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*Izmir Katip Çelebi University, Izmir, Turkey, †Izmir Institute of Technology, Izmir, Turkey,
{University of Strathclyde, Glasgow, United Kingdom, §Ataturk University, Erzurum, Turkey
2.1 Introduction

The objective of this chapter is to emphasize the context in which the mechanics of

fiber composites is examined. Constitutive equations describing the stress-strain rela-

tions, micromechanics and macromechanics approaches for mechanical analysis

are reviewed. Since interfacial mechanics of composites is of primary importance

in discussing the material behavior, this concept is also presented with its constitutive

and governing equations. Finally, at the end of the chapter, strength failure theories for

orthotropic materials and dynamic behavior of composites are discussed.

The mechanics of materials contended with stresses, strains, and deformations

in engineering structures subjected to mechanical, thermal, and hygral loadings.

A common assumption in the mechanics of conventional materials, such as steel and

aluminum, is that they are homogeneous and isotropic [1]. However, fiber-reinforced

composites are inhomogeneous and nonisotropic.As a result, the analysis of themechan-

ics of fiber-reinforced composites ismuchmore complex than that of conventionalmate-

rials. The mechanics of fiber-reinforced composite materials is mainly studied at two

levels: (1) micromechanics level, in which the interaction of the constituent materials

is examined on a microscopic scale. In micromechanical analysis, stiffness, strength,

thermal, and moisture expansion coefficients of a lamina are found using the individual

properties of constituents (fiber and matrix), (2) macromechanics level, in which the

response of a fiber-reinforced composite material to mechanical and thermal loads is

studied on a macroscopic scale. The material is assumed to be homogeneous. Stresses,

strains, and deflections are determined using the equations of orthotropic elasticity.

2.2 Mechanics of continuous fiber-reinforced composites

Composites are materials in which a homogeneous matrix component is reinforced

by a stronger and stiffer constituent that is usually continuous or short fibers. Contin-

uous fiber-matrix composite materials include unidirectional or woven fiber laminae;

laminae are stacked on top of each other at various angles to form a multidirectional

laminate. The mechanical analysis of fiber-reinforced composites is performed in two

levels: micromechanical and macromechanical analyzes.

In the following parts, micromechanical and macromechanical analyzes of

continuous-fiber-reinforced composites have been introduced based on classical

lamination theory.
Fiber Technology for Fiber-Reinforced Composites. http://dx.doi.org/10.1016/B978-0-08-101871-2.00002-3

© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/B978-0-08-101871-2.00002-3
http://dx.doi.org/10.1016/B978-0-08-101871-2.00002-3


6 Fiber Technology for Fiber-Reinforced Composites
2.2.1 Macromechanical analysis

2.2.1.1 Constitutive equations

The classical lamination theory based on Kirchoff’s hypothesis is used to analyze the

infinitesimal deformation of thin-laminated structures. In this theory, it is assumed

that the laminate is thin and wide, layers are perfectly bonded, the material of each

layer is linearly elastic and has a uniform thickness, and there exists a linear strain

distribution through the thickness (small deformation). Thin-laminated structure

subjected to mechanical in-plane loading is shown in Fig. 2.1. Cartesian coordinate

system x, y, and z define global coordinates of the layered material. A layerwise

principal material coordinate system is denoted by 1, 2, and 3, and fiber direction

is oriented at angle θ to the x-axis [2,3].
Based on the theory, the resulting displacement field is then expressed as
Fig.
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w x, y, zð Þ¼w0 x, yð Þ

re u ,v ,w are the displacement components along x, y, and z coordinate direc-
whe 0 0 0

tions of a point on the midplane (z¼0), respectively (Fig. 2.2).

Eq. (2.1) implies that straight lines normal to geometric midplane before deforma-

tion remain straight after deformation. In this regard, transverse normal strain (εzz) and
shear components (γxz and γyz) become zero, and the strain field is then expressed as
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Fig. 2.2 Deformation in the case of classical theory of laminates [4].
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efore, the nonzero three strains in generalized form including mechanical (M),
Ther

thermal (T), and hygral (H) effects can be represented as in the following form [2]:
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γxy

2
4

3
5¼

εxxM

εyyM

γxy
M

2
4

3
5 +

εxxT

εyyT

γxy
T

2
4

3
5 +

εxxH

εyyH

γxy
H

2
4

3
5 (2.3)

e
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, the midplane strain matrix and the curvature matrix of the laminate subjected
Here

to loading are expressed as a function of the midplane displacements u0 and v0,
respectively:
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and
Fig.
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thermal and hygral strains are as follows:
And
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r determining the strain field, the stress-strain relation for kth layer of
Afte

composite plate (Fig. 2.3) based on the classical lamination theory can be written

in the following form:
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e �Q
� �

are the elements of the transformed reduced stiffness matrix,
wher ij k

determined as
�Q11 ¼Q11cos
4θ + 2 Q12 + 2Q66ð Þsin2θcos2θ +Q22 sin

4θ

�Q12 ¼ Q11 +Q22�4Q66ð Þsin2θcos2θ +Q12 sin4θ + cos2θ
� �

�Q22 ¼Q11 sin
4θ + 2 Q12 + 2Q66ð Þsin2θcos 2θ +Q22cos

4θ

�Q16 ¼ Q11�Q12�2Q66ð Þsin θcos 3θ + Q12�Q22�2Q66ð Þsin3θcos θ

�Q26 ¼ Q11�Q12�2Q66ð Þsin3θcos θ + Q12�Q22 + 2Q66ð Þsin θcos 3θ
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� �
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e the stiffness coefficients Q that are related to the engineering constants are
wher ij

given as follows:
Q11 ¼ E1

1� v21v12
Q12 ¼ v12E2

1� v21v12
Q22 ¼ E2

1� v21v12
Q66 ¼G12 (2.10)

, E and E , G are the longitudinal and transverse elastic modulus and in-plane
Here 1 2 12

shear modulus, respectively; v12 and v21 are major and minor Poisson’s ratios.

For thin composite subjected to hygro-thermo-mechanical loading, in general,

in-plane force resultants (force per unit width) and moment resultants (moment per

unit width) have the following relations:

Force resultants:
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matrices [A] and [B] appearing in Eq. (2.11) can be defined as
The
Aij ¼
XN

k¼1
�Qij

� �
k
hk�hk�1ð Þ Extensional stiffnessð Þ (2.12)

Bij ¼ 1

2

XN

k¼1
�Qij

� �
k
h2k �h2k�1

� �
Coupling stiffnessð Þ i, j¼ 1,2,6ð Þ (2.13)
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[NT], and [NC] are the resultant thermal and hygral forces, respectively:
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ent resultants:
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re D the bending stiffnesses, which are defined as in terms of lamina stiffness
whe ij

�Qij as
Dij ¼ 1

3

XN

k¼1
�Qij

� �
k
h3k �h3k�1

� �
(2.17)

more general representation, the constitutive equation of a laminated plate is
In a

obtained by grouping Eqs. (2.11) and (2.16) into a single-matrix equation of the form:
Nx

Ny

Nxy

Mx

My

Mxy

2
666666664

3
777777775
¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
666666664

3
777777775

εxx0

εyy0

γxy
0

kxx

kyy

kxy

2
666666664

3
777777775

(2.18)

matrix given above is called as the stiffness matrix of the laminate. Here, the
The

matrix B represents a coupling between stretching and bending of a laminate. In case

the laminate is symmetrical, a stretching-bending coupling effect does not exist. Thus,

the analyzing of the behavior of symmetrical matrices is much simpler than that of the

laminates having a coupling effect.
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2.2.2 Micromechanical analysis

In the macromechanical analysis discussed above, basic lamina constants E1, E2, G12,

and v12 are assumed to be known from direct experimental characterization of the

unidirectional material. It is desirable to have reliable predictions of lamina constants

as a function of constituent properties (matrix and fiber properties). A specialized area

of composites involving a study of the interaction of constituent materials on the

microscopic level is generally conducted by the use of a mathematical model describ-

ing the response of each constituent material. In this section, mechanics of material

approach that the fibers and matrix are assumed to be under uniform stress is handled

and the expressions are given for determination of the basic elastic properties of the

lamina [5,6].

