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As demand for mobile communications increases, cells have to become smaller to efficiently use the
scarce spectrum and to increase capacity, and small-cell networks will hereby emerge. They may be large
in scale and highly dynamic resembling ad hoc networks due to the moving base stations. The variations
in the density of the small cell networks impact the quality of service and introduce many novel chal-
lenges such as coverage control. We propose two novel base station density estimators, the interference-
based density estimator (IDE) and the multi-access edge cloud-based density estimator (CDE) in a three-
dimensional field. The estimators employ received signal strength measurements. We validate these two
density estimators by using Monte-Carlo simulations. Furthermore, we analyze the impact of density
on network outage in cellular networks and propose a density-aware cell zooming technique. Accord-
ing to the observations, base station (BS) density affects network coverage significantly. Received signal
strength (RSS)-based density estimators can easily be implemented and applied in the network commu-
nication stack although they are more prone to shadowing and fading. Under favour of the density-aware
cell zooming method, the network outage can be managed dynamically by adapting the transmit power,
which provides a self-configurable and -organized network.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A new trend for future networks is emerging along with
the recent applications, innovations, and technologies in cellular
networking. In order to meet the requirements of emerging appli-
cations for a larger capacity, cellular networks morph away from
inflexible and centrally-managed infrastructures to large-scale col-
lectives of small and mobile cells. Cellular networks equipped with
mobile and nomadic base stations present a change in the char-
acteristics of networks toward densified deployments of mobile
base stations (BSs), incessantly changing topologies and dynamic
infrastructures [1,2]. The dynamism in the infrastructure reflects
itself as unpredictably base station density introducing some new
challenges that have to be managed at run-time [3]. Most of the
changes in the topology are not predictable in advance [4]. Hence,
applications such as capacity planning, coverage control, interfer-
ence management, energy conservation and quality of service pro-
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visioning have to be critically modified for efficient and proper op-
eration by taking into consideration of future trends [1,2,5].

Density of base stations in future cellular networks, e.g., 5G net-
works, will vary in time and space because of mobile base sta-
tions (e.g., cell on wheels and unmanned aerial vehicles (UAVs))
[1,6], user-controlled base stations [7] (e.g., femtocells bought and
controlled by end-users), green operation (e.g., sleep scheduling
of base stations), and gradual deployment of base stations [8,9].
Resources in radio access, transport, and core networks will be
wasted if related parameters are not adapted to the network den-
sity [10]. For instance, in Section 4, it is illustrated that any changes
in the base station density affect the network parameters such as
transmit power and network outage [11,12]. A decrease in the net-
work density increases the outage probability. If the network is
dense, the outage probability will then decrease with the same
transmit power. For adapting the network to the changes in the
density of base stations, robust network density estimators in a
three-dimensional field are required [12,13]. We assert the third di-
mension considering drone base stations (cells on wings).

The need for energy-efficient dynamic networks presents the
concept of cell zooming [14]. Cell zooming concept may include
different schemes such as controlling the physical layer parame-
ters like changing transmit power of the base stations, relying on
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relaying, sleep scheduling of base stations, or employing multiple
base stations [14,15]. Algorithms for cell zooming can be classified
into static and dynamic algorithms. Considering the network den-
sity together with the transmit power is presented as a solution in
the scope of cell zooming [12]. Adapting and optimizing the trans-
mit power with the help of user equipment, reducing energy con-
sumption without switching off base stations, determining the op-
timal height of the antenna of base stations, considering received
signal strength (RSS) with a propagation model are presented as
self-healing approaches under the concept of cell zooming [16,17].
In this study, we control the cell size dynamically with the help of
a density-adaptive transmit power mechanism considering outage
probability and effective density of moving base stations.

In this paper, we focus on the density estimators and network
outage in order to adapt the transmit power of base stations for
cell zooming. The contributions and structure of this paper can be
summarized as follows:

» The first and foremost contribution of this paper is the
interference-based density estimator presented in Section 2.
Using an aggregate interference model, we propose a system
design for density estimation of moving base stations in
mobile networks in Section 2.2.1. Moreover, we propose
multi-access edge cloud-based network density estimator
(CDE) in a three-dimension field in Section 2.2.2 follow-
ing the same approach employed in [18,19] which was
developed for two-dimensional ad hoc networks. Most of
the existing density estimators are operational only in two-
dimensional Euclidean space. Satisfying the requirements for
having a three-dimensional estimator in mobile networks
is the gap this paper fills in. The interference-based density
estimator (IDE) is modeled considering uniform randomly
deployed a network of base stations. We validate the pro-
posed estimator by Monte-Carlo simulations. The simulation
results validate the model and show the accuracy of the
proposed estimator is at an acceptable level in Section 3. We
also discuss two density estimators by considering neighbor
proximity indices, log-normal shadowing, path-loss models,
and non-uniform distributions in Section 3.4.

« As the second contribution, we analyze the impact of net-

work density on outage probability in cellular networks by

employing a simple analytic model validated by simulation
results in Section 4. A concise and simple analysis is the
main difference of this contribution from other studies. We
propose an analytic model for computing the outage prob-
ability based on base station density and validate it us-
ing Monte-Carlo simulations. Outage probability analysis in
three dimensions is the novelty of the work. The results of
this study assert that density-awareness in cellular networks
is required to increase capacity and provide an efficient net-
work. A novel outage model based on the density is intro-
duced in Section 2.3, and the validation of this model is pre-

sented in Section 5.

As the last contribution is founded on the first two, we pro-

pose a density-aware transmit power adaptation technique

which makes a relation between the density of base stations,
network outage, and transmit power. By using the proposed
density estimator, moving or stationary base stations will be
capable of adapting their transmit power in a distributed
fashion. The results of this study assert that density aware-
ness in cellular networks is required to increase the capac-
ity and provide an efficient network. We will discuss how
the transmit power is adapted based on network density
in Section 2.4, and we demonstrate the verification results
of the model in Section 6. Finally, Section 7 reviews cate-
gorically the existing studies which show the importance of

base station density, network outage and transmit power as
run-time adaptable and self-optimized parameters for self-
organized future networks.

2. Density-aware coverage control

We assume that the density of base stations may change be-
cause of sleep scheduling for energy conservation, because of fail-
ures of base stations or because of cells on wheels or wings (mo-
bile base stations) such as unmanned aerial vehicles (UAVs). A
static configuration of network parameters under this assumption
will waste resources and will not be practicable. A robust network
density estimator for coverage control that adapts itself to the in-
stant network density is required. In the sequel, we present two
techniques for estimating the density of base stations in a three-
dimensional Euclidean space. Then, we present the density-aware
outage analysis and using this model we propose a density-aware
transmit power adaptation technique for coverage control in cellu-
lar networks where the number of base stations varies in time and
space.

2.1. System model

In an m-dimensional Euclidean space, we assume that a large
number of nodes (base stations and UEs) are distributed uniform
randomly [20,21]. It is assumed that the random variables indi-
cated the number of nodes deployed in any disjoint Borel set A,
and A, are independent and follow a Poisson distribution with a
mean density A nodes per unit m-volume. The derivation of the
distance distribution to k'™ nearest neighbor for any dimension in
uniformly random networks is investigated clearly in [20]. There-
fore, node positions form an m-dimensional homogeneous Poisson
Point Process [20-22].

By taking one of the user equipment (UE) in the uniform ran-
domly deployed cellular network as the reference node (receiver),
let’s denote the distance of the reference node to its k™ nearest
neighbor r, with the random variable Ry. The PDF of Ry is

m M(ACyT™)k
k)

where cj1™ is the volume of the m-dimensional ball with radius
1, [22]. The coefficient cp, is defined as

(1)

fr, (1) = e e’k

m

T2
o _ Lo for even m @)
" LG Dl for odd m
(m)! il ]

where I is the gamma function interpolating the factorial function
[23]. For example, I'(k) equals to (k—1)!. When m=1,2 or 3 Vp,
is 2, m and 4 [3, respectively. For instance, a vehicular network on
a road can be modeled in one dimensional space where m =1 and
Vmr,™ = 2r, m. If it is in two dimensional, then m = 2 and V;yr,™ =
7,2 m? are considered. Distribution of unmanned aerial vehicles
in space may require a three dimensional model, where m = 3 and
Vinr™ = 471 3/3 me.

