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1 Introduction

There is ongoing intense interest in gaining further theoretical insights from new and di-

verse perspectives on the topological phases of matter discovered in the past decade or

so. This is reflected in the vast and diverse literature on the subject [1–18]. Integer and

fractional quantum Hall (QH) states [19–25], which were discovered in early 80’s, may

be interpreted as early examples, which carry distinct topological numbers distinguishing

them from the ordinary states of matter. Higher dimensional generalizations QHE are also

well-known [27–31].

More recent interest in the field is driven by the discovery of the new topological

phases of matter in two and subsequently in three and higher dimensions, which respect

the TR symmetry. In two-dimensions, Topological insulators (TIs) with TR invariance are

investigated using both Bloch wave band structure [2, 26], as well as via introducing con-

tinuum models [3, 4]. For instance, quantum spin Hall effect (QSHE) [3] can be understood

as consisting of two integer QH states with opposite chirality, for which the charge Hall

conductance vanishes, while the spin Hall conductance is quantized (in units of e
2π ).

New phases of matter with non-trivial topology in three and higher dimensions

are also being investigated rigorously from several different directions in the recent

past [5–10, 16, 17]. Li and Wu [15] introduced an interesting continuum model for three and

higher dimensional TR invariant TIs. The model proposed by these authors is described

by Hamiltonians, in which the charged spin 1/2 particles are non-minimally coupled to
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SU(2) ≃ SO(3) and SO(d), Aharanov-Casher type non-abelian gauge fields in three and

d-dimensions, respectively. These Hamiltonians can also be expressed as that of three

and d-dimensional harmonic oscillators with a spin-orbit (SO) term at a critical coupling

strength, matching the frequency of the harmonic oscillator and has the property that, de-

pending on the sign of the SO term, either the positive or the negative helicity component

exhibits flat spectra. The latter is a characteristic of the Landau levels, and therefore the

models proposed in [15] may be taken as the generalization of the TR invariant LLs of

QSHE [3] to flat higher-dimensional spaces. Authors of [15] have shown that, these models

posses gapless helical Dirac surface states, which are robust against the TR invariant per-

turbations and therefore allow for the interpretation of the models as TR preserving TIs

with a Z2 topological invariant.

In [1], properties and structure of the wave functions of the three dimensional TI sys-

tem are explored from an algebraic perspective and an underlying non-compact extended

dynamical symmetry group that completely accounts for both the infinite degeneracy of

the LLs in the positive helicity and the finite degeneracy in the negative helicity component

is determined. In practice, authors of [1] reveal two vector operators involving the total

angular momentum (orbital and spin) and commuting with the Hamiltonian. Appropri-

ately scaled form of these vector operators on the eigenstates of the Hamiltonian and the

generators of the total angular momentum, span the noncompact Lie algebra so(3, 2). The

Dirac Singleton [32, 33] is a well-known unitary irreducible representation (UIR) of so(3, 2)

and plays the central role in explaining the aforementioned infinite and finite degeneracies

in the spectrum of this model. It may be noted that, knowledge on the algebraic structure

of the TI wave functions could be very useful, since it could allow for a deeper under-

standing of i. the underlying geometric features and ii. the algebraic organization of the

surface states. To elaborate on the first item, it is speculated in [1] that the underlying

geometry of LLs in three dimensions could be related to some radially deformed form of

AdS4, rather than the flat space, since the extended symmetry group can be thought as

a “deformed” SO(3, 2), recalling that SO(3, 2) is the exact isometry group of AdS4, while

for the second we may recall the W∞ symmetry encountered in certain QH phases, which

accounts for the incompressibility of the QH droplet and algebra of the edge states [34–37],

whose generalization to TR invariant TIs would be very interesting.

In the present work, we extend the results of [1] to four and subsequently to d-

dimensional models. Introducing the appropriate vector operators commuting with the

Hamiltonian and obtaining their suitably scaled form acting on the energy eigenkets, the

extended dynamical symmetry group in four dimensions is identified as SO(4, 2). We show

in full detail how the infinite degeneracy of the energy spectrum in the positive helicity

branch can be explained in terms of the discrete UIRs of SO(4, 2), which are also known

as the doubletons [38–40]. The finite degeneracy in the negative branch is also understood

using the complex conjugate doubleton representations. In section 4, we give the generaliza-

tion of our analysis to the models in d-dimensions and reveal that the extended symmetry

group is SO(d, 2), while the degeneracies are explained using the discrete series UIRs of

SO(d, 2), which essentially generalize the singleton and the doubleton representations in

d = 3 and d = 4 to higher odd and even dimensions, respectively [41, 42]. We conclude by
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making some brief remarks regarding the algebraic organization of the LL states w.r.t. an

underlying “deformed” AdS geometry and on the organization of the surface states under

open boundary conditions.

2 The model for four-dimensional LLs

2.1 Basics and preliminary remarks

We may launch our discussion starting with the Hamiltonian of a four-dimensional (4D)

harmonic oscillator coupled to an Aharanov-Casher type SO(4) gauge field Ga = 2mωrbSab

in the form [15]

H =
1

2m
(pa −Ga)

2 −mω2r2a , (2.1)

which may be expressed as the Hamiltonian for a simple harmonic oscillator (SHO) with

the spin-orbit (SO) term at the coupling strength ω matching the SHO frequency as

H =
p2a
2m

+
1

2
mω2r2a − ω

4∑

a<b=1

LabΓab . (2.2)

In this expression Lab := rapb − rbpa , (a, b = 1, · · · , 4) are the orbital angular momentum

operators, while Γab are proportional to the spin operator Sab in 4-dimensions, as will be

explicitly defined in what follows. Setting ~ = 1, we may write the momentum operator as

pa = −i∂a. In terms of the representation theory of SO(4), Lab carries the (l, 0) irreducible

representation (IRR) of SO(4), while Sab carries the direct sum representation (1/2, 1/2)⊕
(1/2,−1/2) (IRRs are given in the highest weight i.e. the Gelfand-Zeitlin notation). To be

more concrete, let us introduce the 4-dimensional Euclidean γ-matrices, γa , (a = 1, · · · , 4)
with the anti-commutation relations {γa , γb} = 2δab. We may choose them to be of the form

γi =

(
0 −iσi
iσi 0

)
, γ4 =

(
0 1

1 0

)
, γ5 = γ1γ2γ3γ4 =

(
1 0

0 −1

)
, (2.3)

where σi, (i = 1, 2, 3) are the usual Pauli matrices.

Spin operator, Sab, may be expressed as

Sab :=
1

2
Γab := − i

4
[γa , γb] , Sab =

(
S+
ab 0

0 S−
ab

)
, S±

ab = (Sij ,∓
1

2
σi) =

(
1

2
εijkσk,∓

1

2
σi

)
.

