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Abstract: In this study, the variation of trace element concentrations (total of
48 trace elements including rare earth elements) in coal, coal ash and fly ash
were examined and compared with coal Clarke values. Results showed that the
average concentrations of trace elements including As, B, Cu, Ce, Co, Cs, Gd,
Hf, La, Lu, Mo, Nd, Nb, Pr, Pb, Sc, Sm, Ta, Tb, Th, U, V, W, Y, Yb, Zn and Zr
in the Can Basin coals are higher than their respective Clarke values for world
low-rank coals. The elements As, Cu, Co, Cs, Mo, Nb, Sc, Pb, Pr, Th, U, V, Zn
and Zr are enriched in coal ashes, whereas As, Co, Nb, Sc, U and V are
enriched in fly ashes. Among the elements, maximum enrichment in coal was
observed for As, with the average concentration of 253.5 ppm As in the Can
Basin coals, while the coal Clarke value is 14 ppm and world average value is
8.3 ppm. From the ecotoxicological point of view, combustion residues formed
by indoor combustion of coal and/or in thermal power plants may be a hazard
to the environment and to aquatic and terrestrial life including human beings,
particularly As, trace elements and released radioactive elements.
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1 Introduction

Coal is a major energy source used in thermal power plants to generate electricity in most
countries in the world. Coal combustion products associated with gaseous emissions and
with the disposal of ash residues may cause serious environmental and health risks. In
particular, the use of low quality lignite with high ash content results in huge quantities of
fly ash which requires disposal (Baba and Turkman, 2001). Trace metals (e.g., As, B, Cd,
Co, Cr, Cu, Hg, Ni, Pb, Se, V, Zn, U, Th and Cs) and even rare earth elements (REEs)
present in coal as well as in fly ash are considered to be potential elements of
environmental concern and possible health hazards (Swaine, 2000; Finkelman et al.,
2002; Finkelman, 2004; Baba and Kaya, 2004; Mardon and Hower, 2004; Vassilev et al.,
2005; Belkin et al., 2008; Bhangare et al., 2011; Dai et al., 2011; Sia and Abdullah, 2011;
Singh et al., 2011). The disposal of ash and toxic elements released during coal
combustion causes a contamination risk for soil, plants, and groundwater due to
concentrations of potentially toxic heavy metals, soluble salts, acidity/alkalinity and
radionuclides (Finkelman et al., 2002; Dai et al., 2005; Ram and Masto, 2010; Pandey
et al., 2011; Singh et al., 2011). Several studies show that serious human health problems
are caused by indoor combustion of coal in China, including endemic fluorosis, arsenosis,
selenosis and lung cancer (Zheng et al., 1999, 2005; Finkelman et al., 2002; Liu et al.,
2002; Belkin et al., 2008; Dai et al., 2011; Wang et al., 2011; Gurdal, 2011).

The distribution and concentration of trace elements in organic and inorganic
components impact the quality of coal combustion by-products (Baba et al., 2008a, 2010;
Finkelman, 1994a, 1994b, 1995; Swaine, 2000; Xu et al., 2003; Vassilev et al., 2005;
Bhangare et al., 2011) and their concentration level and mobility determine their safe
disposal and utilisation (Baba et al., 2010; Singh et al., 2011). Certain elements (e.g., Ge,
Ga, U and REEs) that can potentially be of industrial value are concentrated in some
coals and fly ashes (Seredin and Finkelman, 2008; Dai et al., 2011). The organically
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associated trace elements tend to be vaporised, either escaping to the atmosphere or being
adsorbed on the fine fly ash particles, upon combustion in the furnace. The inorganically
associated elements are generally non-volatile or have very low volatility, and tend to be
retained in the bottom ash and in the fly ash particles upon combustion (Querol et al.,
1995; Spears and Zheng, 1999; Vassilev and Brackman-Danheux, 1999; Huang et al.,
2004; Liu et al., 2004, 2005; Dai et al., 2010; Vejahati et al., 2010; Sia and Abdullah,
2015).

