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Abstract The Schrödinger cat states, constructed from Glauber coherent states and
applied for description of qubits are generalized to the kaleidoscope of coherent
states, related with regular n-polygon symmetry and the roots of unity. This quantum
kaleidoscope is motivated by our method of classical hydrodynamics images in a
wedge domain, described by q-calculus of analytic functions with q as a primitive
root of unity. First we treat in detail the trinity states and the quartet states as descrip-
tive for qutrit and ququat units of quantum information. Normalization formula for
these states requires introduction of specific combinations of exponential functions
with mod 3 and mod 4 symmetry, which are known also as generalized hyperbolic
functions. We show that these states can be generated for an arbitrary n by the Quan-
tum Fourier transform and can provide in general, qudit unit of quantum information.
Relations of our states with quantum groups and quantum calculus are discussed.

Keywords Coherent states · Quantum information · Qubit · Qutrit
Qudit · Quantum Fourier transform

1 Introduction

1.1 Classical Vortex Kaleidoscope

The classical problem of point vortices in a domain bounded by two infinite circular
cylinders with arbitrary radiuses and positions in the plane, can be formulated as the
Apollonius circles problem, reducible byMöbius transformation to the one in annular
domain between two concentric circles [1]. Recently we have formulated the two
circles theorem, allowing one to construct an arbitrary flow in such annular domain
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by the complex potential F(z) as q-periodic analytic function, F(qz) = F(z), where
q = R2/r2 is determined by ratio of two circle radiuses. Depending on the number
and the position of vortices, sources or sinks, one can fix singularities of this function
in terms of q-elementary functions [2]. Similar theorem [3] formulated for the flow in
the wedge domain with angle π

n , requires construction of complex potential F(z) as
q2-periodic function, F(q2z) = F(z)with q as a root of unity q2n = 1. It determines
complex velocity V (z) = dF(z)/dz as q2- self-similar analytic function

V (q2z) = q−2 V (z).

The wedge theorem describes the fluid flow as superposition of complex analytic
functions

F(z) =
n−1∑

k=0

f (q2k z) +
n−1∑

k=0

f̄ (q2k z) , (1)

representing the kaleidoscope of images associated with the regular 2n - polygon.
For the point vortex located at z0, the theorem gives q2-periodic complex potential

F(z) = iΓ

2π
ln

zn − zn0
zn − z̄n0

= F(q2z), (2)

which due to the Kummer expansion

zn − zn0 = (z − z0)(z − q2z0)(z − q4z0) . . . (z − q2(n−1)z0) ,

appears as the set of vorticeswith even images at points z0, q2z0, q4z0, . . . , q2(n−1)z0
and with odd images at z̄0, q2 z̄0, q4 z̄0, . . . , q2(n−1) z̄0. This kaleidoscope of vortex
images we called the Kummer kaleidoscope.

1.2 Quantum Kaleidoscope and Coherent States

Since analytical functions are related intrinsically with quantum coherent states and
the Fock–Bargman representation, here we extend our ideas to the Hilbert space
for the coherent states. The problem is to construct q-periodic quantum states and
q-self-similar quantum states. Similar problem, relating self-similarity properties of
fractals, the theory of entire analytical functions and the q-deformed algebra with
coherent states was discussed recently in [4]. In the present paper we consider the
case, when q is the primitive root of unity q2n = 1 and show that it leads to the
kaleidoscope of coherent states |α〉, |q2α〉, …, |q2(n−1)α〉, located at vertices of the
regular polygon. By acting with dilatation operator on analytic function

f (q2z) = q2z d
dz f (z) (3)



Kaleidoscope of Classical Vortex Images and Quantum Coherent States 181

we can rewrite the wedge theorem (1) in a compact form

F(z) =
n−1∑

k=0

(
q2z d

dz

)k [ f (z) + f̄ (z)] = [n]
q2z d

dz
[ f (z) + f̄ (z)], (4)

where we have used non-symmetric Q̂-number

[n]Q̂ = 1 + Q̂ + Q̂2 + · · · Q̂n−1 = Q̂n − 1

Q̂ − 1
,

with the operator base
Q̂ ≡ q2z d

dz . (5)

From this representation, q2-periodicity of function F(z) follows easily. Due to the
identity Q̂n = q2nz d

dz = 1 we have

Q̂[n]Q̂ = [n]Q̂
and as follows

F(q2z) = Q̂F(z) = Q̂[n]Q̂[ f (z) + f̄ (z)] = [n]Q̂[ f (z) + f̄ (z)] = F(z).

