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Abstract. The finite time blow-up of solutions for 1-D NLS with oscillating nonlinearities is shown
in two domains: (1) the whole real line where the nonlinear source is acting in the interior of the
domain and (2) the right half-line where the nonlinear source is placed at the boundary point.
The distinctive feature of this work is that the initial energy is allowed to be non-negative and the
momentum is allowed to be infinite in contrast to the previous literature on the blow-up of solutions
with time dependent nonlinearities. The common finite momentum assumption is removed by using
a compactly supported or rapidly decaying weight function in virial identities - an idea borrowed
from [18]. At the end of the paper, a numerical example satisfying the theory is provided.

1. Introduction and Main Results

In this article we study two problems. The first problem concerns the nonlinear Schrödinger
equation posed on R with a critical focusing type source term whose coefficient is oscillating.

i
∂u

∂t
= −∂

2u

∂x2
−AΩ(t)|u|4u, t > t0, x ∈ R, (1.1)

u(t0, x) = u0(x), x ∈ R, (1.2)

where t0 ∈ R, AΩ(t) = a(2Ωt) for some real valued periodic smooth function a(t), and Ω > 0 is a
fixed constant. a(t) = cos2( t2) is a common example.

The second problem examines the Schrödinger equation on the right half-line with a critical or
supercritical nonlinear focusing type source term, which has a time dependent coefficient, acting at
the only boundary point.

i
∂u

∂t
= −∂

2u

∂x2
, t > t0, x > 0, (1.3)

lim
x→0+

ux(t, x) = −AΩ(t)|u(t, 0)|ru(t, 0), t > t0, (1.4)

u(t0, x) = u0(x), x > 0, (1.5)

where t0, Ω, AΩ, and a are as in (1.1)-(1.2), and r ≥ 2.
Our aim for both problems is to point to the fact that for appropriate initial data u0, it is always

possible to obtain solutions which blow-up at the energy level in finite time, even if the initial
momentum is infinite and energy is non-negative.
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2 BLOW-UP OF SOLUTIONS OF NLS

1.1. Physical motivation. The nonlinear Schrödinger equation (NLS) is a classical field equation.
It became popular when its one-dimensional version was shown to be integrable in [25]. Although
it has many applications in physics, evolution of a quantum state is not described by NLS, which
contrasts with the use of linear Schrödinger equation. Applications of NLS include transmission
of light in nonlinear optical fibers and planar wavequides, small-amplitude gravity waves on the
surface of deep inviscid water, and Langmuir waves in hot plasmas [23], [15]. NLS also appears as a
universal equation governing the evolution of slowly varying packets of quasi-monochromatic waves
in weakly nonlinear dispersive media [23], [15]. Some other interesting applications of NLS include
Bose-Einstein condensates [20], Davydov’s alpha-helix solitons [5], and plane-diffracted wave beams
in the focusing regions of the ionosphere [9].

Whole line model. The NLS with fifth order power type nonlinearity, in particular the one dimen-
sional model given in (1.1)-(1.2) is referred to as the quintic Schrödinger equation. The quintic
NLS (with say AΩ being a constant)

iut + uxx −AΩ|u|4u = 0 (1.6)

is an important model from both mathematical and physical perspectives although it has never
been as popular as the NLS with cubic nonlinearity. One can show that the quintic NLS (1.6) is
equivalent to a Hamiltonian structure (see e.g., [23]) given by

∂u

∂t
= i

δH[u]

δū
,

where the Hamiltonian is defined by

H[u] = ‖ux‖2L2 +
AΩ

3

∫
Rn

|u|6dx.

This type of structure naturally arises when u represents a slow envelope of a small amplitude wave
in a region which carries the properties of weak dispersion and weak nonlinearity depending on the
intensity of the wave [3].

The quintic Schrödinger equation was recommended as a model for some concrete physical appli-
cations. For instance, [13] recommended this model for describing the evolution of one-dimensional
gas of impenetrable bosons. Reliability of this model was then verified both theoretically [14] and
experimentally [19] under the assumption that the mass of gas (number of particles) is sufficiently
large. Another physical example, where the quintic NLS plays a role is Bose-Einstein conden-
sates where the three-body interatomic interactions (quintic nonlinearity) heavily dominates the
two-body interactions (cubic nonlinearity) so that the latter becomes negligible [1].

If AΩ is constant and positive, then the quintic NLS is said to be defocusing (repulsive). On the
other hand, if AΩ is constant and negative, then the quintic NLS is said to be focusing (attractive).
It is well-known that collapse of solutions is possible in the focusing case [8]. One idea to manage
the nonlinear effect in the focusing case is to insert certain physical changes to the system where
a rapidly varying nonlinear effect with approximately zero mean can be created. Then, one can
hope to cancel out the adverse effects of the nonlinearity and convey the waves in a more stable
form over an extended period of time. This motivates us to study the mathematical properties of
the model presented in (1.1)-(1.2) where AΩ is no longer a constant and desirably a fast oscillating
function of time.

Half-line model. In physics, the half-line model posed in (1.3)-(1.5) with nonlinear Robin-type
boundary condition (with say AΩ ≡ 1) is obtained from the one dimensional nonlinear Schrödinger
equation with attractive point nonlinearity given by

iut + uxx + δ|u|ru = 0, (1.7)



BLOW-UP OF SOLUTIONS OF NLS 3

where δ is the usual Dirac delta function, see for instance [10] for the relation between two models.
The power type nonlinearity on the boundary is interpreted as a jump condition at the origin given
by

lim
x→0+

ux(x, t)− lim
x→0−

ux(x, t) ≡ |u(0, t)|ru(0, t)

for the free Schrödinger equation, which can be rewritten as (1.7). This condition reduces to

lim
x→0+

ux(x, t) ≡ |u(0, t)|ru(0, t)

assuming the evolution is taking place only at the right half-space, i.e., u(x, t) ≡ 0 for x < 0.
(1.7) is used (say with r = 2) to describe the evolution of the propagation of an electron subject to

a vibrational impurity at x = 0, where the vibration can couple strongly and is completely enslaved
to the electron [16]. Another use of this model is to describe the evolution of a wave travelling in a
domain that contains a narrow strip of nonlinear (general Kerr-type) material, where the nonlinear
strip is assumed to be much smaller than the typical wavelength [24].

