cassini qubit states
along the Bernoulli lemniscate are shown in Figure 6.

7. Bipolar Representation
The Apollonius circles, combined together with the set of orthogonal circles, give the bipolar
coordinates −∞ < τ <∞,−π < σ < π in complex plane z = x+ iy,

z =
eτ

eτ − eiσ
.
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Figure 6. Bernoulli lemniscate for maximally n-tangled Cassini states

The one qubit state in bipolar representation is defined as

|τ, σ⟩ = eiσ|0⟩+ eτ |1⟩√
1 + e2τ

.

The corresponding entropy depends only of τ ,

S(τ) = log2(1 + e2τ )− e2τ

1 + e2τ
log2 e

2τ = 1 +
ln cosh τ − τ tanh τ

ln 2
,

so that for τ = 0 =⇒ S(0) = 1 and for τ = ±∞ =⇒ S(±∞) = 0. The two qubit bipolar state
and corresponding concurrence are given as follows

|τ, σ⟩ = eiσ|00⟩+ eτ |11⟩√
1 + e2τ

, C =
1

cosh τ
= sech τ .

The fidelity or concurrence written in complex form

C = F = ⟨Ã|A⟩ = e−iσsech2τ

is one soliton solution of the Nonlinear Schrödinger equation

iCσ = Cττ + 2|C|2C.

8. Concurrence as conformal metric
The Cassini curves and Apollonius circles, as curves of constant entanglement can be interpreted
as integral curves of the concurrence flow, with stream function depending on concurrence. This
suggests also to consider these curves as the level curves of some two dimensional surface, which
we call the concurrence surface. The distance formula on this surface can be taken proportional
to n-tangle τ = C2. This is why we consider conformal metric on a surface as C2(x, y):

dl2 = g(z, z̄) dzdz̄ = C2(z, z̄) dzdz̄.
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For complex analytical changes z = z(w), the metric remains conformal: dl2 =

g(z(w), z(w))

∣∣∣∣ dzdw
∣∣∣∣2 dwdw̄, and the Gaussian curvature of the surface in conformal coordinates

acquires simple form

K = − 1

2g(x, y)
∆ ln g(x, y). (8)

8.1. Apollonius concurrence metric
For Apollonius two qubit state

|A⟩ = (z − 1)|00⟩+ z|11⟩√
|z − 1|2 + |z|2

, (9)

the metric is

dl2 =
4|z|2|z − 1|2

(|z − 1|2 + |z|2)2
dzdz̄.

In bipolar representation (8) it becomes

g(τ, σ) =
1

4 cosh2 τ(cosh τ − cosσ)2
. (10)

Corresponding Gaussian curvature in bipolar coordinates

K = − 1

2g(τ, σ)

(
∂2

∂τ2
+

∂2

∂σ2

)
ln(g(τ, σ)) (11)

takes the form

K = 4(cosh τ − cosσ)2 =
1

|z|2|z − 1|2
.

It is a constant along Cassini curves with fixed points 0 and 1: |z||z − 1| = 1√
K
. For maximally

entangled states with τ = 0, the Gaussian curvature is positive number

K = 16 sin4
σ

2
.

8.2. Concurrence surface as surface of revolution
The qubit state (1) determines conformal metric with Gaussian curvature

dl2 =
4|z|2

(1 + |z|2)2
dz dz̄, K =

1

|z|2
.

It can be considered as surface of revolution, generated by rotation of curve z = ϕ(
√
x2 + y2) =

ϕ(r). For z = u+ iv the metric is

dl2 = g(u, v)(du2 + dv2) = (1± (ϕ′(r))2) dr2 + r2dv2, (12)

where sign + corresponds to Euclidean space, and sign − to Minkowski space. The surface can
be recovered partially in Euclidean space, Figure 7, for 1 ≤ r ≤ 2 by revolution curve

z = ϕ(x) = z(1)±

(
ln

1 +
√
(3− x)(x− 1)

2− x
−
√

(3− x)(x− 1)

)
and in Minkowski space, Figure 8, for 0 ≤ r ≤ 1 with curve

z = ϕ(x) = z(1)∓ (
√
(3− x)(1− x)− arctan

√
(3− x)(1− x)).
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Figure 7. Concurrence surface in
Euclidean space

Figure 8. Concurrence surface in
Minkowski space

9. Conformal transformation of qubit coherent state
Instead of Möbius transformation to get Apollonius states we can consider more general qubit
states, determined by arbitrary analytic function µ(z). For two qubits we have:

|µ(z)⟩ = |00⟩+ µ(z) |11⟩√
1 + |µ(z)|2

.

The concurrence for this state gives the Riemannian metric

g(z, z̄) = C2 =
4µ(z)µ(z)

(1 + µ(z)µ(z))2
,

representing the general solution of the Liouville equation with variable Gaussian curvature K:

∆ lnC2 = −2K(z, z̄)C2, K(z, z̄) =

∣∣∣∣µz(z)µ(z)

∣∣∣∣2 .
In Apollonius case, µ(z) =

z + 1

z − 1
, the Gaussian curvature and the Liouville equation become

K(z, z̄) =
4

|z2 − 1|2
, ∆ψ = − 8

|z2 − 1|2
eψ,

where ψ = lnC2. Curves on the surface with constant Gaussian curvature are Cassini curves,

|z2 − 1|2 = 4

K
≡ a2, and the Liouville equation is in the canonical form ∆ψ = − 8

a2
eψ.
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