The longitudinal and transverse modulus, Poisson’s ratio, and shear modulus are

given, respectively, by the following relations:
E1 ¼Vf E1f +VmEm (2.19)

E2 ¼ E2f Em

Vf Em +VmE2f
(2.20)

v12 ¼Vf v12f +Vmvm (2.21)

G12 ¼ G12f Gm

VfGm +VmG12f
(2.22)

e subscript 1 and 2 and f and m appearing in the above equations denote the lon-
wher

gitudinal and transverse directions and fiber and matrix properties, respectively. Vf

and Vm represent fiber and matrix volume fractions, respectively. In the above formu-

lations, fibers are assumed to be transversely isotropic.
2.3 Mechanics of short fiber-reinforced composites

A number of models have been proposed to predict the physical properties of

short-fiber and particulate-reinforced composites. These composite models can be

grouped into five basic models: law of mixtures, shear lag, laminated plate, variational

principle, and Eshelby’s models. Law of mixtures and shear-lag models give poor

estimation of stiffness of a composite where the aspect ratio of short fibers is small

[7]. In addition, semiempirical models distinguish spherical and nonspherical partic-

ulate systems. These expressions are generally based on some physics arguments and

determination of fitting parameters. Some semiempirical models that rely on the deter-

mination of adjustable parameters have been developed due to the complexity of

the geometric features (filler aspect ratio, volume fraction, filler orientation, etc.)

and inadequacies of the theoretical models.
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2.3.1 Law of mixtures

It is considered that a composite with N different reinforcing elements is distributed in

a matrix. Assume that each fiber has a shear modulus μi and volume fraction of fibers

is Vi (i¼1,2,3,…,N) and the shear modulus and volume fraction of matrix material are

μ0 and V0, respectively. The shear modulus of composites μc is
μc ¼
XN

i¼0
Viμi (2.23)

re
whe
XN

i¼0
Vi ¼ 1 (2.24)

me that the externally applied shear strain γa is equal to shear strains in all
Assu

phases including the matrix that can be explained as the average strain γ. Since the

stress in the ith phase, σi, is given by μiγ, the average stress in the composite can

be approached by
σ¼
XN
i¼0

Viσi ¼
XN
i¼0

Viμiγ (2.25)

he other hand, the average stress σ is related to the applied strain γa (¼γÞ by
On t
σ¼ μcγ (2.26)

e shear moduli μ and μ are replaced by the strength of composite σ and rein-
If th c i c

forcing material σi, composite strength can be obtained as
σc ¼
XN

i¼0
Viσi (2.27)

e case of two-phase system, matrix, and one kind of reinforced element, Eq. (2.27)
In th

can be written as
σc ¼V0σ0 +V1σ1 ¼Vmσm +Vf σf (2.28)

re the indexes m and f define matrix and fiber, respectively. The value predicted
whe

by law of mixtures is an upper bound, because the strain in the fiber and the matrix are

not equal [7,8].
2.3.2 Shear lag model

Shear-lag model was developed by Cox [9] and adequately predicts the stress transfer

in fiber-reinforced composites, particularly for large differences in inclusion to matrix

elastic modulus ratios [10]. It is assumed that short fibers having uniform length and
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diameter are aligned in the loading direction and distributed uniformly throughout the

material as seen in Fig. 2.4A. A unit cell shown in Fig. 2.4B represents the basic

model, in which short fiber surrounded bymatrix. The other boundary of the surround-

ing matrix is taken as midsurface between two short fibers. This short-fiber composite

is subjected to the applied uniaxial strain e along the z direction. Let the axial displace-
ments in the fiber and the matrix on the boundary of the unit cell (r¼D/2) be denoted
by u and v, respectively.

In addition, it is assumed that the difference in the axial displacements, u and v, is
proportional to the shear stress τ0 at the matrix-fiber interface. One can obtain
e

e

e

(A)

(B)

Fig.

(B) u
dσf
dz

¼�4τ0
d

¼ h u� vð Þ (2.29)

e σ is the axial stress in the fiber. The first equality in Eq. (2.29) was derived by
wher f

considering the equilibrium of force along the z direction. It is noted that the positive
direction of shear stress τ0 is taken through the positive z axis. In this step, Hooke’s law
is also valid for the fiber as
σf ¼Ef
du

dz
(2.30)

omechanics is concerned with the prediction of elastic, viscoelastic, and strength
Micr

properties of composites form those of their individual constituents. The objective of

any such analysis is to model a heterogeneous material by an anisotropic continuum.

The stresses and strains obtained by continuum analyzes are to be considered as
e

e

e

e

e

e

e

e

e

Matrix r Fiber

d D

L

I

z

2.4 Shear-lag model for aligned short-fiber composite: (A) representative short fiber and

nit cell model for shear-lag analysis [7].
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averages over the smallest repetitive cell and are sufficiently accurate when changes in

applied stresses are smaller distances of the size of the inclusions [8]. Micromechanics

is still an area of active research in order to bring theoretical predictions into better

agreement with experimental results. Reviews of earlier work pertaining to compos-

ites with continuous-fiber reinforcement can be found in textbooks [11,12] and review

articles [13]. The various approaches proposed can be classified as follows: netting

analysis, mechanics of materials, self-consistent model, variational, exact, statistical,

discrete element, semiempirical methods, and microstructural theories. The useful-

ness of these theories lies in the fact that they provide some insight into the mechanics

of fiber or particular application by the compounder and the stress analyst.

Most theories consider spherical, disk-shaped, or short-fiber isotropic inclusions in

an isotropic matrix. Even though some fibers, such as Kevlar, are known to have a

microfibrillar structure and are themselves anisotropic, the effective moduli predicted

are in reasonable agreement with experimental results. The basic assumptions com-

mon to these analyzes are the following:

l The filler particles are of idealized shape (spherical, cubic, and rod-like).
l There is complete adhesion between matrix and filler.
l Elongations are small.
l Complete dispersion is achieved.
l Volume loadings are low enough to ignore interactions of order higher than two.
l The matrix can be considered to be continuous and homogeneous.

There are many examples of analytic and numerical modeling for microsized compos-

ites. However, in nanocomposite systems, several issues need to be developed. Some

authors studying composite materials are generally interested in either prediction of

elastic properties of the composite or volume-change problems.

Semiempirical models are most widely used expressions in the prediction of elastic

modulus. These expressions are generally based on some physics arguments and

determination of fitting parameters [14]. A better understanding of the mechanical

behavior and predicted elastic modulus is essential in the development of the compos-

ites. This also assists the improvement of material processing. For this reason, the

modulus of polymer composites has been extensively studied experimentally and

predicted with a two-phase model by various researchers. Some semiempirical models

that rely on the determination of adjustable parameters have been developed due to the

complexity of the geometric features (filler aspect ratio, volume fraction, filler orien-

tation, etc.) and inadequacies of the theoretical models as mentioned above. All of the

theoretical modeling approaches based on the relations of the elastic constants are

given in Eqs. (2.31a)–(2.31c). For an isotropic material, there are two elastic con-

stants: Young’s modulus (E) and Poisson’s ratio (ν) to define the elastic response

of the composites:
G¼ E

2 1 + νð Þ (2.31a)

E¼ 9KG

3K +G
(2.31b)
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ν¼ 3K�2G

2 3K +Gð Þ (2.31c)

e above equations, K refers to the bulk modulus, and G is shear modulus of the
In th

material. In the following section, semiempirical models for spherical and non-

spherical particulate systems are investigated.
2.3.3 Semi empirical models for spherical particulate systems

Semiempirical models based on the physical parameters have the following general

form [15]:
Pc ¼
Pm 1 + ξXVf

� �
1�XψVf

(2.32a)

X¼ Pf �Pm

Pf + xPm
(2.32b)

, P denotes the bulk modulus (K) or the shear modulus (G), and V is the volume
Here f

fraction. The subscripts c,m, and f refer to the composite, matrix, and the filler, respec-

tively. In this formulation, ξ and ψ can be treated as adjustable parameters that are

specifically defined in each model. Based on the formulation given in Eqs. (2.32a),

(2.32b), there are several formulations proposed in the literature in order to predict

the elastic modulus of the composites reinforced by spherical fillers. In these systems,

the reinforcing particles are considered to be spherical or near spherical; therefore, the

effective aspect ratio is unity. The following four most commonly used models were

developed by Guth and Gold, Halpin-Tsai (HT), Lewis-Nielsen (LN), and Chantler,

Hu, and Boyd (Ch) that are related with the adjustable parameters ξ and ψ .

2.3.3.1 Halpin-Tsai model

Halpin and Tsai developed a widely used composite theory to predict the stiffness of

continuous-fiber composites as a function of aspect ratio. This theory is based on the

early micromechanical work of Hermans [16] and Hill [17]. Halpin and Tsai adapted

Hermans’ model for particulate systems. Based on Eq. (2.32), P represents the

Young’s modulus, ξ is a shape parameter that depends on matrix Poisson’s ratio, filler

geometry, orientation, and loading direction, and it was found to be 2 for particulate-

filled composites. Moreover, for shear-modulus predictions, ξ¼ 1 can be used or the

equality as follows:
ξG ¼ 7�5νm
8�10νm

(2.33a)

cluding matrix Poisson’s ratio (ν ), the parameter can be calculated precisely. In
By in m

the same manner for bulk modulus, the term is as follows:
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ξK ¼
2 1�2νmð Þ
1 + νm

(2.33b)

last parameter, ψ , used in Eqs. (2.32a), (2.32b) is taken as 1 in Halpin-Tsai model.
The

The Halpin-Tsai equations are known to fit some experimental data very well at low

volume fractions, but it underestimates stiffness values at high volume fractions [18].

This has prompted some modifications to their model. By adapting this formulation to

the short-fiber composites, Halpin and Tsai noted that the shape parameter, ξ, lies
between 0 and∞. For example, if ξ is taken as∞, then Eqs. (2.32a), (2.32b) reduced

to the rule of mixtures as in the following form [19]:
P¼ νf Pf + νmPm (2.34a)

ever, for ξ¼0, Halphin-Tsai formulation becomes the inverse rule of mixture as
How

follows:
1

P
¼ νf
Pf

+
νm
Pm

(2.34b)
2.3.3.2 Lewis-Nielsen model

This model was developed by Nielsen [20] and Lewis and Nielsen [21] using the anal-

ogy between the stiffness of the composite and viscosity of a suspension of rigid par-

ticle in a Newtonian fluid. This model is also a modification of the Halpin-Tsai model.