(2.4)

Total angular momentum is given as Jab = Lab + Sab and has the IRR content given

by the decomposition of the product (l, 0)⊗ [(1/2, 1/2)⊕ (1/2,−1/2)] as
(
l +

1

2
,
1

2

)
⊕
(
l − 1

2
,
1

2

)
⊕
(
l +

1

2
,−1

2

)
⊕
(
l − 1

2
,−1

2

)
. (2.5)

SO(4) commutation relations are given in terms of generic generators Mab as

[Mab,Mcd] = i(δacMbd + δbdMac − δadMbc − δbcMad) . (2.6)

Lab, Sab and Jab satisfy (2.6).
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The Hamiltonian commutes with the total angular momentum operator Jab. Its spec-

trum and eigenfunctions are given in [15]. We briefly present some details in order to be

self-contained and prepare for the developments that follow. Spectrum of the pure 4D SHO

is given as E4D ,SHO = ω(2n+ℓ+2) and the corresponding energy eigenfunctions are of the

form Ψ(r, θ, φ, ψ) = Rnℓ(r)Y
l
mLmR

(θ, φ, ψ), where Rnℓ(r) = rle−
1

2
mωr2F (−n, l + 2,mωr2)

with n ∈ Z+ is the radial wave function and Y ℓ
mLmR

(θ, φ, ψ) are the spherical harmonics in

four dimensions.

Eigenvalues of the SO term can easily be worked out using the eigenvalues of the

Casimir operators for the IRRs appearing in (2.5). We have

∑

a<b

LabS
±
ab =

1

2
(J2

ab − L2
ab − S±2

ab ) =





l

2
on

(
l +

1

2
,±1

2

)
, i.e. spin ↑

− l + 2

2
on

(
l − 1

2
,±1

2

)
, i.e. spin ↓

. (2.7)

Spectrum of the Hamiltonian in (2.2) then follows as

E =

{
2ω(n+ 1) , spin ↑
2ω(n+ l + 2) , spin ↓

, (2.8)

from which we observe that the spin up (positive SO branch) part has flat spectrum, i.e. it

is independent of the orbital angular momentum l, and leads to an infinite degeneracy at

each energy level. Spin down (negative SO branch) part of the spectrum is also degenerate,

but not infinitely so. In the ensuing sections our main focus will be explaining the reason

underlying this degeneracy. It is useful to note that the infinite degeneracy of the positive

SO branch is a direct consequence of the critical SO coupling strength which matches with

the SHO frequency ω; in particular, changing the sign of the SO term in the Hamilto-

nian would flip the spectrum of the positive and negative SO branches, making the latter

infinitely degenerate instead. Corresponding wave functions are Rnl(r)Y
l± 1

2

l;mL mR
(θ, φ, ψ)

where Rnl(r) is the same as before, while Y l± 1

2

l;mL mR
(θ, φ, ψ) are the spin spherical harmon-

ics in four dimensions.

In analogy with the discussion of [1] in three dimensions, we find it useful to introduce

the operator

A =
∑

a<b

LabΓab +
3

2
. (2.9)

Using equation (2.7) eigenvalues of A can be simply written as l′ := l + 3
2 for spin up and

l′ := −l − 1
2 , for spin down, respectively. Thus, we have l′ = ±3

2 ,±5
2 , · · · . Evidently, A

commutes with the Hamiltonian and therefore its eigenvalues l′ can be used in labeling

the energy eigenstates. Since SO(4) ≃ SU(2) × SU(2), we can introduce SU(2)-left and

SU(2)-right generators for the total angular momentum Jab as

Li =
1

2

(
1

2
εijkJjk + Ji4

)
, Ri =

1

2

(
1

2
εijkJjk − Ji4

)
, (2.10)
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with the commutation relations

[Li , Lj ] = iεijkLk , [Ri , Rj ] = iεijkRk , [La, , Rb] = 0 . (2.11)

Conventionally, generators of the Cartan subgroup of SO(4) are taken as (J12, J34), while

for SU(2)× SU(2) they are taken as

(L3, R3) =

(
1

2
(J12 + J34) ,

1

2
(J12 − J34)

)
. (2.12)

From (2.5) and (2.12) we see that the fundamental representations (1/2, 1/2) and

(1/2,−1/2) correspond respectively to (Li, Ri) ≡ (0 , σi

2 ) and (Li, Ri) ≡ (σi

2 , 0). In the

SU(2) × SU(2) irreducible representation notation, (j1, j2), these are labeled as (0, 1/2)

and (1/2, 0), respectively.

We choose to label the eigenstates of the Hamiltonian in terms of the principal quantum

number n and the eigenvalues l′,mL,mR of A, L3 and R3, and denote, in the Dirac notation,

these states as |n, l′,mL,mR〉 with

A|n, l′,mL,mR〉 = l′|n, l′,mL,mR〉 ,
L3|n, l′,mL,mR〉 = mL|n, l′,mL,mR〉 , (2.13)

R3|n, l′,mL,mR〉 = mR|n, l′,mL,mR〉 .

In terms of the SU(2) ⊗ SU(2) representation labels the direct sum representation

in (2.5) reads

(
l + 1

2
,
l

2

)
⊕
(
l

2
,
l − 1

2

)
⊕
(
l

2
,
l + 1

2

)
⊕
(
l − 1

2
,
l

2

)
. (2.14)

From this, we immediately infer that |mL| ≤ l+1
2 and |mR| ≤ l

2 , and |mL| ≤ l
2 and |mR| ≤

l−1
2 respectively, for the right chiral representations (i.e. first two summands in (2.5)).

In terms of the eigenvalues of l′ of A, we have the range of eigenvalues for mL and mR

expressed as

|mL| ≤
( |l′|

2
− 1

4

)
, |mR| ≤

( |l′|
2

− 3

4

)
. (2.15)

As for the range of values for mL and mR in the left chiral representations, we simply

interchange mL and mR in (2.15).

Trading the label l for l′, we can express the spectrum in (2.8) as

E =





2ω(n+ 1) , spin ↑

2ω

(
n− l′ +

3

2

)
, spin ↓

. (2.16)

2.2 Extended dynamical symmetries

In order to understand the infinite and the finite degeneracies of the positive and negative

helicity branches of the spectrum (2.16), we will reveal this 4D model has an extended non-

compact dynamical symmetry group. To do so, working from now on with m = 1 and ω =

– 5 –
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1
2 , generalizing the approach of [1], we introduce two Hermitian vector operators commuting

with the Hamiltonian H and involve, in addition to the coordinates and momenta, the total

angular momentum and the SO operator A. Explicitly, they are in the form

Ma =
1

4
(raA+Ara) +

1

2
(pbJab + Jabpb) ,

Na =
1

2
(paA+Apa)−

1

4
(rbJab + Jabrb) . (2.17)