Studies concerning the sensitive trace element (As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo,
Ni, Pb, Sb, Se, Sn, Th, T1, U, V, and Zn) geochemistry of Can coals (Gurdal, 2008; 2011)
and leaching properties of Can fly ashes (Baba et al., 2010) have been previously
reported. In this study, ten selected samples from the investigated Can coal samples were
ashed and 48 trace elements measured in coal and coal-ashes were compared to coal and
ash Clarke values (Yudovich et al., 1985), as well as to the world coal value (Ketris and
Yudovich, 2009). Additionally, the concentrations of the studied elements were examined
in fly ashes taken from Can Thermal Power Plant (CTPP). The results were evaluated in
terms of the impact of the elements on the local environment and human health.

Figure 1 Location and geological map of the Can Coal Basin (Bozcu et al., 2008) and coal mine
sites (see online version for colours)
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1.1 Geological background

The study area of the Early-Middle Miocene aged Can Coal Basin is located in the
northwest of Turkey, to the north of the Kazdag Horst in the Biga Peninsula and consists
of mainly volcano-clastics, fluviatile and lacustrine clastic sediments (Bozcu et al., 2008;
Gurdal and Bozcu, 2011) (Figure 1). During the early to middle Miocene, the Can basin



458 A. Baba et al.

developed unconformably overlying the Oligocene-aged Can volcanic rocks. The
sediments of the Can Coal Basin are composed of bituminous shale and claystone with
intercalated lignite, sandstone, siltstone and tuff. Within the sequence of the Can
formation, the lignite levels are commonly overlain by dark green or greenish-coloured
well-laminated claystone. This claystone level contains rich organic matter and can be
assumed to be a key horizon/reference layer in the field (Bozcu et al., 2008). In the basin,
one main coal seam is mined which has a thickness ranging from 17 to 35 m and is
contained in this claystone horizon (Figure 2). This organo-sedimentary level is
interpreted as representing a low-energy lacustrine or lake-shore/swamp depositional
environment. Depositional characteristics, lithological content and sedimentary structures
of the Can formation indicate a change from a fluvial to lacustrine depositional
environment. The basin resembles a caldera developed by volcanic and tectonic activity
(Gurdal and Bozcu, 2011).

In the Can basin total coal reserves are over 100 Mt (Bozcu et al., 2008) and coal is
exploited mainly by opencast mining and is consumed for domestic heating and as feed
coals in the coal-fired CTPP with a 2 x 160 (320) MW capacity. The annual average
lignite requirement of this plant is 1.82 million tons. A fluid coal-fired thermal power
plant has been in operation since 2005 in Can County and currently it produces almost
half a million tons of fly ash per year (Baba et al., 2010).

Figure 2 The stratigraphical sequence of the Can formation
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2 Materials and methods

2.1 Sample collection

The studied coal samples were a set of samples from previous studies performed by Baba
et al. (2008b) and Bozcu et al. (2008). A total of ten coal samples were selected from
Can Basin coals collected from drill cores (indicated by ‘W’, e.g., W06/4-3 and
WYAY-SK2-2) or from seams in mines, namely Etili, Yayakoy, Can and Comakli mines
(see Figure 1). Samples from open pit mines, namely Etili (Etili-3) and Comakli (Com-1),
were collected using a channel-profile sampling strategy. The channel samples covered
the whole thickness of the coal seam representing a volume between the roof and the
floor of the seam at different locations. During the sampling process, freshly exposed
faces were selected for sampling while mineral rich layers greater than 1 cm were
excluded. Coal samples were air dried, crushed and blended before the analyses and the
same coal samples were ashed at 600°C. In addition to the fly ash samples collected from
the CTPP, samples which weighed 5 kg were collected under the electro filter. These fly
ash samples were not subject to any preparatory processes at the plant.

2.2 Chemical analysis

Major and trace element concentrations in coals, coal ash and fly ashes were determined
by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled
plasma-atomic emission spectroscopy (ICP-AES) using different analytical procedures at
ACME Analytical Laboratories in Canada. The powdered solid samples and standard
reference materials were digested using an acidic solution (HC:HNO;:HF = 3:3:2) in a
microwave oven. After digestion, the concentrations of major and trace elements in the
samples were analysed by ICP-MS and ICP-AES. The accuracy of most trace elements
was determined using the standard reference material. The precision is within £5 wt.%
for most of the trace elements.

