
978-1-7281-3992-0/19/$31.00 ©2019 IEEE

Towards Uniform Modeling and Holistic Testing of
Hardware and Software

Onur Kilincceker
University of Paderborn, Germany, and
Mugla Sitki Kocman University, Turkey

okilinc@mail.upb.de

Fevzi Belli
University of Paderborn, Germany, and

Izmir Institute of Technology, Turkey
belli@upb.de

Abstract— This paper introduces an approach to uniform
modeling and testing of hardware and software systems and
their faults. As an example, for hardware under consideration,
designs at a behavioral level will be used, implemented in
Hardware Description Language (HDL). For software, an
example will be borrowed from a graphical user interface
design. Both examples will be modeled by finite state machines.
The mutation of these models leads to lucid hardware and
software fault models, respectively. Original models and their
mutants will then be used to generate test cases for positive
testing and negative testing, respectively, forming a holistic test
strategy. A positive test is supposed to validate the system
under legal (expected, regular) circumstances, whereas a
negative test checks the behavior of the system under illegal
(unexpected, irregular) situations. Non-trivial examples are
used to validate and analyze the approach with respect to
uniform modeling and testing capability.

Keywords—System/Fault Modeling, Finite State Machine,
Validation, Holistic Testing, Mutation Testing

I. INTRODUCTION AND RELATED WORK
The automata-theoretic approaches are popular for modeling
and testing of hardware systems back to the fifties of the last
century [2], [3], [7]. For those systems, a finite state machine
(FSM), or similarly, a finite state automaton (FSA), provides
an abstract artifact to avoid unnecessary (irrelevant) features
of the system under consideration (SUC). Thus, focusing on
the relevant features of complex systems becomes easier.
The development of integrated circuits usually starts with a
specification provided by the customer. A designer then im-
plements it in behavioral level in HDL (hardware description
language) that is used for pre-silicon validation. After fixing
errors, the developer converts it to an Register Transfer
Level (RTL) design. The FSM model can be extracted from
the HDL program that implements the sequential circuit
under consideration.
Modeling software systems by FSA [1] started tentatively;
nowadays FSA-centric models are popular, for example,
state diagrams of UML [24]. Graphical user interfaces
(GUIs) are good examples that can be modeled by FSA, be-
cause they usually form strictly sequential processes and
systems. FSA-based approaches to modeling GUI are event
sequence graphs [9] and, slightly stylized, event flow graphs
[23].
Holistic, model-based testing, proposed by Belli [9], [10] for
software testing, introduces an integrated view
encapsulating positive and negative testing. In positive
testing, the system is validated against legal (correct,
regular) inputs that are expected data generated from the
original (supposedly fault-free) model, which is the
conventional way of testing. In negative testing, the system
is validated against illegal (faulty, irregular) inputs that are
unexpected data generated from a faulty (mutant) model.
Belli [9] also proposes FSA and regular expression, having

equivalent expressive power (forming type-3, regular
languages) and test generation capability for modeling and
testing graphical user interfaces. The holistic strategy is
applied also to modeling and testing of web service
composition [10], web application [11], interactive systems
[12], hardware designs [5], and android applications [13].

Mutation testing, introduced by DeMillo et al. [13] and
Hamlet [15], is a fault-based testing technique (Fig. 1).
Mutants, that is, faulty versions, will be generated applying
mutation operators to the SUC. Tests can then detect (kill)
mutants. The effectiveness of a given test set can be
determined by the mutation score, that is, the percentage of
the killed mutants [16]. Recently, the idea has been
extended to the model level, leading to model-based
mutation testing [17], [18], [19].
This paper proposes FSM for modeling and testing both
hardware and software in a uniform way. Fault models,
namely mutants, and tests are generated using specifically
defined mutation operators. Tests are carried out in a holistic
way by positive and negative testing checking the SUC
under expected and unexpected situations, respectively
(Section II). Non-trivial examples, reaching a 100% fault
coverage (Section III), illustrates the approach and are used
to self-critically analyze its features (Section IV).

II. PROPOSED APPROACH
As an introduction to this section, Fig. 2 depicts the
proposed approach that consists of three steps: (i) modeling
by FSM, (ii) mutation to automatically construct fault
models, and (iii) holistic testing using the test sequences
generated from these models.
Software is a graphical user interface (GUI) that enables
user and computer interaction by providing specific events
in the proposed approach. An FSM model can automatically
or manually generated from the GUI. Hardware is a Very
Large Scale Integration (VLSI) design at behavioral level of
abstraction. The design is implemented in Verilog Hardware
Description Language (HDL) to specify any VLSI
hardware. Proposed approach automatically generated an
FSM model from the Verilog HDL of hardware. After
obtaining the FSM model from either GUI or HDL,
proposed approach generates mutant FSM models by

Fig. 1: Mutation Testing

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

utilizing mutation operators. Then, the proposed approach
generates test sequences from both original (fault-free) and
mutant FSMs to utilize positive and negative testing shown
in Fig. 2.

