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a b s t r a c t 

As demand for mobile communications increases, cells have to become smaller to efficiently use the 

scarce spectrum and to increase capacity, and small-cell networks will hereby emerge. They may be large 

in scale and highly dynamic resembling ad hoc networks due to the moving base stations. The variations 

in the density of the small cell networks impact the quality of service and introduce many novel chal- 

lenges such as coverage control. We propose two novel base station density estimators, the interference- 

based density estimator (IDE) and the multi-access edge cloud-based density estimator (CDE) in a three- 

dimensional field. The estimators employ received signal strength measurements. We validate these two 

density estimators by using Monte-Carlo simulations. Furthermore, we analyze the impact of density 

on network outage in cellular networks and propose a density-aware cell zooming technique. Accord- 

ing to the observations, base station (BS) density affects network coverage significantly. Received signal 

strength (RSS)-based density estimators can easily be implemented and applied in the network commu- 

nication stack although they are more prone to shadowing and fading. Under favour of the density-aware 

cell zooming method, the network outage can be managed dynamically by adapting the transmit power, 

which provides a self-configurable and -organized network. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

A new trend for future networks is emerging along with

he recent applications, innovations, and technologies in cellular

etworking. In order to meet the requirements of emerging appli-

ations for a larger capacity, cellular networks morph away from

nflexible and centrally-managed infrastructures to large-scale col-

ectives of small and mobile cells. Cellular networks equipped with

obile and nomadic base stations present a change in the char-

cteristics of networks toward densified deployments of mobile

ase stations (BSs), incessantly changing topologies and dynamic

nfrastructures [1,2] . The dynamism in the infrastructure reflects

tself as unpredictably base station density introducing some new

hallenges that have to be managed at run-time [3] . Most of the

hanges in the topology are not predictable in advance [4] . Hence,

pplications such as capacity planning, coverage control, interfer-

nce management, energy conservation and quality of service pro-
� This work is partially presented in 21st Conference on Innovation in Clouds, In- 

ernet and Networks (ICIN2018) held on February 19–22 in Paris, France. 
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isioning have to be critically modified for efficient and proper op-

ration by taking into consideration of future trends [1,2,5] . 

Density of base stations in future cellular networks, e.g., 5G net-

orks, will vary in time and space because of mobile base sta-

ions (e.g., cell on wheels and unmanned aerial vehicles (UAVs))

1,6] , user-controlled base stations [7] (e.g., femtocells bought and

ontrolled by end-users), green operation (e.g., sleep scheduling

f base stations), and gradual deployment of base stations [8,9] .

esources in radio access, transport, and core networks will be

asted if related parameters are not adapted to the network den-

ity [10] . For instance, in Section 4 , it is illustrated that any changes

n the base station density affect the network parameters such as

ransmit power and network outage [11,12] . A decrease in the net-

ork density increases the outage probability. If the network is

ense, the outage probability will then decrease with the same

ransmit power. For adapting the network to the changes in the

ensity of base stations, robust network density estimators in a

hree-dimensional field are required [12,13] . We assert the third di-

ension considering drone base stations (cells on wings). 

The need for energy-efficient dynamic networks presents the

oncept of cell zooming [14] . Cell zooming concept may include

ifferent schemes such as controlling the physical layer parame-

ers like changing transmit power of the base stations, relying on

https://doi.org/10.1016/j.comnet.2019.106922
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106922&domain=pdf
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relaying, sleep scheduling of base stations, or employing multiple

base stations [14,15] . Algorithms for cell zooming can be classified

into static and dynamic algorithms. Considering the network den-

sity together with the transmit power is presented as a solution in

the scope of cell zooming [12] . Adapting and optimizing the trans-

mit power with the help of user equipment, reducing energy con-

sumption without switching off base stations, determining the op-

timal height of the antenna of base stations, considering received

signal strength (RSS) with a propagation model are presented as

self-healing approaches under the concept of cell zooming [16,17] .

In this study, we control the cell size dynamically with the help of

a density-adaptive transmit power mechanism considering outage

probability and effective density of moving base stations. 

In this paper, we focus on the density estimators and network

outage in order to adapt the transmit power of base stations for

cell zooming. The contributions and structure of this paper can be

summarized as follows: 

• The first and foremost contribution of this paper is the

interference-based density estimator presented in Section 2 .

Using an aggregate interference model, we propose a system

design for density estimation of moving base stations in

mobile networks in Section 2.2.1 . Moreover, we propose

multi-access edge cloud-based network density estimator

(CDE) in a three-dimension field in Section 2.2.2 follow-

ing the same approach employed in [18,19] which was

developed for two-dimensional ad hoc networks. Most of

the existing density estimators are operational only in two-

dimensional Euclidean space. Satisfying the requirements for

having a three-dimensional estimator in mobile networks

is the gap this paper fills in. The interference-based density

estimator (IDE) is modeled considering uniform randomly

deployed a network of base stations. We validate the pro-

posed estimator by Monte-Carlo simulations. The simulation

results validate the model and show the accuracy of the

proposed estimator is at an acceptable level in Section 3 . We

also discuss two density estimators by considering neighbor

proximity indices, log-normal shadowing, path-loss models,

and non-uniform distributions in Section 3.4 . 

• As the second contribution, we analyze the impact of net-

work density on outage probability in cellular networks by

employing a simple analytic model validated by simulation

results in Section 4 . A concise and simple analysis is the

main difference of this contribution from other studies. We

propose an analytic model for computing the outage prob-

ability based on base station density and validate it us-

ing Monte-Carlo simulations. Outage probability analysis in

three dimensions is the novelty of the work. The results of

this study assert that density-awareness in cellular networks

is required to increase capacity and provide an efficient net-

work. A novel outage model based on the density is intro-

duced in Section 2.3 , and the validation of this model is pre-

sented in Section 5 . 

• As the last contribution is founded on the first two, we pro-

pose a density-aware transmit power adaptation technique

which makes a relation between the density of base stations,

network outage, and transmit power. By using the proposed

density estimator, moving or stationary base stations will be

capable of adapting their transmit power in a distributed

fashion. The results of this study assert that density aware-

ness in cellular networks is required to increase the capac-

ity and provide an efficient network. We will discuss how

the transmit power is adapted based on network density

in Section 2.4 , and we demonstrate the verification results

of the model in Section 6 . Finally, Section 7 reviews cate-

gorically the existing studies which show the importance of
base station density, network outage and transmit power as

run-time adaptable and self-optimized parameters for self-

organized future networks. 

. Density-aware coverage control 

We assume that the density of base stations may change be-

ause of sleep scheduling for energy conservation, because of fail-

res of base stations or because of cells on wheels or wings (mo-

ile base stations) such as unmanned aerial vehicles (UAVs). A

tatic configuration of network parameters under this assumption

ill waste resources and will not be practicable. A robust network

ensity estimator for coverage control that adapts itself to the in-

tant network density is required. In the sequel, we present two

echniques for estimating the density of base stations in a three-

imensional Euclidean space. Then, we present the density-aware

utage analysis and using this model we propose a density-aware

ransmit power adaptation technique for coverage control in cellu-

ar networks where the number of base stations varies in time and

pace. 

.1. System model 

In an m -dimensional Euclidean space, we assume that a large

umber of nodes (base stations and UEs) are distributed uniform

andomly [20,21] . It is assumed that the random variables indi-

ated the number of nodes deployed in any disjoint Borel set A 1 

nd A 2 are independent and follow a Poisson distribution with a

ean density λ nodes per unit m -volume. The derivation of the

istance distribution to k th nearest neighbor for any dimension in

niformly random networks is investigated clearly in [20] . There-

ore, node positions form an m -dimensional homogeneous Poisson

oint Process [20–22] . 

By taking one of the user equipment (UE) in the uniform ran-

omly deployed cellular network as the reference node (receiver),

et’s denote the distance of the reference node to its k th nearest

eighbor r k with the random variable R k . The PDF of R k is 

f R k (r k ) = e −λc m r k 
m m (λc m 

r k 
m ) k 

r�(k ) 
, (1)

here c m 

r k 
m is the volume of the m -dimensional ball with radius

 k [22] . The coefficient c m 

is defined as 

 m 

= 

{ 

π
m 
2 

(m/ 2)! 
, for even m 

π
m −1 

2 2 m ( m −1 
2 )! 

(m )! 
, for odd m, 

(2)

here � is the gamma function interpolating the factorial function

23] . For example, �( k ) equals to (k − 1)! . When m = 1 , 2 or 3 V m

s 2, π and 4 π /3, respectively. For instance, a vehicular network on

 road can be modeled in one dimensional space where m = 1 and

 m 

r k 
m = 2 r k m. If it is in two dimensional, then m = 2 and V m 

r k 
m =

r k 
2 m 

2 are considered. Distribution of unmanned aerial vehicles

n space may require a three dimensional model, where m = 3 and

 m 

r k 
m = 4 π r k 

3 / 3 m 

3 . 