A thermogravimetric analyser (TGA-2000 A) was used to measure proximate
analysis of coal according to ASTM D7582 at the Can Turkish Coal Enterprise Coal
Laboratory. The moisture, ash yield, and volatile matter were determined by a LECO
TGA 160 according to the ASTM D 3173, 3174, and 3175 procedures, respectively. The
calorific values were determined by a LECO AC 350 instrument with ASTM D 5865
procedure and total sulphur analyses were carried out using LECO SC 132 (ASTM D
4239) at the accredited coal analysis laboratory of the General Directorate of Mineral
Research and Exploration (MTA, in Turkish abbreviation) in Ankara.

2.3 Mineralogical analysis

X-ray diffraction (XRD) analysis of coal samples was performed by using Philips PW
1830 at the accredited mineralogy and petrography analysis laboratory of MTA in
Ankara. The minerals in each sample were identified from the diffractograms by
reference to the international centre for diffraction data (ICDD). The structure of fly ash
was scanned with scanning electron microscopy (SEM) (FEI Philips XL30 sFEG,
Oregon) coupled with energy dispersive X-ray spectrometry (EDX) carried out using SE
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and BSE detectors to determine surface features and local chemical contents in the Centre
for Material Science (MAM) in Izmir Institute of Technology.

3 Results and discussion

3.1 Characterisation of Can coals

Properties (proximate, sulphur form, XRD and petrographic) of the studied coal samples
are shown in Table 1. The Can Basin coals are humic coal and classified as lignite to sub-
bituminous coal based on the random huminite reflectance (0.38-0.54 % Rr), volatile
matter (45.50-62.25 wt.%, daf) and calorific value (3,419-6,479 kcal/kg, maf) (Gurdal
and Bozcu, 2011). Moisture and ash content (on received basis) of the Can basin coals
vary between 8.76-32.56 and 2.46-41.19 wt.%, respectively. The presence of high
sulphur content (max: 14.36) may be attributed to the peat environment and regional
volcanic activity (tuff deposits are interbedded in the coal-bearing sequences), as well as
to alkaline depositional environments with intensive sulphide mineralisation (Gurdal and
Bozcu, 2011). The results for sulphur form show that the sulphur contents are mainly of
organic and pyritic sulphur.

The literature data (Gurdal and Bozcu, 2011; Gurdal, 2011) shows that Can coals
have 74-95 vol.% huminite (mineral matter free, mmf), 2—19 vol.% (mmf) liptinite and
2-13 vol.% (mmf) inertinite (see Table 1) and the coals are rich in mineral matter
(445 vol.%), which consists mostly of clay minerals and pyrite. XRD analysis results
indicate that, in general, major mineral contents of Can basin coals are kaolinite, mixed
layer clay minerals, quartz, illite/mica group minerals, pyrite, feldspar group minerals,
gypsum and zeolite group minerals (see Table 1)

3.2 Characterisation of fly ash and leaching properties

Coal combustion in CTPP has consumed low-quality lignite reserves from the Can Basin.
At the CTPP approximately 5,000 tons of coal is burnt and approximately 1,500 tons of
fly ash is produced per day. Chemical composition of fly ash varies considerably,
depending upon the composition of host coal (Hajarnavis, 2000) and the operating
conditions of the thermal power plant. The chemical composition of the fly ash from the
CTPP contained less than 70% SiO,+Al,0;+Fe,0; values (average 53.27%) and CaO
was more than 10% (average 22.95%) (Table 2). Based on these values, fly ashes were
classified as C class, which has high calcareous and pozzolanic characteristics (Baba et
al., 2010). When the ash concentration of SiO, + Al,O3 + Fe,0; exceeds 70% and CaO is
less than 10% it is classified as F class. Coal combustion in the CTPP uses fluidised bed
combustion. This power generation produced F class ash one year. After 2007, a flue gas
desulfurisation unit was placed inline and limestone was added, causing the composition
of ash to completely change in the CTPP (Baba et al., 2010).
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Some properties (proximate, sulphur form, XRD and petrographical) of the Can Basin

coals (continued)

Table 1

‘(eyep ou) pu ‘(NJALL) Jonew [erouruu [e30) (D) Ae[d {(Ad.L) 91IAd [e10) £(11) onunaout [ejo} ‘(L) onundi [e1o3 {(H1) uruny [€)0) GYSIom ‘o im ‘siseq [BUISLIO ‘O :SON

sresourw dnoi3 931700z ‘winsdAS ‘syexouru dnoid eorw/N[1 ‘sjerourr Ae[d 1oAe] paxiu ‘sjerouru dnoid redsproy ‘omikd ‘oyurjoey] I-INOD
sresourw dnoi3 231109z ‘winsdAS ‘@aAd ‘zyzenb ‘ojrurjoed] ¢-1ng

wnsd43 ‘syerourur dnoig eotw/o1 ‘sperouru Aefo 19Ae] paxtw ‘syexour dnoid redspioy ‘ojikd ‘zyrenb ‘1-1edo ‘ojrurjoey| P-TS-AVAM