It is noticed that the differential operator (5) is the Fock–Bargman representation for
the dilatation operator Q̂ = q2N̂ , acting on coherent states as

q2N̂ |α〉 = |q2α〉, (6)

where N̂ = â†â is the number operator. Then, by analogy with the wedge theorem
(1) and (4), we can construct q2-periodic quantum state as superposition of coherent
states

|0〉α ≡ |α〉 + |q2α〉 + |q4α〉 + · · · + |q2(n−1)α〉
= (I + q2N̂ + q4N̂ + · · · + q2(n−1)N̂ )|α〉 = [n]q2N̂ |α〉. (7)

The q2-periodicity for this quantum state

q2N̂ |0〉α = |0〉α
follows easily from the relation Q̂n = q2nN̂ = I . This suggests also that to find q2-
self-similar quantum states, one can take the following superpositions of coherent
states

|1〉α ≡ [n]q2N̂+2 |α〉, |2〉α ≡ [n]q2N̂+4 |α〉, . . . , |n − 1〉α ≡ [n]q2N̂+2(n−1) |α〉,
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satisfying self-similarity conditions

q2N̂ |1〉α = q2|1〉α, q2N̂ |2〉α = q4|2〉α, . . . , q2N̂ |n − 1〉α = q2(n−1)|n − 1〉α.

It turns out that this construction provides the set of orthogonal quantum states. The
similar superpositions of coherent stateswere discussed indifferent context by several
authors, as the generalized coherent states [5, 6], as factorization problem for the
Schrödinger equation with self-similar potential [7] and as the Schrödinger cat states
[8]. The Schrödinger cat states [9] as superposition of Glauber’s optical coherent
states with opposite phases, become important tool for construction of qubits, as a
units of quantum information [10] in quantum optics [11]. They correspond to even
and odd quantum states with q2 = −1. Here we generalize this construction to the
kaleidoscope of coherent states, related with regular n-polygon symmetry and the
roots of unity. Superposition of coherent states with such symmetry plays the role of
the quantum Fourier transform and provides the set of orthonormal quantum states,
as a description of qutrits, ququats and qudits. Such quantum states, considered as
a units of quantum information processing and corresponding to an arbitrary base
number n, could have advantage in secure quantum communication.

1.3 Glauber Coherent States

We consider the Heisenberg–Weyl algebra, written in terms of creation and annihi-
lation operators, satisfying bosonic commutation relation

[
â, â†

] = Î.

The annihilation operator determines the vacuum state â|0〉 = 0 from the Hilbert
space |0〉 ∈ H and the creation operator â† repeatedly applied to this state, gives

orthonormal set of states |n〉 = (â†)n√
n! |0〉. Coherent states are defined as eigenstates

of annihilation operator [12]:
â|α〉 = α|α〉 ,

where α ∈ C . This gives us a relation between complex plane and the Hilbert space,
such that α ∈ C ↔ |α〉 ∈ H . Another equivalent definition is given by the displace-
ment operator,

D(α) = eαâ†−ᾱâ = e− 1
2 |α|2eαâ†e−ᾱâ (8)

so that,

|α〉 = D(α)|0〉 = e− 1
2 |α|2

∞∑

n=0

αn

√
n! |n〉 . (9)
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From this we get the following representation of coherent states:

|α〉 = eαâ†

√
e|α|2 |0〉,

which is instructive for our generalizations. The inner product of coherent states,

〈α|β〉 = e− 1
2 |α|2− 1

2 |β|2+ᾱβ

is never zero, |〈α|β〉|2 = e−|α−β|2 	= 0. This iswhy coherent states are not orthogonal.
The aimof the present paper is to construct an orthogonal set of states as superposition
of coherent states with discrete regular polygon symmetry.

2 Schrödinger’s Cat States

In description of the Schrödinger cat states one introduces two orthogonal states as
superpositions of |α〉 and | − α〉 states, which are called even and odd cat states [8],

|Cateven〉 ∼ |α〉 + | − α〉 , |Catodd〉 ∼ |α〉 − | − α〉.

