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Abstract—Boric acid is essential for plants and has many vital roles in animals and microorganisms. However,
its high doses are toxic to all organisms. We previously screened yeast deletion collections to identify boric
acid-resistant and susceptible mutants to identify genes that play a role in boron tolerance. Here, we analyzed
boron resistant mutants (elp1∆, elp3∆, elp6∆, ncs2∆, ncs6∆ and kti12∆) for their abilities to modulate the
general amino acid control system (GAAC) and to induce boron efflux pump ATR1. The mutants analyzed
in this study lack the genes that play roles in tRNA Wobble base modifications. We found that all of the boron
resistant mutants activated Gcn4-dependent reporter gene activity and increased the transcript level of the
ATR1 gene. Additionally, boron resistant cells accumulated less boric acid in their cytoplasm compared to the
wild type cells upon boron exposure. Thus, our findings suggested that loss of wobble base modifications in
tRNA leads to GAAC activation and ATR1 induction, which in turn reduced intracellular boron levels and
caused boron resistance.
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INTRODUCTION

Boron (B) has been known for about a century as a
necessary metalloid for the growth and development
of plants [1]. It has been shown to play different
important metabolic and structural roles in cells, one
of which is acting as a crosslinker among pectin rham-
nogalacturonan II in plant cell walls [2‒4]. However,
molecular mechanisms underlying many of the roles
in which boron takes part are literally unknown.

Recent studies showed that boron is an essential
micronutrient for a broad spectrum of organisms,
from bacteria to animals although the required
amounts of boron differ among these organisms
[5‒10]. It can be toxic when present at high concen-
trations. However, the physiological basis of this tox-
icity is still unclear. Boron transport is noteworthy in
this regard, and many genes playing roles in boron
transport and tolerance have been identified in plants
and yeast so far. Arabidopsis thaliana BOR1 gene was
identified as the first boron transporter gene, its
homologs have been identified in many organisms
[11‒14].

Yeast Saccharomyces cerevisiae has been widely
used to understand the mechanisms by which cells
respond to various abiotic stresses, including copper,
iron, zinc metals. To characterize plant boron toler-
ance genes, researchers used yeast as a model system
[15‒19]. Yeast Atr1 functions as a boron eff lux pump
providing boron resistance to the cells [15]. The
expression of ATR1 and the genes related to amino
acid biosynthesis is regulated by the transcription fac-
tor Gcn4 in response to boric acid treatment. It has
also been shown that boron activates Gcn2 kinase and
leads to the phosphorylation of eIF2α, which then
inhibits protein synthesis [20]. Genome-wide screen-
ing studies in yeast have also revealed some new genes
related to boron metabolism. A haploid yeast deletion
library was screened for this purpose, and 6 mutants
have been identified as boron resistant mutants [21].
All of these mutants (elp1∆, elp3∆, elp6∆, ncs2∆,
ncs6∆ and kti12∆) were deficient in Wobble base
modifications in tRNA.

In this study, the genes deletion of which confer
boron resistance to the yeast cells were investigated to
underline their mechanisms for boron tolerance. We
found that all boron resistant mutants constitutively
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induced the GAAC path and ATR1 gene expression,
and thus, lowered their intracellular boron concentra-
tions to gain resistance to toxic levels of boron.

EXPERIMENTAL

Yeast growth, media and transformation. Wild-type
Saccharomyces cerevisiae BY4741 (MATa his3∆1
leu2∆0 met15∆0 ura3∆0; EUROSCARF) and its
isogenic deletion mutants were obtained from the
yeast deletion library. Cells were grown in either YPD
(2% glucose, 1% yeast extract, 2% peptone and 2%
agar for solid media) or YNB (yeast nitrogen base)
(2% glucose, 0.67% yeast nitrogen base without amino
acids and 2% agar) media supplemented with required
amino acids and bases. Yeast transformations were
performed using the LiAc method [22].