In has been shown that collapse of solutions for (1.7) or (1.3)-(1.5) (with AΩ being a constant)
is possible ([10], [2], [11]). This again leads us to consider the same type of problem considered for
the whole line problem. That is, the study of the relationship between the collapse phenomena and
the nonlinear oscillating effects.

1.2. A few words on the previous results. Ogawa-Tsutsumi [18] proved the following blow-up
result for (1.1)-(1.2) with AΩ being only a constant.

Theorem 1.8 ([18]). If u0 ∈ H1 with E(u0) < 0, then there is T > 0 such that

lim
t→T−

‖ux(t)‖L2 =∞.

Regarding the half-line problem, Ackleh-Deng [2] proved the following blow-up result for (1.3)-
(1.5) with AΩ being a constant.

Theorem 1.9 ([2]). If u0 ∈ H3(R+) with E(u0) < 0 and r ≥ 2, then there is T > 0 such that

lim
t→T−

‖ux(t)‖L2(R+) =∞.

Moreover, [2] proves in the same context that the critical exponent associated with (1.3)-(1.5) is
equal to r = 2. More precisely, all local solutions turn out to be also global for r < 2, and one can
construct blow-up solutions otherwise.

Recently, [11] generalized the blow-up result in [2] (with a still being only a constant) to the
case where (1.3) is replaced by iut − uxx + k|u|pu + iγu = 0 (k, p > 0, γ ≥ 0). In this work, the
authors have studied the interaction between the nonlinear focusing Robin type boundary source,
the nonlinear defocusing interior source, and the weak damping term. [11] proved that there are
blow-up solutions as long as the focusing type boundary nonlinearity is sufficiently stronger than
the defocusing type interior nonlinearity (r > max{2, p − 2}). The authors showed that although
the damping has no effect on preventing the blow-up, it has a rapid stabilizing effect for global
solutions where the rate of decay depends on the relation between the powers of nonlinearities.

Remark 1.10. In Theorem 1.8 (resp. Theorem 1.9), E(u0) denotes the initial energy where the
energy functional is defined by (1.13) (resp. (1.16)).

The blow-up of solutions in the presence of oscillating nonlinearities is more interesting than the
constant coefficient case, because it is well-known that oscillating sources create a stabilizing effect
by extending the life time of the solutions, see Remark 2.2. The blow-up of solutions for nonlinear
Schrödinger equations with oscillating nonlinearities has only been shown in H1∩L2(|x|2dx); see [7]

and [26]. This in particular implies that the momentum

∫
|x|2|u(x)|2dx was assumed to be finite.
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However, it is well-known from the general theory of nonlinear Schrödinger equations that H1 is
sufficient when we desire the local well-posedness for (1.1)-(1.2). See for example, [12]. Therefore,
the aim here is to eliminate the weight assumption of L2(|x|2dx) in the presence of an oscillating
source. Elimination of the finite momentum assumption was already achieved by Ogawa-Tsutsumi
[18] in the case AΩ is constant and the initial energy is strictly negative by using a compactly
supported weight function ϕ ∈W 3,∞(R) in virial identities. This function was given by

ϕ(x) =



x if |x| ≤ 1,

x− (x− 1)3 if 1 < x ≤ 1 + 1√
3
,

x− (x+ 1)3 if −
(

1 + 1√
3

)
≤ x < −1,

smooth if 1 + 1√
3
≤ |x| < 2,

0 if 2 ≤ |x|,

(1.11)

together with ϕ′(x) ≤ 0 for |x| ≥ 1 + 1√
3
. We show that a similar result also holds when the initial

energy is non-negative and the source has a time dependent coefficient (e.g., an oscillating function).
Construction of blow-up solutions for the problem (1.3)-(1.5) is similar. For this purpose, we will
use the weight function

ϕ = (x2 + x)e−x. (1.12)

These type of weight functions were used for example in [2] and [17].

1.3. Main result. We associate the real line problem (1.1)-(1.2) with the energy function

E(u(t)) = ‖ux(t)‖2L2 −
a(2Ωt)

3
‖u(t)‖6L6 . (1.13)

If a were constant, one would have the classical nonlinear Schrödinger equation, and it is well-
known that the associated mass and energy are both conserved quantities in this case. This fact
plays an important role in the global analysis of nonlinear Schrödinger equations. However, when a
is not constant, then energy needs not be conserved. Indeed, (1.1)-(1.2) has the following identities
for mass and rate of change of energy:

‖u(t)‖L2 = ‖u0‖L2 , (1.14)

d

dt
[E(u(t))] = −a′(2Ωt)

2Ω

3
‖u(t)‖6L6 . (1.15)

Therefore, once we assume that AΩ(t0) > 0 and A′Ω(t) ≥ 0 in time interval [t0, t0 + T ), where
T > 0, then if the energy is initially negative, it will continue to stay negative within the same time
interval [t0, t0 + T ).

Regarding the half-line problem (1.3)-(1.5), the associated energy function is given by

E(u(t)) = ‖ux(t)‖2L2(R+) − a(2Ωt)
2

r + 2
|u(t, 0)|r+2. (1.16)

When a is a differentiable function of time, we have the following rate of change for energy:

E′(u(t)) = −a′(2Ωt)
4Ω

r + 2
|u(t, 0)|r+2. (1.17)

We observe from (1.16) and (1.17) that both the energy and its rate of change are influenced by
what is happening at the corner point x = 0.
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Notation. Let us introduce the following notation to simplify the statements of main theorems:

Ψ(x) ≡
∫ x

0 ϕ(y)dy, λ ≡ −2=
∫
G
ϕu0ū

′
0dx, α ≡

∫
G

Ψ|u0|2dx,

δ =
1

2

√
3

8AΩ(t0 + T )

(
‖ϕ′′′‖∞ + max

{√
3,

1

2
‖ϕ′′‖∞

}2
)

for the whole line problem, δ ≡ 1
2‖ϕ

′′′‖∞‖u0‖22 for the half-line problem, β ≡ (2E(u0) + δ), γ ≡(
2

β
‖u′0‖L2(R) + 1

)
, θ± ≡

−λ±
√
λ2 − 4αβ

2β
, θ0 = −α/λ, G = R for the whole line problem, G = R+

for the half line problem. ϕ is chosen as in (1.11) for the whole line problem and as in (1.12) for
the half line problem.

