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Abstract 

Improvements in genome sequencing technology increased the availability of full 
genomes and transcriptomes of many organisms. However, the major benefit of massive 
parallel sequencing is to better understand the organization and function of genes which 
then lead to understanding of phenotypes. In order to interpret genomic data with 
automated gene annotation studies, several tools are currently available. Even though the 
accuracy of computational gene annotation is increasing, a combination of multiple lines 
of experimental evidences should be gathered. Mass spectrometry allows the 
identification and sequencing of proteins as major gene products; and it is only these 
proteins that conclusively show whether a part of a genome is a coding region or not to 
result in phenotypes. Therefore, in the field of proteogenomics, the validation of 
computational methods is done by exploiting mass spectrometric data. As a result, 
identification of novel protein coding regions, validation of current gene models, and 
determination of upstream and downstream regions of genes can be achieved. In this 
paper, we present new functionality for our proteogenomic tool, PGMiner which 
performs all proteogenomic steps like acquisition of mass spectrometric data, peptide 
identification against preprocessed sequence databases, assignment of statistical 
confidence to identified peptides, mapping confident peptides to gene models, and result 
visualization. The extensions cover determining proteotypic peptides and thus 
unambiguous protein identification. Furthermore, peptides conflicting with gene models 
can now automatically assessed within the context of predicted alternative open reading 
frames. 

1 Introduction 

Recent improvements in next generation sequencing (NGS) technology led to an increase in 
the number of sequenced organisms including ones lacking annotated genes and/or proteins. 
To account for the missing information, in silico gene prediction methods have been 
employed to predict gene structures, open reading frames, and putative protein coding 
sequences. Predictions on the protein level are based on sequence homology with known 
proteins from, for example, model organisms. This methodology is limited to the availability 
of homologous proteins and by the evolutionary distance among organisms of interest and 
model organisms [1]. Automatic computer-aided predictions should be supported by 

* To whom correspondence should be addressed. Email: cananhas@gmail.com, jens@allmer.de
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experimental data. The state-of-the art technology in proteomics for protein identification is 
mass spectrometry (MS) which provides the opportunity to confirm peptide expression and in 
turn protein expression. MS data analysis is currently using database search to assign peptide 
sequences to MS/MS spectra and is limited by sequence availability in databases. With the aid 
of NGS technology, custom sequence databases can be built by using six- or three-frame 
translated DNA or RNA sequences. Additionally, available protein sequences, predicted gene 
models and their derivatives such as alternative spliced forms, exon-exon junction peptides, 
and single-nucleotide polymorphic sequence variants can be used as databases [2]. Identified 
peptides can validate gene models but can also allow the discovery of novel coding regions or 
altered protein sequences that might be related to a certain metabolic state such as disease or 
environmental stress. In addition to that, correlation of expression among transcriptomics and 
proteomics expression levels can be investigated for confirmed and novel genes [3]. 
The field of proteogenomics exists at this intersection of genomics with proteomics [3]. 
Proteogenomics studies have been validating existing gene models, have discovered novel 
gene models, and have shown conflicts with existing gene models [4]–[8]. Moreover, 
proteogenomics strategies have applications in biomarker discovery [9]–[11]. 
Proteogenomic analyses can be broken down into 6 coarse steps which are: 1) data 
acquisition, 2) building a custom sequence database, 3) performing database search of 
MS/MS spectra against this database, 4) statistical significance assessment of peptide-
spectrum matches, 5) mapping statistically confident peptides to the genome while taking into 
account annotated gene models, and, finally, 6) the evaluation and visualization of results. 

In this paper, we offer an extension to PGMiner [12] a user-friendly proteogenomic pipeline 
developed using the KNIME data analytics platform. PGMiner includes the main steps of 
proteogenomics in a fully automated manner. The workflow enables users to retrieve mass 
spectrometry based proteomics data and to perform peptide identification by multi-algorithm 
support. Finally, PGMiner supports machine aided assessment of gene models by mapping 
identified peptides and proposal of new gene models. 