Boron Tolerance Assays. Boric acid was used as the
boron source in the assays. YPD or YNB agar plates
with different concentrations of boric acid were pre-
pared. Overnight cultures were diluted to an optical
density of 0.2 at 600 nm and then serially diluted to
0.02, 0.002, and 0.0002. A 5 μL aliquot of each dilu-
tion was spotted on these plates and incubated for
3 days at 30°C, and plates were photographed.

RNA isolation and real-time PCR analyses. Total
RNA was isolated from boron-treated and untreated
samples using RNA Isolation Kit (Invitrogen).
Genomic DNA traces were removed by DNAse treat-
ment (Fermentas). Complementary DNA (cDNA)
from total mRNA was obtained using the First Strand
cDNA Synthesis Kit (Fermentas). The cDNA was
used as a template for amplifying a 186 bp fragment for
the ATR1 gene, and a 103 bp fragment for the internal
control ACT1 gene. Triplicate real-time PCR analyses
were performed with the IQ5 Real-Time PCR System
(Bio-Rad) using Fermentas MaximaTM SYBR Green
qPCR Master Mix (2X). The primers used for the
amplification of ATR1 were ATR1F (5'-ACGCG-
TATAGCATAGCCGCTTTCA-3') and ATR1B
(5'-TGTAAGCCTGGTTCCAACCCGATA-3'), the
primers used for the amplification of ACT1 were ACT1F
(5'-ACGTTCCAGCCTTCTACGTTTCCA-3') and
ACT1B (5'-ACGTGAGTAACACCATCACCGGAA-3').
The conditions of PCR amplification for the genes
were as follows: 40 cycles at 94°C for 30 s, 58°C for 30 s
and 72°C for 30 s.

Molecular cloning. Gateway Cloning System (Invi-
trogen) was used for the cloning experiments. Wild
type alleles of related genes were amplified using High
Fidelity Enzyme (Fermentas) from yeast genomic
DNA. The amplified fragments were first cloned into
the pDONR vector using BP ClonaseTM II enzyme
(Invitrogen) and then moved to LR clonase reaction.
This reaction was performed with isolated entry
clones, pAG426GPD expression vector, and LR
ClonaseTM II enzyme mixture (Invitrogen). Isolated
plasmids were verified by sequence analyses, and then
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yeast cells were transformed with the empty vector or
with a gene expression construct and selected for ura-
cil prototrophy.

β-Galactosidase activity assays. Wild type and
isogenic yeast mutant cells were transformed with the
p180 plasmid, which carries the GCN4-lacZ gene [23].
Overnight cultures of the wild-type cells in liquid YNB
without uracil were diluted and after two hours of
incubation, cultures were split into two flasks with or
without 20 mM boric acid. After 3 hours of growth in
the presence of boron, 500 μL of cell solution, at an
optical density between 0.2 and 0.6 at 600 nm, was col-
lected and homogenized in 400 μL of Z-buffer
(60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl,
1 mM MgSO4, 50 mM β-mercaptoethanol and 0.2%
N-lauryl sarcosine). After 30 min preincubation at
30°C, 150 μL of Z-buffer with 4 mg/mL ONPG (o-
nitrophenyl-b-D galactopyranoside) (Sigma) was
added to the suspensions and the resulting solutions
were incubated at 30°C for half an hour. The reaction
was stopped by adding 400 μL 1.5 M Na2CO3. After
centrifugation for 1 min, supernatants were taken and
their absorbance values were determined at 420 nm
and normalized by the OD600 values of cells.

Determination of intracellular boron concentra-
tions. Exponentially growing boron-resistant mutant
cells were treated with 50 mM boric acid for 1 hour or
not and harvested by centrifugation. The cells were
washed with distilled water and disrupted by using lysis
buffer (2% Triton X-100, 1% SDS, 100 mM NaCl,
10 mM Tris-Cl pH 7.6, 1 mM EDTA), glass beads,
and vortex. The supernatants were used for further
analyses. The boron concentrations of diluted cell
extracts were determined using the Boron Cell Test
Kit (Merck). The method determines photometrically
the color change in the environment and has high
measurement sensitivity (0.05 mg boron/liter). The
obtained absorbance values were normalized by the
values of corresponding cell cultures. The experiments
were repeated three times.