We assume that a large number of base stations are deployed in
a cellular network and the positions of BSs follow uniform random
distribution in the three-dimensional Euclidean space with density
A (nodes/m3). We exploit the simple path-loss model; the received
signal power x; of a BS from its k™" nearest neighbor that is r, me-

4
ters away is x, = CPt(%O) where y <3 is the path-loss exponent,
K

C accounts for the attenuation factor at a reference distance of ry
meters and the impact of non-distance-related factors such as an-
tenna gains, calculated by using GtGr((300 x 10%/f)/(4m))?, where
G; is the transmitter receiver antenna gain in dB, G, is the re-
ceiver antenna gain in dB, and (f) is the frequency with value of
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2400 x 10° Hz. For simplicity we set 1o =1 m; then x, =CRr,”.
The transmit power of base stations is represented as P;. The re-
ceived signal strength with the random variable Py is a function
of Ry. For the sake of generality, the probability density function
of Py calculated using above PDF of Ry and the simple path-loss
model is:

— X, Y
makpmk=1ck (i)"(‘%‘)e%fmru’“(é)
0 m

Ch

I' (k)

Although we assume moving base stations, we suppose that
the locations of base stations and user equipment do not change
dramatically during the measurement period. The estimator can
compute the estimate over a single slot that can be very short.
Therefore, the network can be considered stationary throughout
the estimation period. This system-level model is based on a gen-
eralization of Winner II channel models following a stochastic ap-
proach and statistical distribution, which can be used for indoor
and outdoor scenarios [24]. Moreover, we assume that a dedicated
control channel is only implemented by BSs, therefore the inter-
ference from UEs is not considered in this work. In a coordinated
fashion, we assume that UEs can receive signals only its corre-
sponded base stations.

B (%) = (3)

2.2. Network density estimators

In this work, we concentrate only on the density of base sta-
tions that is called as network density; we do not deal with the
density of users. The received signal strength (RSS) of signals trans-
mitted by BSs and measured by a user equipment (UE) is highly
correlated to the density of base stations. Therefore, we construct
two techniques for estimating the network density using the RSS
measurements of UEs. Firstly, we present a novel estimator that
uses the aggregate interference from the nearest N base stations.
This estimator is called as the interference-based density estima-
tor. Secondly, we revert an early density estimator developed for
two-dimensional ad hoc networks and adapt it to the mobile net-
works where multi-access edge cloud computing (MEC) is em-
ployed. Hence, we call it the MEC-based density estimator.

2.2.1. Interference-based network density estimator (IDE)

By selecting a random position as the location of a reference
UE, let’s denote the distance of the UE to the k' nearest base sta-
tion r, with the random variable Ry. Based on the system model
presented in Section 2.1, the joint probability density function
(PDF) of the distances of the randomly selected reference point to
the first N BSs, r = (rq,13,...ry) denoted with the random vari-
ables R = (Rq, Ry, ..., Ry) as derived from [21] is

fo(®) = e 3% 4m \)Nr2 2 dr,

Assume that all these N base stations transmit a signal at the
same time. The expected value of the aggregated interference mea-
sured by a UE located at a random point then becomes

0 Iy r, N
= CPr;” fr(r)dr
w A A ”AZ;[,hU

_ 3CP.(4/3TAM)YPT(N -y /3 +1) (4)
B=pyII'(N) ’
where I'(.) is the gamma function, and y <3.

In the Interference-based Density Estimator method, each UE
measures the aggregate interference from the nearest base stations
and report these measurements to their associated base stations.
In the coverage of each base station, there will usually be a large
number of UEs, say M. The base station will average the aggregate

interference measurements of UEs and then will estimate the net-
work density as

1 me-pray " -
4 \ 31-vACRI'1+N-y/3) '

where 71 is the average of aggregate interference measurements by
M UEs. In IDE, all base stations can estimate the network density
in a local fashion with the assistance of the UEs in their coverage
areas. One can enhance the performance of Apg by averaging the
individual estimates of base stations. Although, we call it interfer-
ence, BS generates collision of signals intentionally to let UEs take
samples.

)‘-IDE =

2.2.2. Multi-access edge cloud based network density estimator (CDE)

We present the multi-access edge cloud-based density estima-
tor (CDE) as the second estimator model. In CDE, we assume that
user equipment measures the received signal strength (RSS) of pi-
lot signals transmitted by base stations at various non-overlapping
time slots and send these measurements back to their associated
base stations. Then, the base stations convey these measurements
to a multi-access edge computing (MEC) entity. Afterwards, the
MEC employs these measurements to estimate the network den-
sity. We modify the two-dimensional model proposed in [19] to fit
it into the three-dimensional Euclidean space. In this section, we
present the theoretic basis of the maximum likelihood density es-
timator Acpg Where the actual density is A in nodes/m?3.

By selecting a random position as the location of a reference UE
let’s denote the distance of the UE to the k'™ nearest base station
1, with the random variable Ry. The PDF of Ry [19] is

—4nar} 3(%7[)“17:')’(
" (k)

We represent the received signal power from the k™ base station
X, with the random variable Py which is a function of Ry consid-
ering the system model presented in Section 2.1. Then, the cumu-
lative distribution function (CDF) of Py [19] becomes

F(k, %n)»x,f/y (Clpt)‘3/)’)
NQ) ’

where T'(a,z) = [[°t%Te~tdt is the incomplete gamma func-
tion [19], when we consider the model for three-dimensional de-
ployment of base stations and user equipment.

Let x; denotes the RSS of a pilot signal transmitted to a UE
by its leh nearest base station, and (7) is the CDF of x;. After n
RSS samples x4, X5, ..., X, and the corresponding neighbor proxim-
ity indexes ki, ks, ..., kn are collected by UEs collectively from non-
overlapping regions, UEs convey these measurements to the MEC
over base stations. Then, the MEC can compute the maximum like-
lihood estimator, A. We assume the node distribution of base sta-
tions in the m—dimensional space follows a homogeneous Poisson
point process (PPP); and the RSS measurements are independent
since they are collected from non-overlapping regions. The maxi-
mum likelihood density estimator becomes as in [12,19]

3 K-1
CDE = 7 <71 X < a2,
%77 27:1(%)73/}'

where K = Z?:l k;. The unit of density is nodes/m?3. XCDE is an un-
biased estimator and its variance goes to zero as more and more
samples are collected from the field. Therefore, the number of col-
lected samples impact K which in turn significantly impacts the
accuracy of the estimator A. It can be seen that the different di-
mensions have different ¢, and m values [19,20]. Then, we can
generalize the estimator as follows:

K-1

n Xj \— :
Cn Y1y ()Y

fr () =e (6)

B (%) = (7

(8)

AcDE =
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2.3. Outage probability based on network density

By considering the PDF of Ry (6) and the CDF of Py (7), we
present the outage probability as the probability (Py) of the re-
ceived power of the signals transmitted by the closest base station
(i.e., k=1) and measured by the randomly located reference user
being below the receiver sensitivity, T. Based on this definition, the
outage probability becomes

Po(A) = Fp,1 (T) = 9*4/37T)~(CPr/T)3/V’ o

where T is the receiver sensitivity (threshold) that is the mini-
mum required received signal strength to intelligibly decode the
signals [25]. (9) is different from its two-dimensional representa-
tion proposed in [26]. The dimension of the solution changes the
network outage model. This network outage model analytically in-
dicates that the outage probability and the base station density are
two important interactive parameters. The network outage is also
influenced by the path-loss exponent, transmit power of base sta-
tions and the minimum power requirement which is the threshold
value as experimentally demonstrated in Section 4. The PDF de-
creases with e~%/T*” when P; increases, the outage probability
becomes zero. When T increases the expected value will be 1. The
PDF of received signal strength (3) will affect the outage probabil-
ity. If P; increases the received signal strength will increases, which
means more and more UEs can receive the signal with a higher
RSS. In this formulation, we suppose that there is a robust inter-
ference cancellation technique implemented in the system. That
is why we consider only the received signal strength instead of
signal-to-interference-plus-noise ratio (SINR) [12].

