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Operational modal analysis may require identifying global modal shapes by using multiple
setup measurements. For this purpose, various algorithms have been developed which
make use of the Bayesian approach to estimate the global mode shapes. The main motiva-
tion of the available Bayesian approaches is based on the estimation of the optimal global
mode shape vector directly from Fast Fourier Transform data or assembling the local mode
shapes that are identified in the individual setups by using Gaussian approximation. In this
study, the two-stage Bayesian Fast Fourier Transform Approach which is originally applied
to single setups is implemented to multiple setup problems for well separated modes.
Analytically it is shown that the resulting formulation is the same for the mode shape
assembly by using the Gaussian approximation. In addition, the weights of individual set-
ups in the global mode shape vector is analytically calculated which depend on the Hessian
matrix for local mode shapes. To validate the proposed methodology, a numerical example
that considers setup-to-setup variability of modal signal-noise ratios is presented. For com-
parison purposes a ten-story shear frame model is experimentally investigated, and the
measurements of a benchmark bridge structure are considered in the verification of the
current procedure.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Modal parameter identification has a key importance in structural health monitoring and damage detection. Modal
parameters that are required for structural assessment include natural frequencies, damping ratios and modal shape vectors.
In addition to these, spectral density level of excitation and possible measurement errors might be important in the identi-
fication process. In this context, Bayesian Operational Modal Analysis (BAYOMA) in frequency domain proposes simple and
fast algorithms based on the statistical properties of measured data. Katafygiotis and Yuen [1] first proposed the Bayesian
Spectral Density Approach (BSDA) based on the statistical properties of spectral density matrix. A Bayesian Fast Fourier
Transform Approach (BFFTA) was proposed by Yuen and Katafygiotis [2] to estimate the most probable modal parameters
by using the Fast Fourier Transform (FFT) data. Au [3] proposed a fast algorithm for BFFTA for systems with well separated
modes and reformulated the general methodology presented by Yuen and Katafygiotis [2]. In past decade, numerous studies
concerning the general computational process and application of Bayesian Spectral Density and Fast Fourier Transform
Approach have been presented by Au et al. [4–9]. In addition, Yan and Katafygiotis [10] presented a two stage BSDA that
separates the modal parameters to be identified into two components: (i) spectrum variables including frequency, damping
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ratio, and spectral density of modal excitation and prediction error, (ii) spatial parameters including the modal shape com-
ponents. Although BSDA and BFFTA are motivated by different statistical properties of measured data, they result in similar
estimators. Various studies have been presented in the literature conducted with the application of BFFTA and BSDA [11–14].

In large scale structures, monitoring of the change in modal parameters has a direct effect to make decisions after extreme
events (such as earthquakes, tornadoes, etc.). For this reason, a full scaled monitoring of change in modal parameters
becomes necessary. In the literature, it is known that the modal parameter estimation process in large scaled structures
requires more computational effort due to the insufficient number of measurement instruments (such as accelerometer, data
acquisition devices). This case makes it necessary to use multiple measurement setups in the identification process. Even
though the natural frequencies and damping ratios can be obtained via the individual setups, obtaining the global mode
shape that covers the all measurement setups arises as an issue. Essentially, there are two different methods in the literature
to obtain the global mode shape vector; (i) Pre-identification, and (ii) Post identification. Pre-identification methods are
based on various scaling processes to obtain a full set of synchronous measured data. In case of constant reference sensor
(or sensors) and large signal-to-noise ratio, pre-identification methods are capable of obtaining the global mode shapes with
an acceptable accuracy. However, the convergence of those methods reduces in case of roving sensors and/or relatively low
signal levels due to the accumulated errors in scaling procedure [15,16].

Post identification methods are based on the assembly of local mode shapes that are identified in individual setups or
direct estimation of global mode shapes incorporated by multiple setups. Here, the local least square approach comes for-
ward as the most conventional one, but the results are highly sensitive to sensor configuration and estimation quality of local
mode shapes. More efficient methods have been presented in the current decade for global mode shape assembly or estima-
tion. Au [17] presented the Global Least Squares Approach for the assembly of local mode shapes with an iterative algorithm.
This iterative algorithm is based on the minimization of the equally weighted discrepancies between the local part of optimal
global mode shape and identified local mode shape. In addition, some probabilistic approaches for global mode shape assem-
bly have also been developed based on the Bayesian inference. Those methods are capable of identifying not only the global
mode shapes but also their posterior uncertainties. There are two different approaches in the literature for Bayesian mode
shape assembly. First, Au and Zhang [18] presented a Bayesian approach for direct estimation of global mode shape vector
and local spectrum variables incorporating the multiple measurement setups. Au [19] modified the original algorithm that
was presented by Au and Zhang [18] and proposed a simplified iterative algorithm. In addition, a different technique was
presented by Yan and Katafygiotis [20] that is motivated by the Global Least Squares Approach. Their approach is based
on the assembling local mode shapes that are identified at individual setups by using Bayesian statistical framework.

The available Bayesian global mode shape identification methods [18–20] are motivated from different approaches
(BFFTA and BSDA) and follow different ways to estimate the most probable global mode shape. The basic motivation of this
study is to develop an alternative mode shape assembly algorithm which results in same eigenvalue equations (for global
mode shapes) that can be obtained by the aforementioned procedures. For this purpose, first, the two-stage BFFTA by Au
[19] for single setup problems with well separated modes is adopted to multiple setups and a modified likelihood function
for the global mode shape is derived. Second, the solution is verified by the Gaussian approximation for the most probable
local mode shape vector. Finally, the weights of individual setups in the most probable global mode shape vector is obtained
by using the expansion of Hessian matrix for local mode shapes. The final form of the proposed procedure does not need to
identify local mode shapes separately. Instead, it utilizes the statistical information of Hessian matrix of the local mode
shapes which can be derived by using only the spectrum variables and FFT data. According to the obtained results, it is seen
that the proposed algorithm results in higher convergence speed when compared to the previous BFFTA algorithm.