RESULTS

Expression of Wobble Base Modification Genes
and Boron Tolerance Levels

Wild type yeast can grow in the presence of 75 mM
boric acid [15, 16]. The tRNA wobble base modification
mutants elp1∆, elp3∆, elp6∆, ncs2∆, ncs6∆ and kti12∆
could tolerate up to 125 mM boric acid (Fig. 1a). We first
cloned and overexpressed these genes in wild-type
cells to find out whether their activation alters cell’s
response to boron. As Fig. 1b shows, overexpression of
these genes did not change their response to the boron
stress. Thus, their deletion rather than activation was
necessary for boron tolerance.
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Fig. 1. Boric acid tolerance levels. (a) Wild type cells and boron resistant mutants were transformed with an empty vector (p426).
(b) Wild-type cells were transformed with the plasmids containing ELP1, ELP3, ELP6, NCS2, NCS6, KTI12 genes.
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Gcn4 Activity and ATR1 Expression in the Mutant Cells

In order to understand the mechanisms by which
they gain tolerance to boron, we analyzed the status of
the general amino acid control mechanism (GAAC)
and ATR1 gene in the mutants. Only a few genes have
been suggested to play a role in yeast boron tolerance
and the roles of the ones other than ATR1 are uncer-
tain. ATR1 is regulated by the Gcn4 transcription fac-
tor, which is the master regulator of amino acid bio-
synthesis genes [15, 20]. Defects in processing the
wobble base of tRNA are known to induce GCN4
translation [24]. Therefore, we focused on the status of
GCN4 transcription factor and ATR1 gene in the
mutants.

First, using a plasmid-based Gcn4-LacZ reporter
system [23], we determined relative Gcn4 activity in
the mutant cells along with the wild-type cells (Fig. 2a).
The Gcn4 activity was found to be higher in all
mutants changing from 1.4- to 3.6-fold when com-
pared to that of the wild-type cells. When cells were
treated with boron, Gcn4 activity was further elevated
in the mutants. Thus, the tRNA wobble base modifi-
cation mutants had an activated GAAC mechanism.
Induction of ATR1 boron eff lux pump is one of the
outcomes of GAAC activation, in fact, Gcn4 tran-
scription factor simultaneously upregulates the
expression of amino acid biosynthetic genes and ATR1
gene [15]. Hence we monitored the transcript level of
ATR1 in the mutants. As seen in Fig. 2b, cells showed
higher level expression (from 5 to 20-fold) of ATR1 as
compared to the wild-type cells. Obviously, our boron
resistant mutants had constitutively high Gcn4 activity
and ATR1 expression. This might be the reason for the
boric acid tolerance of corresponding mutants. The
high expression levels of ATR1 in these mutants can
result in the eff lux of high amounts of boric acid so
that the mutants might have low levels of boron in the
cell. Intracellular boron levels were measured and
found lower in the mutants that are resistant to boron
when compared to the wild type (Fig. 2c).

Overexpression of ATR1 from a Plasmid Provides 
Further Boron Resistance to the Mutants

To test if an extra boron resistance could be
achieved by further expression of ATR1 gene in boron
resistant mutants, we transformed the cells with a high
copy number plasmid harboring the ATR1 gene. We
observed that ATR1 overexpressing elp3Δ and ncs6Δ
transformants could tolerate up to 350 mM boric acid,
while the other transformants showed a wild-type-like
growth pattern (Fig. 3).

