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Design of dimensionally stable composites
using efficient global optimization method

Levent Aydin1, Olgun Aydin2, H Seçil Artem3 and Ali Mert4

Abstract

Dimensionally stable material design is an important issue for space structures such as space laser communication

systems, telescopes, and satellites. Suitably designed composite materials for this purpose can meet the functional

and structural requirements. In this paper, it is aimed to design the dimensionally stable laminated composites by

using efficient global optimization method. For this purpose, the composite plate optimization problems have been

solved for high stiffness and low coefficients of thermal and moisture expansion. Some of the results based on efficient

global optimization solution have been verified by genetic algorithm, simulated annealing, and generalized pattern search

solutions from the previous studies. The proposed optimization algorithm is also validated experimentally. After com-

pleting the design and optimization process, failure analysis of the optimized composites has been performed based on

Tsai–Hill, Tsai–Wu, Hoffman, and Hashin–Rotem criteria.
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Introduction

The materials used in aerospace structures like
antenna, satellites, and missiles should have such
features as low density, high stiffness, and low coeffi-
cients of thermal and moisture expansions. Carbon
Eber reinforced polymer composite materials can sat-
isfy these requirements with an appropriate stacking
sequence. Since moisture and temperature cause some
changes on mechanical properties of the polymer
matrix composites, dimensional change induced by
them is a signiEcant feature in the design of compos-
ites.1,2 In order to minimize this change, design of
dimensionally stable composite materials is required.
In the context of composite materials, dimensional
stability can be deEned as the ability of a material
to retain its dimensions when it is subjected to
environmental eGects such as temperature/moisture
changes.3 Some researchers have considered design
of dimensionally stable composite materials including
moisture and/or temperature effects. Bressan et al.4

have developed a procedure for the design of struc-
tural elements made of carbon–epoxy laminates with
low thermal expansion. Le Rich and Gaudin2 have
studied design of dimensionally stable composite
laminates as space materials through stacking sequence
optimization considering thermal, hygral and mechan-
ical constraints. Aydin and Artem3 have considered
multi-objective genetic algorithm (GA) optimization
of the carbon fiber laminated composite plates

satisfying the conditions low coefficient of thermal
expansion (CTE) and high elastic moduli. The study
is verified by single objective optimization approach
using three different stochastic optimization methods:
GA, generalized pattern search, and simulated anneal-
ing (SA). Optimal fiber path configurations that min-
imize the sum of the CTE values along the principal
material directions for a class of laminates are pre-
sented in the paper by Rangarajan et al.5 They have
shown and provided a proof that the smallest value of
CTEeff is rendered by straight fiber path configur-
ations. It is found that the minimal CTEeff values
occur for �45½ �ns lay-ups. ‘‘Zero CTE’’ design problem
for hybrid composite materials has been solved by
Zhang et al.6 This concept is very crucial for the aero-
space structures influenced by temperature. Recently,
Aydin et al.7 have found the optimum stacking
sequences of unidirectional flax/polypropylene
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Çiğli, _Izmir, Turkey
2Department of Statistics, Mimar Sinan University, Ş işli, _Istanbul, Turkey
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composite prepregs for minimization of the dimen-
sional changes at varied temperatures by hybrid GA.
Optimum flax/polypropylene composite performances
have been compared with E-glass/epoxy results. It is
shown that flax/polypropylene composites can be used
as an alternative to E-glass/epoxy in many types of
thermo-mechanical conditions.

Stochastic methods such as GAs, SA, and particle
swarm optimization (PSO) have been widely used in
different optimization problems of engineering.3,7–10

Due to the complexity of design of dimensionally
stable composite, it is crucial to use the stochastic
optimization methods. Efficient global optimization
(EGO) method, used in this study, is one of the sto-
chastic methods and has useful tools for the objective
functions for which it is not easy to take their deriva-
tives. One of the pioneer works for EGO is the study
of Jones et al.11 In their study, authors mentioned
about expected improvement (EI) function and fun-
damentals of EGO process. The EGO process is based
on Kriging surrogate models, which were constructed
using several sample designs. The EGO process could
identify the global optimum with a relatively low
evaluation cost. Moreover, the EGO procedure is
especially good at modeling the nonlinear,

multimodal functions that often occur in many engin-
eering problems such as hat-stiffened composite panel
design,12 helicopter rotor blades for vibration
reduction.13

The main objective of the present study is to design
dimensionally stable laminated composites satisfying
the conditions low CTE and high elastic modulus
by combining the EI based search method with
kriging approximations (EGO). To achieve this pur-
pose, five different stacking sequence optimization
problems including nonlinear constraints have been
solved for symmetric balanced 8-layered ��1=½