Now, we state our main results for the whole line problem and the half-line problem (with r ≥ 2),
respectively:

Theorem 1.18 (Whole line problem). Let t0 ∈ R, Ω > 0 be fixed, AΩ(t) = a(2Ωt) for some real
valued smooth function a(t) such that AΩ(t0) > 0 with A′Ω(t) ≥ 0 in [t0, t0 + T ) for some T > 0. If
u0 ∈ H1(R) satisfies one of the following conditions:

(i) E(u0) > −δ/2, λ < 0, λ2 > 4αβ, T > θ−, α+ βθ2
− <

1

2

(
3

8AΩ(t0 + T )

) 1
2

,

(ii) E(u0) < −δ/2, T > θ+, 2αγ <

(
3

8AΩ(t0 + T )

) 1
2

,

(iii) E(u0) = −δ/2, λ < 0, T > θ0, α <
1

2

(
3

8AΩ(t0 + T )

) 1
2

,

then the corresponding solution of (1.1)-(1.2) must blow-up in finite time (more precisely before t
reaches t0 + T ) in the sense that there is a time T ∗ ∈ (0, T ) which satisfies

lim
t↑t0+T ∗

‖ux(t)‖L2(R) =∞.

Theorem 1.19 (Half line problem). Let t0 ∈ R, Ω > 0 be fixed, AΩ(t) = a(2Ωt) for some real
valued smooth function a(t) such that AΩ(t0) > 0 with A′Ω(t) ≥ 0 in [t0, t0 + T ) for some T > 0. If
u0 ∈ H1(R+) satisfies one of the following conditions:

(i) E(u0) > −δ/2, λ < 0, λ2 > 4αβ, T > θ−,
(ii) E(u0) < −δ/2, T > θ+,

(iii) E(u0) = −δ/2, T > θ0, λ < 0,

then the corresponding solution of (1.3)-(1.5) must blow-up in finite time (more precisely before t
reaches t0 + T ) in the sense that there is a time T ∗ ∈ (0, T ) which satisfies

lim
t↑t0+T ∗

‖ux(t)‖L2(R+) =∞.

1.4. Scaling argument. Theorems 1.18 and 1.19 give sufficient conditions on the initial datum
u0 for blow-up to occur once t0,Ω, and AΩ(·) are given. The natural question to ask is whether the
given sufficient conditions on u0 are void and one might wonder the answer to the following general
question:

Problem 1.20. Given t0, Ω, AΩ(·) and T as in Theorem 1.18 (or Theorem 1.19), can you find an
initial datum u0 for each sufficient condition given in the theorems that guarantees the blow-up of
the corresponding solution?

The answer to the above question is ‘yes’ for sufficient conditions (ii) and (iii) in both theorems
and one can see this through a scaling argument. Indeed, let t0, Ω, and AΩ(·) be such that
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AΩ(t0) > 0 with A′Ω(t) ≥ 0 in [t0, t0+T ) for some T > 0, and say we consider the whole line problem
(Theorem 1.18). Let us for instance start with taking an initial datum u0 ∈ H1(Ω) with negative

initial energy (E(u0) < 0). As a second step, consider the scaling given by uρ0µ(x) :=
µ
√
ρ
u0

(
x

ρ

)
with µ > 0 and ρ > 0. It follows by a straightforward change of variables that this scaling argument
changes the L2−norm proportional to µ while changing the energy proportional to µ2/ρ2. More

precisely, one has ‖uρ0µ‖L2 = µ‖u0‖L2 and E(uρ0µ) =
µ2

ρ2
E(u0). Therefore, for µ =

(
− δρ2

E(u0)

) 1
2
, one

has E(uρ0µ) = −δ < −δ/2, as desired in Theorem 1.18 (ii). Note that the same scaling has the effect

α ∼ µ2, while other parameters satisfy λ ∼ µ2

ρ
, β ∼ µ2

ρ2
, θ+ ∼ ρ, and γ ∼ constant. These imply

that for sufficiently small but fixed ρ > 0, the conditions T > θ+, 2αγ <

(
3

8AΩ(t0 + T )

) 1
2

can be

guaranteed to hold since θ+ and 2αγ can be made as small as desired by choosing ρ small. Hence,
we have just shown that one can always construct an initial datum satisfying all the assumptions
in Theorem 1.18 (ii).

Regarding the sufficient condition in Theorem 1.18 (iii), we again start with an initial datum
u0 ∈ H1(Ω) with negative initial energy (E(u0) < 0), and we consider the similar scaling given

by uρ0µ(x) :=
µ
√
ρ
u0

(
x

ρ

)
with µ > 0 and ρ > 0. Note that the parameters satisfy α ∼ µ2 and

E(uρ0µ) =
µ2

ρ2
E(u0), θ0 ∼ ρ. Therefore, taking µ =

(
− δρ2

2E(u0)

) 1
2

and ρ suitably small, we can

make α, θ0 as small as we wish so that the conditions α <
1

2

(
3

8AΩ(t0 + T )

) 1
2

and T > θ0 are

certainly satisfied. By the choice of µ, we also have E(uρ0µ) = −δ/2. Hence, uρ0µ becomes a sought
after initial datum for which the corresponding solution blows up.

The scaling arguments given in the two paragraphs above work pretty much in the same way
also for the half-line problem (Theorem 1.19 (ii)-(iii)).

On the other hand, the scaling does not seem to provide a proof for the argument that one can
always construct some initial data satisfying the sufficient conditions given in Theorems 1.18 (i)
and 1.19 (i) because for instance both the left and right hand side of the inequality λ2 > 4αβ are
affected the same way from the scaling. However, from the calculations relevant to the construction
of the numerical example given in Section 4, we can say that the scaling still works in practice.
Intuitively, this is due to the fact that physically the likelihood of the collapse gets bigger as the
nonlinear effect gets larger which is exactly what is achieved via scaling. Therefore, this method
can still be used as a heuristic also in the case E(u0) > −δ/2 to find a suitable initial datum for
which the corresponding solution blows up.