It can be straightforwardly demonstrated that

[Ma , H] = 0 , [Na , H] = 0 , (2.18)

and Ma and Na transform as vectors under the adjoint action of Jab:

adJabMc := [Jab ,Mc] = iδacMb − iδbcMa ,

adJabNc := [Jab , Nc] = iδacNb − iδbcNa , (2.19)

by direct calculation. It is also useful to note that the commutators of these vector operators

with A, take the form

[A ,Ma] = −iNa , [A ,Na] = iMa . (2.20)

A set of long and rather tedious calculations yield the commutation relations for the

operators Ma and Na as

[Ma ,Mb] = −2iJcd

(
δacδbd

(
H +

3

2
A− 1

)
+

1

8
εabcdγ5

)
,

[Na , Nb] = −2iJcd

(
δacδbd

(
H +

3

2
A− 1

)
+

1

8
εabcdγ5

)
,

[Ma , Nb] = 2iδabA

(
H +

3

2
A− 1

)
+ iJacJbc − iδab

∑

c<d

J2
cd ,

= 2iδab

(
A

(
H +

3

2
A− 1

)
− 1

2
A2 +

3

8

)
+ iJacJbc . (2.21)

We have used,
∑

c<d J
2
cd = A2 − 3

4 to express the second line of the last commutator

in (2.21). We may form the following linear combinations of Ma and Na

K1
± :=

1√
2
(M1 ± iM2 ∓ iN1 +N2) ,

K2
± :=

1√
2
(M1 ∓ iM2 ∓ iN1 −N2) , (2.22)

K3
± :=

1√
2
(M3 ± iM4 ∓ iN3 +N4) ,

K4
± :=

1√
2
(M3 ∓ iM4 ∓ iN3 −N4) ,

which fulfill the commutation relations

[A ,K1
±] = ±K1

± , [L3 ,K
1
±] = ±1

2K
1
± , [R3 ,K

1
±] = ±1

2K
1
± ,

[A ,K2
±] = ±K2

± , [L3 ,K
2
±] = ∓1

2K
2
± , [R3 ,K

2
±] = ∓1

2K
2
± ,

[A ,K3
±] = ±K3

± , [L3 ,K
3
±] = ±1

2K
3
± , [R3 ,K

3
±] = ∓1

2K
3
± ,

[A ,K4
±] = ±K4

± , [L3 ,K
4
±] = ∓1

2K
4
± , [R3 ,K

4
±] = ±1

2K
4
± .

(2.23)
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Comparison of these commutation relations with those of so(4, 2) roots and Cartan gen-

erators as given in (A.6) and (A.7) suggests a correspondence between L±, R±, Ki
±, (i =

1, 2, 3, 4) and the roots E±(ei±ej) of so(4, 2). This is obvious for the so(4) = su(2)L⊕su(2)R
subalgebra. For this proposed correspondence the operator A needs to be identified with a

particular Cartan generator of so(4, 2), as we will lay out in detail in the following section.

Nevertheless, the commutation relations among Ki
±, as inferred from those of Ma and Na

in (2.21) include nonlinear terms in H and A and does not immediately fit into the so(4, 2)

commutation relations. For instance, we find

[K1
− ,K1

+] = 4(J12 +A)

(
H +

3

2
A− 1

)
+ J34 −

∑

c<d

J2
cd + (J12 + J34)(J12 − J34) ,

= 4(L3 +R3 +A)

(
H +

3

2
A− 1

)
+ (L3 −R3)−A2 +

3

4
+ 4L3R3 . (2.24)

Such complications are encountered in several different contexts, for instance in the Kepler

problem in identifying SO(4) as the extended dynamical symmetry group of the Hydrogen

atom [43]. It was also faced in the 3D case treated in [1]. This issue can be remedied by

appropriately scaling the operators Ki
± acting on the energy eigenstates |n, l′,mL,mR〉. It

turns out that the suitable scalings of Ki
± can be obtained by exploiting the operator

S = 4

(
H +A− 3

2

)
, (2.25)

as we will discuss in detail in the next section.

Then, A,Li, Ri, and
1√
S
Ki

+ , Ki
−

1√
S
, (2.26)

generate the non-compact group SO(4, 2) on the energy eigenstates |n, l′,mL,mR〉. Thus,

we identify SO(4, 2) as the extended dynamical symmetry of the model described by the

Hamiltonian in (2.2). In the next section, by providing the details of this result, we show

how the infinite-fold degeneracy of the positive helicity branch can be labeled in terms of

a particular discrete UIR of SO(4, 2). We will also see how the finite degeneracy of the

negative helicity branch is explained using the same machinery and a related UIR.

3 Discrete UIRs of SO(4,2) and the degenerate LL spectrum

We are interested in the discrete infinite-dimensional UIRs of the so(4, 2) Lie algebra and

the corresponding Lie group SO(4, 2). These are usually called the doubletons [38, 39] in the

literature and they are bounded from below and they can be built via their lowest weight

states. Here we provide the essential features and properties of these representations, which

are sufficient for our purposes, while some of the details of their construction as well as

some formulas for quick reference are relegated to the appendix A and B to make the paper

self-contained.

Hermitian generators Mµν of the so(4, 2) Lie algebra satisfy the commutation relations

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) , (3.1)

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
0
8
9

where the metric is given as ηµν = diag(1, 1, 1, 1,−1,−1), (µ , ν = 1 , · · · , 6). Cartan subal-

gebra of so(4, 2) is generated by (H1, H2, H3) ≡ (M12,M34,M56). Standard Cartan-Weyl

basis can be used to express the generators of so(4, 2). This and the corresponding formulas

that relate them to the generators Mµν are provided in appendix A. The subalgebra so(4)

of so(4, 2) has the Cartan generators H1, H2, while for our purposes it is more convenient

to use them in the su(2) ⊕ su(2) basis, as L3 = 1
2(H1 +H2) and R3 = 1

2(H1 −H2). The

relevant commutation relations among these generators are also given in appendix A.

In order to present these discrete UIRs SO(4, 2), we exploit the maximally compact

subgroup SU(2)L ⊗ SU(2)R ⊗ U(1), which has the same Cartan subalgebra as that of

SO(4, 2). The U(1) part of this subgroup is generated by H3 = M56, and it is usually

called the conformal Hamiltonian in the literature [38, 39]. With respect to H3, the Lie

algebra so(4, 2) admits the three-graded decomposition [38, 39]

so(4, 2) ≡ L+ ⊕ L0 ⊕ L− , (3.2)

where L0 stands for the maximally compact subalgebra su(2)L ⊕ su(2)R ⊕ u(1) and L±

contain the remaining generators, with the three-grading defined as

[L0 ,L±] = L± , [H3 ,L±] = ±L± . (3.3)

We may introduce four pairs of annihilation and creation operators, which are split

into two “colors”, namely a’s and b’s as

[aα , a
†
β] = δαβ , [bα , b

†
β ] = δαβ , α, β = 1, 2 , (3.4)

acting on the Fock space F spanned by |na , nb〉. Generators of SO(4, 2) can be expressed

in terms of the bilinears of these annihilation-creation operators as given in (B.1) and (B.2)

and the three-grading structure is manifest in this basis.