We assume that a large number of base stations are deployed in

 cellular network and the positions of BSs follow uniform random

istribution in the three-dimensional Euclidean space with density

(nodes/ m 

3 ). We exploit the simple path-loss model; the received

ignal power x k of a BS from its k th nearest neighbor that is r k me-

ers away is x k = CP t 

(
r 0 
r k 

)γ

where γ ≤ 3 is the path-loss exponent,

 accounts for the attenuation factor at a reference distance of r 0 
eters and the impact of non-distance-related factors such as an-

enna gains, calculated by using GtGr ((300 × 10 6 / f )/(4 π )) 2 , where

 t is the transmitter receiver antenna gain in dB, G r is the re-

eiver antenna gain in dB, and ( f ) is the frequency with value of
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c ( ) 
400 × 10 6 Hz. For simplicity we set r 0 = 1 m; then x k = CP t r 
−γ
k 

.

he transmit power of base stations is represented as P t . The re-

eived signal strength with the random variable P k is a function

f R k . For the sake of generality, the probability density function

f P k calculated using above PDF of R k and the simple path-loss

odel is: 

 P k (x k ) = 

mλk r mk −1 
0 

c k m 

(
x k 

C P t 

)k ( 1 −m 
γ ) 

e 
−λc m r 0 

m 

(
x k 
C P t 

) −m 
γ

�(k ) 
. (3)

Although we assume moving base stations, we suppose that

he locations of base stations and user equipment do not change

ramatically during the measurement period. The estimator can

ompute the estimate over a single slot that can be very short.

herefore, the network can be considered stationary throughout

he estimation period. This system-level model is based on a gen-

ralization of Winner II channel models following a stochastic ap-

roach and statistical distribution, which can be used for indoor

nd outdoor scenarios [24] . Moreover, we assume that a dedicated

ontrol channel is only implemented by BSs, therefore the inter-

erence from UEs is not considered in this work. In a coordinated

ashion, we assume that UEs can receive signals only its corre-

ponded base stations. 

.2. Network density estimators 

In this work, we concentrate only on the density of base sta-

ions that is called as network density; we do not deal with the

ensity of users. The received signal strength (RSS) of signals trans-

itted by BSs and measured by a user equipment (UE) is highly

orrelated to the density of base stations. Therefore, we construct

wo techniques for estimating the network density using the RSS

easurements of UEs. Firstly, we present a novel estimator that

ses the aggregate interference from the nearest N base stations.

his estimator is called as the interference-based density estima-

or. Secondly, we revert an early density estimator developed for

wo-dimensional ad hoc networks and adapt it to the mobile net-

orks where multi-access edge cloud computing (MEC) is em-

loyed. Hence, we call it the MEC-based density estimator. 

.2.1. Interference-based network density estimator (IDE) 

By selecting a random position as the location of a reference

E, let’s denote the distance of the UE to the k th nearest base sta-

ion r k with the random variable R k . Based on the system model

resented in Section 2.1 , the joint probability density function

PDF) of the distances of the randomly selected reference point to

he first N BSs, r = (r 1 , r 2 , . . . r N ) denoted with the random vari-

bles R = (R 1 , R 2 , . . . , R N ) as derived from [21] is 

f R (r ) = e −
4 
3 πλr 3 N ( 4 πλ) 

N 
r 2 1 . . . r 

2 
N dr , 

Assume that all these N base stations transmit a signal at the

ame time. The expected value of the aggregated interference mea-

ured by a UE located at a random point then becomes 

I = 

∫ ∞ 

0 

∫ r N 

0 

. . . 

∫ r 2 

0 

N ∑ 

i =1 

CP t r 
−γ
i 

f R (r ) dr 

= 

3 CP t (4 / 3 πλ) γ / 3 �( N − γ / 3 + 1 ) 

(3 − γ )�(N) 
, (4) 

here �(.) is the gamma function, and γ < 3. 

In the Interference-based Density Estimator method, each UE

easures the aggregate interference from the nearest base stations

nd report these measurements to their associated base stations.

n the coverage of each base station, there will usually be a large

umber of UEs, say M . The base station will average the aggregate
nterference measurements of UEs and then will estimate the net-

ork density as 

 

IDE = 

1 

4 π

(
μI (3 − γ )�(N) 

3 

1 −γ / 3 CP t �(1 + N − γ / 3) 

)3 /γ

, (5) 

here μ is the average of aggregate interference measurements by

 UEs. In IDE, all base stations can estimate the network density

n a local fashion with the assistance of the UEs in their coverage

reas. One can enhance the performance of ̂  λIDE by averaging the

ndividual estimates of base stations. Although, we call it interfer-

nce, BS generates collision of signals intentionally to let UEs take

amples. 

.2.2. Multi-access edge cloud based network density estimator (CDE)

We present the multi-access edge cloud-based density estima-

or (CDE) as the second estimator model. In CDE, we assume that

ser equipment measures the received signal strength (RSS) of pi-

ot signals transmitted by base stations at various non-overlapping

ime slots and send these measurements back to their associated

ase stations. Then, the base stations convey these measurements

o a multi-access edge computing (MEC) entity. Afterwards, the

EC employs these measurements to estimate the network den-

ity. We modify the two-dimensional model proposed in [19] to fit

t into the three-dimensional Euclidean space. In this section, we

resent the theoretic basis of the maximum likelihood density es-

imator ̂  λCDE where the actual density is λ in nodes/m 

3 . 

By selecting a random position as the location of a reference UE

et’s denote the distance of the UE to the k th nearest base station

 k with the random variable R k . The PDF of R k [19] is 

f R k (r k ) = e −
4 
3 πλr 3 

k 

3( 4 
3 
πλr 3 

k 
) k 

r k �(k ) 
. (6)

e represent the received signal power from the k th base station

 k with the random variable P k which is a function of R k consid-

ring the system model presented in Section 2.1 . Then, the cumu-

ative distribution function (CDF) of P k [19] becomes 

 P k (x k ) = 

�
(
k, 4 

3 
πλx 

−3 /γ
k 

(
1 

CP t 

)−3 /γ
)

�(k ) 
, (7) 

here �(a, z) = 

∫ ∞ 

z t a −1 e −t dt is the incomplete gamma func-

ion [19] , when we consider the model for three-dimensional de-

loyment of base stations and user equipment. 

Let x i denotes the RSS of a pilot signal transmitted to a UE

y its k th 
i 

nearest base station, and (7) is the CDF of x i . After n

SS samples x 1 , x 2 , . . . , x n and the corresponding neighbor proxim-

ty indexes k 1 , k 2 , . . . , k n are collected by UEs collectively from non-

verlapping regions , UEs convey these measurements to the MEC

ver base stations. Then, the MEC can compute the maximum like-

ihood estimator, ̂  λ. We assume the node distribution of base sta-

ions in the m −dimensional space follows a homogeneous Poisson

oint process (PPP); and the RSS measurements are independent

ince they are collected from non-overlapping regions. The maxi-

um likelihood density estimator becomes as in [12,19] 

 

CDE = 

K − 1 

4 
3 
π

∑ n 
j=1 ( 

x j 
P t C 

) −3 /γ
, (8) 

here K = 

∑ n 
j=1 k j . The unit of density is nodes/m 

3 . ̂  λCDE is an un-

iased estimator and its variance goes to zero as more and more

amples are collected from the field. Therefore, the number of col-

ected samples impact K which in turn significantly impacts the

ccuracy of the estimator ̂  λ. It can be seen that the different di-

ensions have different c m 

and m values [19,20] . Then, we can

eneralize the estimator as follows: 

 

CDE = 

K − 1 ∑ n x j −m/γ
. 
m j=1 P t C 
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2.3. Outage probability based on network density 

By considering the PDF of R k (6) and the CDF of P k (7) , we

present the outage probability as the probability ( P O ) of the re-

ceived power of the signals transmitted by the closest base station

(i.e., k = 1 ) and measured by the randomly located reference user

being below the receiver sensitivity, T . Based on this definition, the

outage probability becomes 

P O (λ) = F P I 1 (T ) = e −4 / 3 πλ( CP t /T ) 
3 /γ

, (9)

where T is the receiver sensitivity (threshold) that is the mini-

mum required received signal strength to intelligibly decode the

signals [25] . (9) is different from its two-dimensional representa-

tion proposed in [26] . The dimension of the solution changes the

network outage model. This network outage model analytically in-

dicates that the outage probability and the base station density are

two important interactive parameters. The network outage is also

influenced by the path-loss exponent, transmit power of base sta-

tions and the minimum power requirement which is the threshold

value as experimentally demonstrated in Section 4 . The PDF de-

creases with e −( CP t /T ) 3 /γ when P t increases, the outage probability

becomes zero. When T increases the expected value will be 1. The

PDF of received signal strength (3) will affect the outage probabil-

ity. If P t increases the received signal strength will increases, which

means more and more UEs can receive the signal with a higher

RSS. In this formulation, we suppose that there is a robust inter-

ference cancellation technique implemented in the system. That

is why we consider only the received signal strength instead of

signal-to-interference-plus-noise ratio (SINR) [12] . 