Remark 1.21. (1) It turns out that no condition as α + βθ2
− <

1

2

(
3

8AΩ(t0 + T )

) 1
2

in As-

sumption (i) or as 2αγ <

(
3

8AΩ(t0 + T )

) 1
2

in Assumption (ii) is necessary in the case of

the half-line problem. Compare Theorems 1.18 and 1.19 above.
(2) In the case E(u0) ≤ −δ/2, it is actually possible to remove the conditions T > θ+, T > θ0,

2αγ <

(
3

8AΩ(t0 + T )

) 1
2

, and α <
1

2

(
3

8AΩ(t0 + T )

) 1
2

in Assumptions (ii)-(iii) of Theorem

1.18 (also Theorem 1.19). This follows by using the scaling argument explained above and
the fact that uρ0µ blows up if and only if u0 blows up.
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1.5. Comparison with constant coefficient case. The blow-up results given in Theorems 1.18
and 1.19 are interesting when AΩ is non-constant. In order to see this, one can for example take
AΩ(t) as an oscillating function of t. Then these oscillations will expand the life span of solutions
[7]. This can be easily seen also from the proof of the local well-posedness. For instance, the
example given in Remark 2.2 shows that the life-span of solutions must at least double if one takes
AΩ(t) = cos2(Ωt) with large Ω compared to the case AΩ is a constant. Therefore, the solutions
which normally blow-up at some particular time T0 for the constant coefficient case will no longer
blow-up at least up to the time 2T0. Thus, the question is whether the stabilizing effect of these
oscillations is strong enough to turn any blowing-up solution into a global one. We answer this
question in Theorems 1.18 and 1.19 in the negative. We show that one can always find some
suitable initial data for which the corresponding solution will be steered to infinity in H1 norm as
long as there is a little bit of chance for the time dependent coefficient to keep its strict positiveness
continuously in a subinterval of time.

The blow-up of solutions in the work of Ogawa-Tsutsumi [18] is given under the condition
E(u0) < 0 (strictly negative initial energy). Theorems 1.18 and 1.19 give more general sets of
conditions which must be satisfied by u0, because we prove that blow-up of solutions is also possible
in the case of non-negative initial energy if u0 also satisfies additional restrictions. The associated
conditions

=
∫
G ϕu0ū

′
0dx∓

√(
=
∫
G ϕu0ū′0dx

)2 − (2E(u0) + δ)
∫
G Ψ|u0|2dx

2E(u0) + δ
< T

that we give in Theorems 1.18 and 1.19 are automatically satisfied in the work [18] since they only
consider the case T = ∞. Note that the last condition enables one to choose the correct initial
data to obtain solutions which blow-up before time T independent of how small T is.

2. Interior Oscillations

In this subsection, we prove Theorem 1.18 by using the method in [18] taking into account that
AΩ is now non-constant and the energy is allowed to be non-negative.

2.1. Local Well-Posedness. The proof of the local well-posedness of H1 and H2 type solutions
for (1.1)-(1.2) is classical and one has the following result.

Lemma 2.1 (see [6]). Let u0 ∈ H1(R) (H2(R)). Then (1.1)-(1.2) is locally well-posed in H1

(H2), i.e., there exists a unique solution u ∈ C(t0, t0 + T0;H1) (u ∈ C(t0, t0 + T0;H2)) for some
T0 > 0, where T0 depends on the respective norm of u0. Moreover, u also satisfies the H1 blow-up
alternative.

Remark 2.2 (Stabilizing Effect). It is worth mentioning that oscillating coefficients create a stabi-
lizing effect by extending the life time of the solution [7]. For example, let’s say AΩ(t) = cos2(Ωt),
and t0 = 0. Then ∫ T0

0
cos2(Ωt)dt =

T0

2
+

sin(2ΩT0)

4Ω
∼ T0

2

for large Ω. Taking this approximation into account, one can deduce that the lifetime of the solution
is almost doubled compared to the case Ω = 0. For more details on the stabilizing effect, see [7,
Prop. 4, Prop. 5].

2.2. Virial Identities, and Estimates. We have the following virial identities.
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Lemma 2.3. Let u ∈ C(t0, t0 + T0;H1) be a solution of (1.1)-(1.2). Then,

−=
∫
ϕuūxdx+ =

∫
ϕu0ū

′
0dx

=

∫ t

t0

[
2

∫
ϕ′|ux|2dx−

2a(2Ωs)

3

∫
ϕ′|u|6dx− 1

2

∫
ϕ′′′|u|2dx

]
ds,

=

∫ t

t0

[
2E(u0)− 2

∫
|x|≥1

(1− ϕ′)|ux|2dx+
2a(2Ωs)

3

∫
|x|≥1

(1− ϕ′)|u|6dx

]
ds

+

∫ t

t0

[
−2Ω

3

∫ s

t0

a′(2Ωτ)‖u(τ)‖6L6dτ −
1

2

∫
ϕ′′′|u|2dx

]
ds (2.4)

and ∫
Ψ|u|2dx =

∫
Ψ|u0|2dx− 2

∫ t

t0

=
∫
ϕuūxdxds

for t ∈ [t0, t0 + T0).

Proof. In this proof, we will give formal calculations. However, we can always justify these by ap-
proximating the initial data with smooth functions and running the multipliers on the corresponding
regularized solutions.

Now if we multiply (1.1) by ϕūx and take the real part, we obtain

<
∫
iutϕūxdx = −<

∫
uxxϕūxdx−<

∫
a(2Ωt)|u|4uϕūxdx (2.5)

where

<
∫
iutϕūxdx = −=

∫
ϕutūxdx = − d

dt
=
∫
ϕuūxdx+ =

∫
ϕuūxtdx

= − d

dt
=
∫
ϕuūxdx−=

∫
ϕ′uūtdx−=

∫
ϕuxūtdx.

Therefore,

<
∫
iutϕūxdx = −1

2

d

dt
=
∫
ϕuūxdx−

1

2
=
∫
ϕ′uūtdx. (2.6)

The first term at the right hand side of (2.5) is

−<
∫
uxxϕūxdx =

∫
ϕ′|ux|2dx+ <

∫
ϕuxūxxdx,

from which it follows that

−<
∫
uxxϕūxdx =

1

2

∫
ϕ′|ux|2dx. (2.7)

The second term at the right hand side of (2.5) is

−<
∫
a(2Ωt)|u|4uϕūxdx =

a(2Ωt)

6

∫
ϕ′|u|6dx. (2.8)

Combining (2.5)-(2.8) we obtain

− d

dt
=
∫
ϕuūxdx−=

∫
ϕ′uūtdx =

∫
ϕ′|ux|2dx+

2a(2Ωt)

6

∫
ϕ′|u|6dx. (2.9)

Multiplying the complex conjugate of (1.1) by ϕ′u and taking the real part

−<
∫
iūtϕ

′udx = <
∫
−ūxxϕ′udx−<

∫
a(2Ωt)|u|4ūϕ′udx,
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where the left hand side is equal to