2. Two-stage BFFTA for individual setups

Based on the statistical properties of FFT of the measured acceleration data, the conditional probability density function
for the set of modal parameters in an individual setup, i, can be written as follows by using the Bayes’ theorem [3].
p hi Zkijð Þ ¼ p Zki hijð Þp hið Þ=p Zkið Þ ð1Þ
where hi = [fi, ni, Si, Sei, ui], is the set of modal parameters to be identified and comprises the natural frequency, damping ratio,
spectral density of modal excitation that is scaled with respect to the unit norm for local mode shape, spectral density of
prediction error, and local mode shape vector (with unit norm) at ith setup, respectively. Here, Zki ¼ Re Fkið Þ; Im Fkið Þ½ ��R
denotes the augmented FFT vector of the measured response at the ith setup. In addition, p hi Zkijð Þ = the conditional posterior
probability density function (pdf) of hi for a given Zki, p Zki hijð Þ = the likelihood function which is obtained by a proper prob-
ability distribution of Zki for a given hi, p hið Þ and p Zkið Þ are prior pdf of hi and Zki, respectively. Since, p Zkið Þ does not depend on
hi, it corresponds to a scalar value and can be assumed as a normalizing constant. In the applications of BAYOMA, p hi Zkijð Þ is
generally assumed to be proportional to p Zki hijð Þ in case of a non-informative prior distribution, p hið Þ [1,2,3,19]. In addition,
p hi Zkijð Þ follows a zero mean Gaussian distribution with a large amount of measured data [19].
p hi Zkijð Þ / 2pð Þ�Ni Chi

�� ���1exp �1
2
ZT
kiC

�1
hi
Zki

� �
ð2Þ
Here, Ni = number of measured DOF, Chi = expected value of the covariance matrix, E[Zki ZkiT ] [19].
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where [.]* = conjugate transpose, ||.|| = Euclidian norm, Fki = FFT of measured response at ith setup, Si = spectral density of
modal excitation that is scaled with respect to the unit norm of global mode shape vector, wi = local mode shape with norm
of ri, and INi = Ni � Ni size identity matrix. In addition, Dki is written as below.
Dki ¼ 1� b2
ki

� �2 þ 2nibkið Þ2
h i�1

; bki ¼ f i=f k ð4Þ
Here, fk = excitation frequency. The set of modal parameters can be considered as the combination of local spectrum param-
eters, hsi = [fi, ni, Si, Sei], and local mode shape vector, ui. Thus, the negative logarithm-likelihood function for p hi Zkijð Þ can be
considered in two parts for well separated modes: (i) the first part only is sensitive to hsi, and (ii) the second part is sensitive
to hi [19].
Li hið Þ ¼ NiNfi ln pþ Nfi � 1
� �

ln Sei þ
X

k
ln �SiDki þ Sei
� �þ S�1

ei ji|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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� � ð5Þ
where Nfi = number of data within the selected dominant frequency band at ith setup, respectively. Here, the Most Probable
Value (MPV) for each parameter can be determined by the direct minimization of Eq. (5). In this minimization process, the
modal parameters including spectral parameters and mode shapes can be decoupled for computational simplicity [10,19].
For globally identifiable problems, it is known that Eq. (5) has a unique minimum at the MPV of hi. For this reason, when
the MPV of the local mode shape is considered, the second part of Eq. (5) can be represented as the function of hsi.
ûT
i Diûi ¼ ‘i hsið Þ ð6Þ
Here, bui ¼ MPV of local mode shape with unit norm (for ith setup). Thus, the negative logarithm-likelihood function will
only depend on the spectral parameters when ‘i hsið Þ is substituted into Eq. (5).
Li hið Þ ¼ Lsi hsið Þ � ‘i hsið Þ
Lsi hsið Þ ¼ NiNfilnpþ Nfi � 1

� �
lnSe þ

P
kln SiDki þ Se

 �

þ S�1
e ji

ð7Þ
The spectral parameters can be obtained by minimizing Eq. (7). It follows that the first part will be constant when the
MPV of hsi is substituted into Eq. (5). An inclusion of a unit norm constraint for ui to the likelihood function (centered at
the MPV of hsi) results in the following equation.
Ji ui; ki; ĥsi

 �

¼ Lsi ĥsi

 �

�uT
i D̂iui þ ki uT

i ui � 1
� � ð8Þ
where Lsi bhsi


 �
= optimal value of first part, and ki is the Lagrange multiplier that enforces the unit norm of the local mode

shape. Minimization of Eq. (8) with respect to ui gives,
@Ji ui; kið Þ
@ui

����
ui¼ûi

¼ �2ûT
i D̂i þ 2kiû

T
i ¼ 0 ð9Þ
Eq. (9) can be solved as a standard eigenvalue problem which results in the MPV of ui. Further, it is seen that the optimal

value of ki equals to the optimum ‘i ĥsi

 �

which corresponds to the maximum eigenvalue of bDi.
k̂i ¼ ûT
i D̂iûi ð10Þ
3. Analytical solution for mode shape assembly

3.1. Proposed solution by two-stage BFFTA

In this section, an alternative mode shape assembly algorithm is presented. The two-stage Bayesian approach, which is
previously applied for single setup problem by Au [19], is adopted to multiple setup case. At first stage of the proposed
methodology, the MPV of spectrum variables are obtained by minimizing Eq. (7) with respect to hsi. At second stage, the con-
strained negative logarithm likelihood function (centered at the MPV of spectrum parameters) for local mode shape at an
individual setup, is obtained by arranging Eq. (8), as below.
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Ji ui; ki; ĥsi

 �

¼ Lsi ĥsi

 �

� k̂i þuT �D̂i þ k̂i

 �

ui ð11Þ
Neglecting the constant terms that do not affect the variation of ui leads to the following relation.
Ji ui; ki; ĥsi