2.4. Density-aware cell zooming 

Let’s assume that the base stations located in a cellular network

has an ability to estimate the network density. Then the adaptation

of their transmit power levels using (9) would be possible in order

to satisfy a provided outage probability level in a decentralized or

distributed fashion [12] . Using (9) , the transmit power has to be

adapted to its minimized value 

P ∗t � 

T 

C 

( 

−
3 log 

(
P ∗O 

)
4 π̂ λ

) γ / 3 

, (10)

where the required outage probability P ∗O is a network design pa-

rameter set by the network operator and ̂

 λ is either IDE or CDE.

We assume that using some technique, IDE or CDE, base stations

estimate the density of the network. Then, they employ the esti-

mated density ̂  λ to set their transmit power using (10) . 
Table 1 

The symbols, notations, values and units of the 3-D s

Parameter 

Actual density, λ

Estimated (effective) density, ̂  λ

Sparse deployment, λS 

Dense deployment, λD 

Ultra-dense deployment, λU 

Path-loss exp. γ

Reference distance, r 0 , 

Transmit power, P t 
Adapted transmit power, P ∗t 
Threshold (Receiver sensitivity), T 

Required outage probability, P ∗O 
Simulated outage probability, P O 
Analytic outage probability, P O A 
Nearest neighbor index, k 

Selected maximum value of nearest neighbor inde

C 
Although many phenomenon and impairments that affect the

eceived signal strength are not included, this model is very prac-

ical as a result of its simplicity. Many users in a cell may indepen-

ently measure the received signal strength. These measurements

ay be transmitted to a mobile edge computing (MEC) entity, and

usion of the results may be exploited by the MEC and base sta-

ions to decrease the impact of fading and shadowing. By means

f the user equipment signal strength measurements, base stations

ill be able to arrange their transmit powers immediately bounded

ith the time period of the density estimation. A simple and fast

ensity estimator will be very rewarding for this matter. Hence, we

uggest two novel three-dimensional density estimators. 

All these models need to be validated. In the sequel, we vali-

ate these models by using Monte Carlo simulations and leverage

hem to demonstrate their applications and analyze the outcomes

or different scenarios. 

. Validation of network density estimators 

In this section, we present the simulation results for validat-

ng IDE and CDE. Besides, we discuss these two estimators based

n some analyses including the impact of neighbor proximity in-

ices, log-normal shadowing, path-loss models, and different non-

niform deployments. 

.1. Simulator design 

These network density estimators are validated by Monte-Carlo

imulations implemented using Matlab. In the simulations, a

umber of base stations and UEs are uniform randomly deployed

n a three-dimensional Poisson process in Matlab. For each run

f the simulator, the locations of BSs and UEs change randomly.

e assume that UEs can measure the RSS from their closest

ase stations. Table 1 presents a summary of symbols and the

arameters which are considered during the validations of two es-

imators. Actual density, λ, is the deployment density, which is the

umber of UEs and BSs divided by the volume (m 

3 ). The estimated

effective) density, ̂  λ, is the computed density value after applying

ne of the density estimators in a network. Sparse deployment, λS ,

ense deployment, λD , ultra-dense deployment, λU show different

eployment density for different network scenarios [12] . Path-loss

xponent, γ , is the coefficient for the path-loss model in the

ange between 0 and 7, which is already determined as empirical

alues for different indoor and outdoor scenarios [18] . r 0 is the

eference distance in the far-field of the antenna, which is selected

s 1 m for simplicity. We assume that the random distances in

he network are generally larger than the reference distance. P 
t 

imulation parameters. 

Default value Units Ref 

[0.0001,0.003] nodes/ m 

3 [12] 

(5) or (8) nodes/ m 

3 

0.0005 nodes/ m 

3 [12] 

0.0015 nodes/ m 

3 [12] 

0.003 nodes/ m 

3 [12] 

0 ≤γ ≤ 7 [24] 

1 m [19] 

[10,100] mW [27] 

(10) mW 

5 × 10 −13 mW [12] 

[0,1] [12] 

[0,1] [12] 

[0,1] [12] 

[1, ∞ ) [12] 

x, N [1, ∞ ) [12] 

10 −5 [12] 
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s the transmit power for base stations which is selected up to

he 20 dbm considering the small cell requirements [12] . P ∗t is the

ransmit power for base stations adapted by the proposed model

10) . T is calculated by T = CP t r c 
γ , where r c is the maximum

ommunication range. This threshold value for the network outage

odel, which is the receiver sensitivity, and it provides the mini-

um power requirement to receive a signal [12] . P ∗
O 

is the required

utage probability which is provided by the network operator. P O 
s simulated and calculated by performing the proposed model (9) .

 O A 
is calculated by using the CDF of the network outage model

7) . The nearest base station neighbor for a UE is represented

s k which is in range of [1, ∞ ) for a model based on Poisson

oint Process. N is the selected maximum value of the nearest

ase station index. Moreover, C is a constant originated from non-

istance-based factors and antenna gain, which is calculated as

xplained in Section 2.1 . The results are the averages of 10 4 runs. 

.2. Validation of the interference-based network density estimator 

IDE) 

To validate IDE, base stations are assumed to be randomly de-

loyed with various densities from sparse networks to dense net-

orks in a spherical simulation environment with a radius of

50 m. A randomly selected point designates the location of a UE.

e assume that this UE measures the aggregate signal power from

he first six base stations closest to it; N = 6 . The averages of 10 4 

imulation runs are compared to the results of the analytic model

4) presented in Section 2 under the same set of parameter values.

Fig. 1 shows the simulation and analytic results based on differ-

nt path-loss exponent ( γ ) values and various densities. As can be

een in Fig. 1 , the simulation results validate μI in (4) . The accu-

acy of the results decreases as the environment gets harsher, i.e.,

hen path-loss exponent becomes larger. In harsh environments

ith a large γ , only the overall strength of the signals become

maller. The errors in the channel model such as deviations in the

estimates will significantly impact the density estimators. 

We define the average absolute percentage deviation as

APD = 100 | ̂  λ − λ| /λ. We present the AAPD results for IDE ( ̂  λIDE )

n Table 2 . For various deployments with different densities, the

APD results show that the estimation results are at an acceptable

evel; the AAPD values are generally less than 3%. IDE considers

nly path loss and non-distance related fading in signal measure-
Fig. 1. Mean aggregate interference power (mW) for various deploymen
ents. Over channels that are prone to different types of fading,

he deviations will be larger. 

.3. Validation of the multi-access edge cloud-based network density 

stimator (CDE) 

In the simulations for validating the Multi-acces Edge Cloud-

ased Network Density Estimator (CDE), a set of user equipment

nd base stations are assumed to be uniform randomly deployed in

 field of interest following 3-D Poisson process in Matlab. At each

un of the simulator, the locations change randomly. UEs measure

he RSS from their first closest base stations by using the chan-

el model described in Section 2.1 and these measurements are

ssumed to be collected at a mobile edge computing (MEC) en-

ity. Therefore, k j = 1 and K = 

∑ n 
j=1 k j = n, for ̂ λ1 where n is the

umber of samples collated at the MEC. Then, (8) is employed to

ompute the estimator in nodes/m 

3 . The results are the averages

f 10 4 runs. The values of the parameters employed in the simula-

ions are shown in Table 1 . 

We present how accurate CDE performs in Table 3 for various

ctual deployment densities λ. The first column of this table is the

ctual density and the second column is the result of the estimator
 . CDE works with acceptable accuracy and the AAPD is always

ess than 3%. 

The CDE results when λ = 5 × 10 −4 nodes/m 

3 for different

ath-loss exponent ( γ ) values are shown in Table 4 . The AAPD

alues are considerably small for any channel model with various

ath-loss exponent values. The effect of the path-loss exponent on

he accuracy of the CDE is not dramatic. 

Unfortunately, CDE has some deficiencies. Firstly, similar to IDE

t only considers the path-loss and the non-distance related fading.

econdly, the time to compute CDE can be long. UEs collect mea-

urements and send them back to the base stations. Base stations

onvey these measurements to the mobile edge computing (MEC)

ntity in the network and the MEC estimates the density and in-

orms the base stations about the result. As the third deficiency, we

an partially say that CDE may yield biased results when the mea-

urements are collected from overlapping regions. Since we employ

ikelihood estimation, CDE depends on the strict assumption of in-

ependence among measurements. When the measurements are

ollected from overlapping regions, there will be a large amount

f correlation among measurement samples that will create a bias

n the estimates. 
t densities when γ = 1 , 1 . 5 and 2, respectively, and P t = 100 mW. 
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Table 2 

The AAPD and 99% confidence limits in the estimator for various deployments ( λ) 

(nodes/m 

3 ) where γ = 1 . 5 and N = 6 . 