The states in this superpositions are related by rotation to angle π , which corresponds
to primitive root of unity q2 = q 2 = −1, so that q4 = 1. The normalization constants
for these states

|0〉α = N0√
2
( |α〉 + |q2α〉 ) , |1〉α = N1√

2
( |α〉 + q 2|q2α〉 ) , (10)

are calculated as:

N0 = e
|α|2
2√

2
√
cosh |α|2 , N1 = e

|α|2
2√

2
√
sinh |α|2 . (11)

Transformation to these states can be described in the matrix form as an action by
the Hadamard gate,

⎡

⎣
|0〉α
|1〉α

⎤

⎦ = N
1√
2

⎡

⎣
1 1

1 q 2

⎤

⎦

︸ ︷︷ ︸
Hadamard gate

⎡

⎣
|α〉

|q2α〉

⎤

⎦ , (12)

where the normalization matrix
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N = e
|α|2
2√
2
diag

(
0e

|α|2 , 1e
|α|2

)−1/2
(mod 2) ≡ diag (N0, N1) (13)

is defined by the even (0 mod 2) and the odd (1 mod 2) exponential functions, coin-
ciding with hyperbolic functions,

(mod 2) 0e
|α|2 ≡

∞∑

k=0

(|α|2)2k
(2k)! = e|α|2 + eq

2|α|2

2
= cosh |α|2,

(mod 2) 1e
|α|2 ≡

∞∑

k=0

(|α|2)2k+1

(2k + 1)! = e|α|2 + q̄2eq
2|α|2

2
= sinh |α|2.

2.1 Mod 2 Representation of Cat States

In terms of these exponential functions we can rewrite the Schrödinger cat states in
a compact form:

|0〉α = 0eαâ†

√
0e|α|2 |0〉 (mod 2) = cosh αâ†√

cosh |α|2 |0〉 ,

|1〉α = 1eαâ†

√
1e|α|2 |0〉 (mod 2) = sinh αâ†√

sinh |α|2 |0〉.

2.2 Eigenvalue Problem for Cat States

Since |α〉 is an eigenstate of annihilation operator â, â|α〉 = α|α〉, it is also the
eigenstate of operator â2:

â2|α〉 = α2|α〉.

However, the last equation admits one more eigenstate | − α〉 with the same eigen-
value α2, so that

â2| ∓ α〉 = α2| ∓ α〉.

Hence, any superposition of states {| + α〉, | − α〉} is also an eigenstate of operator
â2, with the same eigenvalue. This implies that Schrödinger cat states are eigenstates
of this operator,

â2|0〉α = α2|0〉α, â2|1〉α = α2|1〉α,



Kaleidoscope of Classical Vortex Images and Quantum Coherent States 185

constituting orthonormal basis {|0〉α, |1〉α}. It can be used to define the qubit coherent
state:

|ψ〉α = c0|0〉α + c1|1〉α,

where |c0|2 + |c1|2 = 1, representing a unit of quantum information in quantum
optics. This qubit state is an eigenstate of operator â2 as well:

â2|ψ〉α = α2|ψ〉α.

2.3 Number of Photons in Cat States

The cat states are not eigenstates of the annihilation operator â. On the contrary,
action of this operator gives flipping between cat states |0〉α and |1〉α:

â|0〉α = α
N0

N1
|1〉α , â|1〉α = α

N1

N0
|0〉α .

By using these equations we find number of photons in Schrödinger’s cat states as :

α〈0|N̂ |0〉α = |α|2 N
2
0

N 2
1

= |α|2 1e|α|2

0e|α|2 = |α|2 tanh |α|2,

α〈1|N̂ |1〉α = |α|2 N
2
1

N 2
0

= |α|2 0e
|α|2

1e|α|2 = |α|2 coth |α|2.

It shows deviation from number of photons in coherent states

〈α|N̂ |α〉 = |α|2

shown in Fig. 1. In the limiting case |α| → ∞ both distributions asymptotically goes
to this value

lim|α|→∞ α〈0|N̂ |0〉α = lim|α|→∞ α〈1|N̂ |1〉α ≈ |α|2.

The cat states for |α|2 � 1 are reduced to the so called Schrödinger’s kitten states
with number of photons 0 and 1:

lim|α|→0
α〈0|N̂ |0〉α = 0, lim|α|→0

α〈1|N̂ |1〉α = 1.