��2�S, 12-layered ��1=� �2=� �3½ �S, and 16-layered
��1=� �2=� �3=� �4½ �S carbon/epoxy laminated
composites. MATLAB Symbolic Math Toolbox has
been utilized in order to obtain objective functions
and constraints. TOMLAB optimization toolbox is
used to solve the model problems. In order to show
performance of the algorithm, the widely used
stochastic search methods GA, SA, generalized pattern
search algorithm (GPSA) are applied and comparisons
among them are also considered. Moreover, in order to
validate the proposed algorithm, an experimental study
has been performed. After completing the design pro-
cess, failure analysis based on Tsai–Hill, Tsai–Wu,
Hoffman, and Hashin–Rotem criteria have also been
considered in order to give strength performances of
the optimally designed laminated composites.

Mechanical analysis

Classical lamination theory (CLT) can be used to ana-
lyze thin laminated composites. Thin laminated com-
posite structure subjected to in plane loadings is
shown in Figure 1. In the figure x, y, and z define
global coordinates of the layered material; and 1, 2,
3 are fiber directions oriented at angle �.14,15

Representation of laminate convention for the
n-layered composite material with total thickness
h is given in Figure 2.

Figure 2. Laminate convention.

Figure 1. A thin fiber reinforced laminated composite sub-

jected to in plane loading.

2 Proc IMechE Part L: J Materials: Design and Applications 0(0)



Based on CLT, the total strains including mechan-
ical, thermal, and hygral effects can be expressed as in
the following form
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where ["], ["M], ["T], ["H] are total, mechanical, ther-
mal and hygral strains, respectively.

Based on CLT, the stress–strain relation for the k-
th layer of a composite plate has the form:

�Mx
�My

�Mxy

2
64

3
75

k

¼

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

k

�

"ox
"oy
"oxy

2
64

3
75þ z

�x

�y

�xy

2
64

3
75

0
B@

�

�x

�y

�xy

2
64

3
75

k

�T�

�x

�y

�xy

2
64

3
75

k

�C

1
CA ð2Þ

where [Qij]k are the elements of the transformed
reduced stiffness matrix, ["o] is the mid-plane strains,
[�] is curvatures, �T,�C are temperature and mois-
ture changes, [�]k and [�]k are the coefficients of ther-
mal and moisture expansions, respectively.

Applied normal force resultants (force per unit
width) NM

x , NM
y and shear force resultant NM

xy on a
laminate have the following relations
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The matrices [A] and [B] appearing in equation (3)
are defined as

Aij ¼
Xn
k¼1

ðQijÞkðhk � hk�1Þ ð4Þ

Bij ¼
1

2

Xn
k¼1

ðQijÞkðh
2
k � h2k�1Þ ði, j ¼ 1, 2, 6Þ ð5Þ

and ½NT�, ½NC� are the resultant thermal and hygral
forces, respectively:

NT
x

NT
y

NT
xy

2
64

3
75 ¼ �T

Xn
k¼1

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

k

�

�x

�y

�xy

2
64

3
75

k

ðhk � hk�1Þ ð6Þ

NC
x

NC
y

NC
xy

2
64

3
75 ¼ �C

Xn
k¼1

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

k

�

�x

�y

�xy

2
64

3
75

k

ðhk � hk�1Þ ð7Þ

In order to avoid complicated calculation for CTE,
coefficient of moisture expansion (CME) and elastic
moduli of the composite, it is also convenient to intro-
duce the effective elastic properties of symmetric
balanced or symmetric cross-ply laminated plates sub-
jected to in-plane loading. The effective thermal and
moisture expansion coefficients and elastic moduli can
be calculated using the following relations15
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where ½A�� ¼ ½A��1

The material properties used in calculation of elem-
ents of the stiffness matrices and the effective proper-
ties are given in Table 1.

Failure analysis

Many studies about optimum design of composite
materials consider failure criteria based on (i) non-
interactive theories (e.g., maximum stress or maximum
strain), (ii) interactive theories (e.g., Tsai–Hill,
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Tsai–Wu or Hoffman), and (iii) partially interactive or
failure mode-based theories (e.g., Puck or Hashin–
Rotem failure criterion).16 In the following section,
Tsai–Hill, Tsai–Wu, Hoffman, and Hashin–Rotem
criteria used in this study are introduced.