2.4. Density-aware cell zooming

Let’s assume that the base stations located in a cellular network
has an ability to estimate the network density. Then the adaptation
of their transmit power levels using (9) would be possible in order
to satisfy a provided outage probability level in a decentralized or
distributed fashion [12]. Using (9), the transmit power has to be
adapted to its minimized value

v/3
. T(_3log(F) (10)
tTcC a7 A '

where the required outage probability P} is a network design pa-
rameter set by the network operator and A is either IDE or CDE.
We assume that using some technique, IDE or CDE, base stations

estimate the density of the network. Then, they employ the esti-
mated density A to set their transmit power using (10).

Although many phenomenon and impairments that affect the
received signal strength are not included, this model is very prac-
tical as a result of its simplicity. Many users in a cell may indepen-
dently measure the received signal strength. These measurements
may be transmitted to a mobile edge computing (MEC) entity, and
fusion of the results may be exploited by the MEC and base sta-
tions to decrease the impact of fading and shadowing. By means
of the user equipment signal strength measurements, base stations
will be able to arrange their transmit powers immediately bounded
with the time period of the density estimation. A simple and fast
density estimator will be very rewarding for this matter. Hence, we
suggest two novel three-dimensional density estimators.

All these models need to be validated. In the sequel, we vali-
date these models by using Monte Carlo simulations and leverage
them to demonstrate their applications and analyze the outcomes
for different scenarios.

3. Validation of network density estimators

In this section, we present the simulation results for validat-
ing IDE and CDE. Besides, we discuss these two estimators based
on some analyses including the impact of neighbor proximity in-
dices, log-normal shadowing, path-loss models, and different non-
uniform deployments.

3.1. Simulator design

These network density estimators are validated by Monte-Carlo
simulations implemented using Matlab. In the simulations, a
number of base stations and UEs are uniform randomly deployed
in a three-dimensional Poisson process in Matlab. For each run
of the simulator, the locations of BSs and UEs change randomly.
We assume that UEs can measure the RSS from their closest
base stations. Table 1 presents a summary of symbols and the
parameters which are considered during the validations of two es-
timators. Actual density, A, is the deployment density, which is the
number of UEs and BSs divided by the volume (m?3). The estimated
(effective) density, A, is the computed density value after applying
one of the density estimators in a network. Sparse deployment, Ag,
dense deployment, Ap, ultra-dense deployment, Ay show different
deployment density for different network scenarios [12]. Path-loss
exponent, y, is the coefficient for the path-loss model in the
range between 0 and 7, which is already determined as empirical
values for different indoor and outdoor scenarios [18]. ry is the
reference distance in the far-field of the antenna, which is selected
as 1 m for simplicity. We assume that the random distances in
the network are generally larger than the reference distance. P;

Table 1

The symbols, notations, values and units of the 3-D simulation parameters.
Parameter Default value Units Ref
Actual density, A [0.0001,0.003]  nodes/m3  [12]
Estimated (effective) density, 0 (5) or (8) nodes/m3
Sparse deployment, Ag 0.0005 nodes/m? [12]
Dense deployment, Ap 0.0015 nodes/m? [12]
Ultra-dense deployment, Ay 0.003 nodes/m3 [12]
Path-loss exp. y O<y<7 [24]
Reference distance, ro, 1 m [19]
Transmit power, P; [10,100] mw [27]
Adapted transmit power, P (10) mw
Threshold (Receiver sensitivity), T 5x 10713 mw [12]
Required outage probability, P} [0,1] [12]
Simulated outage probability, Py [0,1] [12]
Analytic outage probability, Py, [0,1] [12]
Nearest neighbor index, k [1,00) [12]
Selected maximum value of nearest neighbor index, N [1,00) [12]
c 10-5 [12]
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is the transmit power for base stations which is selected up to
the 20 dbm considering the small cell requirements [12]. B is the
transmit power for base stations adapted by the proposed model
(10). T is calculated by T =CPr:¥, where r. is the maximum
communication range. This threshold value for the network outage
model, which is the receiver sensitivity, and it provides the mini-
mum power requirement to receive a signal [12]. P is the required
outage probability which is provided by the network operator. Py
is simulated and calculated by performing the proposed model (9).
Po, is calculated by using the CDF of the network outage model
(7). The nearest base station neighbor for a UE is represented
as k which is in range of [1,00) for a model based on Poisson
Point Process. N is the selected maximum value of the nearest
base station index. Moreover, C is a constant originated from non-
distance-based factors and antenna gain, which is calculated as
explained in Section 2.1. The results are the averages of 10* runs.

3.2. Validation of the interference-based network density estimator
(IDE)

To validate IDE, base stations are assumed to be randomly de-
ployed with various densities from sparse networks to dense net-
works in a spherical simulation environment with a radius of
250m. A randomly selected point designates the location of a UE.
We assume that this UE measures the aggregate signal power from
the first six base stations closest to it; N = 6. The averages of 10*
simulation runs are compared to the results of the analytic model
(4) presented in Section 2 under the same set of parameter values.

Fig. 1 shows the simulation and analytic results based on differ-
ent path-loss exponent (y) values and various densities. As can be
seen in Fig. 1, the simulation results validate w; in (4). The accu-
racy of the results decreases as the environment gets harsher, i.e.,
when path-loss exponent becomes larger. In harsh environments
with a large y, only the overall strength of the signals become
smaller. The errors in the channel model such as deviations in the
y estimates will significantly impact the density estimators.

We define the average absolute percentage deviation as
AAPD = 100|)L A|/A. We present the AAPD results for IDE (AIDE)
in Table 2. For various deployments with different densities, the
AAPD results show that the estimation results are at an acceptable
level; the AAPD values are generally less than 3%. IDE considers
only path loss and non-distance related fading in signal measure-

%103

-$-Simulation when = 1
=--Analytic when ~ =
—4-Simulation when v = 1.5
—Analytic when v = 1.5
-$-Simulation when ~ = 2
= -Analytic when v =2

~

(mW)

o

[ec]

Aggregate interference
(o]

ments. Over channels that are prone to different types of fading,
the deviations will be larger.

3.3. Validation of the multi-access edge cloud-based network density
estimator (CDE)

In the simulations for validating the Multi-acces Edge Cloud-
based Network Density Estimator (CDE), a set of user equipment
and base stations are assumed to be uniform randomly deployed in
a field of interest following 3-D Poisson process in Matlab. At each
run of the simulator, the locations change randomly. UEs measure
the RSS from their first closest base stations by using the chan-
nel model described in Section 2.1 and these measurements are
assumed to be collected at a mobile edge computing (MEC) en-
tity. Therefore, k; =1 and K = Z'}=1 kj =n, for A, where n is the
number of samples collated at the MEC. Then, (8) is employed to
compute the estimator in nodes/m3. The results are the averages
of 10 runs. The values of the parameters employed in the simula-
tions are shown in Table 1.

We present how accurate CDE performs in Table 3 for various
actual deployment densities A. The first column of this table is the
actual density and the second column is the result of the estimator
A. CDE works with acceptable accuracy and the AAPD is always
less than 3%.

The CDE results when A =5 x 104 nodes/m3 for different
path-loss exponent (y) values are shown in Table 4. The AAPD
values are considerably small for any channel model with various
path-loss exponent values. The effect of the path-loss exponent on
the accuracy of the CDE is not dramatic.

Unfortunately, CDE has some deficiencies. Firstly, similar to IDE
it only considers the path-loss and the non-distance related fading.
Secondly, the time to compute CDE can be long. UEs collect mea-
surements and send them back to the base stations. Base stations
convey these measurements to the mobile edge computing (MEC)
entity in the network and the MEC estimates the density and in-
forms the base stations about the result. As the third deficiency, we
can partially say that CDE may yield biased results when the mea-
surements are collected from overlapping regions. Since we employ
likelihood estimation, CDE depends on the strict assumption of in-
dependence among measurements. When the measurements are
collected from overlapping regions, there will be a large amount
of correlation among measurement samples that will create a bias
in the estimates.

A (nodes/m3)

3 3.5 4 4.5 5
x103

Fig. 1. Mean aggregate interference power (mW) for various deployment densities when y =1, 1.5 and 2, respectively, and P, = 100 mW.
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Table 2

The AAPD and 99% confidence limits in the estimator for various deployments (A)

(nodes/m?) where y = 1.5 and N = 6.