186 O. K. Pashaev and A. Koçak

Fig. 1 Photon numbers in Schrödinger’s cat states

2.4 Fermionic Representation of Cat States

The dilatation operator q2N̂ = eiπ N̂ = (−1)N̂ is the parity operator for cat states,
so that |0〉α and |1〉α states are eigenstates of this operator. The first state is the
q2-periodic state and the second one is q2-self-similar state,

q2N̂ |0〉α = |0〉α , q2N̂ |1〉α = q2|1〉α. (14)

These states represent kaleidoscope of two coherent states |α〉 and | − α〉, rotated by
angle π , and can be rewritten in terms of parity operator

|0〉α = N0 [2]q2N̂ |α〉 = N0(I + q2N̂ )|α〉,
|1〉α = N1 [2]q2N̂+2 |α〉 = N1(I + q2q2N̂ )|α〉, (15)

or

|0〉α = N0(I + (−1)N̂ )|α〉 ,

|1〉α = N1(I − (−1)N̂ )|α〉 . (16)

It is noticed that the cat states are eigenstates also of q2- non-symmetric number
operator

[N̂ ]q2 = q2N̂ − 1

q2 − 1
,

where q2 = −1,
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[N̂ ]q2 |0〉α = [0]q2 |0〉α, [N̂ ]q2 |1〉α = [1]q2 |1〉α,

with eigenvalues [0]q2 = 0 and [1]q2 = 1. In the Fock basis |n〉, n = 0, 1, 2..., these
number operator is diagonal, with eigenvalues 0 for even numbers n = 2k, and 1
for odd numbers n = 2k + 1. This number operator in the cat basis is matrix of the
fermion number operator

[N̂ ]q2 =
(
0 0
0 1

)
= N̂F

factorized by fermionic creation and annihilation operators N̂F = b̂†b̂, with algebra

b̂b̂† + b̂†b̂ = I, b̂2 = 0, (b̂†)2 = 0,

and matrix representation

b̂ =
(
0 1
0 0

)
, b̂† =

(
0 0
1 0

)
.

The cat states in this basis then are just computational basis qubit states:

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
.

3 Trinity States

The Schrödinger cat states can be generalized to the kaleidoscope of coherent states.
We start this generalization from the set of three coherent states, rotated by angle 2π

3
and located at vertices of equilateral triangle, which corresponds to roots of unity
q6 = 1. First we define superposition

|0〉α = N0√
3

(|α〉 + |q2α〉 + |q4α〉) .

Due to identity

q6n − 1 = (q2n − 1)(1 + q2n + q4n) = 0 ⇒

1 + q2n + q4n = 3 δn,0(mod 3),

with

δk,0 (mod 3) =
{
1, k = 0 (mod 3);
0, k 	= 0 (mod 3),

(17)
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the normalization constant is N0 = e
|α|2
2 (3 0e|α|2)−1/2, where we have introduced

(mod 3) exponential function

0e
|α|2(mod 3) ≡

∞∑

k=0

(|α|2)3k
(3k)! = 1

3

(
e|α|2 + eq

2|α|2 + eq
4|α|2

)
.

In a similar way we obtain the set of orthonormal states |0〉α, |1〉α and |2〉α:

|0〉α = e
|α|2
2

|α〉 + |q 2α〉 + |q 4α〉√
3
√
e|α|2 + eq2|α|2 + eq4|α|2

= e
|α|2
2

|α〉 + |q 2α〉 + |q 4α〉
3
√

0e|α|2(mod 3)
,

|1〉α = e
|α|2
2

|α〉 + q2|q 2α〉 + q4|q 4α〉√
3
√
e|α|2 + q2eq2|α|2 + q4eq4|α|2 = e

|α|2
2

|α〉 + q2|q 2α〉 + q4|q 4α〉
3
√

1e|α|2(mod 3)
,

|2〉α = e
|α|2
2

|α〉 + q4|q 2α〉 + q2|q 4α〉√
3
√
e|α|2 + q4eq2|α|2 + q2eq4|α|2 = e

|α|2
2

|α〉 + q4|q 2α〉 + q2|q 4α〉
3
√

2e|α|2(mod 3)
.