2 Related works 

Competing approaches with PGMiner also combine analysis steps into one framework for 
either eukaryotic, prokaryotic organisms, or both [13]. Some of these tools such as the 
Bacterial Proteogenomic Pipeline (BPP) [14], Peppy [15], ProteoAnnotator [16] were 
developed including a GUI while some of them such as PGTools [17] include command-line 
modules. pGalaxy [18] was developed on the Galaxy data analysis framework and as such is 
most comparable to PGMiner. All other solutions require the user to provide mass 
spectrometry data and genome data and its annotation while PGMiner can retrieve them 
directly from online repositories. All tools support usage of genomic, transcriptomic and 
protein sequence databases however automatic translation as in PGMiner is not supported by 
other approaches. Testing competing implementations, large sequence files led to 
computational runtime problems and caused termination of the pipelines. To tackle this 
problem, Peppy generates peptide segments from translated genomic sequences, whilst 
pGalaxy applies HiRIEF [19] based filtering on generated peptides. Both approaches remove 
some, potentially, important data from screening whereas PGMiner enables search without 
removing any sequences. While Peppy supports only one database search algorithm, other 
tools, like PGMiner, enable multiple algorithms to increase identification confidence and 
number of correctly identified spectra. Main features of these available pipelines were listed 
in Table 1.  
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Table 1 Comparison of proteogenomics tools are listed in terms of general proteogenomic workflow steps. 

Pipeline 
Organism Data 

acquisition 
Database 
preproces 

Database 
search 

algorithms 

Statistical 
assessment 

Peptide 
mapping 

Extended 
features 

GenoSuite 
(2013) 

Prokaryote User input 6-ORF
translation 

OMSSA 
X!Tandem 

InsPecT 
MassWiz 

FDR 
-Peptide

level
-Protein

level

No 
algorithm 

name 
Against in 
silico gene 
annotation 

Peppy (2013) Eukaryote User input Generate 
peptide 

segments 

Morpheus 
algorithm 

FDR No 
algorithm 
mentioned 

Against 
genome and 

proteome 
Bacterial 

Protegenomic 
Pipeline 
(2014) 

Prokaryote User input - Outsourcing
results 

User 
dependent 

No 
algorithm 
mentioned 

Against 
genome and 

proteome 

Proteotypic 
peptides 

ProteoAnnotat
or (2014) 

Prokaryote 
Eukaryote 

User input 6-ORF
translation 

SearchGUI 
toolkit 

FDR Against in 
silico gene 
annotation 

pGalaxy 
(2014) 

Prokaryote 
Eukaryote 

User input 6-ORF
translation 

ProteinPilot Two round 
search 

ProteinPilot 

Blastp 
Ab initio 
proteins 

PGTools 
(2015) 

Prokaryote 
Eukaryote 

User input 6-ORF
translation 

Xtandem 
OMSSA 
MSGF+ 
Comet 

FDR 
PEP 

Blastp 
Ab initio 
proteins 

PGMiner Prokaryote 
Eukaryote 

-Fetching
via

repository
-User input

3-ORF
6-ORF

translation 

OMSSA 
X!Tandem 

MSGF+ 

FDR 
Peptide level 

Wu-Manber 
BLAST 

All 
databases 

Proteotypic 
peptide 
finding 

AltORFs 
finding 

3 Implementation 

PGMiner is a JAVA based proteogenomic workflow developed in the Konstanz Information 
Miner (KNIME) [20] version 3.1.1 using Java 1.8. KNIME is a data analytics platform 
including a visual workflow management environment which uses nodes to model processes 
and edges to indicate data flow. PGMiner addresses needs in different aspects of 
proteogenomics such as data acquisition from data repositories, peptide identification, peptide 
mapping, and proposal of new or corrected gene models and finally visualization of these 
models (Figure 1). 