@Ix

(18=N

‘SoN[eA XBW pue ur)

00 LE—€ 0z-1 0€I-0C  061-0C  0S6-0PL L0960 L9TSE0 ¥€'9-CT0 [200 sulseq ue)
0082 0061 006 8T 8T 716 16% L9°0 v€0 [-wo)
0081 00°t1 00t 19 4 068 %4 L9t 8TY SPI/LOM
00'vC 00°L1 00, €S 99 788 pu pu pu 1-71/L0M
0082 00T 009 6'9 69 1'98 06'0 vL'0 68°0 v-8/L0M
0001 006 001 €€ 001 L'98 Iy 6L'1 L8°0 9-9/90M
004C 0002 00t 9T €s 1'26 pu pu pu €7/90M

pu pu pu pu pu pu pu pu pu P-IS-AVAM
0081 00°€1 00°S 6f 19 068 6LT L9°0 0 TIMS-AVAM
00°€T 00°t1 006 6¢ $9 968 vy 0Tl €re TTAS-AVAM
0091 00TI 00t 8y 09 €68 08’1 801 01 €1
WAL 1) (Adr) (fuwt *95°j04) (0 %) sajdups |02 paipnig
(%100 STVYANIN 1L 1L HI Anydjns oS0 anydpns appydng  unydpns oA ai ajdung




463

Enrichment of trace element concentrations in coal

Major element oxides of Can Basin coal, coal ash and fly ash

Table 2
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Figure 3 SEM images of fly ash, (a) irregular and spherical particles (b) irregular particles

Figure 4 EDX result of the fly ash

8 Element | Wt. % |Atomic%| Oxide | Oxide %
[] 33.84 55.89
Al 7.14 7.01 Al203 13.01
Si 8.81 8.25 si02 18.98
Ca 33.66 22.25 Ca0 47.24
6 Cr 0.15 0.08 Cr203 0.22
Fe 10.31 4.9 FeQ 13.32
Co 0.09 0.06 CoO 0.15
- Ni 0.08 0.07 NiQ 0.12
g Cu 1.86 0.77 Cul 2.32
g 4 Zn 0.2 0.15 Zn0 0.39
As 0.07 0.03 As203 0.1
Se 0.15 0.05 Se02 0.21
Cd 031 0.07 cdo 0.35
Pb 3.33 0.42 PbO 3.59
100 100
2
0
0 5 10 15 keV

The scanning electron microscopy technique with energy-dispersive X-ray microanalysis
was used to scan the size, shape and quantitative information on the local chemical
composition of the particles. Generally fly ash was composed of mainly irregular
particles; some ashes also contain spherical particles [Figure 3(a) and 3(b)]. Particles of
fluidised bed combustion fly ash were very irregular in shape due to the combustion
temperature. As the molten droplets of inorganic coal residues cool down, fly ash
particles solidify and separate out as spheres, while solidifying around trapped hollow gas
bubbles. Results of SEM analysis have shown those spherical fly ashes vary in size from
1 to 5 um fly ashes of irregular shape are usually larger. EDX results show that typical
components include Fe Ca Al-silicate with traces of As, Cd, Co, Cr, Cu, Ni, Pb, Se and
Zn (Figure 4). Coal combustion fly ash was found to leach metals at concentrations
inversely proportional to leachant pH and temperature in the study area. It can be
concluded that the metal leaching increases with decreasing pH (Baba et al., 2010).
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Consequently, even where pure water has been used in fly ash leaching studies,
appreciable fractions of As and other elements were shown to leach from fly ash (Llorens
et al., 2001). Therefore, the concentration of some heavy metals such as As may be
enriched in fly ash deposited at the ash disposal site. In other words, the mobility of trace
elements from fly ash depends not only on the element concentration, temperature and
mode of occurrence, but also on the chemical conditions associated with the leaching
process (Pandey et al., 2011).