It was designed to compensate the Halpin-Tsai model’s lack for the prediction of mod-

ulus at high-filler-loading composites. In their formulation, an equation in which the

stiffness not only matches with dilute theory at low volume fractions but also displays

rigid reinforcement as Vf approaches a packing limit Vf
max. It is used to account for the

limits imposed by the maximum packing for uniformly sized spherical particles. The

following expressions are given for the model:
ξG ¼ 7�5νm
8�10νm

(2.35a)

ξK ¼
2 1�2νmð Þ
1 + νm

(2.35b)

ψ ¼ 1 +
1�Vf

max

Vf
max

� �2
 !

Vf (2.35c)

, vm is matrix Poisson’s ratio and Vf
max is the maximum volume fraction of filler.
Here

For uniform sizes of spheres, Vf
max is 0.66 for random packing, and if the composite

system does not have uniform size distribution of particles, then Vf
max is considered to
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be between 0.66 and 1 [14]. The parameters, ξG and ξK, are used for the prediction of

shear and bulk modulus, respectively. It is obvious that ξG and ξK are the same as in

Halpin-Tsai model; however, the parameter ψ is a function of volume fraction and

maximum volume fraction of the filler in the Lewis-Nielsen model.

2.3.3.3 S-combining rule

This approach considers a composite system with the stiff spherical inclusions in a

more compliant matrix, such that for particulate-filled polymers with Pf>Pm. For

rigid uniformly sizes of spheres, the adjustable parameters ξG, ξK, and ψ can be

expressed as follows [18]:
ξG ¼ 7�5νm
8�10νm

(2.36a)

ξK ¼
2 1�2νmð Þ
1 + νm

(2.36b)

ψ ¼ 1 +
1�Vf

max

Vf
max

� �
Vf :Vf

max + 1 +Vf

� �
1�Vf

max
� �� �

(2.36c)

, V max is the maximum volume fraction of the filler. Comparing the Halpin-Tsai,
Here f

Lewis-Nilsen, and S-combining rule, it can be seen that the parameter ψ has different

mathematical form in each model. Therefore, it can be useful to investigate the var-

iation of ψ for appropriate maximum volume fraction of filler and Vf. Fig. 2.5 shows

this effect for different values of Vf
max. Another important difference among HT, LN,

and S-combining rule models is that Young’s modulus values may not be predicted

directly by LN or S-combining models, while HT model allows prediction of Young’s

modulus of the composite without extra calculation. Young’s modulus can be gener-

ated from the predicted values of bulk modulus K and shear modulus G through the

auxiliary expression given in Eqs. (2.31a)–(2.31c) for LN or S-combining models.
2.3.3.4 Chantler, Hu, and Boyd (CHU) model

Chantler and coworkers presented a new phenomenological model based on the

classic Hertzian elastic contact theory. The following expression can be used to pre-

dict the elastic modulus of composites (Ec) [22]:
Ec ¼Em Ef =Em

� �1� 1�Vfð Þβ
(2.37a)

e
wher
β¼
2 1�ν2f

� 	
= 1�ν2m
� �h i1:7

ln Ef =Em

� � (2.37b)
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where vf and vm are Poisson’s ratio of the filler and matrix and Em and Ef are the elastic

modulus ofmatrix and filler, respectively. The results of this study demonstrate that the

previous phenomenologicalmodel given inBraem et al. [23] is deficient if themodulus

ratioEf/Em is higher than 10.Amodified approach givesmuch improved predictions for

composite modulus and also satisfies the boundary conditions for bulk filler and resin

materials. In contrast to the previouslymentionedmodels (HT, LN, and S), CHBmodel

considers Poisson’s ratio of the filler (vf). However, the reported studies about the

nanocomposite modeling indicate that the effective material parameter is only vm.
As in HT model, CHB model also allows calculation of Young’s modulus directly.

2.3.3.5 Guth and Gold model

By adapting the Einstein coefficient, (KE) is equal to 2.5 in the Einstein equation,

which is valid only at very low concentrations (< %10) of the filler, Guth and Gold

[24] obtained the following formulation that is only applicable to elastomers filled

with a certain amount of spherical fillers, and the formulation can be used for concen-

trations up to 30%:
Ec ¼Em 1 + 2:5Vf + 14:1Vf
2

� �
(2.38a)
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Most of the models adequately predict the behavior for particulate-filled systems in

the volume-fraction concentration in the range of 0� Vf �1/3; however, only

S-combining rule and Lewis-Nielsen models have the capability of prediction at

higher volume-fraction concentrations of filler [18]. To increase the capability of pre-

diction of Guth and Gold model at higher volume fraction, the equation is modified in

the following form, which is valid at filler concentration of up to 45%:
Ec ¼Em 1 + 2:5Vf + 16:2Vf
2

� �
(2.38b)
2.3.4 Semi empirical models for nonspherical particulate systems

The composite systems such as in layered clay/polymer nanocomposites contain

platelet like nonspherical particles. Nonspherical particulate-reinforced composites

have slightly higher elastic modulus (E) than those based on spherical particulate

systems. There are several important models that have appropriate prediction capabil-

ity of elastic modulus of the nonspherical filled composite systems. In this section,

we consider four different models developed for the estimation of elastic modulus

of inorganic clay-layer-incorporated thermoset polymer nanocomposites.

2.3.4.1 Halpin-Tsai model

Halpin-Tsai equations are widely used expressions in order to predict reinforcement

effect of fillers in nanocomposite systems with both spherical (or near spherical) and

nonspherical filled systems. Halpin-Tsai equations were modified by Halpin and

Kardos [19] for the plate-like filler as expressed in the following form:
Ec ¼
Em 1 + ξηVf

� �
1�ηVf

(2.39a)

e
wher
η¼Ef =Em�1

Ef =Em + ξ
(2.39b)

, E denotes elastic modulus of the filler, and ξ is the shape factor depending on
Here f

the filler orientation and loading direction. For the rectangular plate-like filler in a

composite system, ξ is equal to 2w/t in which w is the width and t is the thickness

of the dispersed phase. The effect of aspect ratio on Halpin-Tsai model is illustrated

in Fig. 2.6. The aspect ratio α has very significant effect on elastic modulus of the

composite even at low volume fraction of the filler.

2.3.4.2 Modified Halpin-Tsai model

Lewis and Nielsen [21] and Nielsen [20] considered the maximum volumetric packing

fraction of the filler ψ as an additional parameter in order to improve the prediction

ability of the classical HT model. Maximum volumetric packing fraction can be
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defined as the ratio of true volume of the filler to apparent volume occupied by the

filler. Modified Halpin-Tsai model can be written in the following form:
Ec ¼
Em 1 + ξηVf

� �
1�ψηVf

(2.40a)

re
whe
ψ ¼ 1 +
1�Vf

max

Vf
max

� �2
 !

Vf (2.40b)

η¼Ef =Em�1

Ef =Em + ξ
(2.40c)

d on Lewis and Nielsen [21] and Nielsen [20] modification, Fig. 2.7. shows
Base

the effect of the aspect ratio α on the elastic modulus of the composite reinforced

by nonspherical particulate fillers based on modified Halpin-Tsai equation.

Similar to Halpin-Tsai model for nonspherical systems, the modified Halpin-Tsai

model predicts a significant effect of aspect ratios of filler on the modulus of the

composite.
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2.3.4.3 Guth model

The relations between Young’s modulus and the concentration of filler given by

Guth and Gold in Eqs. (2.38a), (2.38b) were modified by Guth [25] for nonspherical

filled particulate composites. This modified model considers the chains composed of

spherical fillers that are similar to rod-like filler particles embedded in a continuous

matrix. By introducing a shape factor to original Guth and Gold equation, Guth

developed a new expression as in the following form:
Ec ¼Em 1 + 0:67αVf + 1:62 αVf

� �2h i
(2.41)

e α is the shape factor (length/width of the filler), E is the elastic modulus of the
wher m

matrix, and Ec is the elastic modulus of the composite [26].
2.3.4.4 Brodnyan model

Modifying the Mooney equation [27,28] expressed the following equation to predict

the elastic modulus of the nonspherical particulate composites under the restriction of

1< α< 15 :
Ec ¼EmExp
2:5Vf + 0:407 α�1ð Þ1:508Vf

1�Vf =Vf
max

 !
(2.42)
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2.4 Mechanics of woven fabric composites

Orthogonal two-dimensional woven-fabric composites consist of threads such as

strands, yarns, and woven rovings in warp direction L and weft (fill yarns) direction

T that are principal directions.Woven have good stability in the warp and filling direc-

tions. Weaves repeat after a certain number of warp, weft strands, or yarns. Plain

weave, 3�1 twill, cross ply weave, and unidirectional weave are some common

weave styles. Weaves contain repetitive pattern in both directions as shown in

Fig. 2.8. Some disadvantages of woven fabrics related to the design of certain com-

posite products can be regarded as anisotropy, poor in-plane shear resistance, difficult

handling of open constructions, and yarn-to-fabric tensile translation efficiency due to

yarn crimp and crimp exchange [30].