λ(×10 −3 ) ̂ λIDE (×10 −3 ) AAPD (%) 99% confidence limits of ̂  λIDE × (10 −6 ) 

0.2 0.20 0.81 ± 0.17 

0.4 0.40 0.06 ± 0.36 

0.6 0.60 0.73 ± 0.57 

0.8 0.81 1.39 ± 0.84 

1 1.03 2.52 ± 1.16 

1.2 1.19 0.63 ± 1.01 

1.4 1.43 1.91 ± 1.55 

1.6 1.82 0.65 ± 1.48 

Table 3 

The AAPD in CDE for various actual deployment densities λ (nodes/m 

3 ) where γ = 3 , 

and ̂  λCDE 1 (nodes/m 

3 ) . 

λ(×10 −3 ) ̂ λCDE 1 (×10 −3 ) AAPD (%) 99% confidence limits of ̂  λCDE 1 (×10 −5 ) 

1 0.98 2.50 ± 0.80 

2 1.96 2.09 ± 1.54 

3 2.92 2.66 ± 2.37 

4 3.91 2.16 ± 3.18 

5 4.93 1.44 ± 4.06 

6 5.93 1.16 ± 4.73 

7 6.85 2.11 ± 5.66 

8 7.91 1.12 ± 6.49 

Table 4 

The impact of the path-loss exponent ( γ ) on the CDE and the AAPD in the es- 

timators where the actual deployment density is λ = 5 × 10 −3 (nodes/m 

3 ), and ̂ λCDE 1 (nodes/m 

3 ). 

γ ̂ λCDE 1 (×10 −3 ) AAPD (%) 99% confidence limits of ̂  λCDE 1 ×(10 −5 ) 

2 4.91 1.71 ± 3.54 

2.5 4.90 1.94 ± 3.46 

3 4.93 1.32 ± 3.55 

3.5 4.91 1.87 ± 3.54 

4 4.92 1.52 ± 3.54 

4.5 4.94 1.29 ± 3.57 

5 4.90 1.98 ± 3.54 

5.5 4.91 1.75 ± 3.44 

6 4.93 1.45 ± 3.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The accuracy of different estimation, average absolute percentage deviation 

(AAPD) results of ̂  λIDE and ̂  λCDE , respectively (nodes/m 

3 ) when γ = 1 . 5 . 
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3.4. Discussions about density estimators 

With the help of the Monte Carlo simulations, two different

approaches are performed by using both 3-D edge cloud-based

density estimator and the newly proposed 3-D aggregate interfer-

ence based density estimator. In these experiments, we assume

that UEs are able to collect RSS measurements from their first

six ( k = 1 , 2 , 3 , 4 , 5 , 6 ) and ( N = 6 ) closest BSs. As it can be seen

in Fig. 2 and Table 5 , the aggregate interference method provides

more accurate results in comparison to the collaborative estima-

tor. In these simulations at each run nodes positions are changed

randomly. 

When both of two estimators use the first k th closest BS mea-

surements, the results are really prone to the accuracy of the RSS

measurements. In addition to the number of proximity indexes, the

location of base stations and UEs that RSS values collected also

affect the accuracy of the estimators. In interference-based den-

sity estimator, if the RSS measurements are collected from a large

number of distant base stations, the estimations provide more ac-

curate results. The aggregate interference-based estimator can be

performed by an individual node, however, CDE requires the other

nodes’ contributions to provide more accuracy. The MEC-based

density estimator can be performed even when the channel con-

ditions are very harsh such as when the path-loss exponent is

greater than the value of three. 
.4.1. Impact of neighbor proximity indices 

We simulate an environment which is a spherical volume as

an be seen in Fig. 3 . In this volume, we distribute the base sta-

ions and user equipment uniform randomly. In this case, as a dif-

erent application scenario from Section 3.3 , all of the user equip-

ent is involved in the estimation process in a fixed topology. At

ach step, UEs collect RSS measurements from the closest BS for

omputing ̂ λCDE 1 
in the first variant of CDE. In the second vari-

nt of CDE, UEs collect RSS measurements from the first six clos-

st base stations for computing ̂ λCDE 6 
. We assume that each UE

ends these measurements to MEC over the associated BS. Then,

EC performs (8) by using these measurements. The results are

resented in Table 6 . 

According to the results, CDE has accurate outcomes. However,

f we increase the number of closest neighbor BSs to get RSS
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Table 5 

The accuracy of different estimation AAPD results of ̂  λIDE (nodes/m 

3 ) , and ̂  λCDE (nodes/m 

3 ) , respectively when γ = 1 . 5 . 

λ (×10 −3 ) ̂ λIDE 
̂ λCDE ̂ λIDE , (×10 −3 ) AAPD,% 99% confidence limits, (×10 −5 ) ̂ λCDE , (×10 −3 ) AAPD,% 99% confidence limits, (×10 −5 ) 

1 0.95 4.92 ± 0.23 0.94 6.45 ± 0.20 

2 1.92 4.16 ± 0.46 1.90 5.13 ± 0.39 

3 2.88 3.95 ± 0.69 2.86 4.57 ± 0.57 

4 3.85 3.66 ± 0.94 3.83 4.17 ± 0.74 

5 4.83 3.35 ± 1.13 4.81 3.89 ± 0.94 

6 5.80 3.28 ± 1.42 5.78 3.62 ± 1.15 

7 6.79 2.99 ± 1.59 6.76 3.38 ± 1.29 

8 7.75 3.17 ± 1.87 7.73 3.34 ± 1.45 

Table 6 

The actual densities ( λ) (nodes/m 

3 ) versus the estimated densities ( ̂ λ) (nodes/m 

3 ) for ̂  λCDE 1 and ̂  λCDE 6 . The AAPD (%) results are also presented. 

λ (×10 −3 ) ̂ λCDE 1 
̂ λCDE 6 ̂ λCDE 1 , (×10 −3 ) AAPD,% 99% confidence limits, (×10 −6 ) ̂ λCDE 6 , (×10 −3 ) AAPD,% 99% confidence limits, (×10 −6 ) 

1 0.94 6.43 ± 1.84 0.91 9.18 ± 0.89 

2 1.89 5.28 ± 2.73 1.85 7.41 ± 1.33 

3 2.86 4.59 ± 3.16 2.81 6.48 ± 1.69 

4 3.83 4.21 ± 3.76 3.76 5.88 ± 1.82 

5 4.80 3.96 ± 4.31 4.72 5.51 ± 2.12 

6 5.78 3.59 ± 4.67 5.69 5.15 ± 2.32 

7 6.76 3.46 ± 5.09 6.66 4.91 ± 2.40 

8 7.73 3.34 ± 5.44 7.62 4.73 ± 2.59 

Fig. 3. Collecting RSS measurements from the k th nearest BS. 
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Fig. 4. The estimator ̂  λIDE results along with different proximity indexes k where 

γ = 3 , and λ = 0 . 005 (nodes/m 
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easurements, it increases the sampling from overlapping regions,

hich results in less accurate outcomes than the estimation results

ncluding RSS measurements from the first closest BS. An increase

n the number of the nodes near the network edge effects the re-

ults negatively since measurements are exposed to the shadowing

nd the multi-path fading more than the nodes near the middle

f the network. Moreover, Table 6 shows that when the number

f closest neighbors increases the variance of the estimator results

eclines. 

The neighbor proximity has also impact on IDE, which is pre-

ented in Fig. 4 . It can be seen that when the proximity index in-

reases, the accuracy of the estimator improves, and the variance

f the results decreases. 

.4.2. Impact of log-normal shadowing 

In order to derive our proposed density estimators, we ex-

loit the deterministic simple path-loss model as presented in

ection 2.1 . However, due to the obstructions such as buildings,
alls, or trees, received signal strength measurements are sub-

ect to a stochastic channel impediment which is called shadow-

ng. These stochastic external factors give rise to log-normally dis-

ributed (or normally distributed in the dB scale) received sig-

al strength results. Although two proposed estimators consider

mall-scale fading effects within the coefficient C as expressed in

ection 2.1 , shadowing is not incorporated in these models. For this

eason, a set of simulation is conducted by using (11) to analyze

he shadowing effects: 

 k (r k ) = 10 

(
log 10 (C) + log 10 (P t ) + γ log 10 

(
r 0 
r k 

))
+ ψσψ 

(11)

here ψ is based on zero-mean Gaussian distribution with a

tandard deviation of σψ 

. We analyze the impact of log-normal

hadowing characterized by the standard deviation of 2 ≤σψ 

≤ 12

B on both proposed estimators [28] . From these results, we ob-

erve that while the effect of shadowing increases, the accuracy of

he results significantly decreases. Thus, the proposed estimators

an be enhanced by incorporating shadowing models. To remove
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Fig. 5. The comparison of isotropic and anisotropic path-loss model for different 

estimations, and average absolute percentage deviation (AAPD) results of ̂  λIDE and ̂ λCDE , respectively when isotropic γ = 2 . 
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shadowing, we apply (12) a different path-loss model which is al-

ready presented in [29] . 