PGMiner has been developed as a KNIME workflow and all novel nodes we added to 
KNIME are available from our update site: http:/bioinformatics.iyte.edu.tr/PGMiner. Whilst 
existing pipelines require elaborative installation procedure and have manually controlled or 
workflow-independent steps, PGMiner has a simple installation procedure and can then be 
executed in a fully automated manner. Detailed instructions regarding PGMiner installation 
are described on our web site: http://jlab.iyte.edu.tr/software/PGMiner. 
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Figure 1 Overview of the PGMiner workflow. MS data can be directly acquired from PRIDE as can 
sequence data from, if available on ncbi. MS data and sequences can be packaged for parallel processing 

and peptide identification can be performed by three database search tools (MSGF+, OMSSA, and 
X!Tandem at the moment. Novel features are the automatic assessment of gene models and selected 

analysis of alternative translation start sites. 

Protein identification is a convoluted process since peptides are shared among proteins and 
other regions of a genome and, therefore, it is hard to unambiguously identify a protein. 
PGMiner has been amended with the ability to determine proteotypic peptides. Proteotypic 
peptides are here defined as peptides occurring only in one location in respect to all mappings 
of all sequence databases used for PSM establishment to the reference genome. Detection of 
unambiguously identified proteins and framing other proteins as ambiguous identification is 
important in large scale studies in order to avoid misinterpretation. PGMiner’s proteotypic 
peptide finder requires gene annotation file in GFF format and sequence files that are 
compatible with annotation files in terms of sequence accessions. Among selected sequence 
databases, peptides that are found only in one sequence region are considered as proteotypic. 
Ambiguities due to different level of associations, i.e. an exonic region might be related to 
multiple mRNAs and multiple proteins originating from one locus, are resolved in this 
manner since genomic start and end positions are taken into account. 
PGMiner has also been amended to enable prediction of alternative start sites for selected 
gene models when proteotypic and additional supporting peptides are available. For this, 
PGMiner mostly follows the linear scanning mechanism where a 40S ribosomal subunit binds 
to a capped 5’-end of a translation start codon located in an appropriate context [21]–[24]. 
PGMiner currently only allows the analysis of peptides conflicting with existing gene models, 
which have been categorized as intronic. 

4 Application 

In this study, the human pathogen Toxoplasma gondii RH strain LC-MS/MS collection 
(PRIDE accession: PXD003603) was used to demonstrate PGMiner’s functionality. Three 
spectral datasets were available in the collection measured by QTOF Impact HD, Maxis 4G 
(Bruker Daltonics, Bremen, Germany) and Ion Trap amaZon (Bruker Daltonics), respectively. 
MS/MS spectra with less than 15 peaks were eliminated. The database search tool nodes of 
PGMiner: OMSSA, MSGF+, and XTandem were used with the following settings: 0.3Da 
precursor mass tolerance and 0.35Da fragment mass tolerance for Ion Trap amaZon and 
Maxis 4G spectra; 50 ppm precursor mass tolerance and 0.1Da fragment mass tolerance for 
QTOF Impact HD. One miscleavage was allowed and carbamidomethylation of cysteine 
residues and oxidation of methionine residues were set as fixed modifications.  
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Genome sequences of RH strain and ME49 strain, annotated proteins, annotated transcripts, 
open-reading frames and coding sequences were retrieved from ToxoDB release 28 (2016-03-
23). Since T. gondii is a human pathogen, we filtered human contaminant peptides. To 
identify those contaminant peptides, we used human ab initio gene models and annotated 
protein sequences. Nucleotide databases were translated to their six reading frames. In total 
the databases were 689 MB in size and they were processed into 10 equal size databases by 
using our database equalizer module [12]. The decoy version of each database was generated 
by shuffling sequences. The best hit per spectrum was selected among hits retrieved from the 
10 databases for each spectrum on a per algorithm basis. This step was carried out for decoy 
hits, as well. Human contaminant peptide matching spectra were excluded. The summary of 
the results are presented in Table 2.  

Table 2: Number of target and decoy peptide-spectrum matches obtained from X!Tandem, OMSSA, and 
MSGF+ using the toxoplasma genome and human gene models are listed on a per collection basis from 
PXD003603. 