Mechanicalproperties inplain-weave fabricbecomealmost identical in twodirections

of warp and weft. However, the plain-weave fabric enables a high degree of crimp to the

fibers, which decreases somemechanical performances of the composite. In twill-weave

fabric, a regular diagonal pattern is producedon the cloth.The twill-weavecloth provides

slippage that occurs between the fibers. In unidirectional-weave fabric, the threads are

formed in the warp direction. The warp threads in the unidirectional weave are held

together by fineweft threads.Maximummechanical performance is obtained in thewarp

direction [4].
2.4.1 Constitutive equations

In mechanical analysis of the woven-fabric laminates, the elastic properties of warp

and left unidirectional layers shown in Fig. 2.9 are used as in the following form:
Fill

Fig.
Warp layer : ELwp ETwp vLTwp GLTwp

Weft layer : ELwf ETwf vLTwf GLTwf
Warp

1

2

Plain 3 × 1 Twill 2 × 2 Twill Unidirectional weave

2.8 Schematic representation of woven-fabric weave styles [29].
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e elastic properties refer to the respective principal directions of each layer.
Thes

The reduced stiffness matrix coefficients of the warp layer with respect to the prin-

cipal direction of the warp layer and thus reinforced cloth layer can be given from

Eq. (2.10) as follows:
Qwp
11 ¼ αwpELwp Qwp

12 ¼ αwpvLTwpELwp Qwp
22 ¼ αwpETwp (2.43)

Qwp
16 ¼Qwp

26 ¼ 0 Qwp
66 ¼GLTwp (2.44)

e
wher
αwp ¼ 1

1�ETwp

ELwp
v2LTwp

larly, the reduced stiffness matrix coefficients of the weft layer can be expressed
Simi

in its principal directions as follows:
Qwf
11 ¼ αwf ELwf Qwf

12 ¼ αwf vLTwf ETwf Qwf
22 ¼ αwf ETwf (2.45)

Qwf
16 ¼Qwf

26 ¼ 0 Qwf
66 ¼GLTwf (2.46)

e
wher
αwf ¼ 1

1�ETwf

ELwf
v2LTwf

extension stiffness matrix coefficients Aij (i, j¼1, 2, 6) given by Eq. (2.12) that
The

define the behavior of the cloth reinforcement layer can be expressed as
Aij ¼ hwpQ
wp
ij + hwfQ

,wf
ij (2.47)
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where hwp and hwf are warp and weft layer thicknesses expressed as functions of the

thickness ec of the layer and of the balancing coefficient k along the warp in the fol-

lowing forms:
hwp ¼ kec hwf ¼ 1� kð Þec (2.48)

cloth is specified as unidirectional in both warp and weft directions for k¼1 and
The

0, respectively. The cloth is balanced for k¼1.

The in-plane behavior of a cloth-reinforced layer is defined by the following

constitutive equation:
Nx

Ny

Nxy

2
64

3
75¼

A11 A12 0

A12 A22 0

0 0 A66

2
64

3
75

ε0xx

ε0yy

γ0xy

2
664

3
775 (2.49)

the case of tension in the warp direction, in-plane resultant forces are
For
Nx 6¼ 0, Ny ¼ 0, Nxy ¼ 0 (2.50)

, N ¼A ε0 +A ε0 , and hence
Then x 11 xx 12 yy
Nx ¼ A11 +
A2
12

A22

� �
ε0xx can be obtained (2.51)

tic properties, the Young modulus, and Poisson’s ratio in the weft direction are as
Elas

following:
EL ¼ 1

ec
A11�A2

12

A22

� �
(2.52)

vLT ¼A12

A22

(2.53)

he case of tension in the weft direction, Young’s modulus ET and the Poisson ratio
For t

vTL are described, respectively as
ET ¼ 1

ec
A22�A2

12

A11

� �
vTL ¼A12

A11

¼ vLT
ET

EL
(2.54)

he case of in-plane shear in the weft direction, the shear modulusG is defined as
For t LT
GLT ¼GTL ¼ 1

ec
A66 (2.55)
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The elastic constants of a two-dimensional cloth-reinforced layer obtained by the equa-

tions given above can bewritten in the following form substituting theAij coefficients as
EL ¼ 1�αð Þ kαwpELwp + 1� kð Þαwf ETwf

� �
(2.56)

ET ¼ 1�αð Þ kαwpETwp + 1� kð Þαwf ELwf

� �
(2.57)

vLT ¼ kαwpvLTwpETwp + 1� kð Þαwf vLTwf ETwf

kαwpETwp + 1� kð Þαwf ELwf
(2.58)

GLT ¼ kGLTwp + 1� kð ÞGLTwf (2.59)

e
wher
α¼ kαwpvLTwpETwp + 1� kð Þαwf vLTwf ETwf

� �2
kαwpELwp + 1� kð Þαwf ETwf

� �
kαwpETwp + 1� kð Þαwf ELwf

� � (2.60)

above expressions (Eqs. 2.56–2.59) can be simplified for various types of cloths
The

by the value of the balancing coefficient k. For example, in the case where the fibers in

the warp and weft directions are identical, the cloth is called balanced [29]. In fact, in

this case, k¼1/2, and the moduli in warp and weft directions become identical:
ELwp ¼ELwf ¼ELu (2.61)

ETwp ¼ETwf ¼ETu (2.62)

vLTwp ¼ vLTwf ¼ vLTu (2.63)

GLTwp ¼GLTwf ¼GLTu (2.64)

eE ,E ,G , and v are themoduli of a unidirectional layer having a volume
wher Lu Tu LTu LTu

fraction equal to that of the reinforced cloth layer. In this regard, Eqs. (2.56)–(2.59)
are expressed as follows:
EL ¼ET ¼ 1�αð Þαu ELu +ETuð Þ (2.65)

vLT ¼ 2vLTu

1 +
ELu

ETu

(2.66)

GLT ¼GLTu (2.67)

e
wher
αu ¼ 1

1�ETu

ELu
v2LTu
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2.5 Interface mechanics in fiber-reinforced composites

This section is mainly based on the study presented by Lei et al. [31]. Material’s

microstructure has an essential role in mechanical behavior of fiber-reinforced

composites. As a microstructural entity, “interface” between fiber and matrix compo-

nents has the responsibility to transfer load from matrix to fiber. However, there are

various issues that may occur at the interface including interface debonding and

damage. The quality of the interface has a significant effect on mechanical properties

such as impact and fracture. Hence, it is important to investigate the behavior of the

interface region and its effect on macrostructural properties.

The interface region may encounter several issues. These are interface intact bond-

ing, interface debonding, interface completely debonding, and fiber pullout. During the

debondingprocess, the interfaceproperties continuously change. In order to analyze the

interface, it is important to calculate the interfacial stresses. By using Cox’s shear-lag

model, it is possible to relate the fiber axial stress, σ, and the interfacial shear stress, τ, as
τ¼� r

2

dσ

dx

� �
(2.68)

re interface debonding occurs, the fiber axial stress can be expressed by using
Befo

Piggot’s model as
σ¼ σapp
sinh n L� xð Þ=r½ �

sinh nsð Þ (2.69)

re x is the distance to the fiber entry, σ is the stress acting on the fiber out of the
whe app

matrix, L is the effective length of the stress transfer, s is the fiber aspect ratio, and n is
a constant, which depends on geometry and material properties of fiber and matrix.

By using Eqs. (2.68), (2.69), the interfacial shear stress along the fiber can be

expressed as
τ¼ σapp
ncosh n L� xð Þ=r½ �

sinh nsð Þ (2.70)

iber pullout experiment is performed, the aspect ratio of the fiber is large. There-
If a f

fore, fiber stress and shear stress at the fiber entry, that is, x¼0, can be calculated as
σm ¼ σ (2.71a)

τm ¼ nσ

2
(2.71b)

e fiber stress exceeds the fiber strength σ , then fiber fracture can occur. On the
If th b

other hand, if the interfacial shear stress exceeds the interfacial shear strength τb, then
interface debonding can occur:
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σm ¼ 2τm
n

� σb Fiber fracture (2.72a)

τm ¼ nσ

2
� τb Interface debonding (2.72b)

over, if fiber strength is high and interfacial shear strength is low, then it is likely
More

that interfacial debonding will occur as the damage mode.

2.6 Mechanics of curved composites

This section is mainly based on the study presented by Akbarov and Guz [32]. Curved

composites are unidirectional fibrous and layered composites where fibers or layers

are in the form of curvatures. These curvatures occur due to either design features

or technological processes. If the curvatures are due to design features, then they

can be modeled as periodical. However, if the curvatures are due to technological

processes, then they are considered as local.