 �

/ 1
2
uT

i Hûi
ui ð12Þ
Here, Hbu i
= Hessian matrix of Ji ui; ki; bhsi


 �
with respect to ui (with unit norm) at hi ¼ bhi. Hbu i

can be calculated numerically

using finite difference method or can be derived analytically. For both procedures, the equality constraints that arises due to
the norm of the local mode shape should be considered [4,19,21]. Otherwise, Hbu i

will be a negative definite matrix, and

therefore it will inevitably contradict the minimization nature of the MPV of mode shape [4]. Hbu i
can be analytically derived

by following the methodology that is proposed by Au and Xie [21] or can be simply obtained by double differentiating of Eq.
(8) with respect to bui.
Hûi
¼

@2Ji ui; ki; ĥsi

 �
@u2

i

������
ui¼ûi

¼ �2D̂i þ 2k̂iINi
ð13Þ
The modal shapes of individual setups are statistically independent [18]. Thus, the objective functions for each setup can
be assembled by linear combination, and the resulting objective function for the global mode vector, U, under norm con-
straints can be written as follows by substituting ui = ri

�1CiU, where Ui is the selection matrix that extracts the DOFs mea-
sured at ith setup.
J U;a;b; rð Þ ¼ 1
2

XNs

i¼1

r�2
i UTCT

i Hûi
CiUþ

XNs

i¼1

ai UTCT
i CiU� r2i


 �
þ b 1�UTU

 �

ð14Þ
Here, a = [a1, . . ., aNs), r = [r1, . . ., rNs], ai = Lagrangemultiplier for the norm constraint of ||UiU ||= ri, and b = Lagrangemultiplier
that enforces the unit norm forU. The Lagrange multiplier ai is obtained at the minimum value of Eq. (14) with respect to ri.
@J
@ri

¼ �r�3
i UTCT

i Hûi
CiU� 2airi ¼ 0 ) âi ¼ � r�4

i

2
UTCT

i Hûi
CiU ð15Þ
Note that the second order derivative of the objective function with respect to ri is a non-negative value since Hbu i
is semi-

positive definite [19].
@2J
@r2i

¼ 3r�4
i UTCT

i Hûi
CiU� 2âi ¼ 4r�4

i UTCT
i Hûi

CiU � 0 ð16Þ
Minimizing Eq. (14) with respect to U leads to
@J
@U

����
U¼Û

¼ Û
T XNs

i¼1

r�2
i CT

i Hûi
Ci

" #
þ Û

T XNs

i¼1

2âiC
T
i Ci

" #
þ 2bÛ

T ¼ 0 ð17Þ
Thus, the most probable global mode shape vector is obtained by the solution of the following standard eigenvalue
problem.
ÂU ¼ bU ð18Þ

in which
Â ¼ 1
2

XNs

i¼1

CT
i r�2

i Hûi
þ 2âiINi

� �
Ci ð19Þ
3.2. Alternative solution by Gaussian approximation

In this section, it is shown that the solution for the global mode shape vector is unique regardless of the implemented
assembly methodology. For this purpose, the final solution for the global mode shape in Eq. (18) is obtained by following
a similar procedure to the method by Yan and Katafygiotis [20]. Since the problem is globally identifiable, the conditional
PDF for ith local mode shape centered at the MPV for spectrum variables can be estimated by Gaussian approximation.
For this purpose, the conditional PDF for global mode shape can be written as below.
p Uj ui . . .uNs

� �� � ¼YNs

i¼1

p Ujuið Þ ð20Þ
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According to the Bayes’ theorem, the following equality can be constructed.
p Ujuið Þ ¼ p uijUð Þp Uð Þ=p uið Þ ð21Þ

where p U uijð Þ = posterior conditional pdf for global mode shape U for a given ui, p ui Ujð Þ = likelihood function of local mode
shape ui that is conditional to U, p Uð Þ and p uið Þ are prior distributions U and ui, respectively. Here, p uið Þ corresponds to a
normalizing constant since it does not depend on U. In addition, p Uð Þ does not depend on the measured data and should be
defined by the user. In case of large amount of data, the variation in p U uijð Þ is significantly larger than the variation in p Uð Þ
[19]. Therefore, the contribution of p Uð Þ can be neglected, and p U uijð Þ can be assumed to be proportional to p ui Ujð Þ. Thus,
p U uijð Þ can be well estimated by Gaussian approximation around the MPV of local mode shape.
p Ujuið Þ / p uijUð Þ ¼ H�1
ûi

��� ��� 2pð Þ�N=2exp �1
2

r�1
i CiU� ûi

� �T
Hûi

r�1
i CiU� ûi

� �� 

ð22Þ
Here, Hbu i
is used instead of the inverse of the posterior covariance matrix. Thus, the negative logarithm likelihood func-

tion of p U uijð Þ is written as;
Li U; rið Þ ¼ �ln p uijUð Þ½ �
Li U; rið Þ ¼ 1

2N lnpþ 1
2 ln H�1

ûi

��� ���þ 1
2 r�1

i CiU� ûi

� �THûi
r�1
i CiU� ûi

� � ð23Þ
Applying the norm constraint for the local mode shape, the objective function for the ith setup is obtained as;
Ji U;ai; rið Þ ¼ Li U; rið Þ þ ai UTCT
i CiU� r2i


 �
ð24Þ
Taking the first order derivative of Eq. (24) with respect to ri gives
@Ji
@ri

¼ r�2
i UTCT

i Hûi
ûi � r�3

i UTCT
i Hûi

CiU� 2airi ¼ 0 ð25Þ
Thus, the optimal value of ai is obtained as
âi ¼ � r�4
i

2
UTCT

i Hûi
CiUþ r�3

i

2
UTCT

i Hûi
ûi ð26Þ
Finally, the objective function for the global mode vector under norm constraints is written as
J U;a;b; rð Þ ¼ 1
2