=
∫
ϕ′uūtdx, (2.10)

and the right hand side is equal to

− 1

2

∫
ϕ′′′|u|2dx+

∫
ϕ′|ux|2dx− a(2Ωt)

∫
ϕ′|u|6dx. (2.11)

On the other hand, integrating (1.15) over the time interval (t0, t), we obtain∫
|x|<1

|ux|2dx−
a(2Ωt)

3

∫
|x|<1

|u|6dx

= E(u0)−
∫
|x|≥1

|ux|2dx+
a(2Ωt)

3

∫
|x|≥1

|u|6dx− 2Ω

3

∫ t

t0

a′(2Ωs)‖u(s)‖6L6ds. (2.12)

Combining (2.9)-(2.11), using (2.12), and integrating over the time interval (t0, t), we get the
following identity:

−=
∫
ϕuūxdx+ =

∫
ϕu0ū

′
0dx

=

∫ t

t0

[
2

∫
ϕ′|ux|2dx−

2a(2Ωs)

3

∫
ϕ′|u|6dx− 1

2

∫
ϕ′′′|u|2dx

]
ds

=

∫ t

t0

[
2E(u0)− 2

∫
|x|≥1

(1− ϕ′)|ux|2dx+
2a(2Ωs)

3

∫
|x|≥1

(1− ϕ′)|u|6dx

]
ds

+

∫ t

t0

[
−2Ω

3

∫ s

t0

a′(2Ωτ)‖u(τ)‖6L6dτ −
1

2

∫
ϕ′′′|u|2dx

]
ds. (2.13)

Multiplying the complex conjugate of (1.1) by Ψu, taking the imaginary parts, integrating over
R× (0, t), we obtain ∫

Ψ|u|2dx =

∫
Ψ|u0|2dx− 2

∫ t

t0

=
∫
ϕuūxdxds.

�

Now we will prove the estimate given by the lemma below.

Lemma 2.14. Let u ∈ C(t0, t0 + T ;H1) be a solution of (1.1)-(1.2) and a′ > 0 in [t0, t0 + T ).
Then, for

δ =
1

2

√
3

8AΩ(t0 + T )

(
‖ϕ′′′‖∞ + max

{√
3,

1

2
‖ϕ′′‖∞

}2
)
,

one has

−=
∫
ϕuūxdx ≤ −=

∫
ϕu0ū

′
0dx+ (2E(u0) + δ)(t− t0) (2.15)

on [t0, t0 + T ) provided ‖u(t)‖4L2(|x|≥1) <
3

8AΩ(t0 + T )
.

Proof. For x ≥ 1 we have
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(1− ϕ(x)′)
1
2 |u(x)|2 = −

∫ ∞
x

[
(1− ϕ(y)′)

1
2 |u(y)|2

]
y
dy

≤ 1

2

∫
y≥1

(1− ϕ′)−
1
2 |ϕ′′||u|2dy + 2

∫
y≥1

(1− ϕ′)
1
2 |u||ux|dy

≤ C0‖u‖2L2(|x|≥1) + 2‖u‖L2(|x|≥1)‖(1− ϕ′)
1
2ux‖L2(|x|≥1) (2.16)

where C0 = max{
√

3,
1

2
‖ϕ′′‖∞}. (A similar estimate also holds for x ≤ −1; the details are omitted.)

Hence, one has

‖(1− ϕ′)|u|4‖L∞(|x|≥1) ≤ 2C2
0‖u‖4L2(|x|≥1) + 8‖u‖2L2(|x|≥1)‖(1− ϕ

′)
1
2ux‖2L2(x≥1). (2.17)

Using the assumption that a′ > 0 in [t0, t0 + T ) and (2.17) in (2.13), we get the estimate

−=
∫
ϕuūxdx+ =

∫
ϕu0ū

′
0dx

≤
∫ t

t0

[
2E(u0) + C1‖u(s)‖2L2(|x|≥1) + C2‖u(s)‖6L2(|x|≥1)

]
ds

− 2

∫ t

t0

(
1− 8C3

3
‖u(s)‖4L2(|x|≥1)

)∫
|x|≥1

(1− ϕ′)|ux|2dxds (2.18)

where C1 =
1

2
‖ϕ′′′‖∞, C2 =

4

3
C2

0AΩ(t0 + T ), and C3 = AΩ(t0 + T ). Therefore, the result follows

with δ =

√
3

8C3

(
C1 +

C2
0

2

)
. �

2.3. Proof of collapse for the real-line problem.

Step 1. We first prove the result by assuming that the condition

‖u(t)‖4L2(|x|≥1) <
3

8AΩ(t0 + T )

is satisfied on [0, T ]. The general case can always be reduced to this situation by using the given
assumptions on u0 in Theorem 1.18, see Lemma 2.21 below.

Now, assume to the contrary that the solution u(t) of (1.1)-(1.2) exists for all t ∈ [t0, t0 + T ).
Using Lemmas 2.3 and 2.14, we get∫

Ψ|u|2dx ≤
∫

Ψ|u0|2dx− 2(t− t0)=
∫
ϕu0ū

′
0dx+ (2E(u0) + δ)(t− t0)2 (2.19)

for t ∈ [t0, t0 + T ).
In order to shorten the notation, we adapt to the notation given at the beginning of the paper

and we also set τ = t− t0. By (2.19), we have

0 ≤
∫

Ψ|u|2dx ≤ α+ λτ + βτ2 ≡ p(τ), τ ∈ [0, T ). (2.20)

Let us analyze different cases for the quadratic polynomial p(τ) depending on the signs of λ and
β.
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2.3.1. Case: β > 0 (satisfied if E(u0) > −δ/2). In this case, p(τ) can only be negative if λ < 0,

λ2 − 4αβ > 0 and as soon as τ >
−λ−
√
λ2−4αβ

2β . This yields a contradiction if we choose u0

in such a way that T >
−λ−
√
λ2−4αβ

2β , because then there will be a time τ ∈ (0, T ) such that

0 ≤
∫

Ψ|u|2dx < 0, which is absurd.

2.3.2. Case: β < 0 (satisfied if E(u0) < −δ/2). In this case p(τ) is negative as soon as
−λ+
√
λ2−4αβ

2β <

τ. Again, this will contradict our assumption.