A Schwinger-type realization (as given in appendix B (B.3)–(B.4)) of the so(4, 2) using

the oscillator algebra and the fundamental spinor IRR of so(4, 2) yields the discrete UIRs

of so(4, 2). In particular, Cartan generator H3 and a SO(4, 2) invariant operator N̂ take

the forms [38–40]:

H3 = M56 = ψ̄Σ56ψ =
1

2
(N̂a + N̂b + 2) ,

N̂ := ψ̄ψ = −N̂a + N̂b − 2 , (3.5)

where N̂a = a†iai and N̂b = b†ibi stand for the number operators in the colors a and b. It is

convenient to label the states in the Fock space F with the UIRs of the maximally compact

subalgebra su(2)L ⊕ su(2)R ⊕ u(1), in the form |h3, JL, JR〉, on which any combination of

annihilation-creation pairs (given in (B.1), (B.2)) naturally acts. In this notation, the

vacuum state is |1, 0, 0〉 and annihilated by all ai’s and bi’s. Therefore, it is specified by

N = −2 eigenvalue of N̂ and has unit conformal energy, i.e. h3 = 1. Based on the vacuum

|1, 0, 0〉, entire Fock space splits into a direct sum of infinite number of unitary irreducible

representations [38, 39], which are labeled by the eigenvalues of H3 and N̂ . In fact, in
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this way, we can write two inequivalent infinite-dimensional families of representations of

so(4, 2) with the lowest weight vectors, which are given as

∣∣∣∣1 +
k

2
,
k

2
, 0

〉
, N = −k − 2 , k ∈ Z ,

∣∣∣∣1 +
k

2
, 0,

k

2

〉
, N = k − 2 , k ∈ Z . (3.6)

The fact that these are the lowest weight vectors of a representation of so(4, 2) is easily

observed since all E−(ei±ej) ⊂ L− annihilate these states as they are built up from combi-

nations of aibj . With the action of the ladder operators E±(ei±ej) ⊂ L± on either of the

lowest weights given in (3.6), infinite number of states are generated for any given value of

k. In other words, for each value of k, two inequivalent unitary irreducible representations

which are infinite-dimensional are generated in this manner. These are called the double-

tons of so(4, 2) and the corresponding group SO(4, 2). Interchanging su(2)L and su(2)R
swaps these inequivalent doubletons at a given value of k. We can label the doubleton

representations via the eigenvalue N = ∓k − 2 of N̂ . In order to label all the states in a

given doubleton, in addition to the labels h3, JL, JR, we also need the eigenvalues of L3 and

R3, which we denote as mL and mR. Thus, we label the states as |h3, JL, JR,mL,mR〉.
Roots in L± shift h3 to h3±1 and each of JL, JR by ±1

2 . This means that the eigenvalue of

N̂ is preserved under the action of the roots, that is, N̂ commutes with all the generators,

verifying that it is an invariant operator as previously claimed. For the eigenvalues of the

operators H3 and N̂ in (3.5), we may write in terms of JL an JR

h3 = 1 + JL + JR ,

N = −Na +Nb − 2 = −2JL + 2JR − 2 = ∓k − 2 , (3.7)

where ∓ sign in the r.h.s. of the last equality on the second line specifies the two inequivalent

doubleton representation given in (3.6). Inverting these equations we have,

JL =
1

2
h3 ±

1

4
k − 1

2
, JR =

1

2
h3 ∓

1

4
k − 1

2
. (3.8)

Explicit form of the action of the roots on the states |h3, JL, JR,mL,mR〉 is provided in

appendix B.

We are now in a position to state one of the most crucial result in this article. Namely,

we observe that the infinitely degenerate states of the 4D model at each energy level

on either of the chiral components can be labeled by one or the other of the doubleton

representations of SO(4, 2) with N = −3 or N = −1, since for either of the two we can

then match the eigenvalues h3 = 3
2 ,

5
2 , · · · of H3 with the eigenvalues l′ = 3

2 ,
5
2 , · · · of the

operator A. In other words, spectrum of A matches in a one to one and onto manner with

that of H3 on the states spanning these doubleton representations. Hence, from now on we

make the identification |h3,mL,mR〉 ≡ |ℓ′,mL,mR〉 for the UIRs with N = −3 or N = −1.
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Comparing (2.23) with (A.6) and (A.7) we further infer the identifications

1√
S
K1

+ ≡ Ee1+e3 ,
1√
S
K2

+ ≡ E−(e1−e3) ,
1√
S
K3

+ ≡ Ee2+e3 ,
1√
S
K4

+ ≡ E−(e2−e3) ,

K1
−

1√
S

≡ E−(e1+e3) , K2
−

1√
S

≡ E(e1−e3) , K3
−

1√
S

≡ E−(e2+e3) , K4
−

1√
S

≡ E(e2−e3) .

(3.9)

Acting on the states |n, l′,mL,mR〉, Ki
± pick an additional factor of 2

√
n+ l′ ± 1

2 for ℓ′ > 0

as can be seen using (2.24), (3.9) and (B.5). Concretely, we have

L±|n, l′,mL,mR〉 =
1

2

√(
ℓ′ ± 2mL +

3

2

)(
l′ ∓ 2mL − 1

2

)
|n, l′,mL ± 1,mR〉 ,

R±|n, l′,mL,mR〉 =
1

2

√(
ℓ′ ± 2mR +

1

2

)(
l′ ∓ 2mR − 3

2

)
|n, l′,mL,mR ± 1〉 ,

K1
±|n, l′,mL,mR〉 =

√(
l′ +

1

2
+ 2mL ± 1

)(
l′ − 1

2
+ 2mR ± 1

)(
n+ l′ ± 1

2

)

×
∣∣∣∣n, l

′ ± 1,mL ± 1

2
,mR ± 1

2

〉
,

K2
±|n, l′,mL,mR〉 =

√(
l′ +

1

2
− 2mL ± 1

)(
l′ − 1

2
− 2mR ± 1

)(
n+ l′ ± 1

2

)

×
∣∣∣∣n, l

′ ± 1,mL ∓ 1

2
,mR ∓ 1

2

〉
,

K3
±|n, l′,mL,mR〉 =

√(
l′ +

1

2
+ 2mL ± 1

)(
l′ − 1

2
− 2mR ± 1

)(
n+ l′ ± 1

2

)

×
∣∣∣∣n, l

′ ± 1,mL ± 1

2
,mR ∓ 1

2

〉
,

K4
±|n, l′,mL,mR〉 =

√(
l′ +

1

2
− 2mL ± 1

)(
l′ − 1

2
+ 2mR ± 1

)(
n+ l′ ± 1

2

)

×
∣∣∣∣n, l

′ ± 1,mL ∓ 1

2
,mR ± 1

2

〉
. (3.10)

The foregoing discussion makes the identification of the extended symmetry generators

with either of the SO(4, 2) doubleton representation with N = −3 or N = −1 manifest and

either of the representations can be used to enumerate the infinite fold degeneracy of the

flat LL spectra of the model given in (2.16).