XNs

i¼1

r�1
i CiU� ûi

� �T
Hûi

r�1
i CiU� ûi

� �þXNs

i¼1

ai UTCT
i CiU� r2i


 �
þ b 1�UTU

 �

ð27Þ
Minimizing Eq. (27) with respect to U leads to the following constrained eigenvalue problem.
AUþ b ¼ bU

A ¼ 1
2

PNs
i¼1C

T
i r�2

i Hûi
þ 2âiINi

� �
Ci; b ¼ � 1

2

PNs
i¼1r

�1
i CT

i Ĥui
ûi

ð28Þ
The obtained constrained eigenvalue problem is similar to the result by Yan and Katafygiotis [20]. For this alternative
solution, however, Eq. (28) is reduced into a standard eigenvalue problem. For this purpose, the components of Hbu i

can

be expressed in terms of the eigenvalue decomposition of its two terms.
Hûi
¼ �2D̂i þ 2k̂iINi

¼ URUT þ 2k̂iUU
T

U ¼ u1 ¼ ûi u2 . . . uNi

� �
R ¼ diag r1 ¼ �2k̂i r2 . . . rNi

h i
r1j j ¼ max r1j j; . . . ; rNi

�� ��� �
; UUT ¼ INi

ð29Þ
Then, the equivalent eigenvalue decomposition of Hbu i
is written by combining the decomposed terms in Eq. (29).
Hûi
¼ URUT

U ¼ ûi u2 . . . uNi

� �
R ¼ diag 0 r2 þ 2k̂i


 �
. . . rNi

þ 2k̂i

 �h i ð30Þ
In Eq. (30), Hbui
is semi-positive definite and, its eigenvalue that corresponds to bui is equal to zero. Therefore, the vector of

b will be a zero vector.
Hûi
ûi ¼ 0Ni�1

) b ¼ 0N�1 ð31Þ

Thus, Eq. (28) leads to the same standard eigenvalue problem that is given in Eq. (18).
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3.3. Posterior uncertainty for global mode shape

Posterior uncertainty for the local mode shape vectors can be calculated in terms of their Expected Modal Assurance Cri-
terion (EMAC) for each setup [3,22]. The assembled global mode shape vector has identification uncertainty, as well. To
define this uncertainty, the posterior covariance matrix for global mode shape should be obtained first. The posterior covari-
ance matrix depends on the defined constraints. Taking the second order derivatives of the objective function that is given in

Eq. (14) for the global mode shape vector gives the Hessian at U ¼ bU.
The posterior covariance matrix, CbU can be obtained as the inverse of the Hessian matrix, HbU . However, this procedure

inevitably causes numerical errors since Hbu is a semi-positive definite matrix. The pseudo inverse of HbU can be used to cal-
culate CbU [22]. For this purpose, the singular value decomposition of HbU can be written as;
HÛ ¼ 0�UUT þ
XN
j¼2

d2u;jqjq
T
j ð32Þ
Thus, the posterior covariance matrix is written as follows by neglecting the zero eigenvalue,
CÛ ¼ Hþ
Û ¼

XN
j¼2

d�2
Û;jqjq

T
j ð33Þ
where ‘‘+” denotes the pseudo-inverse. The uncertainty of mode shape with covariance matrix, CbU , can be defined in vectoral

form as the difference between the uncertain and most probable global mode shape [19].
DU ¼ U� bU ¼
XN
j¼2

zjd
�1bU;j
qj ð34Þ
Here, zj = independent and identically distributed Gaussian number. Thus, EMAC between uncertain and most probable
mode shapes are obtained as below.
U ¼ bU þPN
j¼2zjd

�1
U;jqj


 �
EMAC ¼ UT bU

k U kk bU k
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þPN
j¼2z

�2
j d�2

U
^
;j

r ð35Þ
Zhang and Au [22] states that EMAC asymptotically leads to the following expression as N?1, and dbU ,j
�2 ? 0.
EMAC ¼ 1þ
XN
j¼2

d�2bU;j

 !�1

ð36Þ
4. Estimation of the weights for individual setups

In the assembly procedure, local mode shapes that are identified in the individual setups have a contribution to the global
mode shape. The Global Least Squares approach assumes that all setups are equally weighted, and their contribution is uni-
form. Bayesian methods [19,20], however, considers the weight of each setup incorporating the identification quality. In this
context, Au [19] presents the following asymptotic weighting factor in case of large signal to noise ratio.
wi / r�2
i kio
Sei

ð37Þ
in which kio is the largest eigenvalue of
P

kRe FkiF
�
ki

� �
.

In case of lower signal-to-noise ratio, the weighting of each setup can also be calculated as depending on the data quality.
For this purpose, the local Hessian matrix, Hbu i

, can be rewritten as follows by neglecting the zero-eigenvalue term along the

local mode shape direction.
Hûi
� dûi

Ni � 1ð Þ INi
� ûiû

T
i

h i
ð38Þ
where dbu i
= sum of all eigenvalues of Hbu i

. By using Eq. (38), the optimal value of the Lagrange multiplier, ai, can be arranged

as,
âi ¼
r�4
i dûi

Ni � 1ð Þ r�2
i �UTCT

i ûiû
T
i CiU

h i
ð39Þ
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Substituting Eqs. (38) and (39) into Eq. (19) yields,
Â ¼
XNs

i¼1

r�2
i dûi

Ni � 1ð ÞC
T
i aiINi

� ûiû
T
i

h i
Ci ð40Þ
where
ai ¼ r�2
i UTCT

i ûiû
T
i CiU ð41Þ
Thus, the weight of the ith setup in the optimal global mode shape can be estimated by the following formula.
wi ¼
r�2
i dûi

2 Ni � 1ð Þ ð42Þ
5. Summary of procedure

The proposed modified solution assembles mode shapes by using the probability distributions for local mode shapes cen-
tered at the local spectrum variables. First, the spectrum variables at ith setup should be determined, and the Hessian matrix
for each local modal shape should be obtained. Second, the global mode shape vector is assembled by the scaled local Hes-
sian matrices and possible discrepancy.