2.3.3. Case: β = 0 (satisfied if E(u0) = −δ/2). In this case, p(τ) can only be negative if λ < 0
and as soon as τ > −α/λ.

Step 2. Now, we deal with the general situation and show that it can always be reduced to the case
of Step 1 under the given assumptions on u0. To this end, it is enough to prove the following.

Lemma 2.21. If u0 satisfies the conditions of Theorem 1.18, then there exists T ′ > θ− if β > 0,
T ′ > θ+ if β < 0, and T ′ > θ0 if β = 0 such that the corresponding solution satisfies

‖u(t)‖L2(|x|≥1) <

(
3

8AΩ(t0 + T )

) 1
4

on [t0, t0 + T ′].

Proof. First consider the case β > 0, i.e., the assumptions in part (i) of Theorem 1.18. Note that if

α+ βθ2
− <

1

2

(
3

8AΩ(t0 + T )

) 1
2

,

then

‖u0‖2L2(|x|≥1) ≤ 2

∫
Ψ|u0|2dx <

(
3

8AΩ(t0 + T )

) 1
2

.

Now, we set

T ′ = sup

{
τ | τ ≥ 0, ‖u(t0 + τ)‖L2(|x|≥1) ≤

(
3

8AΩ(t0 + T )

) 1
4

}
.

Clearly T ′ > 0 by continuity. Now, if T ′ ≤ θ−, then

‖u(t0 + T ′)‖L2(|x|≥1) =

(
3

8AΩ(t0 + T )

) 1
2

.

On the other hand, we know that for τ ∈ [0, T ′],

‖u(t0 + τ)‖2L2(|x|≥1) ≤ 2

∫
Ψ|u|2dx ≤ 2(α+ βτ2) ≤ 2(α+ βθ2

−) <

(
3

8AΩ(t0 + T )

) 1
2

.

Hence, we arrive at a contradiction, and it must be true that T ′ > θ−. Therefore,

‖u(t0 + τ)‖2L2(|x|≥1) ≤
(

3

8AΩ(t0 + T )

) 1
2

for all τ ∈ [0, T ′].
The proof of the Lemma for the case β = 0 is similar. The case β < 0 for which u0 satisfies the

assumptions in part (ii) of Theorem 1.18 can be done as in [18], and therefore omitted here. �
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3. Boundary Oscillations

3.1. Local Well-Posedness. Local well-posedness of H1 solutions (under the assumption u0 ∈
H3(R+)) was obtained by [2] in the case AΩ is constant. In [2] the initial data was assumed to be
too smooth compared to the regularity of the solutions obtained. It is well-known from the theory
of the linear Schrödinger equation that solutions are of the same class as the initial data. Recently,
we improved this well-posedness result (see [4]) where the main equation also included a nonlinear
source term of the form k|u|pu. By using the fact that AΩ is smooth , the lemma below follows as
a corollary to [4, Theorem 1.1] at this point.

Lemma 3.1 (Local well-posedness). Let T > 0 be arbitrary, s ∈
(

1
2 ,

7
2

)
−
{

3
2

}
, r > 0, u0 ∈ Hs(R+),

and u′0(0) = −AΩ(t0)|u0(0)|ru0(0) whenever s > 3
2 . We also assume that r > 2s−1

4 if r is an odd

integer and [r] ≥
[

2s−1
4

]
if r is non-integer. Then, the following hold true.

(i) Local Existence and Uniqueness: There exists a unique local solution u ∈ Xs
T0

of (1.3)-(1.5)

for some T0 = T0

(
‖u0‖Hs(R+)

)
∈ (0, T ], where Xs

T0
is the set of those elements in

C([t0, t0 + T0];Hs(R+)) ∩ C(Rx+;H
2s+1

4 (t0, t0 + T0))

that are bounded with respect to the norm ‖ · ‖Xs
T0

. This norm is defined by

‖u‖Xs
T0

:= sup
t∈[t0,t0+T0]

‖u(·, t)‖Hs(R+) + sup
x∈R+

‖u(x, ·)‖
H

2s+1
4 (t0,t0+T0)

.

(ii) Continuous Dependence: If B is a bounded subset of Hs(R+), then there is T0 > 0 (depends
on the diameter of B) such that the flow u0 → u is Lipschitz continuous from B into Xs

T0
.

(iii) Blow-up Alternative: If S is the set of all T0 ∈ (0, T ] such that there exists a unique local so-
lution in Xs

T0
, then whenever Tmax := sup

T0∈S
T0 < T , it must be true that lim

t↑t0+Tmax

‖u(t)‖Hs(R+) =∞.

3.2. Virial Identities. We have the following virial identities.

Lemma 3.2. Let u ∈ C(t0, t0 + T0;H1) be a solution of (1.3)-(1.5). Then,

−=
∫ ∞

0
ϕuūxdx+ =

∫ ∞
0

ϕu0ū
′
0dx

= −a(2Ωt)|u(t, 0)|r+2 − 1

2

∫ ∞
0

ϕ′′′|u|2dx+ 2

∫ ∞
0

ϕ′|ux|2dx (3.3)

and ∫ ∞
0

Ψ|u|2dx =

∫ ∞
0

Ψ|u0|2dx− 2

∫ t

t0

=
∫ ∞

0
ϕuūxdxds

for t ∈ [t0, t0 + T0).

Proof. Now if we multiply (1.3) by ϕūx and take the real part, we obtain

<
∫ ∞

0
iutϕūxdx = −<

∫ ∞
0

uxxϕūxdx (3.4)

where

<
∫ ∞

0
iutϕūxdx = −=

∫ ∞
0

ϕutūxdx = − d

dt
=
∫ ∞

0
ϕuūxdx+ =

∫ ∞
0

ϕuūxtdx

= − d

dt
=
∫ ∞

0
ϕuūxdx−=

∫ ∞
0

ϕ′uūtdx−=
∫ ∞

0
ϕuxūtdx.
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Therefore,

<
∫ ∞

0
iutϕūxdx = −1

2

d

dt
=
∫ ∞

0
ϕuūxdx−

1

2
=
∫ ∞

0
ϕ′uūtdx. (3.5)

Note that in the above calculation boundary terms vanished since ϕ(0) = 0 and ϕ vanishes at
infinity.