A(x1073) e (x1073) AAPD (%) 99% confidence limits of Ajpg x (1075)
0.2 0.20 0.81 +0.17

0.4 0.40 0.06 +0.36

0.6 0.60 0.73 +0.57

0.8 0.81 139 +0.84

1 1.03 2.52 +1.16

12 1.19 0.63 +1.01

1.4 1.43 1.91 +1.55

16 1.82 0.65 +1.48

Table 3

The AAPD in CDE for various actual deployment densities A (nodes/m?) where y =3,

and Acpg, (nodes/m?).

99% confidence limits ofXCDE1 (x1079)

A(x1073)  Acpg, (x1073)  AAPD (%)
1 0.98 2.50
2 1.96 2.09
3 2.92 2.66
4 3.91 2.16
5 493 1.44
6 5.93 1.16
7 6.85 2.11
8 7.91 1.12

+0.80
+1.54
+2.37
+3.18
+4.06
+4.73
+5.66
+6.49

Table 4

The impact of the path-loss exponent () on the CDE and the AAPD in the es-
timators where the actual deployment density is A =5 x 10-3 (nodes/m?), and
Acpg, (nodes/m?).

Y Acop (x1073)  AAPD (%)  99% confidence limits of Acps, x (10-5)
2 491 171 +£3.54
25 490 1.94 +£3.46
3 493 132 +£3.55
35 491 1.87 +£3.54
4 492 152 +£3.54
45 494 129 +357
5 490 1.98 +£3.54
55 491 1.75 +£3.44
6 493 1.45 £3.50

3.4. Discussions about density estimators

With the help of the Monte Carlo simulations, two different
approaches are performed by using both 3-D edge cloud-based
density estimator and the newly proposed 3-D aggregate interfer-
ence based density estimator. In these experiments, we assume
that UEs are able to collect RSS measurements from their first
six (k=1,2,3,4,5,6) and (N =6) closest BSs. As it can be seen
in Fig. 2 and Table 5, the aggregate interference method provides
more accurate results in comparison to the collaborative estima-
tor. In these simulations at each run nodes positions are changed
randomly.

When both of two estimators use the first k™ closest BS mea-
surements, the results are really prone to the accuracy of the RSS
measurements. In addition to the number of proximity indexes, the
location of base stations and UEs that RSS values collected also
affect the accuracy of the estimators. In interference-based den-
sity estimator, if the RSS measurements are collected from a large
number of distant base stations, the estimations provide more ac-
curate results. The aggregate interference-based estimator can be
performed by an individual node, however, CDE requires the other
nodes’ contributions to provide more accuracy. The MEC-based
density estimator can be performed even when the channel con-
ditions are very harsh such as when the path-loss exponent is
greater than the value of three.

6 -EIDE
B )\coe

2 4 6 8

Actual density (\)(nodes/m®)  x107

Fig. 2. The accuracy of different estimation, average absolute percentage deviation
(AAPD) results of Ajpr and Acpg, respectively (nodes/m?) when y = 1.5.

3.4.1. Impact of neighbor proximity indices

We simulate an environment which is a spherical volume as
can be seen in Fig. 3. In this volume, we distribute the base sta-
tions and user equipment uniform randomly. In this case, as a dif-
ferent application scenario from Section 3.3, all of the user equip-
ment is involved in the estimation process in a fixed topology. At
each step, UEs collect RSS measurements from the closest BS for
computing Acpg, in the first variant of CDE. In the second vari-
ant of CDE, UEs collect RSS measurements from the first six clos-
est base stations for computing Acpg,. We assume that each UE
sends these measurements to MEC over the associated BS. Then,
MEC performs (8) by using these measurements. The results are
presented in Table 6.

According to the results, CDE has accurate outcomes. However,
if we increase the number of closest neighbor BSs to get RSS
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Table 5
The accuracy of different estimation AAPD results of /):IDE (nodes/m?), and icns (nodes/m?), respectively when y = 1.5.
A (x1073) A eoe
X,DE, (x1073)  AAPD,%  99% confidence limits, (x10°) 7»(1)51 (x1073)  AAPD,%  99% confidence limits, (x107°)
1 0.95 4.92 +0.23 0.94 6.45 +0.20
2 1.92 4.16 +0.46 1.90 5.13 +0.39
3 2.88 3.95 +0.69 2.86 4.57 +0.57
4 3.85 3.66 +0.94 3.83 417 +0.74
5 483 335 +1.13 4.81 3.89 +0.94
6 5.80 3.28 +1.42 5.78 3.62 +1.15
7 6.79 2.99 +1.59 6.76 3.38 +1.29
8 7.75 3.17 +1.87 7.73 3.34 +1.45
Table 6 R N R
The actual densities (1) (nodes/m?) versus the estimated densities (1) (nodes/m?) for Acpg, and Acpg,. The AAPD (%) results are also presented.
A (x1073) cha XCDEE
XCDE“ (x1073)  AAPD,%  99% confidence limits, (x10-%) XCDES, (x1073)  AAPD,%  99% confidence limits, (x10-%)
1 0.94 6.43 +1.84 0.91 9.18 +0.89
2 1.89 5.28 +2.73 1.85 7.41 +1.33
3 2.86 4.59 +3.16 2.81 6.48 +1.69
4 3.83 4.21 +3.76 3.76 5.88 +1.82
5 4.80 3.96 +4.31 4.72 5.51 +2.12
6 5.78 3.59 +4.67 5.69 5.15 +2.32
7 6.76 3.46 +5.09 6.66 491 +2.40
8 7.73 3.34 +5.44 7.62 4.73 +2.59
0.0151
$ Simulation A\;pg
- -Actual X (0.005)
1&
4 o~ 001f
~& c
N @
-
i 2
~0.005F[-[4 $ %+ $ F P 1= e
0 1 L L L 1 1 J
10 15 20 25 30 35 40
k" nearest neighbor (progressively)

R i A

Mobile Users Small Cells BS Macro-cell BS

Fig. 3. Collecting RSS measurements from the k™ nearest BS.

measurements, it increases the sampling from overlapping regions,
which results in less accurate outcomes than the estimation results
including RSS measurements from the first closest BS. An increase
in the number of the nodes near the network edge effects the re-
sults negatively since measurements are exposed to the shadowing
and the multi-path fading more than the nodes near the middle
of the network. Moreover, Table 6 shows that when the number
of closest neighbors increases the variance of the estimator results
declines.

The neighbor proximity has also impact on IDE, which is pre-
sented in Fig. 4. It can be seen that when the proximity index in-
creases, the accuracy of the estimator improves, and the variance
of the results decreases.

3.4.2. Impact of log-normal shadowing

In order to derive our proposed density estimators, we ex-
ploit the deterministic simple path-loss model as presented in
Section 2.1. However, due to the obstructions such as buildings,

Fig. 4. The estimator X,DE results along with different proximity indexes k where
y =3, and A = 0.005 (nodes/m3).

walls, or trees, received signal strength measurements are sub-
ject to a stochastic channel impediment which is called shadow-
ing. These stochastic external factors give rise to log-normally dis-
tributed (or normally distributed in the dB scale) received sig-
nal strength results. Although two proposed estimators consider
small-scale fading effects within the coefficient C as expressed in
Section 2.1, shadowing is not incorporated in these models. For this
reason, a set of simulation is conducted by using (11) to analyze
the shadowing effects:

Pu(r) = 10(Iogio(€) + logyo(R) + ¥ logso () ) + oy (1)

where 1 is based on zero-mean Gaussian distribution with a
standard deviation of o. We analyze the impact of log-normal
shadowing characterized by the standard deviation of 2 <0y < 12
dB on both proposed estimators [28]. From these results, we ob-
serve that while the effect of shadowing increases, the accuracy of
the results significantly decreases. Thus, the proposed estimators
can be enhanced by incorporating shadowing models. To remove
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shadowing, we apply (12) a different path-loss model which is al-
ready presented in [29].