In the proposed procedure, the possible modes should be detected from the singular value (SV) or power spectral density
(PSD) spectrum of the measured data by peak-picking. At the next step, a proper bandwidth should be selected. An auto-
mated mode detection and bandwidth selection for BAYOMA are not available in the literature. For this reason, the possible
mode and bandwidth selection inevitably becomes an intuitional procedure. In this study, the bandwidths of possible modes
are selected so that it covers the bell curve in the SV spectrum.

The local spectrum parameters cannot be directly obtained by the minimization of Eq. (7) since it is a multivariate
non-linear function. Instead, an iterative approach should be implemented to find the global minimum with respect to
the spectrum parameters. In this procedure, selection of a proper initial guess for each parameter will significantly decrease
the computational effort and time. For this purpose, the initial guess for fi can be set to the peak value in the selected band-
width, and the initial value of ni can be set to 1% [3]. In addition, the initial guess for Si and Sei can be calculated by making use
of the asymptotic behavior of signal-to-noise ratio for its larger values [3]. Here the signal-to-noise ratio is defined as below.
cki ¼
SiDki

Sei
ð43Þ
In case of a significantly large signal-to-noise ratio, matrix of Di can be rewritten by using the first order power series
expansion of the following term [3].
1þ Sei
SiDki

� ��1

� 1� Sei
SiDki

� �
ð44Þ
Then,
Di ¼
X
k

S�1
ei 1þ Sei

SiDki

� ��1

FkiF
�
ki � S�1

ei

X
k

FkiF
�
ki �

X
k

FkiF
�
ki

SiDki

ð45Þ
By making use of Eqs. (44) and (45), the likelihood function given in Eq. (7) can be arranged as follows
L hsið Þ �
X

k
lnDk|fflfflfflfflffl{zfflfflfflfflffl}

Sensitive to f i and ni

þ Nf i Ni � 1ð Þ ln Sei þ S�1
e ji � kioð Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sensitive to Sei

þ Nfi ln �Si þ �S�1
i

X
k
kkiD

�1
ki

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sensitive to f i ; ni and �Si

ð46Þ
where kio = maximum eigenvalue of
P

kRe FkiF
�
ki

� �
, and kki = maximum eigenvalue of Re FkiF

�
ki

� �
. Minimizing Eq. (46) with

respect to Si and Sei gives their optimal values as below.
Sei ffi ji � kio
Ni � 1ð ÞNfi

; Si ffi
X
k

kkiD
�1
ki ; ð47Þ
In the calculation of the global mode shape, again an iterative procedure should be applied since Eq. (19) depends on ri
and bai, which are related to the global mode shape. In this iterative procedure, an initial guess for the global mode shape can

be selected by assuming that the local part of bU is well matched with the identified local mode shape ûi (zero discrepancy).
This assumption removes the Lagrange multiplier, bai since bui is the null vector of Hbu i

. Thus, the resulting equation only

depends on ri, Ci and Hbu i
.



Fig. 1. Flow chart for the proposed algorithm.

Table 1
Multiple setup configuration.

Setup Number Measured DOFs

1 10, 9, 8, 7
2 8, 7, 6, 5
3 6, 5, 4, 3
4 4, 3, 2, 1

Fig. 2. Maximum root-singular value spectra of the measured setups.
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Fig. 4. Identified global mode shapes for the first five modes.

Fig. 3. Identified modal signal-to-noise ratios.

Table 2
Average MPVs with posterior coefficient of variations (c.o.v.) for fi and ni.

Mode # Frequency (Hz) Damping ratio (%)

Actual MPV c.o.v. (%) Actual MPV c.o.v. (%)

1 1.0092 1.0134 0.2759 1.50 1.4835 32.5827
2 3.0051 3.0083 0.3121 1.50 1.4623 41.4159
3 4.9338 4.9312 0.2954 1.50 1.5416 35.6324
4 6.7524 6.7495 0.3116 1.50 1.5233 40.2148
5 8.4201 8.4266 0.4482 1.50 1.5894 36.8562
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Fig. 5. Ten story shear frame structure and data acquisition system.

Fig. 6. Maximum root-singular value spectra.

Table 3
Setup configurations for Case-I and Case-II.

Setup Number Measured DOFs

Case-I Case-II

1 1, 2, 3, 10 1, 2, 3, 4
2 1, 4, 5, 10 3. 4, 5, 6
3 1, 6, 7, 10 5, 6, 7, 8
4 1, 8, 9, 10 7, 8, 9, 10
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Table 4
Average

Mod

1
2
3
4
5
6
7
8
9
10
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r�1
i CiU ¼ ûi ) âi ¼ ûT

i Hûi
Ciûi ¼ 0 ) Â �

XNs

i¼1

r�2
i CT

i Hûi
Ci ð48Þ
In Eq. (48), the Hessian matrix, Hbu i
, at each setup is scaled by ri

�2 and a direct solution is still impossible since ri is initially

unknown. To obtain a direct solution for initial guess of U, the contribution of ri�2 can be assumed to be uniform for each
setup (by setting ri = 1). Thus, the initial guess for the global mode shape vector can be taken as the eigenvector ofPNs

i¼1C
T
i Hbu i

Ci that corresponds to the minimum eigenvalue.