The term at the right hand side of (3.4) is

−<
∫ ∞

0
uxxϕūxdx =

∫ ∞
0

ϕ′|ux|2dx+ <
∫ ∞

0
ϕuxūxxdx,

from which it follows that

−<
∫ ∞

0
uxxϕūxdx =

1

2

∫ ∞
0

ϕ′|ux|2dx. (3.6)

Combining (3.4)-(3.6) we obtain

− d

dt
=
∫ ∞

0
ϕuūxdx−=

∫ ∞
0

ϕ′uūtdx =

∫ ∞
0

ϕ′|ux|2dx. (3.7)

Multiplying the complex conjugate of (1.3) by ϕ′u and taking the real part,

−<
∫ ∞

0
iūtϕ

′u = <
∫ ∞

0
−ūxxϕ′udx,

where the left hand side is equal to

=
∫ ∞

0
ϕ′uūtdx (3.8)

and the right hand side is equal to

− a(2Ωt)|u(t, 0)|r+2 − 1

2

∫ ∞
0

ϕ′′′|u|2dx+

∫ ∞
0

ϕ′|ux|2dx. (3.9)

Note that in the above calculation, we use the facts that ϕ′(0) = 1, ϕ′′(0) = 0 and ϕ vanishing
at infinity in order to treat the boundary terms.

Combining (3.7)-(3.9) and integrating over the time interval (t0, t), we get the following identity:

−=
∫ ∞

0
ϕuūxdx+ =

∫ ∞
0

ϕu0ū
′
0dx

=

∫ t

t0

(
−a(2Ωs)|u(s, 0)|r+2 − 1

2

∫ ∞
0

ϕ′′′|u|2dx+ 2

∫ ∞
0

ϕ′|ux|2dx
)
ds. (3.10)

Multiplying the complex conjugate of (1.3) by Ψu, taking the imaginary parts, and integrating
over R× (t0, t), we obtain∫ ∞

0
Ψ|u|2dx =

∫ ∞
0

Ψ|u0|2dx− 2

∫ t

t0

=
∫ ∞

0
ϕuūxdxds.

�

3.3. Estimates. The corresponding estimate for the half-line problem is below.

Lemma 3.11. Let u ∈ C(t0, t0 +T0;H1) be a solution of (1.3)-(1.5). Then, for δ =
1

2
‖ϕ′′′‖∞‖u0‖22,

one has

−=
∫ ∞

0
ϕuūxdx ≤ −=

∫ ∞
0

ϕu0ū
′
0dx+ (2E(u0) + δ)(t− t0) (3.12)

for t ∈ [t0, t0 + T0).
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Proof. First of all we observe that |ϕ′(x)| ≤ 1 and |ϕ′′′(x)| ≤ 2C1 where C1 = 1
2‖ϕ

′′′‖∞ is a positive
constant. Using this observation, the definition of energy and the conservation of density in (3.10),
we obtain

−=
∫ ∞

0
ϕuūxdx+ =

∫ ∞
0

ϕu0ū
′
0dx

≤
∫ t

t0

(
2E(u0) +

2− r
2 + r

a(2Ωs)|u(s, 0)|r+2 + C1‖u0‖2L2(R+)

)
ds. (3.13)

Using the assumptions r ≥ 2 and a(2Ωt) > 0 in [t0, t0 + T ), we get the lemma. �

3.4. Proof of collapse for the half-line problem. The rest of the proof of the blow-up result
can be carried out exactly as in Section 2.3 by analysing the behaviour of a quadratic polynomilal.
The details are omitted. �

4. A Numerical Example

The conditions in Theorem 1.18 might seem very intricate and one might wonder whether there
is any initial datum u0 and AΩ (with Ω big - the interesting case) such that the given assumptions
are satisfied. One can show that there are indeed suitable initial data for the blow-up to occur.
Let us prove this fact for example by finding an initial datum u0 for problem (1.1)-(1.2) satisfying
the assumptions in Theorem 1.18 (i) which has also infinite momentum, i.e., xu0 /∈ L2(R).

Here, we are interested in proving collapse of solutions even under the effect of fast oscillations.
Therefore, we will consider a relatively large oscillation constant, take for instance Ω = 100 and
define AΩ(t) = c0 cos2(Ωt) = c0 cos2(100t), where c0 = 73.55418773631645. The derivative of this
function is A′Ω(t) = −Ωc0 sin(2Ωt) = −100c0 sin(200t). Hence, an appropriate pair of t0 and T is

given by t0 =
3π

400
and T =

π

400
since AΩ(t0) > 0 and A′Ω(t) ≥ 0 for t ∈ [t0, t0 + T ]. Note, that

T ≈ 0.00785398 is relatively much smaller than the case of slow oscillations, say when Ω = 1. The
graph of AΩ is given in Figure 1.

0.5 1.0 1.5

20

40

60

AΩ(t)

Figure 1. The oscillating coefficient AΩ over an extended interval

The first condition on u0 is that it must be an element of H1(R). That requires that u0 and
∂xu0 must have sufficient decay as |x| → ∞. However, since we also want u0 to have infinite
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momentum, the decay assumption on u0 should not be too strong so that xu0 /∈ L2(R) is satisfied.

This motivates us to consider a function u0 which involves one or more terms similar to
1

(x2 + 1)
1
2

.

We first construct a concrete example of a compactly supported weight function ϕ. Note that the
function ϕ given in (1.11) is assumed to stay smooth for 1.57735 ≈ 1 + 1√

3
< |x| < 2 but an explicit

definition on that portion was not given. Since, our aim here is to give a numerical example, we
first define this missing smooth portion of the function ϕ. In order to do this, we use two mollifiers
l and r, where l refers to the mollifier that we will apply to the the left hand side of the graph of
ϕ whereas r refers to the mollifier that we will apply to the right hand side of the graph of ϕ. To
this end, we define

l(x) =

{
Exp(1)Exp

(
−1

(1−(0.4(x+1.6))4)

)
if |x+ 1.6| < .4,

0 otherwise
(4.1)

and

r(x) =

{
Exp(1)Exp

(
−1

(1−(0.4(x−1.6))4)

)
if |x− 1.6| < .4,

0 otherwise
(4.2)

The reason that we are using the fourth power in the term (x ∓ 1.6)4 is because when we apply
these mollifiers to smoothly join two pieces of ϕ, we want ϕ to have continuous derivatives at least
up to order three. The graph of these mollifiers are given in Figure 2.