3.3 Major and trace element concentrations in coal and its combustion residues

The major and trace element concentrations of the studied coals, coal and fly ashes are
given in Tables 2 and 3, respectively. Table 4 also lists ranges and average values of trace
element concentrations in Can basin coals including Clarke (Yudovich et al., 1985) and
world coal values (Ketris and Yudovich, 2009). Compared with the respective Clarke
values for lignite, subbituminous coals and their ashes worldwide (Yudovich et al., 1985),
the Can coals and ashes are enriched in As, B, Cu, Co, Cs, Mo, Pb, Th, U, V and Zn.
Additionally, some elements such as Ce, Eu, Gd, Hf, Lu, Nd, Nb, Sc, Sm, Tb, W and Y
have higher contents only in coal compared to the respective Clarke value for coals.
Compared to world coals (Ketris and Yudovich, 2009), Can coals have higher values for
most trace elements including As, B, Cu, Ce, Co, Cs, Eu, Er, Ga, Hf, La, Mo, Nd, Nb, Pb,
Sc, Sm, T1, Ta, Th, U, V, Y, Yb, Zr, and Zn. The fly ash data shows that As and V are
significantly enriched, but Co, Sc, and U are slightly enriched in the samples studied.
Coals sometimes include high contents of natural radioactive elements (U, Th and
their decay products) and, in some cases, concentrate considerable resources of uranium
(Arbuzov et al., 2011). However, during the combustion process of such coals, the
radioactive elements concentrate in the combustion products such as fly ash. The mean
concentrations of U, Th and V in the selected Can coals (U = 10.6 ppm, Th = 9.79 ppm
and V=173 ppm) increase two- or three fold in coal ashes (U =29.1, Th = 31.03 ppm and
V = 556.8 ppm) and when compared with world coal (Ketris and Yudovich, 2009) the
element concentrations are extremely high. A similar enrichment of radioactive elements
in coal combustion residues was reported by Mukhopadhyay et al. (1998) and Arbuzov et
al. (2011). It was reported that uranium enrichment in coals and fly ashes can potentially
have industrial value (Seredin and Finkelman, 2008; Dai et al., 2011; Gurdal, 2011).
Based on statistical analyses, most of the trace elements, except for U, show an
affinity to ash yield. Elements including As, Cu, Mo and Zn show a possible association
with pyrite; however, the elements B and Mo can have both organic and inorganic
associations (Gurdal, 2011). The elements associated with sulphide minerals and organic
matters are more volatile compared to those in different chemical forms like oxides
(Bhangare et al., 2011). The behaviour of the elements during coal combustion includes
two processes: the release stage (volatilisation) from the coal and the subsequent reaction
stage (Zhang et al., 2003). Many elements can be volatilised during coal combustion
depending on the modes of occurrence, concentrations, physical change, chemical
reactions, and combustion technology (Querol et al., 1995; Hower et al., 1999; Pandey et
al., 2011). The REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) in
Can coals show an affinity to ash yield and REEs in coal are probably derived from clay
minerals. Similar relationships have been reported by Ren et al. (2006) and Sun et al.
(2007). It seems that REEs in Can coals rarely volatilise during combustion. Compared to
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world coals, reported by Ketris and Yudovich (2009), concentrations of some REEs in
Can coals including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Yb, Lu and Y are high. However,
concentrations of Er and Tm elements are similar, while the mean content of Dy and Ho
elements are less than world coal average. The results (see Table 4) show that the REE
concentrations in coal ashes and fly ashes are within the range of Clarke values
(Yudovich et al., 1985).

The relative enrichment index REI = ([X]a/[X]c) * (A/100) is used to describe the
enrichment degree of elements in fly and coal ashes (Meij, 1994; Dai et al., 2010). [X]a is
the mean content of elements in fly or coal ashes, and [X]c is the mean content of
corresponding elements in coal. A is the ash yield of the coal. In order to determine the
relative enrichment factor for fly ashes, A is accepted as 32% (this value is the maximum
ash value accepted by CTPP) and the average element concentration of Can basin coals is
used in the given equation. The REI values for coal ash and fly ash are given in Table 4.
The results show that Ca has maximum enrichment among major oxides. The expected
value is due to the fluidised bed combustion technology which uses CaCO;. The
composition of ash is highly calcareous and has pozzolanic characteristics due to the
added limestone. This point may be important to control the quantity of As present in fly
ash leachate since the leaching of As from high Ca-ash wastes is far less than from acid
ones (Yudovich and Ketris, 2005). In the literature, the elements with REI values > 1.0
are accepted as non-volatile elements, whereas the elements with REI values < 0.7 are
defined as volatile elements and the remaining elements between 0.7 and 1.0 have
semi-volatile nature (Dai et al., 2010; Bhangare et al., 2011). If REI value > 0.7 the trace
elements are regarded as enriched in ashes. The REI values are listed for both coal and
fly ash in ascending order:

RElflyash >1.0 Ga>Rb>Sr>Ni>Tl>Ho>Gd

RElflyash 1.0-0.7 Dy >Ba>Y >Er>Eu>La>Sc>Tm>Nb>Tb>Sw>Ce
>Sm>Se>Be>Pr>Th>Pb>Nd>Yb>Cs>Lu>Hf>Cu
>As>V

RElflyash <0.7 Sb>U>Sn>Cu>Mo>Ta>Bi>Cd>Zn>Hg>Se>Ag
> Au

REIcoalash >1.0 Hf>Pb>Tl>F

REIcoalash 1.0-0.7 Tm>Co>Hg>Eu>Ni>W>La>Nb>Tb > Er> Sr> Se
>Ho>Nd>Pr>Ga>Mo>Ta>Th>B>Lu>Cd>Cu>Zr
>Ba>Yb>Gd>Sm>Y >Cs>Dy>U>V>Zn>RDb

REIcoalash <0.7 As>Bi>Be>Sn>Ag> Au> Sb > Se

Although As is a typical highly volatile element, the REI value in coal ash is under < 0.7,
whereas in fly ash the value is higher > 0.7. This result can be explained by its affinity to
calcium which is used in CTTP (Querol et al., 1995; Senior et al., 2000). According to
REI values (<0.7) for fly ash, Mo, Sb, Se and Zn are known as hazardous air pollutants
among the volatile elements and are suspected to cause serious health effects such as
cancer and birth defects. These elements vaporise during the combustion process and
condense as the combustion gases cool (Senior et al., 2000).
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Enrichment of trace element concentrations in coal

Trace elements concentrations of Can Basin coal, coal ash and fly ash

Table 3
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Trace elements concentrations of Can Basin coal, coal ash and fly ash (continued)

Table 3
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Enrichment of trace element concentrations in coal

Trace elements concentrations of Can basin coal, coal ash and fly ash (continued)

Table 3
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Trace elements concentrations of Can basin coal, coal ash and fly ash (continued)

Table 3
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Enrichment of trace element concentrations in coal

Ranges and average values of trace element concentrations of the Can Basin coals,

Table 4

compared with the Clarke values for lignite and subbituminous coals and their ashes

and the average world coal values, according Yudovich et al. (1985) and Ketris and

Yudovich (2009), respectively
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Ranges and average values of trace element concentrations of the Can Basin coals,

Table 4

compared with the Clarke values for lignite and subbituminous coals and their ashes

and the average world coal values, according Yudovich et al. (1985) and Ketris and

Yudovich (2009), respectively (continued)
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Enrichment of trace element concentrations in coal

Ranges and average values of trace element concentrations of the Can Basin coals,

Table 4

compared with the Clarke values for lignite and subbituminous coals and their ashes

and the average world coal values, according Yudovich et al. (1985) and Ketris and

Yudovich (2009), respectively (continued)

“UBOW ONOUWIYILIE (Y ‘SOYUSE [80D 10 PUB [BOJ UI dN[BA INIB[D) 9A109dsal
oYy 03 sojdwes yse AJJ pue sayse [209d [20J Ul JUUOD JUSWID[ UBIW A} JO ORI B — 1098 UONI[dIPAUSWYDILIUD 1 J(H “XOPUI JUSWIYOLIUD JANR[I AU} Y
(Bp661 ‘URWI[UL]) SOYSE PUE S[20D VS 10F YIE[D),
"(6007) UOTAOPNX PUE SIS WOL],
"(§861 “€ 12 Y21A0pN &) SOYSE IIDY} PUE S[EOD SNOUILUNIGQNS PUB d)UTI] 10§ IB[D),
*(110T ‘TepInD) uiseq Ue) WOIJ SIUSWI[A JO JUNUOY), :$AION