2
o
Rtro =CR(32) e "), (12)

where o represents the standard deviation of the log-normally
distributed shadowing and can be computed by collecting multiple
x; values between the same pair of nodes. When the standard
deviation is 2 dB, 3 dB, and 4 dB, the AADP results of estimations
obtained from IDE are 3.27%, 24.75%, and 62.26%, respectively.
However, if we incorporate the shadowing model, and leverage
(12) instead of simple path-loss model, the AAPD results are equal
to 0.76% and 13.93%, and 38.07%, respectively. Since the coop-
erative density estimator has cooperation among the nodes, the
results of this estimator may be less prone to shadowing effects
than the interference-based density estimator. By considering
our observations and another analysis for RSS-based distance
estimation under log-normal shadowing [30], it can be concluded
that RSS-based estimators are highly susceptible to log-normal
shadowing even when a shadowing model is applied. The main
observation from the impact of shadowing analysis is that log-
normal shadowing corrupts estimations and causes exponentially
growing errors over the measurements.

3.4.3. Impact of path-loss model

Choosing a path-loss model in wireless networks is critical if
an RSS-based method is using. For the sake of simplicity, the sim-
ple path-loss model which is considered as an isotropic model can
be chosen while deriving the analytic models as we do in this pa-
per. However, we can enhance our models to overcome the line-
of-sight and non-line-of-sight effects at the same time in a wire-
less network. Thus, we leverage an anisotropic path-loss exponent
which is already introduced in [31], and demonstrate ghe results

_min

by comparing these two different approaches. 8 = —,i;ie% is the
anisotropic path-loss coefficient [31], where Rpyqx is the distance
between a BS and the farthest position of the coverage area, Py, is
minimum threshold power in this coverage boundary. Fig. 5a and b
present the results from IDE and CDE when different coverage ar-
eas (R) are considered. Since CDE pushes for collaboration among
the nodes, and take samples from different parts of the network,
CDE has more accurate results than IDE. While the size of the net-
work area is changing, the accuracy of the anisotropic model is
higher than the isotropic one. If we use the isotropic path-loss co-
efficient, since it is a constant value which we choose at the be-
ginning, it does not change during the estimation process. How-
ever, the anisotropic model can adapt itself to these changes at
run-time, and provide more convenient values to the estimators.

3.4.4. Impact of non-uniform distributions

Since the cellular networks have a stochastic nature in real-life,
the distribution of base stations and users may be non-uniform.
In this study, although we assume that distributions of BSs and
UEs are uniform to propose a tractable and easily understandable
analytic model, we also analyze some non-uniform deployments
to show how this phenomenon affects our proposed estimators.
To create non-uniform scenarios, we exploit Beta (B) distribution
which is an asymmetrical two-parameter distribution close to the
log-normal distribution [32]. (13) represents the PDF of Beta distri-
bution [33]. Based on different shape tendencies provided by B dis-
tribution, we deploy BSs and UEs in a 3-D simulation environment.
Table 7 roughly categorizes all these different deployments into six
scenarios entitling different tendencies. In the first four scenarios,
we deploy BSs and UEs based on B distribution by using the val-
ues of a and b for each of BS and UE distributions. In the last two

10}
Il |sotropic Model

Bl Anisotropic Model

70 90 110 130 150 170 190
Different Coverage Areas (R)

(a) IDE

16
Il|sotropic Model

14 Bl Anisotropic Model

12

AAPD (%)
(00]

50 70 90 110 130 150 170 190
Different Coverage Areas (R)

(b) CDE

Fig. 5. The comparison of isotropic and anisotropic path-loss model for different
estimations, and average absolute percentage deviation (AAPD) results of Ajp and
Acpe, Tespectively when isotropic y = 2.

remaining scenarios, firstly we uniformly deploy BSs, but we ap-
ply a and b values in Table 7 for the distribution of UE, which are
following the three non-uniform tendencies. Secondly, we just use
these two parameters for the BS distribution, but the deployment
of UEs are selected uniformly. In Fig. 6, all these tendencies em-
ploying different values of a and b are demonstrated. In Table 7,
the first scenario is called Uniform since the parameters a and b of
B distribution are equal to 1, where BSs and UEs are located uni-
formly in the environment. The second one is called Central Ten-
dency providing a centralized distribution so that BSs and UEs are
gathered at the center of the spherical network area as indicated
in Fig. 6. Centrifugal Tendency is the third scenario where the dis-
tributions of BSs and UEs are off-centered. This tendency locates
BSs and UEs close to the boundaries of the network. The tendency
of Skewness has a skewed shape, in which UEs and BSs are located
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Table 7

When the actual density value equals to 1(x10~4) (1) (nodes/m?), estimated density results (’)\L) (nodes/m?3) of /}:IDE and ’)\LCDE for different uniform and non-uniform distri-
butions are presented. All AAPD (%) results are also presented with their 99% confidence interval (Clggy).

Distributions Shape parameters X,DE XCDE
BS UE a b X,DE (x107%) AAPD % Clagy (x1076) XCDE (x107%) AAPD % Clggy (x1076)
Uniform Uniform 1 1 0.98 1.24 +0.33 0.99 0.32 +0.40
Central Central 3 3 0.65 34.84 +1.91 0.85 15.32 +0.74
Tendency Tendency 5 5 0.85 14.86 +3.65 1.13 13.03 +1.43
7 7 1.08 7.58 +3.08 1.50 49.58 +2.23
Centrifugal Centrifugal 0.1 0.1 0.75 25.46 +2.35 1.74 74.00 +3.87
Tendency Tendency 0.5 0.5 0.56 44.46 +2.24 0.63 37.30 +0.57
0.7 0.7 0.48 52.45 +1.64 0.59 41.50 +0.43
Skewness Skewness 1 3 1.11 10.70 +4.10 1.84 83.56 +2.38
Tendency Tendency
4 1 0.77 22.78 +2.80 0.79 21.13 +1.09
Uniform Non-uniform 10 10 0.71 29.01 +5.84 0.72 27.85 +0.26
0.3 0.3 0.71 28.93 +8.43 0.53 46.89 +0.19
0.5 0.5 0.73 26.86 +7.55 0.61 39.44 +0.22
0.7 0.7 0.73 27.16 +7.03 0.65 34.94 +0.21
1 4 0.94 6.26 +6.10 0.60 40.43 +0.32
1 5 0.90 10.24 +5.77 0.56 44.35 +0.30
4 1 0.51 48.77 +6.91 0.49 50.97 +0.21
20 1 0.47 53.43 +4.23 0.38 61.62 +0.21
20 10 0.61 38.90 +5.49 0.58 42.45 +0.26
10 20 0.88 12.12 +6.11 0.81 19.06 +0.31
100 20 0.55 45.40 +6.21 0.45 55.13 +0.23
Non-uniform Uniform 1 20 0.52 47.86 +1.60 0.29 70.73 +0.28
20 1 0.09 91.30 +1.86 0.32 67.65 +0.18

Uniform
2 -
— ] — b = 1
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&
A 1
A
0.5¢1
0
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T
Centrifugal Tendency

Central Tendency

Centrifugal Tendency
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i ———
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Fig. 6. The Probability Density Function (PDF) of B Distribution vs. x parameter when different a and b parameters are used.

at a particular region of the network. The last scenarios include
Non-uniform distribution for UEs, and Uniform distribution for BSs,
Uniform distribution for UEs, and Non-uniform distribution for BSs.

fdla.b) = g

where B() is the Beta function, a and b are two different shape
parameters which change the shape of the distribution, and Ijoy)

(13)

X711 =) (%),

is to ensure that the values of the variable x is in the range of
between 0 and 1.

According to our observations, we can state that the Uniform
Tendency scenario where both BSs and UEs are deployed uniformly,
the accuracy of the estimators are the best in comparison to the
other cases as expected since we create our models based on the
3-D Poisson Point Process with an assumption including a uniform
deployment of BSs and UEs.
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In Central Tendency, while the level of the centrality is soaring
IDE provides resilient results. The reason for this case is that when
nodes (UEs and BSs) are close to each other near to the center
of the environment, the amount of the path-loss, shadowing, the
nodes causing non-negative effects at the corner of the network
decrease. However, since CDE take samples from different UEs col-
laboratively, the closest nodes at the center cause an increase of
overlapping measurements, and some sparse nodes near to the
boundary of the network may not provide good measurements that
are why CDE gives worsening outcomes as the central tendency is
rising.