For simplicity, let us assume that curvatures only exist in Ox1x2 plane as shown in
Fig. 2.10. The total thickness of N number of curved layers can be calculated as
ΔH¼ h1 + h2 +⋯ + hN (2.73)
x2

L L L

H

A)

(B)

L

L+H

x1
(m)

x2
(m)

O(m)

r(m)

j(m)

q(m)

x1

L
H

2.10 (A) Representative layer and (B) approximation of the representative [32].
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where hi is the thickness of the ith layer. The maximum layer thickness is defined as
h0 ¼ max h1, h2,…, hNf g (2.74)

g. 2.10, Λ is the half wavelength of the curvature, and H is the rise of the curve. It
In Fi

can be assumed that the composite material has a regular and periodic curvature with a

period of 2Λ and following conditions should hold
h0≪H, ΔH≪Λ, H≪Λ, Λ≪L, Λ≪d (2.75)

der to obtain the constitutive relationships, Fig. 2.10A can be approximated as in
In or

Fig. 2.10B based on the inequalities given in Eq. (2.70). Note that a local coordinate

system is introduced for each half period. For the mth half period, the local Cartesian
coordinates are defined as
x
mð Þ
1 ¼ x1� m�1ð ÞΛ, x

mð Þ
2 ¼ x2, x

mð Þ
3 ¼ x3 �∞�m� +∞ (2.76)

local Cartesian coordinate system can also be related to a local cylindrical coor-
The

dinate system as
r mð Þcosθ mð Þ ¼ x
mð Þ
2 � �1ð ÞmL, r mð Þsinθ mð Þ ¼ x

mð Þ
1 , φ mð Þ ¼ 2π�θ mð Þ (2.77)

hemth half period, the stress-strain relationships in cylindrical coordinates can be
For t

written as
σrr ¼A°
11εrr +A

°
12εθθ +A

°
13ε33 (2.78a)

σθθ ¼A°
12εrr +A

°
22εθθ +A

°
23ε33 (2.78b)

σ33 ¼A°
13εrr +A

°
23εθθ +A

°
33ε33 (2.78c)

σθ3 ¼ 2A°
44εθ3 (2.78d)

σr3 ¼ 2A°
55εr3 (2.78e)

σrθ ¼ 2A°
66εrθ (2.78f)

re A∘ and G∘ are effective (normalized) elastic constants and A° ¼G° ,
whe ij ij 44 23

A°
55 ¼G°

13, and A°
66 ¼G°

12.

Based on the inequalities given in Eq. (2.75), a small parameter, ε, can be defined as
ε¼ Λ

πL
≪1 (2.79)
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since
Λ2 � 8LH and ε¼ Λ

πL
� 8H

πΛ
≪1 (2.80)

e, the stress-strain relationships given in Eqs. (2.78a)–(2.78f ) can be written in
Henc

Cartesian coordinates by using the parameter ε as
σ11 ¼A11ε11 +A12ε22 +A13ε33 + 2A16ε12 (2.81a)

σ22 ¼A12ε11 +A22ε22 +A23ε33 + 2A26ε12 (2.81b)

σ33 ¼A13ε11 +A23ε22 +A33ε33 + 2A36ε12 (2.81c)

σ12 ¼A16ε11 +A26ε22 +A36ε33 + 2A66ε12 (2.81d)

σ23 ¼ 2A44ε23 + 2A45ε13 (2.81e)

σ13 ¼ 2A45ε23 + 2A65ε13 (2.81f)

e
wher
A11 ¼A°
11 + ε

2 �A°
11 +A

°
12 + 2G

°
12

� �
2sin2θ (2.82a)

A12 ¼A°
12 + ε

2 A°
11 +A

°
22�2A°

12�4G°
12

� �
sin2θ (2.82b)

A23 ¼A°
23 + ε

2 A°
13�A°

23

� �
sin2θ (2.82c)

A16 ¼ ε �A°
11 +A

°
12 + 2G

°
12

� �
sinθ (2.82d)

A26 ¼ ε A°
11�A°

12�2G°
12

� �
sinθ (2.82e)

A36 ¼ ε A°
23�A°

13

� �
sinθ (2.82f)

A33 ¼A°
33 (2.82g)

A22 ¼A°
22 + ε

2 �A°
22 +A

°
12 + 2G

°
12

� �
2sin2θ (2.82h)

A13 ¼A°
13 + ε

2 A°
23�A°

13

� �
sin2θ (2.82i)

A44 ¼G°
23 + ε

2 G°
13�G°

23

� �
sin2θ (2.82j)

A66 ¼G°
12 + ε

2 A°
11 +A

°
22�2A°

12�2G°
12

� �
sin2θ (2.82k)

A45 ¼ ε G°
13�G°

23

� �
sinθ (2.82l)
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A55 ¼G°
13 + ε

2 G°
23�G°

13

� �
sin2θ (2.82m)
and
θ¼ πX1

Λ
(2.83)

formulation can be extended to 3D by considering the periodic curved
The

structure. In this case, the half wavelengths are labeled as Λ1 and Λ3 along

Ox1 and Ox3 directions, respectively. The equation of the median surface can be

expressed as
x2 ¼F x1,x3Þ¼ εf x1,x3Þðð (2.84)

stress-strain relationship for the midsurface can be defined by using the local
The

coordinate system Ox1, Ox2, and Ox3:
σi ¼A°
ijεj (2.85a)

re
whe
σi ¼ σii i¼ 1,2,3ð Þ (2.85b)

εi ¼ εii i¼ 1,2,3ð Þ (2.85c)

σ4 ¼ σ23 (2.85d)

σ5 ¼ σ13 (2.85e)

σ6 ¼ σ12 (2.85f)

ε4 ¼ ε23 (2.85g)

ε5 ¼ ε13 (2.85h)

ε6 ¼ ε12 (2.85i)

e relationships can also be expressed in global coordinates:
Thes
σi ¼Aijεj i, j¼ 1,2,3,4,5,6 (2.86)

re the material constants in global coordinates are functions of the equation of the
whe

median surface:
Aij ¼Aij A
°
nm,F x1,x3Þð Þ�

(2.87)
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By satisfying the following condition
ε2
@f

@x1

� �2

+
@f

@x3

� �2
" #

< 1 0� ε< 1 (2.88)

material constants can be expressed as
The
Aij ¼

A∘
ij +
X∞
k¼1

ε2kAijk for combinations ij¼ 11,12,13,22,23,33,44,55,66

X∞
k¼1

ε2k�1Aijk for combinations ij¼ 14,16,24,26,34,45,56

X∞
k¼1

ε2kAijk for combinations ij¼ 15,25,35,46

8>>>>>>>><
>>>>>>>>:

(2.89)

icit forms of A are given in Ref. [33]. Moreover, by using Eq. (2.89), Eq. (2.86)
Expl ijk

can be rewritten as
σij ¼ μijαβ
@uα
@xβ

i, j,α,β¼ 1,2,3 (2.90)

e
wher
μijαβ ¼ μ0ijαβ +
X∞

k¼1
ε2k�1μ 2kð Þ

ijαβ +
X∞

k¼1
ε2kμ 2kð Þ

ijαβ (2.91)

0 2k�1ð Þ (2k)
Explicit forms of μijαβ, μijαβ , and μijαβ are given in Ref. [32]. Finally, the equation

of motion, that is,
@σij
@xj

¼ ρ
@2ui
@t2

(2.92)

e written by utilizing the expressions given in Eqs. (2.90), (2.91), as
can b
Liαuα +
X∞

k¼1
ε2kKiαkuα +

X∞

k¼1
ε2k�1Riαkuα ¼ 0 (2.93)

e
wher
Liα ¼ μ 0ð Þ
ijαβ

@2

@xj@xβ
�ρδαi

@2

@t2
(2.94a)

Kiαk ¼ @

@xj
μ 2kð Þ
ijαβ

@

@xβ

� �
(2.94b)



Fig.

32 Fiber Technology for Fiber-Reinforced Composites
Riαk ¼ @

@xj
μ 2k�1ð Þ
ijαβ

@

@xβ

� �
(2.94c)

δ is the Kronecker delta.
and

It is not possible to obtain closed-form solutions for Eq. (2.93). However, an

approximate solution can be obtained by expressing physical quantities in the series

of the small parameter, ε:
σij ¼
X∞

q¼0
εqσ qð Þ

ij (2.95a)

εij ¼
X∞

q¼0
εqε qð Þ

ij (2.95b)

ui ¼
X∞

q¼0
εqu qð Þ

i (2.95c)

Pj ¼
X∞

q¼0
εqP qð Þ

j (2.95d)

φi ¼
X∞

q¼0
εqφ qð Þ

i (2.95e)

ce, the equation of motion can be rewritten as (Fig. 2.11)
Hen
Liαu
qð Þ
α +

Xq=2

k¼1
Kiαku

q�2kð Þ
α +

X q+ 1ð Þ=2
k¼1

Riαku
q+ 1�2kð Þ
α ¼ 0 (2.96)
H(2)
(m)

H(2)
(m)

H(1)
(m)

x2

x3

x1

nm+

nm−

m(1)

(m−1)(1)

(m−1)(2)

m(2)

t 1
m+

t 1
m−

t 3
m+

t 3
m−

S+
m

S–
m

O

2.11 Laminated composite [32].
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The formulation can also be extended for laminated composites by imposing complete

cohesion conditions between the layers:
Matri
σ 1ð Þm
ij jS+

m
nm, +j ¼ σ 2ð Þm

ij jS+
m
nm, +j , σ 1ð Þm1

ij jS�mnm,�j ¼ σ 2ð Þm1

ij jS�m nm,�j (2.97a)

u
1ð Þm
i jS+

m
¼ u

2ð Þm
i jS +

m
, u

1ð Þm1

i jS�m ¼ u
2ð Þm1

i jS�m (2.97b)

e s+ and s� are upper and lower surfaces of the m(2) th filler layer m ¼m�1.
wher m m 1
2.7 Strength failure theories

2.7.1 Introduction

Since a composite material is obviously heterogeneous at the constituent material

level, material properties and stress-strain relations may change from point to point.