The overall procedure of the proposed algorithm is presented in Fig. 1. The main difference from Au [19] resides in;


 the application of two-stage BFFTA to multiple setups,

 weighting of each setup by the Hessian matrix for local mode shapes

 the calculation of initial guess, and
MPVs and representative statistics for fi, and ni.

e # Reference Case-I Case-II

f(Hz.) n(%) f n f n

MPV (Hz.) c.o.v. (%) MPV (Hz.) c.o.v. (%) MPV (Hz.) c.o.v. (%) MPV (Hz.) c.o.v. (%)

2.59 0.34 2.62 0.23 0.23 26.77 2.62 0.30 0.23 14.78
7.32 0.26 7.38 0.10 0.22 44.30 7.37 0.10 0.22 11.82
11.65 0.23 11.71 0.13 0.12 19.72 11.70 0.14 0.11 25.34
16.96 0.16 17.03 0.07 0.12 46.93 17.03 0.08 0.14 24.66
20.65 0.14 20.72 0.10 0.15 30.62 20.72 0.07 0.14 26.09
24.69 0.16 24.75 0.22 0.16 38.27 24.75 0.69 0.14 61.66
26.94 0.18 27.07 0.36 0.15 55.43 27.03 0.12 0.14 36.43
29.85 0.16 29.95 0.32 0.18 33.86 29.92 0.08 0.15 22.31
33.19 0.16 33.23 0.85 0.13 47.23 33.35 0.22 0.16 21.59
37.47 0.18 37.53 0.34 0.17 28.18 37.52 0.30 0.15 34.86

Fig. 7. Variations in the estimated signal-to-noise ratios.
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 the consideration of possible discrepancy between the local part of the global mode shape and the identified local mode
shape.

The discrepancy is characterized by defining two different norm constraints for local mode shape. First one, bki, enforces
the unit norm for ui, and the second one, bai, enforces that ri = ||Ui U||. Here, the calculation of optimal ui is unnecessary. As
the initial guess is close to the optimal value, the convergence speed in the iteration phase is expected to be increased.
6. Numerical and experimental analysis

6.1. Numerical analysis

A finite element model of a ten-story shear frame is generated with the inter-story stiffness, and story mass as 450 kN/m
and 250 kg, respectively. Modal damping ratio is considered as 1.50% for all modes. Each floor is subjected to independent
and identically distributed (i.i.d.) Gaussian white noise excitation that is generated with 250 Hz sampling frequency. The
generated forcing functions are arranged so that the one-sided PSD of scaled modal excitation is being Si = 1 lg2/Hz for
all modes and setups. The acceleration response of the structure is divided to four measurement setups which are presented
in Table 1. To see the effect of different noise levels on the identification quality, each acceleration response is contaminated
by Gaussian white noise. Thereby, the maximum modal signal to noise ratios, cki;max ¼ Si= 4n2i Sei

� �
, are arranged as 1250, 250,

50 and 10 for setups 1–4, respectively.
Maximum singular value (SV) spectra of the acceleration responses obtained from the measurement setups is presented

in Fig. 2. Possible modes are detected at 1, 3.00, 4.90, 6.75 and 8.42 Hz, for the first five modes respectively. Selected band-
widths for the detected modes are also indicated in Fig. 2. Average values of the identified frequencies and damping ratios,
Fig. 8. Assembled mode shapes for Case-I.
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and their posterior uncertainties in terms of coefficient of variation (c.o.v.) are presented in Table 2. Here, the coefficients of
variation for natural frequencies and damping ratios among all setups include representative statistics. Representative statis-
tics is defined as the combination of setup-to-setup variability and identification uncertainty by Zhang and Au [23]. Accord-
ing to the results, it is observed that the identified frequencies and damping ratios well match with the analytical values. The
posterior c.o.v. values are less than 1% for identified frequencies. For damping ratios, the posterior c.o.v. values increase up to
40%. This observation is compatible with the BFFTA applications in the literature in which the identified damping ratios have
relatively larger uncertainties when compared to the identified frequencies [3,19,23]. In addition, the variability of the noise
levels among different setups is also considered to increase the uncertainty levels. Identified signal-to-noise ratios are pre-
Fig. 9. Assembled mode shapes for Case-II.

Table 5
Calculated MAC values for Case I and II.

Mode number Case-I Case-II

MAC1 MAC2 EMAC MAC1 MAC2 EMAC

1 0.9963 0.9962 0.9998 0.9980 0.9978 0.9991
2 0.9932 0.9934 0.9993 0.9960 0.9954 0.9990
3 0.9915 0.9927 0.9996 0.9986 0.9970 0.9994
4 0.9972 0.9912 0.9992 0.9945 0.9929 0.9993
5 0.9950 0.9933 0.9983 0.9972 0.9967 0.9988
6 0.9801 0.9752 0.9882 0.9852 0.9827 0.9857
7 0.9856 0.9822 0.9906 0.9825 0.9809 0.9860
8 0.9741 0.9695 0.9873 0.9748 0.9737 0.9843
9 0.9665 0.3847 0.9783 0.9763 0.1861 0.9805
10 0.9693 0.9659 0.9935 0.9848 0.9658 0.9835
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sented in Fig. 3. According to the results, the identified signal-to-noise levels show a good convergence with the analytical
values especially for Setups 1, 2, and 3. Since the noise level is considerably large in setup 4, the variability of the identified
signal-to-noise ratios is increased. However, the results are reasonable when compared to the analytical values for Setup 4.

Identified global mode shape vectors for the first five modes are presented in Fig. 4. The identified mode shapes well
match with the analytical values, and the MAC values between the identified and analytical mode shapes are obtained as
0.9997, 0.9998, 1.000, 0.9999, 0.9998, respectively. In addition, the EMAC values of the identified values are calculated as
0.9995, 0.9997, 1.000, 1.000 and 1.000, respectively.