3.1 Matrix Form of Trinity States

These states appear by action of the trinity gate, playing the role of three dimensional
analogue of Hadamard gate

⎡

⎣
|0〉α
|1〉α
|2〉α

⎤

⎦ = N
1√
3

⎡

⎢⎣
1 1 1

1 q2 (q2)2

1 q4 (q4)2

⎤

⎥⎦

︸ ︷︷ ︸
Trini t y gate

⎡

⎣
|α〉

|q2α〉
|q4α〉

⎤

⎦ , (18)

with normalization constants

N = e
|α|2
2√
3
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2
)−1/2

(mod 3) ≡ diag (N0, N1, N2) (19)

and identity
1 + q2(n−k) + q4(n−k) = 3 δn,k(mod 3), 0 ≤ k ≤ 2,

where

δn,k (mod 3) =
{
1, n = k (mod 3);
0, n 	= k (mod 3).

(20)

Trinity states as superposition of coherent states have the following explicit phase
shift :
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|0〉α = N0(|α〉 + |ei 2π3 α〉 + |e−i 2π3 α〉),
|1〉α = N1(|α〉 + e−i 2π3 |ei 2π3 α〉 + ei

2π
3 |e−i 2π3 α〉),

|2〉α = N2(|α〉 + ei
2π
3 |ei 2π3 α〉 + e−i 2π3 |e−i 2π3 α〉).

By using three different (mod 3) exponential functions, we can rewrite these
states in a compact form:

|0〉α = 0eαâ†

√
0e|α|2 |0〉 , |1〉α = 1eαâ†

√
1e|α|2 |0〉 , |2〉α = 2eαâ†

√
2e|α|2 |0〉 (mod 3).

3.2 Eigenvalue Problem for Trinity States

Coherent states {|α〉, |q2α〉, |q4α〉} are eigenstates of operator â with different eigen-
values α, q2α, q4α, and the eigenstates of operator â3 with the same eigenvalue α3.
Due to this, our trinity states {|0〉α, |1〉α, |2〉α} are also eigenstates of operator â3 :

â3|q2kα〉 = α3|q2kα〉 ⇒ â3|k〉α = α3|k〉α, k = 0, 1, 2.

From trinity states we can construct the qutrit coherent state

|ψ〉α = c0|0〉α + c1|1〉α + c2|2〉α,

where |c0|2 + |c1|2 + |c2|2 = 1, as a unit of quantum informationwith base 3. It turns
out that this state is an eigenstate of operator â3:

â3|ψ〉α = α3|ψ〉α.

3.3 Number of Photons in Trinity States

The annihilation operator â acts on states |0〉α, |1〉α and |2〉α as cyclic permutation:

â|0〉α = α
N0

N2
|2〉α , â|1〉α = α

N1

N0
|0〉α , â|2〉α = α

N2

N1
|1〉α . (21)

This equation allows us to calculate number of photons in trinity states (see Fig. 2):

α〈0|N̂ |0〉α = |α|2
[

2e|α|2

0e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2 + 2π

3

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2

)

⎤

⎥⎦ ,
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Fig. 2 Photon numbers in trinity states

α〈1|N̂ |1〉α = |α|2
[

0e|α|2

1e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2 − 2π

3

)

⎤

⎥⎦ ,

α〈2|N̂ |2〉α = |α|2
[

1e|α|2

2e|α|2

]
= |α|2

⎡

⎢⎣
1 + 2e

−3|α|2
2 cos

(√
3
2 |α|2 − 2π

3

)

1 + 2e
−3|α|2

2 cos
(√

3
2 |α|2 + 2π

3

)

⎤

⎥⎦ .

3.3.1 Matrix Representation

Due to N̂ |n〉 = n|n〉, n ≥ 0 from the eigenvalue problem

q2N̂ |0〉α = |0〉α, q2N̂ |1〉α = q2|1〉α, q2N̂ |2〉α = q4|2〉α ,

we find the matrix representation of operators in our kaleidoscope basis as the clock
and the shift matrix

q2N̂ =
⎛

⎝
1 0 0
0 q2 0
0 0 q4

⎞

⎠ , â = α

⎛

⎜⎝
0 N1

N0
0

0 0 N2
N1

N0
N2

0 0

⎞

⎟⎠ = α

⎛

⎜⎝

N1
N0

0 0
0 N2

N1
0

0 0 N0
N2

⎞

⎟⎠

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ . (22)

This gives for the q2-number operator [N̂ ]q2 = q2N̂−1
q2−1 , the diagonal form with

matrix elements
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α〈0|[N̂ ]q2 |0〉α = [0]q2 , α〈1|[N̂ ]q2 |1〉α = [1]q2 , α〈2|[N̂ ]q2 |2〉α = [2]q2 ,

as q2 numbers: [0]q2 = 0, [1]q2 = 1, [2]q2 = 1+i
√
3

2 .