For ℓ′ < 0, i.e. the negative helicity component of the spectrum, energy levels are only

finitely degenerate. We easily see from (2.16) that at E = 3, only possible value of l′ is
−3

2 , while for E = 4, the possible values for ℓ′ are −3
2 and −5

2 and in general for E ≥ 3

the possible values of ℓ′ are −3
2 ,−5

2 , · · · ,
(
3
2 − E

)
. To label these degenerate states, we

essentially need the representations defined through their highest weight states, i.e. the

complex conjugate representation. The latter can be obtained from the doubletons defined
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via (3.6) by taking (h3, k) → (−h3,−k) and making the exchange1 JL ↔ JR. Complex

conjugate doubleton representations are bounded from above and those with N = −3∗ and

N = −1∗ are the two inequivalent UIRs that may be used. The physical operators Ki
±

acting on these complex conjugate representations bring a factor
√
E + l′ − 1± 1

2 , where E

stands for the energy eigenvalue.2 We see that the Ki
− annihilate the states with l′ ≤ 3

2−E,

with E = 3, 4, · · · , fitting perfectly with the observed finitely degenerate spectrum.

Let us also recall that the spin operator Sab have the chiral components S+
ab and S−

ab

and the spectrum (2.16) is the same in each chiral branch. These chiral parts are mapped to

each other upon interchanging the left- and the right- generators of SU(2)L×SU(2)R. From

these facts, we immediately infer that, we can employ both of the doubleton representations

with N = −3 and N = −1 one enumerating the infinite degeneracy in the left-chiral and

the other in the right-chiral component for the flat spectra with positive helicity. Similarly

both of the complex conjugate UIRs with N = −3∗ and N = −1∗ can be employed to

label the negative helicity part of the spectrum. In this manner all the degeneracies in the

spectrum (2.16) are accounted for.

4 Generalization to d-dimensions

It is essentially rather straightforward to generalize the 4D model and the preceding devel-

opments to d-dimensions. With the SO(d) gauge field G=2mωrbSab, (2.1) generalizes to

Hd =
1

2m
(pa −Ga)

2 − d− 2

2
mω2r2a , (4.1)

while (2.2) has the same formal structure

Hd =
p2a
2m

+
1

2
mω2r2a − ω

d∑

a<b=1

LabΓab , (4.2)

where now Lab := rapb−rbpa , (a, b = 1, · · · , d) are the orbital angular momentum operators

that span the (l, 0, · · · , 0) IRR of SO(d), which is of dimension N = (d + 2l − 2) (d+l+3)!
l!(d−2)! .

The Casimir operator in this IRR of SO(d) satisfies
∑

a<b L
2
ab = l(l + d − 2)1N . Γab are

proportional to the spin operator Sab in d-dimensions and can be given in terms of the

commutators of the Γ-matrices in d-dimensions as Sab :=
1
2Γab := − i

4 [Γa ,Γb]. For d odd,

d = 2k+1, Γa are of rank k; they are 2k×2k matrices and there are 2k+1 of them. SO(2k+1)

has rank k and Sab spans the fundamental spinor representation
(
1
2 ,

1
2 , · · · , 12

)
of SO(2k+1)

which is 2k × 2k-dimensional. For d even, d = 2k + 2, Γa has rank k, 2k+1 × 2k+1 matrices

and Sab span a reducible representation of SO(2k+2), which decomposes as Sab = S+
ab⊕S−

ab

1To be more precise, these representations are generated by −M
∗
ab.

2Note that, in terms of the energy eigenvalues, the factor
√

(n+ l′ ± 1

2
) that appears in (3.10) also

takes the form
√

E + l′ − 1± 1

2
. We already know that, Ki

± are commuting with the Hamiltonian, however

the negative helicity part of the spectrum is not independent of l
′, therefore it is imperative to express

this factor in terms of the energy to make the proper physical interpretation manifest, while it makes no

difference to write it in terms of n or E for the positive helicity part as E does not depend on l
′.
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to the fundamental left- and right-chiral spinor representations
(
1
2 ,

1
2 , · · · ,±1

2

)
, which are

each 2k×2k-dimensional. The chiral projections to S±
ab can be obtained using the projection

operators P± = 1
2(1 ± Γ2k+3), where Γ2k+3 := Γ1Γ2 · · ·Γ2k+2. In terms of the Γ-matrices

of rank k, we may write S±
ab ≡ (Sij , Si2k+2) :=

(
Sij ,±1

2Γi

)
with i, j = 1, · · · , 2k + 1.

The facts listed above are well-known and the spectrum of H is already given in [15].

For completeness, we provide the essential results here, to lay out the foundations for the

developments that will ensue. Eigenvalues of the SO term follows from a similar calculation

as in the 4D case and they are given as

∑

a<b

LabS
±
ab =





l

2
on

(
l +

1

2
,
1

2
, · · · , (±)

1

2

)
, i.e. spin ↑ ,

− l + d− 2

2
on

(
l − 1

2
,
1

2
, · · · , (±)

1

2

)
, i.e. spin ↓

. (4.3)

It should be clear that the (±) in (4.3) distinguishes the left- and the right-chiral represen-

tations for SO(2k + 2); while for SO(2k + 1) only the upper sign appears. This gives the

spectrum of Hd in (4.1) or equally in (4.2) as

E =





2ω

(
n+

d

4

)
, spin ↑

2ω

(
n+ l +

3

4
d− 1

)
= 2ω

(
n− l′ +

d

4
+

1

2

)
, spin ↓

. (4.4)

Note that as in the 4D model, the spectrum in the positive helicity branch is flat, indicating

an infinite-fold degeneracy for this part of the spectrum. We also stick to the choice of the

parameter values m = 1 and ω = 1
2 . In analogy with the 3D [1] and 4D results, we may

introduce the operator

A =
∑

a<b

LabΓab +
d− 1

2
, (4.5)

whose eigenvalues may still be denoted as l′. We have l′ = l + d−1
2 for the positive and

l′ = −l − d−3
2 for the negative helicity components so that l′ = ±d−1

2 ,±d+1
2 , · · · . The

eigenstates of the Hamiltonian Hd can be denoted by the kets |n, l′ , [s]SO(d) , [m]SO(d)〉,
where [s]SO(d) stands as a collective index for the SO(d) UIR and [m]SO(d) as a collective

index of the quantum numbers within this UIR of SO(d) that unambiguously label these

eigenstates.