Bayesian methods (BSDA and BFFTA) give reasonable results for the modal parameters under large noise effect since the
modelling error and environmental noise effects are considered as prediction error in the methodology. In the case of mul-
tiple measurement setups, the main problem resides in the assembly of local mode shapes that have different identification
qualities (or uncertainties). In this study, the mode shapes are assembled by using the uncertainty information of local spec-
trum variables without regarding the local mode shape information. According to the results of this numerical example, the
quality of the identified mode shapes is observed to be considerably large in spite of the significant variability in the noise
levels among different setups.
6.2. Experimental study: laboratory shear frame

A ten-story shear frame shown in Fig. 5 is measured with two different multiple setup configurations (see Table 3). These
cases are considered in order to see the effect of sensor configuration on the assembly procedure. Here, Case-I represents a
fixed reference sensor placement, while Case-II represents a roving reference sensor placement configuration. Small ampli-
tude acceleration responses are acquired under ambient excitation for both cases. For comparison purposes, the given shear
frame was measured under adequately large amplitude ambient excitation and the obtained frequencies, damping ratios and
modal shape results are used as reference values.

In the laboratory experiments, piezo-electric accelerometers are used which are defined with 1000 mV/g sensitivity and
11.4 lg/(Hz)0.5 spectral noise density. The measurement system consists of a laptop computer with a 1.5 GHz single CPU and
Linux operating system, a 16 channel USBDUX-Sigma data acquisition box with 24 bit analog to digital conversion, a first
order analog lowpass filter with a cut-off frequency at 120 Hz for each channel, and a constant current supply for the
Fig. 10. Variations in MAC values with respect to reference mode shapes versus the number of iterations.
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accelerometers. The acceleration responses are recorded in the weak direction of the buildings and all measurements of
groups are acquired in different times with 1000 Hz. sampling frequency and 5 min duration.

A manual selection of the bandwidth for possible modes requires a visual inspection of the frequency response data. For
each measurement setup, the maximum root maximum singular value spectrums for Case-I and II are obtained by window-
ing (with 600 segments), and they are presented in Fig. 6, respectively. The selected bandwidths of possible modes are
marked in the figures by lateral error bars.

The average values of the MPV for natural frequencies and damping ratios obtained at each setup together with coeffi-
cients of variation are presented in Table 4 for Case-I and II. According to the results, the maximum c.o.v. remains less than
1% for each case. For damping ratios, standard deviations show relatively large variations among different setups. These vari-
ations are the result of the setup-to-setup variability instead of identification uncertainty. Natural frequencies and damping
ratios are expected to be invariant for each setup. To the contrary, the spectral density of modal excitation and prediction
error may show significant variations among different setups due to the possible variations in excitation levels. As a result,
a decrease in signal strength is observed for larger modes. To illustrate this case, average modal signal-to-noise ratios and
their setup-to-setup variations are presented in Fig. 7.

In Fig. 7, the variations in the estimated signal-to-noise ratios, cki;max ¼ Si= 4n2i Sei
� �

, are presented. For both cases, setup-to-
setup variability of signal-to-noise ratio is remarkably large for all modes. This variability may not affect the identification
Fig. 11. Calculated setup weights for Case-I.
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quality in lower modes due to the relatively higher signal quality. For higher modes (Modes 6–10), however, this variability
may cause significant errors in the identification process due to the smaller signal-to-noise effect.

Assembled mode shapes for Case-I and II are presented in Figs. 8 and 9, respectively. The iterations of algorithms are
stopped as the MAC value between the current and previous steps is larger than 0.9999. According to the results, it is seen
that the assembled mode shapes by using the presented methodology are similar for the proposed methodology and the
algorithm by Au [19]. The ninth mode obtained by using the algorithm by Au [19], however, does not meet the reference
mode shape. The reason of this fact resides on the initial guess proposed by Au [19] which is quite far away from the optimal
value. The MAC values between the identified and reference mode shapes are presented in Table 5. Here, MAC1 and MAC2
indicate the MAC values for the mode shapes obtained by the proposed methodology and the algorithm by Au [19], respec-
tively, with respect to reference mode shapes. Both procedures give similar results except for the ninth mode.

Fig. 10 presents the MAC values of the mode shapes that are obtained at each iteration step for Mode 9 and 10 with
respect to reference mode shapes. The lower modes show no significant variance, and therefore they are not shown. It is seen
that the quality of the initial guess of the proposed algorithm gives more reasonable results when compared to the results of
the algorithm by Au [19]. The reason is considered to be caused by the large signal-to-noise asymptotic behavior assumption
for the initial guess by Au [19]. Since the higher modes are subjected to less level of excitation, the initial guess by using the
Fig. 12. Calculated setup weights for Case-II.
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large signal-to-noise asymptotic behavior may significantly diverge from the actual value. Figs. 11 and 12 present the cal-
culated weights for the initial and final mode shapes by the proposed methodology and the asymptotic weight proposed
by Au [19]. It can be seen that the weights for modes 1–8 are in the same range. The asymptotic weights for modes 9
Fig. 13. Schematic representation of Z24 Bridge and sensor layouts [25,26].
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and 10, however, are quite different from the proposed algorithm, which is considered to be the cause of the difference in the
ninth mode shape.
6.3. Benchmark study: Z24 bridge

The former Z24 Bridge in Switzerland is investigated in this section. The bridge is used in a benchmark study under the
COST-F European Network project [26]. The bridge passes over the Bern-Zürich highway, and connects the two towns of
Utzenstorf and Koppigen. It is composed of three spans with lengths of 14, 30, and 14 m as it is illustrated in Fig. 13.
Fig. 14. Maximum root-singular value spectra for all setups.

Table 6
Estimated frequencies and damping ratios.