Tsai–Hill criterion

Tsai–Hill failure criterion for the strengths of the
lamina can be represented in the following form17
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where

�1, �2 maximum normal stresses,
�12 maximum shear stress in the lamina,
�F1 , �

F
2 strength in longitudinal and transverse

directions,
�F12 shear strength in 1–2 plane,

Tsai–Wu criterion

Tsai–Wu failure theory is a phenomenological failure
theory based on total strain energy. According to the
theory, failure does not occur in the lamina if the fol-
lowing condition is satisfied18
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There are two significant advantages of this theory: (i)
there is interaction between the stress components and
(ii) the theory does distinguish between the tensile and
compressive strengths. Main disadvantage of this theory
is the determination of strength component F12.

19

Hoffman criterion

The Hoffman failure theory20 use a second-order
polynomial in stress to describe a failure surface in
the lamina. This theory implies that failure does not
occur if the following condition is satisfied
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Hashin–Rotem criterion

Hashin–Rotem failure theory21 is a partially inter-
active criteria and includes two failure mechanisms:
fiber failure and matrix failure, distinguishing between
tension and compression.

�1 ¼ �
T
1 Fiber failure in tension : ð�1 4 0Þ ð15Þ

Table 1. Carbon/epoxy (P75/934) composite material properties.14

Property Value Description

E11 (GPa) 277.3 Elastic modulus in longitudinal direction

E22 (GPa) 7.1 Elastic modulus in transverse direction

	12 0.29 Poisson’s Ratio

G12 (GPa) 3.49 Shear modulus

�11 (10�6=�C) �1.00 Coefficient of thermal expansion in longitudinal direction

�22 (10�6=�C) 22.42 Coefficient of thermal expansion in transverse direction

�11 (10�6= %M) 15.65 Coefficient of moisture expansion in longitudinal direction

�22 (10�6= %M) 669.9 Coefficient of moisture expansion in transverse direction

�T
1 (MPa) 1500 Tensile strength in longitudinal direction

�C
1 (MPa) 1250 Compressive strength in longitudinal direction

�T
2 (MPa) 50 Tensile strength in transverse direction

�C
2 (MPa) 200 Compressive strength in transverse direction

�F
12 (MPa) 100 In-plane shear strength
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Optimization

Optimization techniques can be classified as traditional
and non-traditional. Traditional optimization tech-
niques, such as constrained variation and Lagrange
multipliers, are analytical and find the optimum solution
of only continuous and differentiable functions. Since
composite design problems generally are very complex
and have discrete search spaces, the traditional opti-
mization techniques cannot be used in this area. In
these cases, the use of stochastic optimization methods
such as GA, PSO, EGO algorithms, etc. is appropriate.
In composite laminate design problems, derivative cal-
culations or their approximations are impossible to
obtain and often costly. Therefore, stochastic search
methods have also the advantage of requiring no gradi-
ent information of the objective functions and the
constraints.

The optimization problems including fiber orienta-
tion angles �1, �2, . . . , �n as design variables can be
stated as follows

minimize f ð�1, �2, . . . , �nÞ

such that gið�1, �2, . . . , �nÞ50 i ¼ 1, 2, . . . , r

pj ð�1, �2, . . . , �nÞ ¼ 0 j ¼ 1, 2, . . . ,m

where f is objective function, and g, p are the constraints
of the problem. In composite design and optimization
problems, mass, stiffness, displacements, residual stresses,

thickness, vibration frequencies, buckling loads, cost, etc.
are also used as objective functions.22 In this study, CTEs
and elastic moduli are considered as objective functions
of the optimization problems (model problems 1–5, see
Table 2) by using EGO method.

EGO

EGO is closely related with Kriging metamodeling tech-
nique. The method often requires the fewest function
evaluations, provides a credible stopping rule based on
EI, and uses Kriging metamodel to find new sampling
points. In this optimization method, first, initial data
set is created with the aid of an experimental design
approach. After that, a metamodel is constructed
using Kriging technique for the data set. Based on the
Kriging metamodel, EI function is created. The function
is maximized to obtain an infill sampling point. Finally,
the point is added to the initial data set and this pro-
cedure is continued iteratively until there is no signifi-
cant change in the EI function value. The procedure for
EGO is also summarized schematically in Figure 3.

While giving detailed information concerning the
procedure, it is suitable to start with mentioning
Kriging metamodeling technique that can be mathem-
atically expressed as11

y xðiÞ
� �

¼ 
þ �ðxðiÞÞ, i ¼ 1, :::, nð Þ ð19Þ

In this equation, yðxðiÞÞ is the associated response
value, 
 is the mean of the stochastic process, �ðxðiÞÞ
normally distributed, independent error terms with
mean zero and variance �2 and xðiÞ ¼ ðx

ið Þ
1 , . . . , x

ið Þ
k Þ.