In scenarios built upon Centrifugal Tendency, due to BSs
and UEs close to the boundary of the coverage area, and the
distances between the nodes are larger, the average interfer-
ence will then decrease progressively. Thus, the accuracy of
the results provided by IDE becomes lower. However, while
the centrifugal tendency is diminishing, CDE yields more ac-
curate results because BSs and UEs close to the center be-
come sparse nodes, which increases the error rate of the
measurements.

When the deployment of BSs and UEs tend to Skewness Ten-
dency, they gather around a particular area of the network where
BSs and UEs are too close to each other. Symmetrically changing
the parameters a and b may not provide the same shape variation.
Therefore, different observations are made for the values of these
two shape parameters. For example, when we increase b, we ob-
serve that the accuracy of the results further declines. However,
the impact of changing the value of a causes smaller effects over
the results. After the value of 10 for a or b, which means higher
non-uniform deployments, outcomes of the estimators become less
accurate. Especially, the distribution on BSs affects the accuracy
of the results significantly in comparison to the distribution of
UEs.

With these four deployment tendencies, we also analyze each
of BSs and UEs individually such that UEs have a non-uniform ten-
dency, but the distribution of BSs are uniform. In this case, the
deployment of UEs follows above three non-uniform tendencies.
When UEs have a central tendency, the accuracy of the estimator
results is close to each other. However, in the case of centrifugal
tendency, IDE and CDE have different accuracy for their outcomes
depending on the positions of UEs and BSs in the middle or at the
corner, and the inter distances between BSs and UEs. Eventually,
when the deployment of BSs and UEs are uniform, if the samples
are taken from UEs which are close to the center of the network,
two estimators provide more and more accurate results. Further-
more, if the network follows a non-uniform distribution, then the
number of the k™ nearest neighbor can be increased, and sam-
ples can be taken from UEs at anywhere of the environment ran-
domly to get better outcomes. Moreover, we observe that in sparse
networks, the performance of IDE is better than CDE because CDE
needs collaboration among the UEs in the network. However, in
dense networks, CDE gives more accurate results if the samples
are collected from UEs randomly for the non-uniform deployments.
The average AAPDs of the proposed estimators’ results for non-
uniform deployments are approximately 27% for IDE and 40% for
CDE.

All in all, in Section 3.4, we analyze our proposed estimators
by taking into consideration of neighbor proximity, the channel
impediments such as shadowing, the impact of the propagation
model, and finally we examine the accuracy of the estimators un-
der different non-uniform deployments. We can conclude that RSS-
based estimators can be derived by using simple models to ease
tractability, but at the same time, we should consider all these fac-
tors which are because of the stochastic nature of received signal
strength.

4. Density-aware outage analysis

In this section, we demonstrate the impact of density, transmit
power and path-loss exponent on network outage [12].

4.1. Simulator model

We uniform randomly determine locations of base stations in
a field with an actual deployment density of A nodes/m3. A uni-
form randomly selected point is considered to be the location of
the reference user equipment. Using the simple path-loss model
described above, we compute the received signal strength from the
closest base station. If the signal strength is larger than the thresh-
old value (receiver sensitivity) the run is assumed to be successful;
otherwise, an outage occurs. The ratio of outages out of 10* runs
of the simulations is recorded as the outage probability. We sim-
ulated a 500 x 500 x 500 m> area, with a transmit power of 100
mW, by considering different deployment densities such as sparse,
dense and ultra-dense, and the path-loss exponent is three; i.e.,
y = 3. The values of the parameters employed in the simulations
are shown in Table 1. In the figures we present in this section, we
show the results of the simulations together with the results of the
analytic model in (9).

4.2. Impact of network density on outage

As density increases, there will be a larger number of base
stations deployed in the field. Consider a randomly selected user
equipment in the field. The distance of it to the closest BS will
be smaller; consequently, the path-loss will be smaller in dense
networks. As shown in Fig. 7, the outage probability in dense
networks will be smaller assuming that all other parameters are
kept constant. The density of BSs impacts the quality of service as
shown in Fig. 7. The transmit power has a positive impact on the
received signal strength. The more transmit power means more re-
ceive signal strength as it can be understood from the propagation
model and is presented in Fig. 7. When the network is dense, the
outage probability will decrease obviously.

For the same distance and level of noise, the crucial factor
affecting the quality of communication is the threshold level of
sense; i.e., receiver sensitivity. In other words, it is easier to com-
municate with a UE that has a higher level of sensitivity as demon-
strated in Fig. 7. By increasing the complexity of receivers, the
threshold can be decreased. Complexity and cost of receivers in-
troduce a trade-off with coverage.

Fig. 7 demonstrates the relation between outage Py, A and y.
The path loss exponent (y) negatively affects the received signal
strength. When the channel is prone to high loss, i.e., when the en-
vironment is harsh, it is more probable for the randomly selected
reference node to be out of coverage.

4.3. Impact of transmit power on outage

A large amount of transmit power is beneficial for the quality
of service in a network albeit bad for the environment. The more
transmit power implies the more coverage area when the other
variables are constant. Furthermore, it implies a larger amount of
interference. However, in this paper, we assume a robust interfer-
ence management scheme that may overcome the negative impact
of interference on capacity. If the density of the network increases,
e.g., additional (mobile) base stations are deployed or redundant
base stations are turned on, the outage probability approaches to
zero as shown in Fig. 8. The threshold has the same impact on a
network similar to that of the density. If the threshold decreases
then the outage approaches to zero (Fig. 8).
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4.4. Impact of path-loss exponent on outage

The path loss exponent is a significant factor that character-
izes the wireless channel. When y is extremely high, then it is
more probable to be out of coverage as it can be observed in
Figs. 8 and 9. Let’s consider the same transmit power, it can be
clearly seen that when the path-loss exponent is high then the
network coverage will decrease. Thus, it is more important that an
estimator should determine the channel conditions like the path-
loss exponent.

4.5. Impact of receiver sensitivity on outage

We consider the receiver sensitivity as a threshold value that
is the minimum requirement to be able to decode signals. If the
threshold value increases, the outage probability will increase as it
is shown in Fig. 9. Increasing the transmit power leads to a declin-
ing outage ratio. As it can be seen in Fig. 9, both the threshold and
the path-loss exponent considerably affect the network outage.

5. Validation of density-aware outage probability

In the light of the results presented in Section 4, we claim that
in a cellular network, base stations have to change their trans-
mit power according to the network density. The base stations
have to be able to estimate the network density by means of
equipped with tools and techniques. Pre-configured decisions will
not be sufficient since especially when mobile base stations are
considered, future cellular networks will be highly dynamic. Stat-
ically, configured parameters will decrease the quality of service,
and result in many coverage control problems. In this work, we
present a run-time adaptable density-aware and -adaptive three-
dimensional cell zooming technique using (9), and validate it by
using Algorithm 1. For one deployment density (1) and one trans-
mit power (P;) settings the time complexity of Algorithm 1 is
O(S), where S is the number of simulation runs. This adaptation
is also important for energy conservation. After determining the
minimum transmit power budget of a base station using this tech-
nique, the power can be allocated to individual users or resource
blocks [34] as a sequel that is out of the scope of this work.

Algorithm 1 Validation of the Density-aware Outage Probability
Model.

1: Input: A, y, B, k, T, Cntr =0

2: Output: (Analytic) Py, and (Simulated) Py

3: for S = 0; S<10000; S++ do

4 Select a set of UE and BSs;

5

6

7

Find (A) by using CDE (8) or IDE (5);

Select a UE as reference (node);

Find r, using Euclidean distances between UE and BSs,
where k = 1;

Calculate x;, < CP (%‘;)y;
9: if If x, < T then

%

10: Cntr++; [[This UE is in outage

11: else

12: Do nothing; //This UE is in the coverage area
13: end if

14: end for

15: Find Py, by using (9) with i
16: Py <« Cntr/S;
17: return (Py,, Po);

In Algorithm 1, a set of uniform randomly distributed base sta-
tions and user equipment with a density of A (nodes/m3) is sim-
ulated using MATLAB. In a three-dimensional field, after selecting
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Fig. 9. Impact of path-loss exponent (y) and threshold (T) on outage probability
for various parameters.
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Fig. 10. Analytic outage values based on the estimated network density X,DE and
,cpe for different transmit powers (P;) when the network density is changing.

a set of base station and user equipment positions, the estimated
density (M) is calculated. Then, a random point is picked as the po-
sition of the reference user equipment (UE). The distance between
the UE and the closest base station is found, using the channel
model presented in Section 9, and we calculate the received sig-
nal strength. If the received signal strength is less than the given
threshold (T), this simulation run is recorded as an outage. For the
same simulation environment, the simulations are repeated 10*
times and the ratio of outages is computed. According to the re-
sults, we compare the analytic outage probability (Pp,) by consid-
ering (9) and the simulated outage ratio (Pg).