Spectra 
Collection 

Target Decoy 

X!Tandem OMSSA MSGF+ X!Tandem OMSSA MSGF+ 

Filtered 
Hits 

Human 
Cont. 
Hits 

Filtered 
Hits 

Human 
Cont. 
Hits 

Filtered 
Hits 

Human 
Cont. 
Hits 

Filtered 
Hits 

Human 
Cont. 
Hits 

Filtered 
Hits 

Human 
Cont. 
Hits 

Filtered 
Hits 

Human 
Cont. 
Hits 

2012-36-11 
ImpactVps26 36251 7431 50155 0 36584 7397 38047 6085 50530 0 37431 6537 

2012-36-11 
ImpactVps35 37507 8368 52085 0 37870 8266 39731 6540 52480 0 39493 6627 

2012-36-15 
ImpactVps29 37336 12409 54965 0 34585 11859 43173 7363 55561 0 39086 7331 

2012-36-16 
ImpactVps35 69545 18443 102584 0 69424 17278 76109 12643 102890 0 72215 14022 

2012-36-16 
ImpactVps26 69053 16062 96510 0 67928 14665 73196 12673 96900 0 68811 13732 

2009-26-11 
MaxisVps35 20756 3866 29325 0 19723 3274 21563 3303 29617 0 19822 3127 

2009-26-11 
amaZonVps26 32801 6113 44071 0 22567 3950 35333 4913 44614 0 22963 3552 

Total # of PSMs 303249 72692 429695 0 288681 66689 327152 53520 432592 0 299821 54928 

As a result 429,695 target hits and 432,592 decoy hits for OMSSA, 303,249 target and 
327,152 decoy hits for X!Tandem and 288,681 target and 299,821 decoy hits for MSGF+ 
were found. Filtering by 1% FDR led to 11,753 hits for OMSSA, 21,158 hits for X!Tandem 
and 12,625 hits for MSGF+. Integration of these results identified 12,241 consensus peptide-
spectrum matches.  

Gene models are either supported through peptides, which in turn are supported via PSMs, or 
have at least one conflicting peptide mapping (Table 3). Overall, 2,888 unique peptides 
mapped to 370 unique gene models. Of these peptides 1,052 were identified to be proteotypic. 
1,266 peptides were exonic (i.e.: directly supporting annotated gene models) and 13 peptides 
were overlapping with 5’ end of gene models while 31 peptides were overlapping with 3’ 
ends of gene models. 24 gene models had 3’ overlapping peptides with 6 of them having also 
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exonic peptides. 2 gene models had only 5’ overlapping peptides and 5 gene models had 
exonic and 5’ overlapping peptides. 339 gene models had only peptides mapped to exons. No 
intergenic peptides were found. In addition to that there was no alternative start site selection 
transcript in this dataset, however, the approach was developed for human and may not be 
applicable for T. gondii. 

Table 3: According to our results, in total, 370 gene models had peptides mapped to them with 350 only 
containing peptides supporting the annotation. For other gene models supporting peptides may exist, but 
in addition peptides which conflict with the available annotation by either overlapping on the 3’ side or 5’ 
side with an annotated gene model were found. 

Status of gene models Number of gene models 

Gene models with peptide 
support for exons 

339 

Gene models with conflicting 
3’ overlapping peptides 

24 

Gene models with conflicting 
5’ overlapping peptides 

7 

5 Discussion 

In this study, we presented an extended version of PGMiner, a new proteogenomic workflow 
tool, which performs automatic assessment of current gene models for eukaryotic and 
prokaryotic organisms based on mass spectrometric data. The workflow enables users to 
acquire data from data repositories and to perform peptide identification by employing 
multiple database search tools against various sequence databases in a parallel manner. 
Statistically assessed peptides are further mapped to genome annotations, thereby new gene 
models can be proposed and current models can be evaluated as confirmed or in need of 
revision. In order to unambiguously identify gene models, labeling peptides as proteotypic or 
not is important and the extended version of PGMiner allows users to make such assessment 
according to user-selected databases. Peptides which are labelled as intronic can be further 
checked whether they are related to alternative start site selection transcript products.  
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