P k (r k ) = CP t 

(
r 0 
r k 

)γ

e 
− σ2 

2 ( 10 
log (10) ) 

2 
γ 2 

, (12)

where σ represents the standard deviation of the log-normally

distributed shadowing and can be computed by collecting multiple

x i values between the same pair of nodes. When the standard

deviation is 2 dB, 3 dB, and 4 dB, the AADP results of estimations

obtained from IDE are 3.27%, 24.75%, and 62.26%, respectively.

However, if we incorporate the shadowing model, and leverage

(12) instead of simple path-loss model, the AAPD results are equal

to 0.76% and 13.93%, and 38.07%, respectively. Since the coop-

erative density estimator has cooperation among the nodes, the

results of this estimator may be less prone to shadowing effects

than the interference-based density estimator. By considering

our observations and another analysis for RSS-based distance

estimation under log-normal shadowing [30] , it can be concluded

that RSS-based estimators are highly susceptible to log-normal

shadowing even when a shadowing model is applied. The main

observation from the impact of shadowing analysis is that log-

normal shadowing corrupts estimations and causes exponentially

growing errors over the measurements. 

3.4.3. Impact of path-loss model 

Choosing a path-loss model in wireless networks is critical if

an RSS-based method is using. For the sake of simplicity, the sim-

ple path-loss model which is considered as an isotropic model can

be chosen while deriving the analytic models as we do in this pa-

per. However, we can enhance our models to overcome the line-

of-sight and non-line-of-sight effects at the same time in a wire-

less network. Thus, we leverage an anisotropic path-loss exponent

which is already introduced in [31] , and demonstrate the results

by comparing these two different approaches. β = − log 
P min 

P t 
log(R max ) 

is the

anisotropic path-loss coefficient [31] , where R max is the distance

between a BS and the farthest position of the coverage area, P min is

minimum threshold power in this coverage boundary. Fig. 5 a and b

present the results from IDE and CDE when different coverage ar-

eas ( R ) are considered. Since CDE pushes for collaboration among

the nodes, and take samples from different parts of the network,

CDE has more accurate results than IDE. While the size of the net-

work area is changing, the accuracy of the anisotropic model is

higher than the isotropic one. If we use the isotropic path-loss co-

efficient, since it is a constant value which we choose at the be-

ginning, it does not change during the estimation process. How-

ever, the anisotropic model can adapt itself to these changes at

run-time, and provide more convenient values to the estimators. 

3.4.4. Impact of non-uniform distributions 

Since the cellular networks have a stochastic nature in real-life,

the distribution of base stations and users may be non-uniform.

In this study, although we assume that distributions of BSs and

UEs are uniform to propose a tractable and easily understandable

analytic model, we also analyze some non-uniform deployments

to show how this phenomenon affects our proposed estimators.

To create non-uniform scenarios, we exploit Beta ( B ) distribution

which is an asymmetrical two-parameter distribution close to the

log-normal distribution [32] . (13) represents the PDF of Beta distri-

bution [33] . Based on different shape tendencies provided by B dis-

tribution, we deploy BSs and UEs in a 3-D simulation environment.

Table 7 roughly categorizes all these different deployments into six

scenarios entitling different tendencies. In the first four scenarios,

we deploy BSs and UEs based on B distribution by using the val-

ues of a and b for each of BS and UE distributions. In the last two
emaining scenarios, firstly we uniformly deploy BSs, but we ap-

ly a and b values in Table 7 for the distribution of UE, which are

ollowing the three non-uniform tendencies. Secondly, we just use

hese two parameters for the BS distribution, but the deployment

f UEs are selected uniformly. In Fig. 6 , all these tendencies em-

loying different values of a and b are demonstrated. In Table 7 ,

he first scenario is called Uniform since the parameters a and b of

 distribution are equal to 1, where BSs and UEs are located uni-

ormly in the environment. The second one is called Central Ten-

ency providing a centralized distribution so that BSs and UEs are

athered at the center of the spherical network area as indicated

n Fig. 6 . Centrifugal Tendency is the third scenario where the dis-

ributions of BSs and UEs are off-centered. This tendency locates

Ss and UEs close to the boundaries of the network. The tendency

f Skewness has a skewed shape, in which UEs and BSs are located
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Table 7 

When the actual density value equals to 1(×10 −4 ) ( λ) (nodes/m 

3 ), estimated density results ( ̂ λ) (nodes/m 

3 ) of ̂  λIDE and ̂  λCDE for different uniform and non-uniform distri- 

butions are presented. All AAPD (%) results are also presented with their 99% confidence interval ( CI 99% ). 

Distributions Shape parameters ̂ λIDE 
̂ λCDE 

BS UE a b ̂ λIDE (×10 −4 ) AAPD % CI 99% (×10 −6 ) ̂ λCDE (×10 −4 ) AAPD % CI 99% (×10 −6 ) 

Uniform Uniform 1 1 0.98 1.24 ± 0.33 0.99 0.32 ± 0.40 

Central 

Tendency 

Central 

Tendency 

3 3 0.65 34.84 ± 1.91 0.85 15.32 ± 0.74 

5 5 0.85 14.86 ± 3.65 1.13 13.03 ± 1.43 

7 7 1.08 7.58 ± 3.08 1.50 49.58 ± 2.23 

Centrifugal 

Tendency 

Centrifugal 

Tendency 

0.1 0.1 0.75 25.46 ± 2.35 1.74 74.00 ± 3.87 

0.5 0.5 0.56 44.46 ± 2.24 0.63 37.30 ± 0.57 

0.7 0.7 0.48 52.45 ± 1.64 0.59 41.50 ± 0.43 

Skewness 

Tendency 

Skewness 

Tendency 

1 3 1.11 10.70 ± 4.10 1.84 83.56 ± 2.38 

4 1 0.77 22.78 ± 2.80 0.79 21.13 ± 1.09 

Uniform Non-uniform 10 10 0.71 29.01 ± 5.84 0.72 27.85 ± 0.26 

0.3 0.3 0.71 28.93 ± 8.43 0.53 46.89 ± 0.19 

0.5 0.5 0.73 26.86 ± 7.55 0.61 39.44 ± 0.22 

0.7 0.7 0.73 27.16 ± 7.03 0.65 34.94 ± 0.21 

1 4 0.94 6.26 ± 6.10 0.60 40.43 ± 0.32 

1 5 0.90 10.24 ± 5.77 0.56 44.35 ± 0.30 

4 1 0.51 48.77 ± 6.91 0.49 50.97 ± 0.21 

20 1 0.47 53.43 ± 4.23 0.38 61.62 ± 0.21 

20 10 0.61 38.90 ± 5.49 0.58 42.45 ± 0.26 

10 20 0.88 12.12 ± 6.11 0.81 19.06 ± 0.31 

100 20 0.55 45.40 ± 6.21 0.45 55.13 ± 0.23 

Non-uniform Uniform 1 20 0.52 47.86 ± 1.60 0.29 70.73 ± 0.28 

20 1 0.09 91.30 ± 1.86 0.32 67.65 ± 0.18 
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Fig. 6. The Probability Density Function (PDF) of B Distribution vs. x parameter when different a and b parameters are used. 
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t a particular region of the network. The last scenarios include

on-uniform distribution for UEs, and Uniform distribution for BSs,

niform distribution for UEs, and Non-uniform distribution for BSs.

f (x | a, b) = 

1 

B (a, b) 
x a −1 (1 − x ) b−1 I [0 , 1] (x ) , (13)

here B () is the Beta function, a and b are two different shape

arameters which change the shape of the distribution, and I [0,1] 
s to ensure that the values of the variable x is in the range of

etween 0 and 1. 

According to our observations, we can state that the Uniform

endency scenario where both BSs and UEs are deployed uniformly,

he accuracy of the estimators are the best in comparison to the

ther cases as expected since we create our models based on the

-D Poisson Point Process with an assumption including a uniform

eployment of BSs and UEs. 
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In Central Tendency , while the level of the centrality is soaring

IDE provides resilient results. The reason for this case is that when

nodes (UEs and BSs) are close to each other near to the center

of the environment, the amount of the path-loss, shadowing, the

nodes causing non-negative effects at the corner of the network

decrease. However, since CDE take samples from different UEs col-

laboratively, the closest nodes at the center cause an increase of

overlapping measurements, and some sparse nodes near to the

boundary of the network may not provide good measurements that

are why CDE gives worsening outcomes as the central tendency is

rising. 