Using the operator A, we can introduce the d-dimensional vector operators Ma and

Na exactly in the same formal form as given in (2.17), except that the indices a, b are now

taking values in the interval (1, · · · , d). Total angular momentum operators Jab = Lab+Sab,

A and appropriately scaled linear combinations of Ma, Na span 1
2(d+2)(d+1)-dimensional

group, which can be identified with the non-compact group SO(d, 2). This essentially works

in the same manner, as we have laid out in detail for the 4D case. We may use the discrete

unitary irreducible representations of SO(d, 2) defined through their lowest weight vectors

to label the infinite degeneracy of the flat part of the spectrum in (4.4). so(d, 2) is of rank

k+1 for d = 2k+1 and of rank k+2 for d = 2k+2. The relevant discrete UIR of so(d, 2)
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can be constructed using the three-graded decomposition of the Lie algebra so(d, 2) w.r.t.

its maximally compact subalgebra [41, 42]

so(d, 2) ≡ L+ ⊕ L0 ⊕ L− , (4.6)

where L0 stands for the maximally compact subalgebra so(d)⊕u(1). L± which contains the

remaining generators of so(d, 2), and the three-grading has the same structure as defined

before in (3.3). From the existing literature, it is readily known that the discrete unitary

representations of so(d, 2) can be labeled by the eigenvalues of the U(1)-generator and

these representations generalize the singleton representation of so(3, 2) for odd values of d

and the doubleton representations of so(4, 2) for even values of d [41, 42]. For d = 2k + 2,

the representations we need fall into the class in which the SO(2k + 2) subgroup carry

the IRRs
(
s
2 ,

s
2 , · · · ± s

2

)
≡ [s]SO(d), where s is a non-negative integer. Corresponding to

each of these representations there is a UIR of so(d, 2) with the lowest weight vectors∣∣1
2(d + s − 2) ,

(
s
2 ,

s
2 , · · · ± s

2

) 〉
, whose U(1)-charge, i.e. the eigenvalue of the (k + 2)th

Cartan generator Hk+2 is 1
2(d + s − 2). Action of the operators in the L− sector of the

three-grading annihilate these lowest weight states, while the repeated action of operators

L+ generates these UIRs. In particular, action of L± shifts the eigenvalue of Hk+2 by ±1,

and map [s]SO(d) to [s ± 1]SO(d), while also changing the collective [m]SO(d) indices; L±

can be spanned by the roots of so(d, 2) in the Cartan-Weyl basis, whose organization is

determined by the fact that roots in L± should shift the eigenvalue of Hk+2 by ±1.

Among these UIRs, we need the one with s = 1, whose U(1) charge in the lowest weight

sector matches with the lowest possible positive eigenvalue d−1
2 of A. Thus, the spectrum

of A matches with that of Hk+2 on these UIRs and the states in either of them with the

lowest weights
∣∣1
2(d− 1) ,

(
1
2 ,

1
2 , · · · ± 1

2

) 〉
span the infinite degeneracy of the flat spectrum

in (4.4). There are overall 2d different linear combinations Ki
± (i : 1, · · · , d) of Ma’s and

Na’s such that 1√
S
Ki

+ span L+ and Ki
−

1√
S
span L−, where S = H+A− 1

2

(
d
2 + 1

)
up to an

overall constant which is immaterial for our present purposes. Just like the 4D case, we can

associate one of these UIRs with the left- and the other with the right- chiral component

to label and distinguish the degenerate spectrum. For the negative helicity states, energy

disperses with the eigenvalues of A and the degeneracy is finite. The complex conjugate

representations, which are practically obtained by hk+2 → −hk+2, have the highest weight

vectors
∣∣− 1

2(d− 1) ,
(
1
2 ,

1
2 , · · · ± 1

2

) 〉
and can be used to label the degenerate states in this

branch, noting that the unscaled operators Ki
− annihilate the states with l′ < d

4 + 1
2 − E,

with E taking on the values 3
4d,

3
4d + 1, · · · . For d = 4, our previously determined result

is immediately obtained, while, for instance, for d = 6, negative helicity states have the

lowest energy 9
2 and therfore no states with l′ < −5

2 exist, in perfect agreement with the

observed spectrum and degeneracy of the negative helicity states.

For odd values of d, the relevant representation of so(d, 2) is also labeled by the U(1)

charge, and has the value d−1
2 for the lowest weight state [41, 42]. The latter is given

by
∣∣1
2(d− 1) ,

(
1
2 ,

1
2 , · · · 1

2

) 〉
, where the

(
1
2 ,

1
2 , · · · 1

2

)
is the 2(

d−1

2
)-dimensional fundamental

spinor IRR of SO(d). These states are annihilated by all the operators belonging to L−

of the three grading and a UIR of so(d, 2) is generated by the repeated application of
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the operators in L+. It can be readily noted that, as opposed to the infinite family of

representations for even d (corresponding to the pair of UIRs labeled by the integer s), for

d odd there is only a unique spinoral UIR of so(d, 2). For d = 3, this is nothing but the

Dirac singleton representation with spin 1
2 . In this UIR spectrum of A identifies with that

of the U(1) generator, which may be taken as the (k + 1)th Cartan generator Hk+1, and

the states generated from the lowest weight
∣∣1
2(d − 1) ,

(
1
2 ,

1
2 , · · · 1

2

) 〉
completely label the

infinite degeneracy of the flat spectrum. The rest of the correspondence is almost the same

as that of even d given in the previous paragraph, except that for d odd, the operator K2k+1
±

associated to the last root pair E±ek , in the form Eek ≡ 1√
S
K2k+1

+ and E−ek ≡ K2k+1
i

1√
S

are obtained from the linear combinations of only the (2k + 1)th components of Ma and

Na, i.e. K
2k+1
± = 1√

2
(M2k+1 ∓ iN2k+1), while the other Ki

± are linear combinations that

involve two components from each of Ma and Na (2.23). Thus, all Ki
± shift the eigenvalue

of Hk+1 by ±1, and [s]SO(d) to [s ± 1]SO(d), while [m]SO(d) change accordingly under K−
± ,

(i 6= 2k+1), but remains unchanged under K2k+1
± . For d = 3, this result can be seen from

the formula provided in [1] and is a characteristic discriminating odd d from even d.