However, the macromechanical stress-strain relations of a lamina can be expressed in

terms of average values of stress and strain and effective properties of an equivalent

homogenous material [34]. In this part, first, the constitutive equations for an

orthotropic material will be introduced. Then, determination of strength and stiffness

of an orthotropic lamina will be emphasized. Finally, biaxial strength criteria regard-

ing an orthotropic lamina will be acquainted.
2.7.2 Constitutive equations for orthotropic materials

A unidirectionally reinforced lamina in the L-T plane is illustrated in Fig. 2.12. For this
lamina, a state of plane stress can be defined by the settings
σZ ¼ 0 τTZ ¼ 0 τZL ¼ 0 (2.98)
and
σL 6¼ 0 σT 6¼ 0 τLT 6¼ 0 (2.99)
Fiber phase

x phase

Z T

L

Fig. 2.12 Principal material axes for an

orthotropic lamina.
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state of plane stress is an idealization for practical usage of a lamina having fibers
The

in its plane. It is considered that a single lamina can withstand against only in-plane

loadings since its capability of load carrying in-plane is natural. Some examples such

as automobile panels, thin-pressure vessels, fuselages, and wings of aircraft may be

given for the in-plane loaded structural elements [35].

For an orthotropic lamina imposed to the plane stress state, the following strains

emerge in the out-of-plane
εZ ¼ S13σL + S23σT γTZ ¼ 0 γZL ¼ 0 (2.100)

re
whe
S13 ¼�νLZ
EL

¼�νZL
EZ

S23 ¼�νTZ
ET

¼�νZT
EZ

(2.101)

strain-stress relations in the L-T plane is written in the matrix form as
The
εL
εT
γLT

8<
:

9=
;¼

S11 S12 0

S12 S22 0

0 0 S66

2
4

3
5 σL

σT
τLT

8<
:

9=
; or

εL
εT
γLT

8<
:

9=
;¼ S½ �

σL
σT
τLT

8<
:

9=
; (2.102)

re square matrix is the compliance matrix [S ], members of which are given in
whe ij

terms of the engineering constants as
S11 ¼ 1

EL
S22 ¼ 1

ET
S12 ¼�νLT

EL
¼�νTL

ET
S66 ¼ 1

GLT
(2.103)

n Eq. (2.102) is inverted, the stress-strain relations are written as
Whe
σL
σT
τLT

8<
:

9=
;¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
4

3
5 εL

εT
γLT

8<
:

9=
; or

σL
σT
τLT

8<
:

9=
;¼ Q½ �

εL
εT
γLT

8<
:

9=
; (2.104)

re the [Q] is the so-called reduced stiffness matrix, members of which are written
whe

in terms of the engineering constants (see Eq. 2.10).

From the Q12 given by Eq. (2.10), the following reciprocal relation reveals
νTLEL ¼ νLTET or
νLT
EL

¼ νTL
ET

(2.105)
2.7.2.1 Stress-strain relations for a lamina of arbitrary orientation

Because the laminates have low stiffness and strength properties in the transverse

direction, they are not often formed only as unidirectional laminae. For this purpose,
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Fig. 2.13 Positive rotation of principal material axes from x-y axes.
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some laminae in the laminates may be placed at different angles. It is thus necessary to

develop the stress-strain or the strain-stress relations for an angle lamina. The coor-

dinate systems used for an angle lamina are given in Fig. 2.13. The axes L-T are called

the principal material or local axes, in which the direction L is parallel to the fibers and
the direction T is perpendicular (transverse) to the fibers. The axes x-y are called the

global axes or the off axes. The angle between the two axes is denoted by an angle θ.
A relation is, now, needed between the stresses and strains and those in the structure

axes. Then, stress-strain relations should be transformed from one coordinate system

to another.

At this point, the global and local stresses in any angle lamina are related to each

other through the reinforcement angle, θ:
σL
σT
τLT

8<
:

9=
;¼ T½ �

σx
σy
τxy

8<
:

9=
; and

σx
σy
τxy

8<
:

9=
;¼ T½ ��1

σL
σT
τLT

8<
:

9=
; (2.106)

e [T] and [T]�1 are the transformation matrix and its inverse, which are defined
wher

taking as s¼ sin θ and c¼cos θ:
T½ � ¼
c2

s2

cs

s2

s2

�cs

�2cs
2cs

c2� s2

2
4

3
5 and T½ ��1 ¼

c2

s2

�cs

s2

s2

cs

2cs
�2cs
c2� s2

2
4

3
5 (2.107)

larly, the strain-transformation equations are as
Simi
εL
εT
1

2
γLT

8><
>:

9>=
>;¼ T½ �

εx
εy
1

2
γxy

8><
>:

9>=
>; and

εx
εy
1

2
γxy

8><
>:

9>=
>;¼ T½ ��1

εL
εT
1

2
γLT

8><
>:

9>=
>; (2.108)
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ever, with a matrix [R] introduced by Reuter,
How
R½ � ¼
1 0 0

0 1 0

0 0 2

2
4

3
5 (2.109)

train-transformation equations can be rewritten as
the s
εL
εT
γLT

8<
:

9=
;¼ R½ �

εL
εT

1

2
γLT

8><
>:

9>=
>; and

εx
εy
γxy

8<
:

9=
;¼ R½ �

εx
εy
1

2
γxy

8><
>:

9>=
>; (2.110)

n Eqs. (2.102, 2.104, 2.106–2.110) obtained above are combined according to the
Whe

rules of matrix, the stress-strain relations in x-y plane are found as [3,35]
σx
σy
τxy

8<
:

9=
;¼ T½ ��1

σL
σT
τLT

8<
:

9=
;¼ T½ ��1 Q½ � R½ � T½ � R½ ��1

εx
εy
γxy

8<
:

9=
; (2.111)

�1 �T

in which R½ � T½ � R½ � is shortly T½ � where the superscript T denotes the matrix trans-

pose. With the use of abbreviation in the form of �Q
� �¼ T½ ��1 Q½ � T½ ��T

, the stress-strain

relations in x-y coordinates becomes
σx
σy
τxy

8<
:

9=
;¼ �Q

� � εx
εy
γxy

8<
:

9=
;¼

�Q11
�Q12

�Q16
�Q12

�Q22
�Q26

�Q16
�Q26

�Q66

2
4

3
5 εx

εy
γxy

8<
:

9=
; (2.112)

hich �Q
� �

denotes the transformed reduced stiffness matrix (see Eq. 2.9).
in w

Similarly, the strain-stress relations in x-y coordinates can be written as
εx
εy
γxy

8<
:

9=
;¼ �S½ �

σx
σy
τxy

8<
:

9=
;¼

�S11 �S12 �S16
�S12 �S22 �S26
�S16 �S26 �S66

2
4

3
5 σx

σy
τxy

8<
:

9=
; (2.113)

hich the �S½ � denotes the transformed reduced compliance matrix, elements of
in w

which are written similar to the �Q
� �
�S11 ¼ S11c
4 + 2S12 + S66ð Þs2c2 + S22s4

�S22 ¼ S11s
4 + 2S12 + S66ð Þs2c2 + S22c4

�S12 ¼ S11 + S22�S66ð Þs2c2 + S12 s4 + c4
� �

�S16 ¼ 2 S11�S12�0:5S66ð Þs c3�2 S22�S12�0:5S66ð Þs3c
�S26 ¼ 2 S11�S12�0:5S66ð Þs3c + 2 S22�S12�0:5S66ð Þs c3
�S66 ¼ 4 S11 + S22�2S12�0:5S66ð Þs2c2 + S66 s4 + c4

� �
(2.114)
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2.7.3 Determination of strength and stiffness of an
orthotropic lamina

Both strength and stiffness characteristics of an orthotropic lamina are reasonably neces-

sary for the design of laminates. The axes of principal stress do not coincidewith the axes

ofprincipal straindue toorthotropy. Inagiven lamina, the strength inonedirection canbe

higher thananother; the highest stressmight not be the stressgoverning thedesign.There-

fore, a rational comparison of the actual stress field with the allowable stress field can be

required, irrespective of any principal values. The first step in such a procedure is the

establishments of the allowable stresses or strengths in the principal material directions,

which is the basic of the study of strength for an orthotropic lamina [35].