Mode
Number

f(Hz.) n(%)

Peeters and Ventura
[24]

Reynders et al.
[25]

Present
Study

c.o.v.
(%)

Peeters and Ventura
[24]

Reynders et al.
[25]

Present
Study

c.o.v.
(%)

1 3.86 3.86 3.85 0.30 0.90 0.80 0.92 24.54
2 4.90 4.90 4.89 0.41 1.40 1.40 1.36 19.34
3 9.77 9.76 9.77 0.25 1.30 1.40 1.19 27.59
4 10.30 10.30 10.32 0.87 1.40 1.30 1.94 54.40
5 12.50 12.42 12.53 1.15 2.50 2.80 3.18 36.84
6 13.20 13.22 13.22 0.86 3.00 3.40 3.05 37.45

Fig. 15. Identified frequencies with representative statistics (±standard deviations).
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In the benchmark study, the Z24 Bridge is measured at 152 points under ambient and forced vibrations by KU LEUVEN
Structural Mechanics division between 1998 and 2000. Nine measurement setups with three reference points are conducted
to obtain a complete measurement of the bridge. The schematic representation of the sensor layout for the deck and piers are
shown in Fig. 13. The collected data for seventeen different cases is available on the website https://bwk.kuleuven.be/bwm/
z24. Among these, the third reference measurement is considered in this study.

The average maximum root singular value spectrum of reference measurement-3 by using 13,000 windows is presented
in Fig. 14. Here, the first five modes are easily perceptible. The sixth mode is not excited in all setups. It is visible in the sec-
ond, third and seventh setups, only. In addition, it is seen that the visible modes are well separated. A similar trend is
observed in previous studies by Peeters and Ventura [24], and Reynders et al. [25].

The calculated natural frequencies and damping ratios are presented in Table 6 and compared with the results by Peeters
and Ventura [24], and Reynders et al. [25]. The identified results are the mean values obtained as the average of the MPVs for
all setups. In addition, the posterior coefficient of variations including the setup-to-setup variability and identification are
presented in Table 6 as well. The calculated MPVs of frequency and damping ratio are compatible with results by the pre-
vious studies [24,25]. The largest relative difference is less than 2%. Variations in the most probable frequency and damping
ratios are presented in Figs. 15 and 16, respectively. Here, error bars show the posterior standard deviations. In addition, due
Fig. 16. Identified damping ratios with representative statistics (±standard deviations).

Fig. 17. Variations in the identified signal-to-noise ratios among different setups.

https://bwk.kuleuven.be/bwm/z24
https://bwk.kuleuven.be/bwm/z24


Fig. 18. Assembled mode shapes by the proposed algorithm.
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Table 7
MAC values for the estimated mode shapes.

Mode number EMAC MACas MACref

1 1.0000 1.0000 1.0000
2 1.0000 0.9999 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 0.8826 1.0000
5 1.0000 0.9992 0.9999
6 1.0000 0.9991 1.0000

Fig. 19. Variations in MACi,0 values with respect to number of iterations.
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to the large signal-to-noise ratio, the signal quality is observed to be good for all setups according to the results presented in
Fig. 17.

Fig. 18 presents the assembled global mode shapes by the proposed algorithm. The mode shapes for the first six modes
are well identified and seem compatible with previous studies [24,25]. The algorithm by Au [19] gives similar results, and the
first three modes are directly identified without iteration. Table 7 presents the calculated MAC values between the proposed
methodology and the algorithm by Au [19]. Here, MACas and MACref represent the MAC values between the final mode
shapes by the proposed method, and the initial guess and final mode shapes obtained from the algorithm by Au [19], respec-
tively. It is seen that the results are similar for both methodologies. The fourth mode, however, shows a difference about 12%
between the initial guess by Au [19] and the final mode shapes.

Convergence of MAC values with respect to the iteration number is presented in Fig. 19. Here, MACi,0 = MAC value
between the mode shapes at the ith iteration and the initial guess of each algorithms. According to Fig. 19 the estimation
of the 4th mode shape diverges down to a MAC value of 0.88 from the initial guess with the algorithm by Au [19]. Further,
estimations of mode five and six, initially show a significant divergence from the initial guess which is cancelled out in a few
numbers of iteration. The MAC values for the proposed algorithm, however, indicates that nearly no change takes place dur-
ing iteration. The proposed algorithm reaches to this optimal global mode shape without iteration, and therefore it can be
concluded that the initial guess of the proposed algorithm is more feasible. The difference between the initial guess by Au
[19] and the proposed algorithm lies in the involvement of spectrum parameters in the calculation of initial guess by the
proposed algorithm.

In order to figure out the reason of the divergence in the MAC values, especially for mode 4, the calculated normalized
weights of the setups in the global mode shapes are presented in Fig. 20. For mode 4, it can be seen that the asymptotic
weight is much lower than the weights calculated by the proposed methodology at setup 3. This case is not the reason,
but it may be considered to be in parallel with the divergence in the MAC value as shown in Fig. 19.



Fig. 20. Variations in calculated setup weights.
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7. Conclusions

In this study, an alternative mode shape assembly algorithm based on the two-stage BFFTA is presented, and the unique-
ness of the solution is verified analytically by using two main methodologies, available in the literature. These are based on
the direct estimation of the global mode shape vector incorporating the FFT data or assembling the identified local mode
shapes by using the Gaussian approximation, respectively. The proposed methodology is implemented to a ten-story labo-
ratory shear frame and a benchmark study, and the obtained results are compared to the algorithm by Au [19]. The general
conclusions are summarized below.


 The proposed procedure considers that each setup is weighted by its Hessian matrix (for local mode shape) and the local
mode shape information conducted with spectrum parameters is embedded in this matrix. Thus, the global mode shape
vector is obtained by assembling the local Hessian matrices and it is not necessary to obtain the optimal local mode shape
vectors for each setup.


 In the literature, the initial guess for global mode shape vector assumes large signal-to-noise ratio and neglects the effect
of data quality. If the signal-to-noise ratio is not adequately large for all or a few setups, however, the initial guess may
significantly diverge from the optimal mode shape. The proposed application, on the other hand, uses the two-stage
approach leading to a more reasonable initial guess for global mode shapes which increases the convergence speed during
iteration.
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 When the data quality is well in each setup, the identified mode shapes shows no significant variance among any method
that is being used. According to the results by the ten- story shear frame study, however, it is seen that the quality of
identified mode shapes by the proposed algorithm is improved when the signal-to-noise ratio is low.
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