In scenarios built upon Centrifugal Tendency , due to BSs

and UEs close to the boundary of the coverage area, and the

distances between the nodes are larger, the average interfer-

ence will then decrease progressively. Thus, the accuracy of

the results provided by IDE becomes lower. However, while

the centrifugal tendency is diminishing, CDE yields more ac-

curate results because BSs and UEs close to the center be-

come sparse nodes, which increases the error rate of the

measurements. 

When the deployment of BSs and UEs tend to Skewness Ten-

dency , they gather around a particular area of the network where

BSs and UEs are too close to each other. Symmetrically changing

the parameters a and b may not provide the same shape variation.

Therefore, different observations are made for the values of these

two shape parameters. For example, when we increase b , we ob-

serve that the accuracy of the results further declines. However,

the impact of changing the value of a causes smaller effects over

the results. After the value of 10 for a or b , which means higher

non-uniform deployments, outcomes of the estimators become less

accurate. Especially, the distribution on BSs affects the accuracy

of the results significantly in comparison to the distribution of

UEs. 

With these four deployment tendencies, we also analyze each

of BSs and UEs individually such that UEs have a non-uniform ten-

dency, but the distribution of BSs are uniform. In this case, the

deployment of UEs follows above three non-uniform tendencies.

When UEs have a central tendency, the accuracy of the estimator

results is close to each other. However, in the case of centrifugal

tendency, IDE and CDE have different accuracy for their outcomes

depending on the positions of UEs and BSs in the middle or at the

corner, and the inter distances between BSs and UEs. Eventually,

when the deployment of BSs and UEs are uniform, if the samples

are taken from UEs which are close to the center of the network,

two estimators provide more and more accurate results. Further-

more, if the network follows a non-uniform distribution, then the

number of the k th nearest neighbor can be increased, and sam-

ples can be taken from UEs at anywhere of the environment ran-

domly to get better outcomes. Moreover, we observe that in sparse

networks, the performance of IDE is better than CDE because CDE

needs collaboration among the UEs in the network. However, in

dense networks, CDE gives more accurate results if the samples

are collected from UEs randomly for the non-uniform deployments.

The average AAPDs of the proposed estimators’ results for non-

uniform deployments are approximately 27% for IDE and 40% for

CDE. 

All in all, in Section 3.4 , we analyze our proposed estimators

by taking into consideration of neighbor proximity, the channel

impediments such as shadowing, the impact of the propagation

model, and finally we examine the accuracy of the estimators un-

der different non-uniform deployments. We can conclude that RSS-

based estimators can be derived by using simple models to ease

tractability, but at the same time, we should consider all these fac-

tors which are because of the stochastic nature of received signal

strength. 
. Density-aware outage analysis 

In this section, we demonstrate the impact of density, transmit

ower and path-loss exponent on network outage [12] . 

.1. Simulator model 

We uniform randomly determine locations of base stations in

 field with an actual deployment density of λ nodes/m 

3 . A uni-

orm randomly selected point is considered to be the location of

he reference user equipment. Using the simple path-loss model

escribed above, we compute the received signal strength from the

losest base station. If the signal strength is larger than the thresh-

ld value (receiver sensitivity) the run is assumed to be successful;

therwise, an outage occurs. The ratio of outages out of 10 4 runs

f the simulations is recorded as the outage probability. We sim-

lated a 500 × 500 × 500 m 

3 area, with a transmit power of 100

W, by considering different deployment densities such as sparse,

ense and ultra-dense, and the path-loss exponent is three; i.e.,

= 3 . The values of the parameters employed in the simulations

re shown in Table 1 . In the figures we present in this section, we

how the results of the simulations together with the results of the

nalytic model in (9) . 

.2. Impact of network density on outage 

As density increases, there will be a larger number of base

tations deployed in the field. Consider a randomly selected user

quipment in the field. The distance of it to the closest BS will

e smaller; consequently, the path-loss will be smaller in dense

etworks. As shown in Fig. 7 , the outage probability in dense

etworks will be smaller assuming that all other parameters are

ept constant. The density of BSs impacts the quality of service as

hown in Fig. 7 . The transmit power has a positive impact on the

eceived signal strength. The more transmit power means more re-

eive signal strength as it can be understood from the propagation

odel and is presented in Fig. 7 . When the network is dense, the

utage probability will decrease obviously. 

For the same distance and level of noise, the crucial factor

ffecting the quality of communication is the threshold level of

ense; i.e., receiver sensitivity. In other words, it is easier to com-

unicate with a UE that has a higher level of sensitivity as demon-

trated in Fig. 7 . By increasing the complexity of receivers, the

hreshold can be decreased. Complexity and cost of receivers in-

roduce a trade-off with coverage. 

Fig. 7 demonstrates the relation between outage P O , λ and γ .

he path loss exponent ( γ ) negatively affects the received signal

trength. When the channel is prone to high loss, i.e., when the en-

ironment is harsh, it is more probable for the randomly selected

eference node to be out of coverage. 

.3. Impact of transmit power on outage 

A large amount of transmit power is beneficial for the quality

f service in a network albeit bad for the environment. The more

ransmit power implies the more coverage area when the other

ariables are constant. Furthermore, it implies a larger amount of

nterference. However, in this paper, we assume a robust interfer-

nce management scheme that may overcome the negative impact

f interference on capacity. If the density of the network increases,

.g., additional (mobile) base stations are deployed or redundant

ase stations are turned on, the outage probability approaches to

ero as shown in Fig. 8 . The threshold has the same impact on a

etwork similar to that of the density. If the threshold decreases

hen the outage approaches to zero ( Fig. 8 ). 
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Fig. 7. Impact of density on outage probability for various parameters. 
Fig. 8. Impact of transmit power on outage probability for various parameters. 
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Fig. 9. Impact of path-loss exponent ( γ ) and threshold ( T ) on outage probability 

for various parameters. 
4.4. Impact of path-loss exponent on outage 

The path loss exponent is a significant factor that character-

izes the wireless channel. When γ is extremely high, then it is

more probable to be out of coverage as it can be observed in

Figs. 8 and 9 . Let’s consider the same transmit power, it can be

clearly seen that when the path-loss exponent is high then the

network coverage will decrease. Thus, it is more important that an

estimator should determine the channel conditions like the path-

loss exponent. 

4.5. Impact of receiver sensitivity on outage 

We consider the receiver sensitivity as a threshold value that

is the minimum requirement to be able to decode signals. If the

threshold value increases, the outage probability will increase as it

is shown in Fig. 9 . Increasing the transmit power leads to a declin-

ing outage ratio. As it can be seen in Fig. 9 , both the threshold and

the path-loss exponent considerably affect the network outage. 

5. Validation of density-aware outage probability 

In the light of the results presented in Section 4 , we claim that

in a cellular network, base stations have to change their trans-

mit power according to the network density. The base stations

have to be able to estimate the network density by means of

equipped with tools and techniques. Pre-configured decisions will

not be sufficient since especially when mobile base stations are

considered, future cellular networks will be highly dynamic. Stat-

ically, configured parameters will decrease the quality of service,

and result in many coverage control problems. In this work, we

present a run-time adaptable density-aware and -adaptive three-

dimensional cell zooming technique using (9) , and validate it by

using Algorithm 1 . For one deployment density ( λ) and one trans-

mit power ( P t ) settings the time complexity of Algorithm 1 is

O( S ), where S is the number of simulation runs. This adaptation

is also important for energy conservation. After determining the

minimum transmit power budget of a base station using this tech-

nique, the power can be allocated to individual users or resource

blocks [34] as a sequel that is out of the scope of this work. 

Algorithm 1 Validation of the Density-aware Outage Probability

Model. 

1: Input: λ, γ , P t , k , T , Cntr = 0 

2: Output: (Analytic) P O A and (Simulated) P O 
3: for S = 0 ; S< 10 0 0 0; S++ do 

4: Select a set of UE and BSs; 

5: Find ( ̂  λ) by using CDE (8) or IDE (5); 

6: Select a UE as reference (node); 

7: Find r k using Euclidean distances between UE and BSs,

where k = 1 ; 

8: Calculate x k ← CP t 

(
r 0 
r k 

)γ

; 

9: if If x k < T then 

10: Cntr++; //This UE is in outage 

11: else 

12: Do nothing; //This UE is in the coverage area 

13: end if 

14: end for 

15: Find P O A by using (9) with ̂

 λ
16: P O ← Cntr/S; 

17: return ( P O A , P O ); 

In Algorithm 1 , a set of uniform randomly distributed base sta-

tions and user equipment with a density of λ (nodes/m 

3 ) is sim-

ulated using MATLAB. In a three-dimensional field, after selecting
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Fig. 10. Analytic outage values based on the estimated network density ̂  λIDE and ̂ λCDE for different transmit powers ( P t ) when the network density is changing. 
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 set of base station and user equipment positions, the estimated

ensity ( ̂  λ) is calculated. Then, a random point is picked as the po-

ition of the reference user equipment (UE). The distance between

he UE and the closest base station is found, using the channel

odel presented in Section 9 , and we calculate the received sig-

al strength. If the received signal strength is less than the given

hreshold ( T ), this simulation run is recorded as an outage. For the

ame simulation environment, the simulations are repeated 10 4 

imes and the ratio of outages is computed. According to the re-

ults, we compare the analytic outage probability ( P O A ) by consid-

ring (9) and the simulated outage ratio ( P O ). 