4 Quartet States

We define four states, rotated by angle π
2 and determined by primitive roots of unity:

q8 = 1. Superposition of these states with proper coefficients give us quartet of
orthonormal basis states:

⎡

⎢⎢⎣

|0〉α
|1〉α
|2〉α
|3〉α

⎤

⎥⎥⎦ = N
1√
4

⎡

⎢⎢⎣

1 1 1 1

1 q2
(
q2
)2 (

q2
)3

1 q4
(
q4
)2 (

q4
)3

1 q6
(
q6
)2 (

q6
)3

⎤

⎥⎥⎦

︸ ︷︷ ︸
Quartet gate

⎡

⎢⎢⎣

|α〉
|q2α〉
|q4α〉
|q6α〉

⎤

⎥⎥⎦ , (23)

where normalization constants are defined as

N = e
|α|2
2√
4
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2 ,3 e|α|2
)−1/2

(mod 4) ≡ diag (N0, N1, N2, N3)

and the identity is

1 + q2(n−k) + q4(n−k) + q6(n−k) = 4 δn,k(mod 4) , 0 ≤ k ≤ 3

with

δn,k (mod 4) =
{
1, n = k (mod 4);
0, n 	= k (mod 4).

(24)

The quartet states are superpositions of cat states with explicit form of phase shift
as

|0〉α = N0 [(|α〉 + | − α〉) + (|iα〉 + | − iα〉)] ,
|1〉α = N1 [(|α〉 − | − α〉) − i(|iα〉 − | − iα〉)] ,
|2〉α = N2 [(|α〉 + | − α〉) − (|iα〉 + | − iα〉)] ,
|3〉α = N3 [(|α〉 − | − α〉) + i(|iα〉 − | − iα〉)] .

By using (mod 4) exponential functions we get representation of these states in a
compact form:
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|0〉α = 0eαâ†

√
0e|α|2 |0〉, |1〉α = 1eαâ†

√
1e|α|2 |0〉, |2〉α = 2eαâ†

√
2e|α|2 |0〉, |3〉α = 3eαâ†

√
3e|α|2 |0〉 .

4.1 Eigenvalue Problem for Quartet States

As easy to see, the quartet states are eigenstates of operator â4 with eigenvalue α4:

â4|q2kα〉 = α4|q2kα〉 ⇒ â4|k〉α = α4|k〉α k = 0, 1, 2, 3.

As a result, the ququat state, defined as

|ψ〉α = c0|0〉α + c1|1〉α + c2|2〉α + c3|3〉α,

where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1, describes a unit of quantum informationwith
base 4, and is an eigenstate of operator â4:

â4|ψ〉α = α4|ψ〉α.

4.2 Number of Photons in Quartet States

The annihilation operator â implements cyclic permutation of states |k〉α, k =
0, 1, 2, 3:

â|0〉α = α
N0

N3
|3〉α , â|1〉α = α

N1

N0
|0〉α , â|2〉α = α

N2

N1
|1〉α , â|3〉α = α

N3

N2
|2〉α ,

allowing us to calculate number of photons in quartet states (See Fig. 3):

α〈0|N̂ |0〉α = |α|2
[

3e|α|2

0e|α|2

]
= |α|2

[
sinh |α|2 − sin |α|2
cosh |α|2 + cos |α|2

]
,

α〈1|N̂ |1〉α = |α|2
[

0e|α|2

1e|α|2

]
= |α|2

[
cosh |α|2 + cos |α|2
sinh |α|2 + sin |α|2

]
,

α〈2|N̂ |2〉α = |α|2
[

1e|α|2

2e|α|2

]
= |α|2

[
sinh |α|2 + sin |α|2
cosh |α|2 − cos |α|2

]
,

α〈3|N̂ |3〉α = |α|2
[

2e|α|2

3e|α|2

]
= |α|2

[
cosh |α|2 − cos |α|2
sinh |α|2 − sin |α|2

]
.