5 Spectrum generating algebra

Using the annihilation and creation operators

ca =
1

2
ra − ipa , c†a =

1

2
ra + ipa , [ca , c

†
b] = δab , (a = 1 , · · · , d) , (5.1)

we may express the Hamitonian Hd in (4.2) as

H =
1

2

(
N̂c +

d

2

)
− 1

2

∑

a<b

LabΓab , (5.2)

where N̂ = c†aca and the orbital angular momentum operator can be expressed in terms of

ca , c
†
a as Lab = −i(c†acb − c†bca).
Generalizing the discussion given in [1], we may introduce the operators S±, which are

quadratic in ca’s and c†a’s as

S+ = −1

2
c†ac

†
a , S− = −1

2
caca . (5.3)

Since, [N̂ ,S±] = ±2S± and [Lab ,S±] = 0, we infer that S± shifts the energy eigenvalues

by ±1. It is straightforward to show that

[H ,S±] = ±S± , [S+ ,S−] = −2

(
H +

A

2
− d− 1

4

)
. (5.4)

Upon identification of H+ A
2 − d−1

4 with the S3 generator, (5.4) corresponds to the SO(2, 1)

commutation relations. In particular, S3 ,S± span the unitary irreducible representation

of SO(2, 1) with the extremal weights Λ = l′

2 + 1
4 for ℓ′ = d−1

2 , d+1
2 , · · · and Λ = − l′

2 + 3
4

for l′ = −d−1
2 ,−d+1

2 , · · · . In these representations of SO(2, 1), eigenvalues of the Casimir
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operator 1
2(S+S− + S−S+) − S2

3 are given as Λ(1 − Λ). Using this information and (5.4)

we easily find

S±|n , l′,mL ,mR〉 =

√(
n+

1

2
± 1

2

)(
n+ l′ ± 1

2

)
|n± 1 , l′,mL ,mR〉 , l′ > 0 , (5.5)

S±|n , l′,mL ,mR〉 =

√(
n+

1

2
± 1

2

)(
n− l′ + 1± 1

2

)
|n± 1 , l′,mL ,mR〉 , l′ < 0 (5.6)

≡
√(

E + l′ − d

4
± 1

2

)(
E − d

4
+

1

2
± 1

2

)
|E ± 1 , l′,mL ,mR〉 .

General considerations on the UIRs of SO(2, 1) require that Λ ≥ 1
2 [45], and this is fulfilled

in the present case since |l′| ≥ d−1
2 . For both the positive and negative helicity components

the lowest weight state is |0 , l′,mL ,mR〉. Since the energy spectrum is E = n− l′ + d
4 +

1
2

for negative helicity states, it is readily inferred from the second line of (5.6) that S−
annihilates the states with l′ < d

4 + 1
2 − E in accord with the result determined in the

preceding section.

6 Discussion and conclusions

In this paper we have examined the degeneracies in the energy spectrum of d ≥ 4-

dimensional SHOs coupled to Aharanov-Casher type SO(d) gauge fields. The Hamiltonians

of these models can equally be expressed as SHOs, with a spin-orbit terms, whose coupling

strength is tuned to the SHO frequency. With our choice of sign for the SO coupling the

positive helicity part of the energy spectrum is flat and led to the interpretation of these

models as TR invariant LLs in higher dimensions [15], generalizing the QSHE [3]. Focusing

on the 4D model, we have introduced two vector operators commuting the Hamiltonian and

succeeded in demonstrating that the symmetry group SO(4) of the model extends to the

non-compact dynamical symmetry SO(4, 2) and that the discrete UIRs of this group, the

so called doubletons specified via the invariants N = −3 and N = −1 provide the complete

labeling of the infinite degeneracy of the flat spectrum. Subsequently, all of these results

generalized to the models in d-dimensions and shown that the extended non-compact sym-

metry group is indeed SO(d, 2) and the infinite degeneracy of the flat spectra is completely

accounted for by exploiting the discrete series UIRs of SO(d, 2), which generalize the single-

ton and the doubleton representations in d = 3 and d = 4 to all odd and even dimensions,

respectively.

Since SO(d, 2) is the isometry group of AdSd+1, we may contemplate that the LL states

are essentially organized w.r.t. an underlying radially “deformed” AdS geometry rather

than the flat space, due to the extended non-linear symmetry generated by the operators

Jab, A and Ki
±, whose commutation relations involve non-linear terms as manifestly seen

from (2.21) and (2.24). The spectrum of the operator A in (4.5) matches with that of

the U(1) generator in the UIR of SO(d, 2) in which the latter has the eigenvalue d−1
2 in

the lowest weight states. Considering the SO(d, 2) as either the conformal group for d-

dimensional Minkowski space-time or, as above, the isometry group of AdSd+1, spectrum
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of the U(1) generator corresponds to the conformal energy or the AdS energy [41, 42].

Under the action of so(d, 2) ladder operators, eigenvalues of A shift by ±1 within the

degenerate states, giving further evidence toward the aforementioned interpretation.

Finally, let us note that imposing open boundary conditions say at radius R0, the flat

spectrum is no longer maintained once the angular momentum value exceeds a critical value,

which depends on the LL and can be numerically estimated for a given model, as it was

done for 3D case in [15]. Starting around this critical value, the energy spectrum becomes

dispersive indicating the emergence of states localized on the boundary [15]. In fact, the

energy spectrum at the surface can be linearized around the Fermi angular momentum and

becomes essentially governed by the Hamiltonian (see [44] for Dirac operators on spheres)

Hsurface =
vF
R0

∑

a<b

LabΓab − µ

=
vF
R0

(
A− d− 1

2

)
− µ , (6.1)

where µ stands for the chemical potential. Although SO(d, 2) can no longer be considered

as the precise extended dynamical symmetry in the presence of the boundary, (6.1) shifts

by ± vF
R0

under the action of so(d, 2) ladder operators, which suggests the interpretation of

SO(d, 2) as an effective spectrum generating algebra for the surface states. We think that

these brief remarks merit further study and any future progress on them will be reported

elsewhere.
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A so(4, 2) Lie algebra in the Cartan-Weyl basis

In this appendix we collect some the standard formulas for so(4, 2) Lie algebra and some

details regarding the construction of their doubleton UIRs.

Cartan subalgera of so(4, 2) is spanned by (H1, H2, H3) ≡ (M12,M34,M56). Introduc-

ing the three-component unit vectors e1, e2, e3 with (ei)j = δij , the roots may be expressed as

E±(e1−e2) , E±(e2−e3) , E±(e2+e3) , E±(e1+e2) , E±(e1−e3) , E±(e1+e3) . (A.1)

It is common to introduce the notation E±αµ for the roots, with the labels given as ±αµ :=

±(ei ± ej) with i < j. In a standard short-hand notation of the Cartan-Weyl basis,
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commutation relations among the generators can be compactly expressed as [46]

[Hi , Hj ] = 0 , [Hi , Eαµ ] = αµ
i Eαµ ,

[Eαµ , Eαν ] =





NαµανEαµ+αν , if αµ + αν is a root

(Eαµ , E−αµ)αµ
i Hi , if αµ + αν = 0, and sum over i is implied,

0 , otherwise

(A.2)

where

(Eαµ , Eαν ) =
1

2
TrEαµEαν . (A.3)

Roots listed in (A.1) can be expressed as linear combinations of the Mµν as:

E±(e1−e2) =
1

2
(∓iM13 +M23 −M14 ∓ iM24) ,

E±(e2−e3) =
1

2
(M35 ± iM45 −M46 ± iM36) ,

E±(e2+e3) =
1

2
(M35 ± iM45 +M46 ∓ iM36) ,

E±(e1+e2) =
1

2
(±iM23 +M13 ± iM14 −M24) , (A.4)

E±(e1−e3) =
1

2
(±iM25 −M26 +M15 ± iM16) ,

E±(e1+e3) =
1

2
(∓iM25 −M26 −M15 ± iM16) .