In Fig. 10 a and b, we show the adapted outage probability for

arious transmit powers as the density of the network changes.

hese simulation results validate the analytic model for cell zoom-
ng presented in (9) and in (7) . The results indicate that if the

ransmit power of BSs ( P t ) does not change, the outage probabil-

ty ( P O ) of a UE decreases when the network is getting denser.

owever, in sparse networks, the outage probability increases if

he same P t is used. This results also claims that there is a di-

ect relation between the base station density and network outage.

y considering the impact of the estimators, it can be said that

ince CDE is based on collaboration between the nodes, and if the

 

th nearest neighbor increases, the variance of the results will be

maller than IDE. Depending on the positions of selected UEs and

Ss, the accuracy of the results is changing. For instance, UEs and

Ss located close to the center of the network increase the accu-

acy of results, on the other hand, UEs and BSs near to the border

f the coverage area decreases the results. When a network oper-

tor becomes more tolerant to degraded quality of experience by

sers due to the outage, the amount of energy conservation can be

ncreased. However, customer satisfaction is significantly related to

he outage probability. As the network density increases, it will be

equired to decrease the transmit power in a density-aware fash-

on to preserve coverage, to keep the outage probability under con-

rol and to conserve energy. The main advantage of the proposed

ell zooming technique is that it requires minimal communication

verhead, fast and simple to implement. However, the deficiencies

f the estimator have to be enhanced. A much faster density esti-

ator that is tolerant to correlated samples is required. 

. Validation of the density-aware power adaptation 

In this section, we validate (10) by using two different schemes:

ne of them is based on the global density of BSs that we used

n Section 5 , where all measurements are collected with the help

f edge computing. As the second approach, each of BSs deter-

ines its own density result without using edge computing, in

ther words, we use local densities belongs to each of BSs. 

.1. Validation of density-aware power adaption technique with edge 

omputing 

In order to validate (10) , we follow Algorithm 2 . The algorithm

as O( S ) time complexity, where ( S ) is the simulation count for

ne deployment density ( λ) and one required outage ( P ∗
O 

). We

imulate a spherical volume consisting of uniform randomly dis-

ributed BSs and UEs with different actual deployment densities

f λ (nodes/m 

3 ). At each simulator run, we estimate the effective

ensity for the whole network, then we select a random point to

e used as the reference UE. We update the transmit power of each

S by considering the model in (10) . Then, we calculate the RSS

ased on the simple path-loss model explained in Section 2.3 from

he closest BS of the reference UE where γ is 2. If the computed

SS is lower than the given threshold value T , the result of this

un is classified as an outage, otherwise, it is evaluated as success-

ul since it is within the coverage of the clustered network. We run

he simulations 10 4 times and the ratio of the number of outages

o the total number of simulation runs is determined as outage ra-

io that is represented as achieved P O in Table 8 with using ̂  λIDE ,

nd ̂

 λCDE . 

The outage model (9) and the transmit power adaptation tech-

ique in (10) provide us accurate results as it can be seen in

able 8 . For each required outage value, we use different actual

ensity ( λ) values which are between 1 × 10 −4 (nodes/m 

3 ) and

 × 10 −4 (nodes/m 

3 ). Then the average outage results for different

ensities are presented. The achieved outage closely matches the

equired outage which means that the proposed transmit power

daptation technique based on the provided outage probability is

uccessful. Each of the estimators can be used in order to make

he network coverage dynamic. The main conclusion to be drawn



14 A. Ero ̆glu, O. Yaman and E. Onur / Computer Networks 165 (2019) 106922 

Algorithm 2 Validation of the Density-aware Power Adaptation 

Technique. 

1: Input: λ, γ , P t , k , T , P 
∗
O , Cntr = 0 

2: Output: (Simulated) P O 
3: for S = 0 ; S< 10 0 0 0; S++ do 

4: Select a set of UE and BSs; 

5: Find ( ̂  λ) by using CDE (8) or IDE (5); 

6: Set P ∗t for all BSs using (10) with ̂

 λ and P ∗
O 

7: Select a UE as reference (node); 

8: Find r k using Euclidean distances between UE and BSs, 

where k = 1 ; 

9: Calculate x k ← CP t 

(
r 0 
r k 

)γ

; 

10: if If x k < T then 

11: Cntr++; //This UE is in outage 

12: else 

13: Do nothing; //This UE is in the coverage area 

14: end if 

15: end for 

16: P O ← Cntr/S; 

17: return ( P O ); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Collecting ̂  λ measurements (nodes/m 

3 ) from the first k nearest UEs. 
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is that the relation between the density of base stations and net-

work outage require the adaptation of the transmit power by con-

sidering this relation. 

6.2. Validation of density estimator and power adaption technique 

without edge computing 

A new approach as utilizing both of these estimators with-

out using the edge computing can be applied locally in the net-

work, and the power adaptation technique can be employed with

these local estimation measurements. In other words, instead of

the global density of the network, each of the base stations can

use its own effective density result. 

In these simulations, as it can be seen in Fig. 11 each base sta-

tion uses its calculated density measurement by using density esti-

mations of its connected closest UEs. Each user equipment receives

a number of RSS measurements from their first k closest base

stations and estimates the density by employing the IDE or the

CDE methods. Each base station collects the estimation results

from their closest user equipment, and the average of these es-

timations are calculated as local base station density. After each

base station determines the density result itself, (10) is used for

adapting the transmit power based on the required outage prob-

ability. In the simulations, the same approach like in Section 6 is

exploited so that every time each BS changes its transmit power

based on the estimated density and the outage probability. 

Table 9 presents the AAPD results between the required outage

and the analytic outage values. The average outage results for dif-

ferent densities are presented. In these simulations, at each run of

the simulation, each BS calculates its own density instead of using
Table 8 

Required outage probability ( P ∗O ) vs calculated outage probability

of base stations, and AAPD (%) results. 

P ∗O 
̂ λIDE 

P O AAPD, % 99% confidence limits, ( ×10 −5 ) 

0.02 0.022 11.31 ± 1.12 

0.025 0.027 6.93 ± 1.13 

0.03 0.031 4.37 ± 1.35 

0.035 0.036 2.92 ± 0.96 

0.04 0.040 1.14 ± 1.38 

0.045 0.045 0.54 ± 1.23 
he global density, then they change their transmit powers using

he model in (10) . For the rest of the steps, the same approach in

ection 5 is used for calculating the required outage and analytic

utage. The results in Tables 8 and 9 indicate that IDE has more

ccurate results so that we may employ IDE as a density estima-

or based on the measurements of its associated UEs. Since CDE

eeds more measurements than IDE, it provides less accurate re-

ults in comparison to the outcomes of IDE. In these simulations,

ore accurate results are obtained while the large number of UE

s considered and the network is getting denser. 

. Related work 

In this section, we present the related work in a categorized

ashion. 

.1. Distribution of base stations 

In cellular networks, the spatial distribution of base stations in

rder to obtain optimal deployments has been coming into promi-

ence. The stochastic models including optimum base station den-

ity have paramount importance to analyze the network perfor-

ance in terms of coverage, energy efficiency and quality of ser-

ice [35,36] . With the improvement of the network, to provide

igher capacity and coverage to users, increasing the number of

ase stations is considered as a handy solution which is called

ensification. Moreover, with the proliferation of base stations on

heels and wings, small cells, and the user-controlled base sta-

ions always result in topology changes in the network. In that

ense, analyzing the spatial distribution of base stations by us-

ng the theoretical models is always a principal topic in wireless
 ( P O ) by using the ̂  λIDE , ̂
 λCDE , which are the global density 

̂ λCDE 

P O AAPD, % 99% confidence limits, ( ×10 −5 ) 

0.022 8.81 ± 0.28 

0.027 7.29 ± 0.36 

0.031 4.71 ± 0.33 

0.036 4.06 ± 0.36 

0.041 3.60 ± 0.27 

0.046 2.35 ± 0.19 
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Table 9 

Required outage probability ( P ∗O ) vs calculated outage probability ( P O ) by using the ̂  λIDE (nodes/m 

3 ), ̂  λCDE (nodes/m 

3 ), which 

are the local density results belong to each of BSs, and AAPD (%) results. 