This model is a stochastic process model because the
error term �ðxÞ is a stochastic process, it is a set of
correlated random variables indexed by the k-dimen-
sional space of x. Correlation between �ðxðiÞÞ and
�ðxð j ÞÞ is defined as

Corr½�ðxiÞ, �ðxj Þ� ¼
Xk
h¼1

�h xih � xjh

��� ���ph , �h50 ,

ph 2 1, 2½ �, i, j ¼ 1, . . . , nð Þ

ð20Þ

Table 2. Model problems for carbon/epoxy laminated composite designs.

Problems Objective Constraints Loading

1 Maximization of Ex

for ��1=� �2½ �S

ax4�2:63:10�6=�C
Fx ¼ 20 kN, Fy ¼ 20 kN, Fxy ¼ 0

�T ¼ �150�C, �C ¼ 0%

2 Maximization of Ex

for ��1=� �2½ �S

ax4�2:31:10�6=�C
EY59:67 GPa

Fx ¼ 20 kN, Fy ¼ 20 kN, Fxy ¼ 0

�T ¼ �150�C, �C ¼ 0%

3 Maximization of Ex

for ��1=� �2½ �S

ax4�3:21:10�6=�C Fx ¼ 50 kN, Fy ¼ 1 kN, Fxy ¼ 0

�T ¼ �150�C, �C ¼ 2%

4 Maximization of Ex

for ��1=� �2=� �3½ �S

ax 5�2:5:10�6=�C;

EY58:4 GPa

Fx ¼ 50 kN, Fy ¼ 1 kN, Fxy ¼ 0

�T ¼ �150�C, �C ¼ 2%

5 Minimization of ax

for ��1=� �2=� �3 � �4½ �S

Ex518:4 GPa –

Aydin et al. 5



where �h denotes measurement of the importance of
the variable xh, ph is smoothness parameter of the
function in coordinate direction h.8 The parameters
m and �2 are unknowns and they could be estimated
with a combination of the parameters of correlation
�h and ph: In order to estimate the parameters, max-
imum likelihood estimation technique can be used. As
a consequence, likelihood function can be written as11

L ¼
1

2�ð Þ
n
2ð�2Þ

n
2jRj

1
2

exp �
ðy� 1
Þ0R�1ðy� 1
Þ

2�2

� 	

ð21Þ

where y¼ ð y ið Þ, . . . , y nð Þ) denote the n-vector of
observed response values and 1 is a n-vector of ones.
Because m and �2 are unknowns, estimated values of m
and �2 can be used and the estimated values are writ-
ten by following equations, respectively.


̂ ¼
10 R�1y

10 R�11
ð22Þ

�̂2 ¼
ðy� 1
̂Þ0R�1ðy� 1
̂Þ

n
ð23Þ

After these definitions, likelihood function is con-
verted to ‘‘concentrated likelihood function’’ which

depends only �h and ph. In this step, we need to find
optimum �h and ph which maximize the ‘‘concen-
trated likelihood function.’’

Now, the estimated value of response at x�,
not observed previously, can be defined as in the
following form

ŷ x�ð Þ ¼ 
̂þ r0R�1ðy� 1
̂Þ ð24Þ

In the equation, ŷ x�ð Þ is the best linear unbiased
predictor of y x�ð Þ, r determines the correlations
between the error terms at x* and the error terms at
the previously observed points x and can be defined as

r x�ð Þ � Corr½�ðx�Þ, �ðxÞ� ð25Þ

Detailed information about derivation of the
expression given in equation (24) can also be found
in the study of Sacks et al.23 After creating the model
given by equation (24), some validation techniques
must be applied. For this purpose, well known
cross-validation method is used. In this method, a
prediction is generated with one data point excluded
from the data set and then checked if that data point
falls within a certain confidence interval for the pre-
diction. If the test fails, appropriate transformations
such as log or inverse may be applied to the response
values.11

Figure 3. Flowchart of efficient global optimization method.
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Following the completion of the investigative pro-
cess given above EI criteria can be introduced as:

Denoting the function y ¼ f ðxÞ, the improvement
I over fmin can be defined as the minimum response
value of f ðxÞ after n evaluations and expressed as24

I ¼
ð fmin � yÞ, y5 fmin

0, otherwise



ð26Þ

In order to obtain the EI, expected value of I (E(I))
need to be calculated considering that y has a normal
distribution with ŷ mean and s2 variance. E(I) is now
calculated by the following integration

E Ið Þ ¼

Z fmin

�1

fmin � yð Þ
 yð Þdy ð27Þ

and EI function can be written as

EI ¼ fmin � ŷð Þ�
fmin � ŷ

s

� �
þ s


fmin � ŷ

s

� �
ð28Þ

where �( ) is cumulative distribution function (CDF)
and 
( ) is probability density function (PDF) of a
standard Gaussian variable.