In Fig. 10a and b, we show the adapted outage probability for
various transmit powers as the density of the network changes.
These simulation results validate the analytic model for cell zoom-

ing presented in (9) and in (7). The results indicate that if the
transmit power of BSs (P;) does not change, the outage probabil-
ity (Pg) of a UE decreases when the network is getting denser.
However, in sparse networks, the outage probability increases if
the same P; is used. This results also claims that there is a di-
rect relation between the base station density and network outage.
By considering the impact of the estimators, it can be said that
since CDE is based on collaboration between the nodes, and if the
kth nearest neighbor increases, the variance of the results will be
smaller than IDE. Depending on the positions of selected UEs and
BSs, the accuracy of the results is changing. For instance, UEs and
BSs located close to the center of the network increase the accu-
racy of results, on the other hand, UEs and BSs near to the border
of the coverage area decreases the results. When a network oper-
ator becomes more tolerant to degraded quality of experience by
users due to the outage, the amount of energy conservation can be
increased. However, customer satisfaction is significantly related to
the outage probability. As the network density increases, it will be
required to decrease the transmit power in a density-aware fash-
ion to preserve coverage, to keep the outage probability under con-
trol and to conserve energy. The main advantage of the proposed
cell zooming technique is that it requires minimal communication
overhead, fast and simple to implement. However, the deficiencies
of the estimator have to be enhanced. A much faster density esti-
mator that is tolerant to correlated samples is required.

6. Validation of the density-aware power adaptation

In this section, we validate (10) by using two different schemes:
one of them is based on the global density of BSs that we used
in Section 5, where all measurements are collected with the help
of edge computing. As the second approach, each of BSs deter-
mines its own density result without using edge computing, in
other words, we use local densities belongs to each of BSs.

6.1. Validation of density-aware power adaption technique with edge
computing

In order to validate (10), we follow Algorithm 2. The algorithm
has O(S) time complexity, where (S) is the simulation count for
one deployment density (A) and one required outage (P}). We
simulate a spherical volume consisting of uniform randomly dis-
tributed BSs and UEs with different actual deployment densities
of A (nodes/m3). At each simulator run, we estimate the effective
density for the whole network, then we select a random point to
be used as the reference UE. We update the transmit power of each
BS by considering the model in (10). Then, we calculate the RSS
based on the simple path-loss model explained in Section 2.3 from
the closest BS of the reference UE where y is 2. If the computed
RSS is lower than the given threshold value T, the result of this
run is classified as an outage, otherwise, it is evaluated as success-
ful since it is within the coverage of the clustered network. We run
the simulations 10* times and the ratio of the number of outages
to the total number of simulation runs is determined as outage ra-
tio that is represented as achieved Py in Table 8 with using Ajpg,
and )"CDE-

The outage model (9) and the transmit power adaptation tech-
nique in (10) provide us accurate results as it can be seen in
Table 8. For each required outage value, we use different actual
density (1) values which are between 1 x 10~* (nodes/m3) and
9 x 10~ (nodes/m3). Then the average outage results for different
densities are presented. The achieved outage closely matches the
required outage which means that the proposed transmit power
adaptation technique based on the provided outage probability is
successful. Each of the estimators can be used in order to make
the network coverage dynamic. The main conclusion to be drawn
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Algorithm 2 Validation of the Density-aware Power Adaptation
Technique.
1. Input: A, ¥, P, k, T, P}, Cntr =0
: Output: (Simulated) Py
: for S = 0; S<10000; S++ do
Select a set of UE and BSs;
Find (1) by using CDE (8) or IDE (5);
Set P for all BSs using (10) with A and F}
Select a UE as reference (node);
Find r, using Euclidean distances between UE and BSs,
where k = 1;

Y
9: Calculate x;, < Cﬂ(%) :
10: if If x, < T then

X NI AN

11: Cntr++; [[This UE is in outage

12: else

13: Do nothing; //This UE is in the coverage area
14: end if

15: end for

16: Py < Cntr/S;
17: return (Pp);

is that the relation between the density of base stations and net-
work outage require the adaptation of the transmit power by con-
sidering this relation.

6.2. Validation of density estimator and power adaption technique
without edge computing

A new approach as utilizing both of these estimators with-
out using the edge computing can be applied locally in the net-
work, and the power adaptation technique can be employed with
these local estimation measurements. In other words, instead of
the global density of the network, each of the base stations can
use its own effective density result.

In these simulations, as it can be seen in Fig. 11 each base sta-
tion uses its calculated density measurement by using density esti-
mations of its connected closest UEs. Each user equipment receives
a number of RSS measurements from their first k closest base
stations and estimates the density by employing the IDE or the
CDE methods. Each base station collects the estimation results
from their closest user equipment, and the average of these es-
timations are calculated as local base station density. After each
base station determines the density result itself, (10) is used for
adapting the transmit power based on the required outage prob-
ability. In the simulations, the same approach like in Section 6 is
exploited so that every time each BS changes its transmit power
based on the estimated density and the outage probability.

Table 9 presents the AAPD results between the required outage
and the analytic outage values. The average outage results for dif-
ferent densities are presented. In these simulations, at each run of
the simulation, each BS calculates its own density instead of using

Table 8
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Fig. 11. Collectingi measurements (nodes/m3) from the first k nearest UEs.

the global density, then they change their transmit powers using
the model in (10). For the rest of the steps, the same approach in
Section 5 is used for calculating the required outage and analytic
outage. The results in Tables 8 and 9 indicate that IDE has more
accurate results so that we may employ IDE as a density estima-
tor based on the measurements of its associated UEs. Since CDE
needs more measurements than IDE, it provides less accurate re-
sults in comparison to the outcomes of IDE. In these simulations,
more accurate results are obtained while the large number of UE
is considered and the network is getting denser.

7. Related work

In this section, we present the related work in a categorized
fashion.

7.1. Distribution of base stations

In cellular networks, the spatial distribution of base stations in
order to obtain optimal deployments has been coming into promi-
nence. The stochastic models including optimum base station den-
sity have paramount importance to analyze the network perfor-
mance in terms of coverage, energy efficiency and quality of ser-
vice [35,36]. With the improvement of the network, to provide
higher capacity and coverage to users, increasing the number of
base stations is considered as a handy solution which is called
densification. Moreover, with the proliferation of base stations on
wheels and wings, small cells, and the user-controlled base sta-
tions always result in topology changes in the network. In that
sense, analyzing the spatial distribution of base stations by us-
ing the theoretical models is always a principal topic in wireless

Required outage probability (Py) vs calculated outage probability (Po) by using the X,DE. chs, which are the global density

of base stations, and AAPD (%) results.

P X:DE XCDE
Py AAPD, % 99% confidence limits, (x107>) Py AAPD, % 99% confidence limits, (x107>)

0.02 0.022 11.31 +1.12 0.022 8.81 +0.28
0.025 0.027 6.93 +1.13 0.027 7.29 +0.36
0.03 0.031 437 +1.35 0.031 471 +0.33
0.035 0.036 2.92 +0.96 0.036 4.06 +0.36
0.04 0.040 1.14 +1.38 0.041 3.60 +0.27
0.045 0.045 0.54 +1.23 0.046 2.35 +0.19
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Table 9

Required outage probability (Py;) vs calculated outage probability (Po) by using the X,DE (nodes/m?3), ’):CDE (nodes/m?), which
are the local density results belong to each of BSs, and AAPD (%) results.