P ∗O 
̂ λIDE 

̂ λCDE 

P O AAPD, % 99% confidence limits, ( ×10 −5 ) P O AAPD, % 99% confidence limits, ( ×10 −5 ) 

0.02 0.022 8.46 ± 0.98 0.023 17.60 ± 0.52 

0.025 0.027 7.26 ± 2.35 0.029 15.00 ± 1.68 

0.03 0.031 4.69 ± 2.07 0.034 12.84 ± 1.10 

0.035 0.036 2.72 ± 1.45 0.039 12.17 ± 0.95 

0.04 0.041 1.38 ± 2.48 0.044 7.61 ± 1.13 

0.045 0.045 0.84 ± 2.74 0.049 7.28 ± 2.93 
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etworks and still an open research question for next-generation

etworks [37] . Although there are different statistical distributions

odels such as Poisson, lognormal, Weibull, generalized Pareto and

lpha-stable in order to model the base station spatial density,

ost of the studies leverage Poisson due to tractability as stated

n [37] . In addition to the base station density, the recent studies

eveal that the stochastic models including PPP provide tractable

odels to control the cell size by considering the coverage proba-

ility and adaptation of transmit power [35,38,39] . In order to pro-

ide an enhanced quality of service mobile base stations and drone

ase stations can be used as fast deployments, however, these net-

orks require to transmit power adaptation in terms of energy ef-

ciency, trajectory plans, and user connectivity [40–42] . Transmit

ower can be minimized by increasing the number of base sta-

ions until the network density reaches a threshold value. The op-

imal network density provides an optimum power consumption

nd enhanced coverage as stated in [43] . 

.2. Existing density estimation methods 

Since future cellular networks has a dynamic topology, the need

or the existence of robust density estimators is an open issue. Ex-

sting density estimators can be classified as (1) location-based;

2) neighbor discovery based, and (3) received signal strength

RSS) based methods. Location-based methods rely on GPS; e.g.,

ode census (NC) [44] . Auxiliary systems consume extra energy,

nd the density estimate is subject to localization errors. Neigh-

orhood discovery based methods estimate density based on in-

erences drawn from in-network communication; e.g., NEST [45] .

he accuracy depends on the traffic amount. The RSS-based den-

ity estimators are proposed in [18,19] for two-dimensional ad-hoc

etworks. This type combines the merits of location-based and

eighbor discovery based estimation and overcomes their draw-

acks. However, the time required to compute the estimator may

e long. 

.3. How density of base stations affects network coverage and 

apacity 

Ultra-dense networks (UDN) are expected to provide high ca-

acity. The potential of higher frequency bands is analyzed in [46] .

n that work, UE and BS density, UE distribution and energy ef-

ciency in a network are used to calculate transmit power by

onsidering signal-to-interference-plus-noise ratio (SINR) for pro-

iding better coverage. In a mobile network consisting of a large

umber of uniform randomly deployed BSs, the outage probabil-

ty decreases with an increasing ratio of mobile-to-BS density [47] .

n interference model for wireless networks consisting of uniform

andomly distributed nodes is combined with different types of

opular fading models in [48] . This model considers the interfer-

nce power by using a partial cancellation method and outage

robability calculated by using the nearest interferer instead of the

otal interference power since the nearest interferer dominates the
otal interference. A stationary receiver is considered as a base sta-

ion for a given user and the same transmit power is considered

or mobile units. 

In the case of 5G networks, connectivity and coverage are two

mportant optimization parameters related to each other, and de-

igners should consider them jointly as in ad hoc networks [49,50] .

t is underlined that the connectivity problem may not be handled

ithout adapting the transmit power to the network via present-

ng the results with two-dimensional simulations and models ap-

lying the connectivity of nodes, transmit power and density for

n ad hoc network. As the dynamic and distributed nature of the

uture networks’ architecture, mobile ad hoc networks (MANET)

ave a distributed and self-organized structure [51] . One of the

ample applications of MANETs is the vehicular ad hoc networks

VANETs). [52] states that such networks have a dynamic structure

hat necessitates adapting the transmit power to some parameters

etwork such as distance between mobile nodes, density, the an-

enna type and type of broadcasting for enhancing network perfor-

ance. Density and distance are the selected parameters for adapt-

ng transmit power in [52] . Density refers to the number of nodes

n a network per unit area. In dense networks, the distance among

odes will be shorter. On the other hand, the distances among

odes will be larger when the network is sparse. Hence, if the net-

ork is sparse, the transmit power should be increased based on

he distance between the nodes, but if the network is dense then

e need less transmit power since the distance between nodes

ill be smaller. However, we should consider the outage and the

nterference in the network [5,53] . When the network is sparse,

he probability of outage will be higher and when the network is

ense then the interference between nodes will be higher if the

ransmit power is not adapted to these changes. 

.4. Relation between aggregate interference, path-loss and BS 

ensity 

Understanding the characterization of aggregate interference

ower in terms of the base station deployment and interference

anagement can provide better performance for homogeneous

nd heterogeneous networks [54] . Joint power control and user

cheduling are proposed for ultra-dense networks by considering

ynamic channel conditions and unknown traffic demands in [55] .

he aim of this model is to ensure energy efficiency while sup-

lying the quality of service and reducing the number of UEs in

utage depending on queue capacities of BSs. The network outage

s considered the fraction of undesired UEs whose handovers can-

ot be admitted because of the queue capacity limitations, and the

ensity is determined as the average inter-site distance (ISD) for a

arge homogeneous UDN deployment. In addition to homogeneous

ellular networks, a heterogeneous network is considered, and a

odel consisting of optimal BS density by conceiving the QoS lim-

tations is analyzed in [56] . The proposed model aims at making

he network energy efficient and analyzes the effect of network

ensity on cost. A threshold value obtained by using path-loss and
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transmit power of the relevant BS is used to define outage proba-

bility. 

With the proliferation of small cells, the fractal characteristic of

the coverage for cellular networks is more prone to the path-loss

effects [31,57,58] . In small cells, the characterization of wireless

propagation environment is volatile and complicated as stated in

[31] on the occasion of not only regular but also non-uniform ob-

structions arising from buildings, infrastructures, tress, and erratic

weather conditions. Both the line-of-sight and non-line-of-sight

signals affect the path-loss exponent value or path-loss coefficient.

Two different path-loss models are introduced, which are isotropic

and anisotropic by considering propagation directions. Isotropic

models are commonly used in the literature to make models sim-

ple as much as possible. However, due to the fractal characteristics

of cellular networks, the anisotropic models can be leveraged to

make network models more realistic [57] . In our study, we exploit

a simple path-loss model which is simplified from Winner II chan-

nel models to propose simple and easily tractable models [24] . This

model has already been analyzed in [18] , and it is illustrated that

the RSS-based approaches including simple path-loss model may

be used for real-life experiments with 10 percentage error rate. 

In this study, unlike the existing works firstly we propose

two novel base station density estimators, the interference-based

density estimation and multi-access edge cloud-based estimation

based on received signal strength, which are operational in a three-

dimensional environment. Secondly, two proposed models to con-

trol the network outage and cell size are simple and compact

solutions. Finally, we present a qualitative and elaborated analy-

sis of different network parameters at the same time depends on

the network density. The proposed approaches leverage a three-

dimensional PPP distribution which provides easily understandable

and tractable models. 

8. Conclusion 

With the invention of mobile devices, applications, and new

network paradigms such as ultra-dense networking, mobile cells,

ever-changing topologies, the need for self-organized networking

becomes more pronounced in order to increase the capacity, cover-

age, and performance. Dense networks provide redundant coverage

whereas connectivity is disrupted in sparse networks. In this paper,

we propose novel network density estimators based on received

signal strength. One of them uses the aggregated measurements

(IDE) and the other one exploits the collaboratively collected mea-

surements (CDE). We propose the system design for density esti-

mation in mobile networks and validate the proposed estimators

using Monte-Carlo simulations implemented in Matlab. We pre-

sented three significant outcomes in this paper. First of all, two

robust density estimators are proposed and validated. Secondly,

a simple outage probability model is proposed and validated. As

the last contribution, we propose a density-aware transmit power

adaptation technique in a dynamic and self-configurable fashion

for conserving energy and enhancing the quality of service. From a

theoretic perspective, models consider only large-scale fading and

is applicable in environments where the impact of shadowing is

small. As future work, we will implement estimators in outdoor

and indoor test-beds and validate the results in practice. We will

also incorporate shadowing in the estimator. According to the re-

sults, transmit power of base stations must be density-aware to in-

crease the network capacity. We analyzed the impact of transmit

power, channel model and density on outage probability. As ex-

pected transmit power and network density are quality of service-

friendly parameters, unlike the rest. However, they are not cost- or

environment-friendly. 
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