Problem definition

In this study, stacking sequences optimization prob-
lems, presented in Table 2, have been solved by using
EGO method for 8-layered ��1=� �2½ �S, 12-layered
��1=� �2=� �3½ �S, and 16-layered ��1=� �2=½

��3=� �4�S carbon/epoxy laminated composites
having low CTE and high elastic moduli. The lamin-
ate lay-up is limited to a symmetric and balanced
so as to avoid extension-bending coupling effects.
Moreover, to prevent excessive interlaminar stress in

the laminated composites, ply contiguous constraint
is taken into consideration. The fiber orientation
angles �1, �2, �3, �4 are selected as design variables
and the limiting values are �904�1, �2, �3, �4490 in
the continuous domain. The fiber volume fraction and
thickness of each layer are assumed as 0.50 and
150 	 10�6 m, respectively.

Since the hygrothermal effects are entirely analo-
gous mathematically to the thermal effect, resulting
fiber orientation angels automatically minimize the
CME and this gives an important advantage for the
materials especially used in satellite structures.
Therefore, it is sufficient to minimize the CTE only
and not necessary to solve a new optimization prob-
lem in order to minimize the CME of the laminated
composites.25

Model problems 1–5 defined in Table 2 are non-
linear single objective optimization problems with non-
linear constraints. In all the problems, CLT is utilized
to determine the objective functions (the effective
elastic moduli and the effective CTEs) of optimization
problems. By using EGO method, the optimum fiber
orientation angles of each layer have been determined.
After obtaining optimum solutions of the model prob-
lems, the corresponding material properties have also
been calculated and presented in Table 3.

Results and discussion

In this section, results of optimization studies are pre-
sented. In order to validate the present algorithm
EGO, solutions of the model problems 1–3 have
been compared to that of the corresponding GA,
SA, and GPSA results from the literature and the
results are presented in Table 3. After these valid-
ations have been done, two independent design–
optimization problems (model problems 4 and 5)

Table 3. Comparisons of optimization results for EGO against SA, GA, and GPSA.

Solutions

Optimization

method

Ex

(GPa)

Ey

(GPa)

�x

(10-6/�C)

�x

(10-6/%M)

Stacking

sequence

1a EGO 189.49 7.1 �2.63 �29.91 ð�16:1Þ2s

1b SA3 188.26 7.1 �2.65 �30.43 ð�17=
 15:3Þs
1c GPSA3 189.54 7.1 �2.63 �29.99 ð�16=� 16:1Þs
1d GA3 188.93 7.1 �2.64 �30.25 ð�16:1Þ2s

2a EGO 183.38 9.7 �2.31 �21.16 ð
5:8=� 25:6Þs
2b SA3 182.00 9.8 �2.32 �21.38 ð�6=� 25:8Þs
2c GPSA3 183.48 9.7 �2.31 �21.20 ð�25:6=� 5:8Þs
2d GA3 183.48 9.7 �2.31 �21.10 ð
5:8=� 25:6Þs
3a EGO 152.65 7.1 �3.22 �46.41 ð�19Þ2s

3b SA3 151.01 7.2 �3.23 �46.66 ð�17:8=� 20:5Þs
3c GPSA3 152.65 7.1 �3.22 �46.41 ð�18:9=� 19:1Þs
3d GA3 152.66 7.1 �3.22 �46.38 ð
19:3=
 18:7Þs
4 EGO 183.04 8.39 �2.50 �26.38 ð�24:6=� 8:4=� 16:1Þs
5 EGO 40.36 8.07 �5.24 �102.84 ð�32:1Þ4S

Note: Bolded values represent the optimized objective function values.

Aydin et al. 7



have been solved by using EGO. The results showing
evolution of the objective functions for all designs
during the optimization process with EGO are also
presented in Figure 4(a) to (e).