The quartet states are also eigenstates of q2-number operator [N̂ ]q2 :
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Fig. 3 Photon numbers in quartet states

q2N̂ |k〉α = q2k |k〉α ⇒ [N̂ ]q2 |k〉α = [k]q2 |k〉α ,where k = 0, 1, 2, 3. (25)

5 Kaleidoscope of Quantum Coherent States

As a generalization of previous results, here we consider superposition of n coherent
states, which are belonging to vertices of regular n-polygon, rotated by angle π

n
(Fig. 4). It is related with primitive roots of unity: q2n = 1. For the inner product of
q2k rotated coherent states we have

〈q2kα|q2kα〉 = 1,

〈q2kα|q2lα〉 = e|α|2(q2(l−k)−1), 0 ≤ k, l ≤ n − 1.

To calculate orthogonality and normalization conditions we apply the following
lemma; For q2n = 1 , 0 ≤ s ≤ n − 1,

• 1 + q2m + q4m + · · · + q2m(n−1) = nδm,0(mod n)

• 1 + q2(m−s) + q4(m−s) + · · · + q2(m−s)(n−1) = nδm,s(mod n)

where

δm,s (mod n) =
{
1, m = s (mod n);
0, m 	= s (mod n).

(26)
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Fig. 4 The regular n-polygon

Fig. 5 General structure of kaleidoscope states

5.1 Quantum Fourier Transformation

Our construction (Fig. 5) shows that orthogonal kaleidoscope of coherent states can
by described by the Quantum Fourier transform

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

|̃0〉α
|̃1〉α
|̃2〉α
|̃3〉α

...

| ˜n − 1〉α

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ... 1
1 w w2 ... wn−1

1 w2 w4 ... w2(n−1)

1 w3 w6 ... w3(n−1)

...
...

...
. . .

...

1 w(n−1) w2(n−1) ... w(n−1)(n−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

|α〉
|q2α〉
|q4α〉
|q6α〉

...

|q2(n−1)α〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where w = e
−2π i
n = q̄2 is the nth root of unity, so that corresponding transformation

matrix, the Vandermonde matrix as generalized Hadamard gate,

|̃k〉α = 1√
n

n−1∑

j=0

w jk |q2 jα〉 0 ≤ k ≤ n − 1, (29)

is the unitary gate QQ† = Q†Q = I . For orthonormal stateswe define normalization
matrix,
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N = e
|α|2
2√
n
diag

(
0e

|α|2 ,1 e|α|2 ,2 e|α|2 , . . . ,n−1 e
|α|2

)−1/2
(mod n)

in terms of (mod n) exponential functions:

fs(|α|2) =s e
|α|2(mod n) ≡

∞∑

k=0

(|α|2)nk+s

(nk + s)! , 0 ≤ s ≤ n − 1 . (30)

These functions represent superposition of standard exponentials

se
|α|2(mod n) = 1

n

n−1∑

k=0

q2skeq
2k |α|2 , 0 ≤ s ≤ n − 1 , (31)

related to each other by derivatives

∂

∂|α|2
[
se

|α|2
]

= s−1e
|α|2 ,

∂

∂|α|2
[
0e

|α|2
]

=n−1 e
|α|2 .

According to this, function fs defined in (30) is a solution of ordinary differential
equation of degree n

f (n)
s = fs , where 0 ≤ s ≤ n − 1, (32)

with proper initial values: f (s)
s (0) = 1 and

fs(0) = f ′
s (0) = · · · = f (s−1)

s (0) = f (s+1)
s (0) = · · · = f (n−1)

s (0) = 0.

As we have learned recently, these functions as the generalized hyperbolic func-
tions were introduced also in [13]. By using these functions one can derive compact
expression for the kaleidoscope states as

|α〉 = e− 1
2 |α|2eαâ† |0〉 ⇒ |s〉α = seαâ†

√
se|α|2 |0〉 (mod n), 0 ≤ s ≤ n − 1. (33)

5.2 Number of Photons in Kaleidoscope of Quantum
Coherent States

Cyclic permutation of kaleidoscope states, generated by annihilation operator â,
allows us to calculate average number of photons in these states
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â|s〉α = α
Ns

Ns−1
|s − 1〉α ⇒ (34)

α〈s|N̂ |s〉α = |α|2
[

s−1e|α|2

se|α|2

]
, 1 < s ≤ n − 1 , (35)

â|0〉α = α
N0

Nn−1
|n − 1〉α ⇒ (36)

α〈0|N̂ |0〉α = |α|2
[

n−1e|α|2

0e|α|2

]
. (37)

Asymptotically they approach the coherent states average number value

lim|α|→∞ α〈s|N̂ |s〉α ≈ |α|2 = 〈α|N̂ |α〉

while for small occupation numbers give integers

lim|α|→0
α〈s|N̂ |s〉α = s .