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

l(x)

r(x)

Figure 2. Mollifiers l and r

Now, we define (noticing that 1 + 1√
3
≈ 1.57735 < 1.6):

ϕ(x) =



x if |x| ≤ 1,

x− (x− 1)3 if 1 < x ≤ 1 + 1/
√

3,

−x+ 2(1 + 1/
√

3)− (−x+ 1 + 2/
√

3)3 if 1 + 1/
√

3 < x ≤ 1.6

(x− (x− 1)3)r(x) if 1.6 < x < 2,

x− (x+ 1)3 if −(1 + 1/
√

3) ≤ x < −1,

−x− 2(1 + 1/
√

3)− (−x− 1− 2/
√

3)3 if −1.6 ≤ x < −(1 + 1/
√

3),

(x− (x+ 1)3)l(x) if −2 < x < −1.6,

0 if 2 ≤ |x|,

(4.3)

This function is C3 and satisfies the desired condition ϕ′(x) ≤ 0 for |x| ≥ 1 + 1√
3
. Note that we

have used vertical reflections at x = ∓(1 + 1/
√

3) to enforce the latter property. The graph of
this compactly supported weight function, which satisfies all the conditions in (1.11) is depicted in
Figure 3.
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-3 -2 -1 0 1 2 3
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
φ(x)

Figure 3. Weight function ϕ

One of the parameters in Theorem 1.18 is δ. This constant needs to be specified before we
proceed further. In fact after a careful analysis of the proofs of Lemmas 2.3 and 2.14, it follows
that:

δ =
1

2

√
3

8AΩ(t0 + T )

(
‖ϕ′′′‖∞ + max

{√
3,

1

2
‖ϕ′′‖∞

}2
)
.

One immediate observation from the requirement

=
∫
G
ϕu0ū

′
0dx > 0

is that the imaginary part of u0 should not be zero and the real and imaginary parts should not be
linearly dependent. Therefore, u0 should be in the form u0(x) = f(x) + ig(x) where f and g are
linearly independent real valued functions on R.

We will define u0 to be zero at the left half line for simplicity so that we don’t have to deal with
the cancellation effects in some integrals which come from the oddness of ϕ. To this end, we first
set a function m = m(x) on R which will be tuned to be u0 in a moment:

m(x) =


0 if x < 0,
x√
2

if 0 ≤ x < 1,
1√

1+x2
if x ≥ 1.

(4.4)

A graph of this function and its derivative are given in Figures 4 and 5
It is easy to show that m ∈ H1(R) which is enough regularity for our purposes. Now, we define

u0 as follows:

u0(x) =
1
√
ρ

[
m

(
x

ρ

)
+ im

(
2x

ρ

)]
, (4.5)

where ρ > 0 is a fixed parameter to be specified in a moment. One should carefully observe that as
ρ gets smaller u0 gets concentrated around the origin more and ‖u0‖L2(|x|≥1) gets smaller, see this
in Figure 6. Intuitively, blow-up must occur if there is a nonlinear effect strong enough to compete
with dispersive effect. Since, we are restricted to the case of positive energy solutions, in order

to maximize the possiblity of collapse we consider a function for which both AΩ(t0)
3 ‖u0‖6L6(R) and

‖∂xu0‖2L2(R) are big. This is exactly what is achieved by the scaling introduced in (4.5). Therefore,

we are motivated to take ρ very small.
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-5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m(x)

Figure 4. The graph of m(x)

-5 0 5 10 15
-0.4

-0.2

0.0

0.2

0.4

0.6

m'(x)

Figure 5. The graph of m′(x)

-5 0 5 10 15

0.5

1.0

1.5

2.0

2.5

3.0

m(x)

Re[u0(x)]

Figure 6. The graph of initial datum Re[u0(x)] (ρ = 0.1) and m(x)

Now, we make the story more precise (with calculations performed in Wolfram Mathematica R©11).
We choose ρ = 10−10 (small for the reasons discussed above). Then, we have ‖u0‖2L2(R) = 0.410875,

‖xu0‖2L2(R) = ∞ (as desired for u0 to have infinite momentum),
AΩ(t0)

3
‖u‖6L6(R) = 1.64044 ×
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1020 (large as desired), E(u0) = 32768 > −δ/2 = −1.74158 × 106 (note that energy is positive),
=
∫
G ϕu0ū

′
0dx = 0.244626 (strictly positive as desired and therefore λ < 0),(

=
∫
G
ϕu0ū

′
0dx

)2

− (2E(u0) + δ)

(∫
G

Ψ|u0|2dx
)

= 0.0590412 > 0

(strictly positive as desired and therefore λ2 > 4αβ), where(∫
G

Ψ|u0|2dx
)

= 2.25667× 10−10.

Finally,

=
∫
G ϕu0ū

′
0dx−

√(
=
∫
G ϕu0ū′0dx

)2 − (2E(u0) + δ)
∫
G Ψ|u0|2dx

2E(u0) + δ

= 4.62803× 10−10 < T = 0.00785398, (4.6)

where δ = 3.48315× 106, and therefore θ− < T . Finally,

α+ βθ2
− = 2.26427× 10−10 <

1

2

(
3

8AΩ(t0 + T )

) 1
2

= 0.0357011.

Hence, u0 satisfies all the conditions in Theorem 1.18 (i) and therefore the corresponding solution
blows-up after a short while before t reaches t0 + T .

5. Conclusion

In this study, we proved that for some suitably chosen initial data the corresponding (negative or
positive energy, finite or infinite momentum) solution of the Schrödinger equation, which is posed
either on the real axis or on the half-line, with a focusing type nonlinear interior or boundary source
term whose coefficient is time dependent (oscillating) will blow-up at the energy level. Blow-up of
solutions in the case of oscillations is very interesting since it is well-known that oscillations help to
create a stabilizing effect on the solutions. In the case of infinite momentum solutions, the blow-up
phenomena was well-known when the coefficient of the nonlinear source term were a constant and
energy were negative (see [2] and [18]). Regarding oscillating nonlinearities, blow-up was shown
only for the finite momentum solutions of the Schrödinger equation posed on the entire space. It
turns out that the finite momentum assumption is not necessary in the one dimensional setting,
although it maybe in higher dimensions (see [7] and [26]).
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[11] V.K. Kalantarov and T. Özsarı, Qualitative properties of solutions for nonlinear Schrödinger equations with
nonlinear boundary conditions on the half-line, J. Math. Phys. 57 (2016), no. 2, 021511.

[12] T. Kato, On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), no. 1, 113–129.
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