As seen from Table 3, in model problem 1, (i) EGO
solution for elastic modulus is better than SA and GA
solutions, (ii) the same stacking sequences ð�16:1Þ2s
have been obtained based on EGO and GA. For
model problem 2, (i) all the methods produce very
close values, (ii) as in model problem 1, the same
stacking sequences ð
5:8=� 25:6Þs that maximize the
elastic modulus of the laminated composite are found
based on EGO and GA. Model problem 3 considers
combination of mechanical, thermal, and hygral
effects. Although the stacking sequences estimations
of the algorithms are different, the same results are
obtained by EGO and GPSA (Ex¼ 152.65GPa).
Problem 4 includes maximization of elastic modu-
lus with two nonlinear inequality constraints for sym-
metric balanced 12-layered laminated composite.
Maximum Ex value is obtained as 183.04GPa. In
model problem 5, based on EGO method, minimum
value for coefficient of thermal expansion �x has been
found �5:24:10�6=�C

Figure 4(a) to (e) illustrates the convergence curves
of the objective functions for model problems 1–5,
respectively, and they help us to analyze the speed
of convergence of the algorithm. It can be seen from
the figures that although the objective functions and
constraints given in problems 1–5 include trigonomet-
ric non-linearities, by only about 10–15 iterations for
the objective function Ex, and 45 iterations for the
objective function �x are enough to reach optimum
solutions by using EGO. This is because the EGO
process could identify the global optimum with a rela-
tively low evaluation cost. Moreover, the EGO pro-
cedure is especially good at modeling the nonlinear,
multimodal functions.

Investigation of failure for optimized structures
gives some additional information and provides pro-
duction of safer structures.3 Therefore, in order to
evaluate the strength performances of optimally
designed laminated composites, the failure analysis
has been performed and the results are presented in
Figures 5 to 8 and Table 4.

Figure 5 shows variation of tensile failure loads Nx

with respect to Nx/Ny for �32:1½ �4s 16-layered carbon/
epoxy composite. It can be seen from the figure, for all

Figure 4. Convergence curves for design of the model problems.

8 Proc IMechE Part L: J Materials: Design and Applications 0(0)



Figure 6. Effect of thermal changes to tensile failure loads for optimized [�32.1]4s 16-layered carbon/epoxy laminated composite.

(red triangles (�) represent matrix failure).

Figure 7. Compression failure loads for optimized [�32.1]4s 16-layered carbon/epoxy laminated composite. (red triangles (�)

represent matrix failure).

Figure 5. Tensile failure loads for optimized [�32.1]4s 16-layered carbon/epoxy laminated composite.
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the cases except Nx/Ny¼ 3, matrix failure occurs
based on Hashin–Rotem failure criterion. Another
observation from the figure is that the first ply failure
loads predicted by Tsai–Hill criterion are smaller than
the values predicted by the other criteria. Maximum
failure load prediction (Nx¼ 2698.01 kN/m), calcu-
lated from four different failure criteria, is obtained
in the case of Nx/Ny¼ 3 by Hashin–Rotem failure cri-
terion. It should be noted that failure behavior of the
optimized composite in the interval [0,10] for Nx/Ny is
very critical and it remains stable in the interval
[10,30].

In Figure 6, results for effect of thermal changes
to tensile failure loads for optimized ( �32:1½ �4S)
16-layered carbon/epoxy composite are given. It can
be seen from the figure that (i) matrix failure occurs
for all Nx/Ny values according to Hashin–Rotem fail-
ure criterion. It means that thermal changes does not
affect fiber or matrix failure types, (ii) tensile failure
load Nx rise slightly with increasing thermal change,
(iii) the differences in Nx with a thermal change of
�110�C are 60 kN/m approximately.

Figure 7 gives compression failure loads for
�32:1½ �4S 16-layered carbon/epoxy composite. It can
be observed from the figure that (i) in the interval [0,5]
for Nx/Ny, fiber failure occurs; however, matrix failure
occurs in the interval [5,30] based on Hashin–Rotem
criteria (ii) maximum absolute value of the first ply
failure load has been predicted based on Tsai–Wu cri-
terion (Nx¼�3778.32 kN/m) (iii) similar to Figures 5
and 6, the failure behaviors in the range [0–10]
for Nx/Ny are very critical for optimized composite
and also it is immediately apparent that a significant
rise after a sharp fall occurs based on Tsai–Wu
criterion.

By comparing the tensile and compression failure
load limits of the carbon/epoxy composite (Figures 5
and 7), it can be concluded that absolute value of
compression limits higher than tensile limits based
on Tsai–Wu, Hoffman, and Hashin–Rotem theories.

Figure 8 shows the effect of thermal changes to
compression failure loads for �32:1½ �4S 16-layered
carbon/epoxy composite. It can be seen from the
figure that (i) in all the thermal change cases (�T ¼
�110�C, � 100�C, . . . , � 10�C, 0�C), matrix failure
mechanism become effective based on Hashin–
Rotem failure criterion, (ii) the magnitude of failure
loads decreases with increasing thermal change based
on Tsai–Wu, Hoffman, and Hashin–Rotem criteria.
However, an increase is observed in the failure load
values calculated based on Tsai–Hill theory, (iii)
decreasing ratios with �T ¼ �110�C are 1.5%,
1.1%, and 2.4% based on Tsai–Wu, Hoffman, and
Hashin–Rotem criteria, respectively.