The three basic strengths in a lamina under in-plane loading can be mentioned,

which are shown in Fig. 2.14 when the tensile strength is equal to the compressive

strength in it:

X is the axial (longitudinal) strength (in the 1-direction)

Y is thetransverse strength (in the 2-direction)

S is the shear strength (in the 1–2 plane)

If a lamina has different mechanical properties in tension and compression, five

strengths are needed as

Xt is the axial (longitudinal) strength in tension

Xc is the axial (longitudinal) strength in compression

Yt is the transverse strength in tension

Yc is the transverse strength in compression

S is the shear strength

2.7.3.1 Determination of stiffness and strength for a lamina

The properties (stiffness and strength) in the principal material axis can be determined

with some experiments. If the experiments are performed properly, the strength and

stiffness values of the material may be adequately revealed. The stiffness character-

istics of a lamina are listed as follows:

EL is the Young’s modulus in the longitudinal (fiber) direction

ET is the Young’s modulus in the transverse direction

GLT is the Shearing modulus

νLT is the Major Poisson’s ratio

νTL is the Minor Poisson’s ratio
T

L

X

Y

S

Fig. 2.14 Basic strengths for orthotropic lamina.
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where only three of EL, ET, νLT, and νTL are independent. EL and νLTmay be measured

by a tension-test fixture using a sample in the fiber direction. While the normal

strain-strain (εL-σL) values in the fiber direction are sufficient for EL, the transverse

(εT) strain in addition to εL is necessary for determination of Poisson’s ratio νLT. Sim-

ilarly, ET and νTL may be measured by a tension-test fixture using a sample in the

transverse direction. While the normal strain-strain (εT-σT) values in the transverse

direction are sufficient for ET, the transverse (εL) strain in addition to εT is needed

for Poisson’s ratio νTL. Upon determination of these for the elastic properties, the sat-

isfaction in terms of correctness of the conducted experiments may be done with

Eq. (2.105) as follows:
νLT
EL

¼ νTL
ET

(2.115)

the determination of the remaining property G , there are several experimental
For 12

techniques such as 45° off-axis test, torsion-tube test, sandwich crossbeam test, rail

shear test, and Iosipescu test.Also, the strength characteristics for a lamina are listed

as follows:

X (Xt or Xc) is the Longitudinal (tensile or compressive) strength (L-direction)
Y (Yt or Yc) is the Transverse (tensile or compressive) strength (T-direction)
S is the Shear strength (L-T plane)

where tensile or compressive strengths are of different values for some materials. The

strengths X (Xt or Xc) and Y (Yt or Yc) can be determined by a tensile test machine. The

shear strength S may be obtained by means of experiments such as torsion-tube test,

rail shear test, and Iosipescu test [34,35].
2.7.4 Biaxial strength criteria for an orthotropic lamina

Although the strength of a material is determined by uniaxial tests, in fact, the struc-

tural elements may be exposed to biaxial or triaxial state of stress. Therefore, uniaxial

strength values obtained for principal axis are classed with those of multiaxial loading

conditions for the design of elements of machine and structure.

The strengths of principal material directions are Xt, Xc, Yt, and Yc, which are tensile
and compressive strength in the fiber direction and transverse direction, respectively, and

S is shearing strength. However, since tensile and compressive strengths of some mate-

rials are same, they are described asX in the fiber direction and Y in transverse direction.
Some criteria such as the maximum normal, the maximum shearing (Tresca), and

the maximum distortional energy (von Mises) are fairly well for the conventional

engineering materials, which are accepted as isotropic. Unfortunately, these theories

are not adequate for composite materials. For this reason, the following biaxial

strength criteria that are commonly exploited for the design of composites will be

examined: (a) Tsai-Hill failure criterion, (b) Hoffman failure criterion, and

(c) Tsai-Wu tensor failure criterion. In the implementations of these criteria, compos-

ite material is regarded as orthotropic and homogeneous, and the stress components
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calculated from the loadings at the different angles are needed to be transformed into

the biaxial stress components in the principal material axis.

2.7.4.1 Tsai-Hill failure criterion

Tsai-Hill failure criterion, which is related to the amount of distortion energy rather

than dilatation for any isotropic body, is an adapted version of von Mises’ yield cri-

terion to orthotropic composite plates. It is, however, known that distortion is not inde-

pendent from dilatation in orthotropic materials. Although detailed information given

in the bibliography [35], Tsai-Hill failure criterion for an orthotropic plate can be

expressed in the form:
σ2L
X2

�σLσT
X2

+
σ2T
Y2

+
τ2LT
S2

¼ 1 (2.116)

e σ , σ , and τ are the transformed stresses into the principle axis and X, Y, and S
wher L T LT

are failure principle strengths for a single orthotropic lamina. Here, Xt or Xc and Yt or
Yc should be employed depending on the signs of σL and σT. According to this theory,
when Eq. (2.116) is greater than or equal to 1, the lamina is accepted to be damaged.

It is reported that the agreement is quite good between the Tsai-Hill failure criterion

and experiment from the results obtained, for some materials, for example, the

E-glass-epoxy at various orientations in biaxial stress states [35]. Hence, the

Tsai-Hill failure criterion is applicable to failure prediction for composite materials.

However, the applicability of a failure criterion depends on whether the material is

brittle or ductile. Therefore, it would be advisable to browse other some criteria.

2.7.4.2 Hoffman failure criterion

Some materials, when subjected to tensile and compressive loadings, exhibit different

behaviors. On this occasion, Hoffman had developed an equation for especially brittle

materials inspired by the Tsai-Hill failure criterion. Hoffman failure criterion can be

expressed in the following form:
� σ2L
XcXt

+
σLσT
XcXt

� σ2T
YcYt

+
Xc +Xt

XcXt
σ1 +

YL + YT
YcYt

σ2 +
τ2LT
S2

¼ 1 (2.117)

Hoffman failure criterion comes to the same point with the Tsai-Hill criterion for
The

equal strength values in tension and compression. It is noted that the Hoffman failure

criterion is in good agreement with some materials such as glass-epoxy,

graphite-epoxy, and boron-epoxy [35].

2.7.4.3 Tsai-Wu tensor failure criterion

This failure theory is based on the total strain energy failure theory of Beltrami, which

is widely used for composite materials with different strengths in tension and com-

pression [3,36]. Even if the proceeding biaxial failure criteria give very good results
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for some materials, they are inadequate in their representation of experimental data for

some other materials. For this purpose, Tsai and Wu had improved the correlation

between a criterion and experiment, which increased the number of terms in the pre-

diction equation. In order to symbolize the interaction between stresses in two direc-

tions a new strength should be defined.

Tsai and Wu had postulated a new formula for the Tsai-Wu tensor failure criterion

that considerably resembles the Tsai-Hill failure criterion as follows:
Fig.
σ2L
X2

�2F12σLσT +
σ2T
Y2

+
τ2LT
S2

¼ 1 (2.118)

re F , a coefficient of the product of σ and σ , is not –X�2 and thus it differs from
whe 12 1 2

the Tsai-Hill failure criterion. F12 can be determined with only a biaxial tension test

described by σ1 ¼ σ2 ¼σ, and all other stresses are zero. For calculating the value of

F12, an empirical expression is suggested as [3]
F12 ¼�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

XtXcYtYc

r
(2.119)

e the Tsai-Wu tensor failure criterion discriminates between the compressive and
Sinc

tensile strengths of a lamina, this failure theory has more general use than the Tsai-Hill

failure theory.

2.8 Dynamic behavior of composites

This section presents dynamic behavior of composites by discussing longitudinal

vibration of bars, transverse vibration of beams and laminated plates, and damping

analysis of composites.
2.8.1 Longitudinal vibrations in composite bars

Linear longitudinal vibrations in a homogeneous isotropic bar (Fig. 2.15) are governed

by the equation:
@

@x
AE

@u

@x

� �
¼ ρA

@2u

@t2
(2.120)
x(t)

L

2.15 Linear fixed-fixed bar of length L and cross-sectional area A.
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where x is the distance from the left end of the bar, t is time, u is the longitudinal dis-
placement of cross section A(x) at a distance x from end of the bar and time t, ρ is mass

density of the bar, and E(x) is the modulus of elasticity of the bar.

As for a heterogeneous linear elastic composite bar, the density ρ and the elasticity
modulus E in Eq. (2.120) can be replaced with the effective properties of an equivalent

homogeneous material. The effective modulus E will specifically depend on the ori-

entation of fibers relative to the axis of the bar, namely, E¼E1 and E¼E2 for lon-

gitudinal and transverse directions, respectively.

If the cross-sectional area and the elasticity modulus are constants, Eq. (2.120) will

reduce to
c2
@2u

@x2
¼ @2u

@t2
(2.121)

ffiffiffiffiffiffiffiffip

where c is the wave speed and given as c¼ E=ρ.

Separation of variables can be used to solve Eq. (2.121) by assuming a solution of

the form:
u x, tð Þ¼ χ xð ÞT tð Þ (2.122)

eχ(x) is a functionofxalone, but not on t, andT(t) is a functionof talone,but notonx.
wher

When this assumed solution is substituted into Eq. (2.121), then variables are separated:
c2
1

χ

d2χ

dx2
¼ 1

T

d2T

dt2
(2.123)

tained. The left-hand side of Eq. (2.123) is a function of x alone, but not on t, and
is ob

the right-hand side of it is a function of t alone, but not on x, which can be possible only

if both are equal to a constant, and let this constant be �ω2. Then, Eq.(2.123) can be

written as two ordinary differential equations as follows:
d2T

dt2
+ω2T¼ 0 (2.124a)

d2χ

dx2
+

ω

c

� 	2
χ¼ 0 (2.124b)

tions to these equations are given in the form of
Solu
T tð Þ¼ c1 sinωt+ c2cosωt (2.125a)

χ xð Þ¼ c3 sin
ω

c
x+ c4cos

ω

c
x (2.125b)

e constants c and c can be determined from initial conditions and constants c
wher 1 2 3

and c4 can be determined from boundary conditions. When boundary conditions of
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u 0, tð Þ¼ 0 and u L, tð Þ¼ 0 for a fixed-fixed bar is substituted into Eq. (2.125b),

c4 ¼ 0 and
sin
ω

c
L¼ 0 (2.126)

ound. Similarly, boundary conditions for other types of end supports can easily be
are f

found in any vibration books.