The Wooble Base Modification Mutants
Are Not Osmotolerant

The high-osmolarity glycerol (HOG) pathway has
been suggested to be a part of the response to boric
acid in yeast [25]. To find out whether the mutants
MOLECULAR BIOLOGY  Vol. 54  No. 3  2020
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Fig. 2. Determination of Gcn4 activity, ATR1 mRNA lev-
els and intracellular boron concentrations of the mutants.
(a) Wild type and boron resistant mutants were trans-
formed with a plasmid containing GCN4-LacZ reporter
gene. Logarithmically growing cultures were treated with
20mM boric acid for 3 hours or not. β-Galactosidase assay
was performed as indicated in Experimental. (b) ATR1
gene expression was determined by real-time PCR analyses
in wild type and boron resistant mutants. The yeast actin gene
was used as the internal control. (c) Intracellular boron levels
of wild type and mutants that were exposed to 50 mM boric
acid for 1 h. Bars represent the mean values of triplicate
analyses.
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show tolerance to salt and sorbitol, we spotted them
onto agar plates containing different amounts of salt
and sorbitol. There were no differences between the
mutants and the wild type cells in terms of their salt
and sorbitol tolerances (Figs. 4a, 4b) which suggest
that boron resistance phenotype of the mutants is not
a result of the general stress response and it is rather
specific to boron.

DISCUSSION

We showed that the Gcn4 transcription factor and
Atr1 boron eff lux pump are activated in the yeast
mutants deficient in the wobble base modifications of
tRNA. The tRNAs are essential components of pro-
tein synthesis machinery and undergo many post-
transcriptional changes. Hypo-modification of the
wobble position seems to be very relevant to transla-
tional regulation. Especially, U34, which reads the
third position in codons, is a frequent target of modi-
fications that modulates wobble base pairing and per-
suading codon recognition.

In yeast, many tRNAs are modified at U34 and this
process is orchestrated by more than two dozens of
genes including the elongator complex (Elp1–Elp6),
killer toxin-insensitive genes (Kti11–Kti14) and uri-
dine thiolating ligases (Ncs2 and Ncs4) [26, 27]. The
mutants that we analyzed in this work are all related to
U34 modifications and their absence was reported to
cause diverse phenotypes in response to different types
of stress conditions [28, 29]. Under some circum-
stances the lack of tRNA modification may become
beneficial for the cells; for example, thiolation defi-
cient cells may confer resistance to endoplasmic retic-
ulum stress [30]. Similarly, we showed that absence of
U34 modifications provides boron resistance.

Our data and previous findings suggest that alter-
ations in the tRNA modification pattern at U34 medi-
ate cellular response to different stress conditions.
What happens to protein synthesis machinery in the
absence of tRNA modification is relatively known and
it involves slow translation, recoding and synthesis of
incorrect proteins [27]. However, the mechanism of
stant mutants increases boron tolerance. Each mutant was trans-
ations of boric acid.

Boric acid, mM
250 300 325 350
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Fig. 4. Osmotic stress tolerances of boron resistant yeast mutants. Wild type and yeast mutants were grown to logarithmic phase
and serially diluted to an optical density of 0.2, 0.02, 0.002, and 0.0002 at 600 nm. 5 μL of each dilution was spotted onto YPD
media containing the indicated amount of sodium chloride (a) and sorbitol (b). The plates were incubated at 30°C for 3 days and
photographed.
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how the tRNA modifications regulate stress response
is not clear for most situations.

Boron stress tolerance mechanism of elp1∆, elp3∆,
elp6∆, ncs2∆, ncs6∆ and kti12∆ mutants could be
explained by the induction of Atr1 boron eff lux pump
through the Gcn4 transcription factor. There could be
additional mechanisms; for example, tRNAs in these
mutants might escape from cleavage. As a part of stress
response mechanism, tRNAs can be cleaved by spe-
cific nucleases, as is the case for amino acid starvation
which results in tRNA cleavage in Tetrahymena ther-
mophila and Aspergillus fumigatus [31, 32]. Oxidative
stress can also result in tRNA cleavage in the antico-
don loop in Saccharomyces cerevisiae [33, 34]. The
mechanisms and functions of tRNA cleavage in differ-
ent stress conditions are not clear. However, they may
have regulatory roles during the stress response.
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