P XIDE XCDE
Py AAPD, % 99% confidence limits, (x107>) P, AAPD, % 99% confidence limits, (x107>)

0.02 0.022 8.46 +0.98 0.023 17.60 +0.52
0.025 0.027 7.26 +2.35 0.029 15.00 +1.68
0.03 0.031 4.69 +2.07 0.034 12.84 +1.10
0.035 0.036 2.72 +1.45 0.039 12.17 +0.95
0.04 0.041 1.38 +2.48 0.044 7.61 +1.13
0.045 0.045 0.84 +2.74 0.049 7.28 +2.93

networks and still an open research question for next-generation
networks [37]. Although there are different statistical distributions
models such as Poisson, lognormal, Weibull, generalized Pareto and
alpha-stable in order to model the base station spatial density,
most of the studies leverage Poisson due to tractability as stated
in [37]. In addition to the base station density, the recent studies
reveal that the stochastic models including PPP provide tractable
models to control the cell size by considering the coverage proba-
bility and adaptation of transmit power [35,38,39]. In order to pro-
vide an enhanced quality of service mobile base stations and drone
base stations can be used as fast deployments, however, these net-
works require to transmit power adaptation in terms of energy ef-
ficiency, trajectory plans, and user connectivity [40-42]. Transmit
power can be minimized by increasing the number of base sta-
tions until the network density reaches a threshold value. The op-
timal network density provides an optimum power consumption
and enhanced coverage as stated in [43].

7.2. Existing density estimation methods

Since future cellular networks has a dynamic topology, the need
for the existence of robust density estimators is an open issue. Ex-
isting density estimators can be classified as (1) location-based;
(2) neighbor discovery based, and (3) received signal strength
(RSS) based methods. Location-based methods rely on GPS; e.g.,
node census (NC) [44]. Auxiliary systems consume extra energy,
and the density estimate is subject to localization errors. Neigh-
borhood discovery based methods estimate density based on in-
ferences drawn from in-network communication; e.g., NEST [45].
The accuracy depends on the traffic amount. The RSS-based den-
sity estimators are proposed in [18,19] for two-dimensional ad-hoc
networks. This type combines the merits of location-based and
neighbor discovery based estimation and overcomes their draw-
backs. However, the time required to compute the estimator may
be long.

7.3. How density of base stations affects network coverage and
capacity

Ultra-dense networks (UDN) are expected to provide high ca-
pacity. The potential of higher frequency bands is analyzed in [46].
In that work, UE and BS density, UE distribution and energy ef-
ficiency in a network are used to calculate transmit power by
considering signal-to-interference-plus-noise ratio (SINR) for pro-
viding better coverage. In a mobile network consisting of a large
number of uniform randomly deployed BSs, the outage probabil-
ity decreases with an increasing ratio of mobile-to-BS density [47].
An interference model for wireless networks consisting of uniform
randomly distributed nodes is combined with different types of
popular fading models in [48]. This model considers the interfer-
ence power by using a partial cancellation method and outage
probability calculated by using the nearest interferer instead of the
total interference power since the nearest interferer dominates the

total interference. A stationary receiver is considered as a base sta-
tion for a given user and the same transmit power is considered
for mobile units.

In the case of 5G networks, connectivity and coverage are two
important optimization parameters related to each other, and de-
signers should consider them jointly as in ad hoc networks [49,50].
It is underlined that the connectivity problem may not be handled
without adapting the transmit power to the network via present-
ing the results with two-dimensional simulations and models ap-
plying the connectivity of nodes, transmit power and density for
an ad hoc network. As the dynamic and distributed nature of the
future networks’ architecture, mobile ad hoc networks (MANET)
have a distributed and self-organized structure [51]. One of the
sample applications of MANETs is the vehicular ad hoc networks
(VANETSs). [52] states that such networks have a dynamic structure
that necessitates adapting the transmit power to some parameters
network such as distance between mobile nodes, density, the an-
tenna type and type of broadcasting for enhancing network perfor-
mance. Density and distance are the selected parameters for adapt-
ing transmit power in [52]. Density refers to the number of nodes
in a network per unit area. In dense networks, the distance among
nodes will be shorter. On the other hand, the distances among
nodes will be larger when the network is sparse. Hence, if the net-
work is sparse, the transmit power should be increased based on
the distance between the nodes, but if the network is dense then
we need less transmit power since the distance between nodes
will be smaller. However, we should consider the outage and the
interference in the network [5,53]. When the network is sparse,
the probability of outage will be higher and when the network is
dense then the interference between nodes will be higher if the
transmit power is not adapted to these changes.

7.4. Relation between aggregate interference, path-loss and BS
density

Understanding the characterization of aggregate interference
power in terms of the base station deployment and interference
management can provide better performance for homogeneous
and heterogeneous networks [54]. Joint power control and user
scheduling are proposed for ultra-dense networks by considering
dynamic channel conditions and unknown traffic demands in [55].
The aim of this model is to ensure energy efficiency while sup-
plying the quality of service and reducing the number of UEs in
outage depending on queue capacities of BSs. The network outage
is considered the fraction of undesired UEs whose handovers can-
not be admitted because of the queue capacity limitations, and the
density is determined as the average inter-site distance (ISD) for a
large homogeneous UDN deployment. In addition to homogeneous
cellular networks, a heterogeneous network is considered, and a
model consisting of optimal BS density by conceiving the QoS lim-
itations is analyzed in [56]. The proposed model aims at making
the network energy efficient and analyzes the effect of network
density on cost. A threshold value obtained by using path-loss and
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transmit power of the relevant BS is used to define outage proba-
bility.

With the proliferation of small cells, the fractal characteristic of
the coverage for cellular networks is more prone to the path-loss
effects [31,57,58]. In small cells, the characterization of wireless
propagation environment is volatile and complicated as stated in
[31] on the occasion of not only regular but also non-uniform ob-
structions arising from buildings, infrastructures, tress, and erratic
weather conditions. Both the line-of-sight and non-line-of-sight
signals affect the path-loss exponent value or path-loss coefficient.
Two different path-loss models are introduced, which are isotropic
and anisotropic by considering propagation directions. Isotropic
models are commonly used in the literature to make models sim-
ple as much as possible. However, due to the fractal characteristics
of cellular networks, the anisotropic models can be leveraged to
make network models more realistic [57]. In our study, we exploit
a simple path-loss model which is simplified from Winner II chan-
nel models to propose simple and easily tractable models [24]. This
model has already been analyzed in [18], and it is illustrated that
the RSS-based approaches including simple path-loss model may
be used for real-life experiments with 10 percentage error rate.

In this study, unlike the existing works firstly we propose
two novel base station density estimators, the interference-based
density estimation and multi-access edge cloud-based estimation
based on received signal strength, which are operational in a three-
dimensional environment. Secondly, two proposed models to con-
trol the network outage and cell size are simple and compact
solutions. Finally, we present a qualitative and elaborated analy-
sis of different network parameters at the same time depends on
the network density. The proposed approaches leverage a three-
dimensional PPP distribution which provides easily understandable
and tractable models.

8. Conclusion

With the invention of mobile devices, applications, and new
network paradigms such as ultra-dense networking, mobile cells,
ever-changing topologies, the need for self-organized networking
becomes more pronounced in order to increase the capacity, cover-
age, and performance. Dense networks provide redundant coverage
whereas connectivity is disrupted in sparse networks. In this paper,
we propose novel network density estimators based on received
signal strength. One of them uses the aggregated measurements
(IDE) and the other one exploits the collaboratively collected mea-
surements (CDE). We propose the system design for density esti-
mation in mobile networks and validate the proposed estimators
using Monte-Carlo simulations implemented in Matlab. We pre-
sented three significant outcomes in this paper. First of all, two
robust density estimators are proposed and validated. Secondly,
a simple outage probability model is proposed and validated. As
the last contribution, we propose a density-aware transmit power
adaptation technique in a dynamic and self-configurable fashion
for conserving energy and enhancing the quality of service. From a
theoretic perspective, models consider only large-scale fading and
is applicable in environments where the impact of shadowing is
small. As future work, we will implement estimators in outdoor
and indoor test-beds and validate the results in practice. We will
also incorporate shadowing in the estimator. According to the re-
sults, transmit power of base stations must be density-aware to in-
crease the network capacity. We analyzed the impact of transmit
power, channel model and density on outage probability. As ex-
pected transmit power and network density are quality of service-
friendly parameters, unlike the rest. However, they are not cost- or
environment-friendly.
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