€z 001 81 89°0 €0 $L9 v9'l 6°€ Lo Y91 S0L 0s vTs—¢ uz
9¢ 091 3 80 SLo  TISI €01 S8l LLO 1491 S'ss 86'SS  06'€ET-0EY 1z
I S 60 50 ¥8°0 LL'T 95°0 96°0 9L°0 8T 98°0 90'1 £7°9-50°0 A
'8 LE L 88°0 L60 $Te €80 8Tl SL'0 L0g 66'8 €L01  0TTSLO A
'l PY°L W01 170 68°0 I'e ¥$°0 I 98°0 I'v I 'L 085600 M
T 0zl €z 86T 1IL0 88T ¥9'y L Lo 8955 €L1 8zl 16V-9C A
v'T 091 1T 801 ¥9°0 €LI (23 S0°s €L°0 1'6C 901 L8 S¥9-50 n
1£°0 o1 ST0 S€°0 160 €70 YE0 €L°0 86°0 170 1o STI'0 L8000 wy
€9°0 26 A 110 S0'1 S0'1 €20 9¢°0 8T'1 [Ak4 €70 €0 ve10> IL
€€ w €9 86°0 98°0 91T 1 Sl 6L0 €0'1¢€ 6L°6 8 TSE€0 yL
€0 €T 00 170 68°0 $6'0 170 L8°0 ¥8°0 v6°0 97°0 vE0 0671200 qL
870 L1 »ZT0 $€0 95°0 90 wo 60’1 6L°0 Lo vT0 ¥E0 01600 el
z W€l LT S0 88°0 9’9 6v°0 9Tl SL'0 €69 S1T 9¢'T  90%1-01°0 wg
760 8 €1 500 89°0 €70 L0°0 670 vT0 ¥$°0 8€°0 0 S1-10> qas
or1 001°1 0€1 1€0 811 8'8€€ 90 06°0 €8°0 €505 TLII 1726 08°63T08°S1 BN
'l I'y I 6v°0 190 z P70 €01 LEO 81 €01 501 0—0'1> ug
€1 0T € L0°0 8€°0 €1 ¥0°0 €90 7o 80 61 I'l 0°L-50> 3s
6'€¢ S1 z €01 16°0 9 8Tl 8T 780 61 LS 'S 009760 o3
i 9% S 8€°0 171 9Ll 8€°0 01’1 1L°0 6TL1 S'S 9% 09°81-67°0 Q
S'€ €81 T 8v°0 98°0 ¥8'8 LSO 651 180 6LE01 €€€ €€ 6691-070 wdd 1d
wgqa YiIy Wy ) ) Viig WV V14 a3uvy
ysy ) W gqa "dad Iy
LHoM ysv 4,1 Ysv [po) 00D (19 = N) Juawayg

24D

(dLLD woLf) ysv &4

(01 = u) s|jpo) payda]ag uisvg uvy)

S0 uIsng un)




474 A. Baba et al.

Figure 5 The variation of EDF value in coal, coal ash and fly ash for hazardous trace elements
(see online version for colours)
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3.4 Environmental and health considerations

The enrichment/depletion factor (EDF) for coal and coal combustion products is
calculated as the ratio of the mean element content in coal and coal ash samples to the
respective Clarke value in coal and/or coal ashes (Table 4). From these elements, As, B,
Co, Cu, Mo, Pb, Th, U, V and Zn are defined as potential environmentally hazardous
trace elements by Finkelman (1995). The European Pollutant Emission Register (EPER)
requires the reporting of As, Cd, Cu, Cr, Hg, Ni, Pb and Zn (Gibb et al., 2003), and the
USA Clean Air Act Amendments Bill of 1990 lists 11 elements of potential concern,
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namely: As, Cd, Cr, Hg, Ni, Pb, Sb, Be, Mn, Se and Co (Wagner and Tlotleng, 2012).
The variation of EDF values in coal, coal ash and fly ash for potential hazardous trace
elements are shown in Figure 5. According to the results, the maximum enrichment was
observed for As in coal and in coal and fly ashes. The enrichment in coal ash is probably
related to the low-temperature ignition (600°C) since maximum arsenic passes into
gaseous phase in the forms of Asz, Ass and AsS at temperatures higher than 600°C
(Belkova et al., 2000; Pandey et al., 2011). The form of As residence in fly ash is
influenced by the composition of the parent coal and the conditions during coal
combustion, particularly during cooling. Arsenic is initially volatilised at the temperature
of coal combustion, but will partition between the vapour phase and fly ash particles in
the cooler portions of the flue gas stream (Pandey et al., 2011). Compared to other trace
elements in coal and fly ash, As shows particularly strong enrichment (approximately ten
times). Similar results for fly ash have been reported in the literature (Smith, 1980). They
concluded that compared to other trace elements in fly ash, As shows strong enrichment
(5-10 times) in the finest (<10 um diameter) size fractions due to the high surface area.