Eq. (2.126) is an eigenvalue equation, and hence, it has an infinite number of solu-

tions as follows:
ωnL

c
¼ nπ n¼ 1, 2, … (2.127)

re n is the mode number and ωn natural frequencies in radians per seconds. There-
whe

fore, displacements for the nth mode of vibration is given as
un x, tð Þ¼ Asinωnt +Bcosωntð Þsin nπx
L

(2.128)

re A¼ c1c3 and B¼ c2c3. The eigenfunction providing the mode shape for the nth
whe

mode is given by
χn xð Þ¼ sin
nπx

L
(2.129)

lly, the general solution is obtained by summing up all modal responses as
Fina

follows:
u x, tð Þ¼
X∞

n¼1
Asinωnt+Bcosωntð Þsin nπx

L
(2.130)

e shapes and natural frequencies for the first three modes are depicted in Fig. 2.16
Mod

for a fixed-fixed bar of length L, cross-sectional area A, and modulus of elasticity E.
One of the basic approaches for determining mechanical properties of composite

materials is vibration experiments. Specifically, if the natural frequency of the nth
mode is measured in an experiment, one can easily determine the effective modulus

of the composite material.

2.8.2 Transverse vibration of composite beams

Linear transverse vibration of a homogeneous, isotropic, elastic beam (Fig. 2.17) can

be governed by the Bernoulli-Euler-type equation without taking into consideration

shear and rotary inertia effects during the formulation, which is given as
� @2

@x2
EI

@2w

@x2

� �
¼ ρA

@2w

@t2
(2.131)
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Fig. 2.17 Cantilever beam in transverse vibration.
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Fig. 2.16 Mode shapes and natural frequencies of a fixed-fixed bar for the first three modes of

longitudinal vibration.
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where I is the moment of inertia of the cross section about the neutral axis of the beam

while w¼w x, tð Þ is the transverse displacement of the same axis of the beam. Other

constants, that is, x, t, ρ, A, and E, are as defined in previous section. If EI is constant
across the beam, then the governing equation reduces to
EI
@4w

@x4
+ ρA

@2w

@t2
¼ 0 (2.132)
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This equation can be solved for orthotropic composite beams using separation

variables again by assuming that modulus E can be replaced by the effective

modulus Ef.

Assuming a solution in the form of
w x, tð Þ¼W xð Þeiωnt (2.133)

s an ordinary differential equation of the form:
yield
d4W xð Þ
dx4

� k4W xð Þ¼ 0 (2.134)

re ω is the frequency, W(x) is the mode shape function, and the constant k is
whe

given as
k¼ ω2ρA

EI

� �1=4

(2.135)

solution for Eq. (2.134) is given as follows:
The
W xð Þ¼C1sin kx +C2cos kx +C3 sinh kx +C4cosh kx (2.136)

e the constants C , C , C , and C can be determined by applying boundary condi-
wher 1 2 3 4

tions. A detailed explanation of boundary conditions and their applications is beyond the

scope of this book and can be found in a vibration book covering continuous vibrations.

The eigenvalue equation resulted by the application of boundary conditions is

solved to determine natural frequencies and mode shapes of the vibrating system.

As an illustration, for a cantilever beam, the natural frequency equation is given as
ωn ¼ k2n

ffiffiffiffiffiffi
EI

ρA

s
n¼ 1, 2, 3, … (2.137)

re n is the mode number, and for the first three modes, they are computed as
whe

knL¼ 1:875, 4:694, 7855. First three mode shapes for a cantilever beam are shown

on Fig. 2.18.
2.8.3 Transverse vibration of orthotropic plates

In this section, a general equation of motion for a laminated composite plate in trans-

verse vibration is simply presented. Summation of forces acting on an infinitesimal

element can be written according to Newton’s second law as
@Nx

@x
+
@Nxy

@y
¼ ρ0

@2u0

@t2
(2.138)
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Fig. 2.18 Mode shapes and natural frequencies for the first three modes of transverse vibration

of the cantilever beam.
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@Ny

@y
+
@Nxy

@x
¼ ρ0

@2v0

@t2
(2.139)

@Qx

@x
+
@Qy

@y
+ q x, yð Þ¼ ρ0

@2w

@t2
(2.140)

e N’s and Q’s are respective in-plane stress resultants and ρ is the mass per unit
wher 0

area of the laminate. The displacements u, v, and w are in the directions of x, y, and z,
while the superscript zero shows middle-surface displacements in respective direc-

tions. q(x,y) stands for the transverse distributed force.
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On the other hand, by neglecting rotary inertia, moments can be summed about x
and y axis and then simplified to get
@My

@y
+
@Mxy

@x
¼Qy (2.141)

@Mx

@x
+
@Mxy

@y
¼Qx (2.142)

ectively. Eqs. (2.141), (2.142) can be substituted in Eq. (2.140) to yield
resp
@2Mx

@x2
+ 2

@2Mxy

@x@y
+
@2My

@y2
+ q x, yð Þ¼ ρ0

@2w

@t2
(2.143)

(2.138)–(2.140), (2.143) are the equations of motion of the plate in stress
Eqs.

and moment resultants. These equations of motion can be rewritten in terms of dis-

placements by substituting laminate force-deformation, strain-displacement, and

curvature-displacement relations into above equations and then solved for the desired

boundary conditions.

As an example, results for the free transverse vibration of a rectangular orthotropic

plate of size a�b are given here without proof for simply supported case. Based on the

discussion of Ashton and Whitney [37], one may obtain the equation of motion of an

orthotropic plate as follows:
D11

@4w

@x4
+ 2 D12 + 2D66ð Þ @4w

@x2@y2
+D22

@4w

@y4
+ ρ0

@2w

@t2
¼ 0 (2.144)

re w¼w x, y, tð Þ is the displacement in z direction and D’s are constants arising
whe

from the integration of some stiffness terms. By using separation of variables and

applying appropriate boundary continuous, one may obtain the frequency equation as
ω2
mm ¼ π4

ρ0a4
D11m

4 + 2 D12 + 2D66ð Þ mnRð Þ2 +D22 nRð Þ4
h i

(2.145)

the mode shape function as
and
W x, yð Þ¼Amnsin
mπx

a
sin

nπy

b
(2.146)

re m and n are mode indexes, a and b are plate dimensions in x and y directions,
whe

respectively, and R ¼ a/b is the plate aspect ratio.

Numerical results for frequencies and mode shapes of two square plates are

included here as presented by Ashton and Whitney [37]. One of the plates is

orthotropic with ratios D11=D22 ¼ 10 and D12 + 2D66ð Þ=D22 ¼ 1, and the other one

is isotropic with ratios D11=D22 ¼ 1 and D12 + 2D66ð Þ=D22 ¼ 1. Table 2.1 presents



Table 2.1 First four natural frequencies for a simply supported
orthotropic and isotropic plates [37]

Orthotropic

ω¼ kπ2=b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22=ρ0

p Isotropic

ω¼ kπ2=b2
ffiffiffiffiffiffiffiffiffiffiffi
D=ρ0

p
Mode m n k m n k

1st 1 1 3.62 1 1 2.0

2nd 1 2 5.68 1 2 5.0

3rd 1 3 10.45 2 1 5.0

4th 2 1 13 2 2 8.0
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the lowest four natural frequencies for the two plates, while Fig. 2.19 compares the

corresponding mode shapes for the plates. Nodal lines are denoted by dotted lines

on the figure. It is noted that sequence of mode numbers for increasing frequency

differs for orthotropic and isotropic plates.
2.8.4 Analysis of damping in composites

The aim of this section is to cover linear viscoelastic damping analysis of composites.

Damping is defined as the dissipation of mechanical energy during dynamic deforma-

tion of structures. In metallic structures, much of the damping is accepted to be arising

from structural joints rather than damping within the metal itself. Conversely, polymer
Orthotropic Isotropic

1st mode

2nd mode

3rd mode

4th mode

Fig. 2.19 First four mode shapes for a simply supported orthotropic and isotropic plates [37].
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composites present a high damping and lightweight properties, which provides flex-

ibility for designers pursuing a trade-off between damping and stiffness.

Damping is one of themost important aspects of structural materials under dynamic

loads. Although the viscoelastic behavior of composite materials seems to be the main

mechanism for damping, thermoelastic damping, coulomb friction, and cracks or

delaminations are other sources of energy dissipations. Thermoelastic damping gener-

ally arises inmetallic composites rather than polymer-based composites. Damping due

to cracks or delaminations can be experimentally measured using some nondestructive

testing methods but cannot be utilized as a criterion in the design of structures.

Some analytic damping prediction tools have been developed in the literature at

either micromechanical or macromechanical level. For instance, thermoelastic and

dislocation damping models are established to predict damping without the need of

material-damping properties. For the viscoelastic type of damping, usually one of

two approaches is tackled. The first approach comprises the utilization of elastic vis-

coelastic correspondence principle together with elasticity theory. The second one is

related to the strain energy formulation in which the relation of total damping is

established with the damping in each element.

In conclusion, since damping is an important issue in the design of dynamically

loaded composite structures, its prediction has a growing interest among designers.

Some analytic prediction methods have been developed in the literature and shortly

pointed out here.
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