Effect of stacking sequences with thermal changes
to failure loads for different 16-layered carbon/epoxy
composite can be seen in Table 4.

Five distinct stacking sequences ( �32:1½ �4S is opti-
mum design, 90½ �8S, 0=90½ �4S, �45½ �4S, and 0=45½ �4S are
conventional designs) have been considered. Minimum
increase occurs in the case of 90½ �8S, while maximum
increase appears for conventional designs 0=90½ �4S and
�45½ �4S with the thermal change (�T ¼ �110�C)

Experimental verification

In order to validate the proposed algorithm (EGO),
experimental study has been done for E-glass/epoxy
laminated composite material. For this purpose,
determination of the basic mechanical and thermal
properties of E-glass/epoxy has been performed
experimentally. After characterization, optimum
stacking sequences design for minimization of CTE
have been found by EGO as �27½ �S. Secondly, the
thermal tests have been performed for E-glass/epoxy
composites with the optimum stacking sequences
�27½ �S in order to compare theoretical and experimen-
tal values of CTEs. Besides the conventional ones,
0½ �8 and �45½ �S are also handled in order to verify
our design (see Table 5).

Figure 8. Effect of thermal changes to compression failure loads for optimized [�32.1]4s 16-layered carbon/epoxy laminated

composite. (red triangles (�) represent matrix failure).
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Experimental characterization is as follows:
E-glass/epoxy laminated composite material is char-
acterized in terms of tensile (ASTM D3039-76) and
shear (ASTM D7078/D7078M-05) properties
(E1,E2, 	12,G12). Tensile tests have been carried out
using Shimadzu AG1 250 kN testing machine and a
computer for data acquisition. To determine tensile
properties, at least five specimens per test are used.
Longitudinal and transverse properties were deter-
mined using unidirectional specimens, 0½ �6 and 90½ �6,
respectively. ASTM D 7078/D-7078M-05 standard
test method for shear properties of composite mater-
ials by V-notched rail shear method was used for

characterization of shear modulus G12. Thermal prop-
erties of the composites have been analyzed by using
DMA Q800 dynamic mechanical analyzer. The
in-plane thermal expansion coefficients (CTEs) of
0½ �6, 90½ �6 E-glass/epoxy were measured as a function
of temperature via dynamic mechanical analysis
DMA Q800 instrument. It is used in control force
mode with a heating rate of 4�C=min. The typical
sample dimensions are 15mm� 4mm� 1.9mm. The
samples are loaded uniaxially with a tensile stress of
0.1MPa and the change of the sample dimension with
increasing temperature is monitored. The CTE has
been determined from the slope of the resultant

Table 4. Effect of stacking sequences with thermal changes to tensile failure loads for different 16-layered carbon/epoxy laminated

composite (Nx/Ny¼ 1).

Stacking sequences

and thermal changes

Tensile failure loads (kN/m)