Arsenic is classified as one of the prime environmentally sensitive elements (Swaine
and Goodarzi, 1995). Arsenic is also the most volatile element which can lead to serious
environmental and health problems (Zheng et al., 1999; Ding et al., 2001; Liu et al.,
2002; Finkelman, 2004; Goodarzi et al., 2008; Bhangare et al., 2011; Dai et al., 2011).
U.S. Public Health Service (2000) reported that most As compounds can easily dissolve
in water, and so As can enter water bodies such as rivers, lakes, ponds and surface runoff
(Pandey et al., 2011). The literature data indicate that As exposure may affect organs of
the human body, skin and immune system (Duker et al., 2005), and even at low
concentrations may damage the blood circulatory system as well as injuring the nervous
system and other vital organs (USPHS, 2000). Arsenic is associated with skin damage,
increased risk of cancer, and problems with the circulatory system (Scragg, 2006; Wuana
and Okieimen, 2011). Using good quality coal and temperature control during coal
combustion is a key factor to control As release into the environment (Pandey et al.,
2011). Additionally, spontaneous combustion of coal (Pone et al., 2007) is another
mechanism which causes the release of As (Finkelman and Gross, 1999; Pone et al.,
2007; Goodarzi et al., 2008), especially in summer conditions.

The abundance of sulphur minerals in Can coals present some environmental and
human health concerns. The mine wastes cover approximately 1 km: around Etili open pit
coal mine in Can coal basin (Yucel and Yucel, 2016; Yucel and Turan, 2016) and active
and abandoned coal mining areas contain variable amounts of sulphide minerals,
especially pyrite. After being exposed to air and water, oxidation of these minerals within
the surrounding rock and mine waste generates acid mine drainage (Yucel and Baba,
2013, 2016; Yucel et al., 2014). Acid mine drainage/lakes near agricultural fields and
villages with low pH (<3) and high concentration of metals and trace elements create
environmental problems in the Etili coal mine (Yucel and Baba, 2013; Okumusoglu and
Gunduz, 2013; Yucel et al, 2014, 2016). Yucel and Baba (2013) stated that As
concentration in acid mine lakes reaches 17.7 pg/L in the Can coal basin. Yucel and
Yucel (2016) further analysed the impact of mine waste effluents on the quality of water
resources downstream of the disposal sites as some of these compounds can dissolve in
water and enter waterways and impact humans and wildlife. In addition, Baba et al.
(2008b) found that according to biological samples collected from local inhabitants in
Can coal basin, As and Pb levels in blood and hair are higher than in other regions of the
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Biga Peninsula. This indicates that high trace element concentrations in water resources,
soil and atmosphere have negative effects on people’s health.

4 Conclusions

The concentration of trace elements may change in coal seams in different open-pit
mining sites of the Can Basin. Concentrations of trace elements are different in the Can
coal samples compared to ash yields and sulphur contents. In general, the values of trace
element concentrations are within the world average values. Note that the average
concentrations of the trace elements, including As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn,
are higher in Can Basin coals than the world average value. The results show that some
toxic elements such as As, B, Cu, Co, Pb, Th, U, V and Zn are also extremely enriched in
coal ashes when compared to the world average value and the concentration of elements
including Dy, Er, Gd, Ga, Ho, Hg, Se, Sn, Sm and Y in fly ash was higher than that of
coal ash. The study shows that the toxic effects of As may become a critical issue in the
Can basin. Coal combustion can mobilise trace elements by introducing them to
terrestrial, aquatic and atmospheric environments, and if leached, these elements have a
potential to contaminate soil and water resources. Therefore, these elements may become
a hazard to the environment because of their contribution to the formation of toxic
compounds if the ash is not utilised or disposed of properly. This possible contamination
could lead to health, environmental and land-use problems. It is recommended that water
resources and soil be monitored regularly in the Can coal basin.
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