6 Quantum Algebra

Our kaleidoscope coherent states (33) are eigenstates of operator q2N̂ :

q2N̂ |k〉α = q2k |k〉α, k = 0, 1 . . . , n − 1.

In the Fock space this operator is an infinite matrix of the form

Σ3 ≡ q2N̂ = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 ... 0
0 q2 0 ... 0
0 0 q4 ... 0
...

...
...

. . .
...

0 0 0 ... q2(n−1)

⎞

⎟⎟⎟⎟⎟⎠
, Σ1 = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 ... 1
1 0 0 ... 0
0 1 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

⎞

⎟⎟⎟⎟⎟⎠
. (38)

Here the n × n matrices are called the Sylvester clock and shift matrices correspond-
ingly. They are q-commutative

Σ1Σ3 = q2Σ3Σ1,

satisfy relations
Σn

1 = I, Σn
3 = I
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and are connected by the unitary transformation:

Σ1 = (I ⊗ Q)q2N̂ (I ⊗ Q+).

HermannWeyl in book [14] proposed them for description of quantummechanics of
finite dimensional systems. By dilatation operator q2N̂ we define q2-number operator

[N̂ ]q2 = q2N̂ − 1

q2 − 1

for non-symmetrical q-calculus, and

[N̂ ]q̃2 = q2N̂ − q−2N̂

q2 − q−2

for the symmetrical one. In our kaleidoscope basis, these number operators are diag-
onal and given by q-numbers:

[N̂ ]q2 = diag([0]q2 , [1]q2 , . . . , [n − 1]q2),

with [n]q2 = q2n−1
q2−1 for non-symmetric case, and

[N̂ ]q̃2 = diag([0]q̃2 , [1]q̃2 , . . . , [n − 1]q̃2),

with [n]q̃2 = q2n−q−2n

q2−q−2 for the symmetrical one.
For symmetric case the q-number operator is Hermitian and can be factorized as

[N̂ ] = B̂+ B̂, [N̂ + 1] = B̂ B̂+,

where

B̂ = â

√ [N ]q̃2

N
.

Explicitly in matrix form it is

B̂ = I ⊗

⎛

⎜⎜⎜⎝

0
√[1] 0 ... 0

0 0
√[2] ... 0

...
...

...
. . .

...

0 0 0 ... 0

⎞

⎟⎟⎟⎠ , B̂+ = I ⊗

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 ... 0√[1] 0 0 ... 0
0

√[2] 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

⎞

⎟⎟⎟⎟⎟⎠
(39)

and B̂n = 0, (B̂+)n = 0. In non-symmetric case the number operator is not Hermi-
tian.
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6.1 Symmetric Case

For symmetric case we have the quantum algebra

B̂ B̂+ − q2 B̂+ B̂ = q−2N̂ , (40)

B̂ B̂+ − q−2 B̂+ B̂ = q2N̂ , (41)

and quantum q2-oscillator with Hamiltonian

Ĥ = �ω

2

(
[N̂ ]q̃2 + [N̂ + I ]q̃2

)
.

In the kaleidoscope states as the eigenstates, the spectrum of this Hamiltonian is

Ek = �ω

2

sin 2π
n (k + 1

2 )

sin π
n

. (42)

The same spectrum was obtained in [15] for description of physical system of two
anyons.Appearance of quantumalgebraic structure in twodifferent physical systems,
as optical coherent states and the anyons problem is instructive.

6.2 Non-symmetric Case

In this case the quantum algebra of operators is q2-deformed

B̂ B̂+ − q2 B̂+ B̂ = I, (43)

B̂ B̂+ − B̂+ B̂ = q2N̂ , (44)

with periodic (mod n) ([k + n]q2 = [k]q2 ) q2-numbers

[k]q2 = ei
π
n (k−1) sin

π
n k

sin π
n

. (45)

7 Conclusions

Kaleidoscope of coherent states considered in present paper can be realized by proper
phase superposition of coherent states of light (the Gaussian states) and it can provide
a unit of quantum information corresponding not only to diadic, but also to an arbi-
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trary number base n. These states furnish the representation of quantum symmetry
related with quantum q-oscillator.

As a generalization of the Schrödinger cat states, from our kaleidoscope states
one can construct multi qudits entangled quantum states. This work is in progress.
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