Tsai–Hill Tsai–Wu Hoffman Hashin–Rotem

�32:1½ �4S

� T ¼ 0�C

Nx¼ 303.990

Ny¼ 303.990

Nx¼ 310.410

Ny¼ 310.410

Nx¼ 295.560

Ny¼ 295.560

Nx(FF)¼ 2194.15

Ny(FF)¼ 2194.15

Nx(MF)¼ 306.290

Ny(MF)¼ 306.290

�32:1½ �4S

� T ¼ �110�C

Nx¼ 241.780

Ny¼ 241.780

Nx¼ 252.300

Ny¼ 252.300

Nx¼ 239.530

Ny¼ 239.530

Nx(FF)¼ 2211.62

Ny(FF)¼ 2211.62

Nx(MF)¼ 242.890

Ny(MF)¼ 242.890

90½ �8S

� T ¼ 0�C

Nx¼ 120.000

Ny¼ 120.000

Nx¼ 122.332

Ny¼ 122.332

Nx¼ 120.578

Ny¼ 120.578

Nx(FF)¼ 3600.000

Ny(FF)¼ 3600.000

Nx(MF)¼ 120.000

Ny(MF)¼ 120.000

90½ �8S

� T ¼ �110�C

Nx¼ 120.000

Ny¼ 120.000

Nx¼ 122.332

Ny¼ 122.332

Nx¼ 120.578

Ny¼ 120.578

Nx(FF)¼ 3600.000

Ny(FF)¼ 3600.000

Nx(MF)¼ 120.000

Ny(MF)¼ 120.000

0=90½ �4S

� T ¼ 0�C

Nx¼ 1342.73

Ny¼ 1342.73

Nx¼ 1484.30

Ny¼ 1484.30

Nx¼ 1251.54

Ny¼ 1251.54

Nx(FF)¼ 1858 42

Ny(FF)¼ 1858.42

Nx(MF)¼ 1908.63

Ny(MF)¼ 1908.63

0=90½ �4S

� T ¼ �110�C

Nx¼ 982.968

Ny¼ 982.968

Nx¼ 1212.57

Ny¼ 1212.57

Nx¼ 944.786

Ny¼ 944.786

Nx(FF)¼ 1880.07

Ny(FF)¼ 1880.07

Nx(MF)¼ 1241.62

Ny(MF)¼ 1241.62

�45½ �4S

� T ¼ 0�C

Nx¼ 1342.73

Ny¼ 1342.73

Nx¼ 1484.30

Ny¼ 1484.30

Nx¼ 1251.54

Ny¼ 1251.54

Nx(FF)¼ 1858 42

Ny(FF)¼ 1858.42

Nx(MF)¼ 1908.63

Ny(MF)¼ 1908.63

�45½ �4S

� T ¼ �110�C

Nx¼ 982.968

Ny¼ 982.968

Nx¼ 1212.57

Ny¼ 1212.57

Nx¼ 944.786

Ny¼ 944.786

Nx(FF)¼ 1880.07

Ny(FF)¼ 1880.07

Nx(MF)¼ 1241.62

Ny(MF)¼ 1241.62

0=45½ �4S

� T ¼ 0�C

Nx¼ 171.248

Ny¼ 171.248

Nx¼ 174.472

Ny¼ 174.472

Nx¼ 170.082

Ny¼ 170.082

Nx(FF)¼ 2730.90

Ny(FF)¼ 2730.90

Nx(MF)¼ 171.410

Ny(MF)¼ 171.410

0=45½ �4S

� T ¼ �110�C

Nx¼ 153.208

Ny¼ 153.208

Nx¼ 157.200

Ny¼ 157.200

Nx¼ 153.358

Ny¼ 153.358

Nx(FF)¼ 2741.70

Ny(FF)¼ 2741.70

Nx(MF)¼ 153.294

Ny(MF)¼ 153.294
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expansion temperature plots. CTEs of the E-glass/
epoxy for fiber and transverse directions are obtained
as �1 ¼ 10:02:10�6=�C and �2 ¼ 28:41:10�6=�C based
on the formulation as

� ¼
�L

L��T
ð29Þ

Experimentally determined thermo-mechanical
properties of unidirectional E-glass/epoxy laminated
composite under static loading are given in Table 6.
Regarding Table 5, it is observed that the theoretical
results are in good agreement with the experimental
ones. Another observation is that when the CTE
values for �27½ �S compared with conventional
designs, the minimum value as expected is reached
by the optimum design.

Conclusion

In the current study, EGO method has been proposed
to design the dimensionally stable laminated carbon/
epoxy composites subjected to mechanical and hygro-
thermal loadings. First, the results of optimum stack-
ing sequences designs using EGO were compared with
those using the GA, SA, and GPSA algorithms.
Secondly, verification of EGO results has been
achieved experimentally for E-glass/ epoxy composite.
Afterwards, comparison of failure loads of the opti-
mized carbon/epoxy composites by using Tsai–Hill,
Tsai–Wu, Hoffman, and Hashin–Rotem failure cri-
teria including thermal and moisture effects has been
performed.

Based on the studies carried out, we have con-
cluded with the following observations:

1. It was observed that the proposed algorithm EGO
has potential to optimize dimensionally stable
composites.

2. EGO method produces solutions better than or as
good as widely used stochastic search algorithms
GA, SA, and GPSA.

3. The studies including experimental verification of
the optimization algorithms are quite few in the
literature. In this study, comparison of numerical
and experimental results is examined and good
agreement is observed.

4. In the literature, it is mainly focused on either fail-
ure analysis of laminated composites with conven-
tional stacking sequences (i.e., 0=90½ �4S and
�45½ �4S) or designing composites resistant to frac-
ture using failure criteria as optimization con-
straints. However, in the present paper, the
failure analysis is considered to evaluate the
strength performances of optimally designed lami-
nated composites (i.e., �32:1½ �4S). By this
approach, failure loads of the optimum laminated
composites are additionally determined. In con-
clusion, the present study fills a gap in this respect.
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