For the normalized traces we have

TrMµνMρσ = 2ηµρηνσ − 2ηµσηνρ , (A.5)

which is consistent with (A.3) as can be easily checked. Using the basis (L3, R3, H3) with

L3 = 1
2(H1 + H2) and R3 = 1

2(H1 − H2) for the Cartan subalgebra, the relevant part of

the commutation relations among the generator is summarized below for easy reference:

[L3 , E±(e1−e2)] = 0 , [R3 , E±(e1−e2)] = ±E±(e1−e2) ,

[L3 , E∓(e2−e3)] = ∓1
2E∓(e2−e3) , [R3 , E∓(e2−e3)] = ±1

2E∓(e2−e3) ,

[L3 , E±(e2+e3)] = ±1
2E±(e2+e3) , [R3 , E±(e2+e3)] = ∓1

2E±(e2+e3) ,

[L3 , E±(e1+e2)] = ±E±(e1+e2) , [R3 , E±(e1+e2)] = 0 ,

[L3 , E∓(e1−e3)] = ∓1
2E∓(e1−e3) , [R3 , E∓(e1−e3)] = ∓1

2E∓(e1−e3) ,

[L3 , E±(e1+e3)] = ±1
2E±(e1+e3) , [R3 , E±(e1+e3)] = ±1

2E±(e1+e3) ,

(A.6)

[H3 , E±(e1−e2)] = 0 , [E(e1−e2) , E−(e1−e2)] = H1 −H2 ,

[H3 , E∓(e2−e3)] = ±E∓(e2−e3) , [E(e2−e3) , E−(e2−e3)] = −H2 +H3 ,

[H3 , E±(e2+e3)] = ±E±(e2+e3) , [E(e2+e3) , E−(e2+e3)] = −H2 −H3 ,

[H3 , E±(e1+e2)] = 0 , [E(e1−e3) , E−(e1−e3)] = −H1 +H3 ,

[H3 , E∓(e1−e3)] = ±E∓(e1−e3) , [E(e1+e3) , E−(e1+e3)] = −H1 −H3 ,

[H3 , E±(e1+e3)] = ±E±(e1+e3) , [E(e1+e2) , E−(e1+e2)] = H1 +H2 .

(A.7)
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B Details of the construction of doubletons

With respect to the three-grading of so(4, 2) given in (3.2) and (3.3), out of the six pairs of

roots E±(ei±ej), we have L± = E±(e1+e2) generating su(2)L together with L3 and E±(e1−e2)

with R3 generating su(2)R, while the remaining four pair of roots in L± transform as a

vector, i.e. in the IRR
(
1
2 ,

1
2

)
of su(2)L⊕su(2)R as it is already implied by the three-graded

decomposition given in (3.2). We note that these are complex vectors since E†
±(ei±ej)

=

E∓(ei±ej).

In the oscillator basis introduced via (3.4), SU(2)L and SU(2)R generators can be built

in the form

Lαβ = a†αaβ − 1

2
δαβN̂a , Rαβ = b†αbβ − 1

2
δαβN̂b , (B.1)

while L+ and L− are spanned by a†ib
†
j and aibj , respectively. The correspondence between

the roots E±(ei±ej) and a†ib
†
j and aibj , can be given explicitly as

a†1b
†
1 ≡ Ee1+e3 , a1b1 ≡ E−(e1+e3) ,

a†1b
†
2 ≡ Ee2+e3 , a1b2 ≡ E−(e2+e3) ,

a†2b
†
1 ≡ E−(e2−e3) , a2b1 ≡ Ee2−e3 ,

a†2b
†
2 ≡ E−(e1−e3) , a2b2 ≡ Ee1−e3 .

(B.2)

Using a four component spinor of the form [38–40]

ψ =




a†1
a†2
b1
b2


 , ψ̄ = ψ†Γ6 = (−a1,−a2, b

†
1, b

†
2) , (B.3)

a Schwinger-type realization of the so(4, 2) algebra is provided by

Mµν = ψ̄Σ+
µνψ , (B.4)

where Σ+
µν is the Fundamental four dimensional spinor IRR of so(4, 2), whose relation to Γ-

matrices of appropriate signature and dimension can be found in [38, 39]. Eq. (B.4) gives a

unitary representation of so(4, 2) ≡ su(2, 2) on the Fock space F generated by the action of

a†α b†α on the vacuum state with unit conformal energy. F partitions into direct sums of infi-

nite number of unitary irreducible representations in two inequivalent ways as given in (3.6).

If we work with the doubleton corresponds to the upper sign in (3.7), using (B.2)

explicit form of the action of the roots on the states |h3, JL, JR,mL,mR〉 take the form

E±(e1+e2)|h3,mL,mR〉 =

√(
1

2
h3 +

1

4
k ±mL +

1

2

)(
1

2
h3 +

1

4
k ∓mL − 1

2

)

×|h3,mL ± 1,mR〉 ,

E±(e1−e2)|h3,mL,mR〉 =

√(
1

2
h3 −

1

4
k ±mR +

1

2

)(
1

2
h3 −

1

4
k ∓mR − 1

2

)

×|h3,mL,mR ± 1〉 ,

– 18 –



J
H
E
P
0
2
(
2
0
2
0
)
0
8
9

E±(e1+e3)|h3,mL,mR〉 =

√(
1

2
h3 +

1

4
k +mL ± 1

2

)(
1

2
h3 −

1

4
k +mR ± 1

2

)

×
∣∣∣∣h3 ± 1,mL ± 1

2
,mR ± 1

2

〉
,

E±(e2+e3)|h3,mL,mR〉 =

√(
1

2
h3 +

1

4
k +mL ± 1

2

)(
1

2
h3 −

1

4
k −mR ± 1

2

)

×
∣∣∣∣h3 ± 1,mL ± 1

2
,mR ∓ 1

2

〉
,

E∓(e2−e3)|h3,mL,mR〉 =

√(
1

2
h3 +

1

4
k −mL ± 1

2

)(
1

2
h3 −

1

4
k +mR ± 1

2

)

×
∣∣∣∣h3 ± 1,mL ∓ 1

2
,mR ± 1

2

〉
,

E∓(e1−e3)|h3,mL,mR〉 =

√(
1

2
h3 +

1

4
k −mL ± 1

2

)(
1

2
h3 −

1

4
k −mR ± 1

2

)

×
∣∣∣∣h3 ± 1,mL ∓ 1

2
,mR ∓ 1

2

〉
. (B.5)

As for the doubleton with the lower sign in (3.7), we can simply take k → −k in the

coefficients provided above.
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