Fig. 2: Concept of the proposed approach

Finite State Machine (FSM) are used for modeling both
correct and faulty behavior of the System Under
Consideration (SUC).
Definition 1: Finite State Machine (FSM) [21] is
represented by 5-tuples <S, Σ, δ, q0, F> where these are;

S: A finite set of states
Σ: A finite set of symbols (alphabet)
δ: A state transition function represented by a table;
q0: An initial state is an element of Q
F: A finite set of final states is a subset of Q.

A. Modeling SUT and Faults

The set of test sequences generated from fault-free FSM,
forming a test suite, are run on mutant programs to realize
positive testing. Test suites generated from mutant models
are run on the fault-free program to realize negative testing.
SUT is modeled by means of the FSM in a uniform way.
Also, mutant FSM models represent behavioral fault in
SUC. A behavioral fault affects input and output
combination of SUC and may cause either failure or
malfunction.

B. Mutation Operators

Following, mutation operators used in the approach (Table 1)
will be defined.

TABLE 1: MUTATION OPERATORS

Operators Types
Insertion (I) Transition (T)

State (S)
Omission (O) Transition

State
Replace (R) Transition

State

Definition 2: Transition Insertion (TI) inserts a transition
into the FSM, that is, TI(si, e, sj)δ: δ → δ ∪ (s, e, s), where
the transition e ∈ δ(Q) is inserted between states si , sj ∈ S,
where δ, Q, and S are defined as in Definition 1.

Definition 3: State Insertion (SI) inserts a state into the FSM
model, that is, SI(sk,e1, sl, e2 , sm)δ: Q → Q ∪ (s) and δ → δ
∪ {(s, 𝑒ଵ, s), (s, 𝑒ଶ, s), where the state sl is inserted
between states sk and sm with transitions e1 and e2.

Definition 4: Transition Omission (TO) omits a transition
from the FSM model, that is, TO(si, e, sj)δ: δ → δ ∖ (s, e, s),
where the transition e is omitted between states si and sj.

Definition 5: State Omission (SO) inserts a state into the
FSM model, that is, SO(sk,e1 sl, e2 , sm)δ: Q → Q ∖ (s) and δ
→ δ ∖ {(s, 𝑒ଵ, s), (s, 𝑒ଶ, s), where the state sl is omitted
between states sk and sm with transitions e1 and e2.

Definition 6: Transition Replace (TR) replaces a transition
from the FSM model, that is, TR(si, e, sj)δ: TO(si, e, sj)δ and
TI(si, e, sj)δ, where the transition e is replaced between states
si and sj.

Definition 7: State Replace (SR) replaces a state from the
FSM model, that is, SR(sk, e1, sl, e2 , sm)δ: SO(sk,e1 sl, e2 , sm)δ

and SI(sk,e1, sl, e2 , sm)δ, where the state sl is replaced between
states sk and sm with transitions e1 and e2.

C. Holistic Testing

The model (FSM) will be mutated by means of mutation op-
erators. The original model and its mutants will then be used
to generate test sequences, using a FSM-based test
generation tool, for example, GraphWalker [4] that
generates random test sequences from the given FSM model
or PQ-RanTest [6] from equivalent regular expression
model.
In positive and negative testing, the test sequences generated
from fault-free and mutant models, and then are executed on
fault-free and mutant programs, respectively. Thus,
appropriate tests are run on the SUC with respect to
corresponding models.

III. EXAMPLES AND EXPERIMENTS

A traffic light controller (TLC) and a commercial web
service (ISELTA) are used to explain the approach and
analyze its critical features. The hardware example, TLC, is
represented in HDL at the behavioral level. An excerpt from
the graphical user interface (GUI) of an Internet portal for
touristic services forms the software example [7].

A. Example 1: Modeling Hardware And Their Faults

The TLC used as an example has four traffic signals for four
pathways (Fig. 3). Every pathway is provided with lights
Red, Yellow, and Green. The TLC, implemented in Verilog
HDL, is operated on Xilinx Basys 3 Artix-7 FPGA develop-
ment board using the Vivado 2017.4 design suite [20].

Fig. 3: Block view of TLC

Fig. 4 represents a fraction of the HDL Verilog code for the
TLC hardware.

The HDL code declares the main module of the controller,
called “Lights”, in line three, including the main variables.
The “always” block defines procedures of this main module
and is triggered by a clock signal. The “begin” block
executes the “case” statement depending on the “state”

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

variable that defines current, next state of the hardware and
corresponding status of outputs, called “output light status”
in line 14 for the state “0000”. There are nine states in the
HDL code and 16 transitions as depicted in Fig. 5.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

`timescale 1ns / 1ps
...
module Lights (n_lights,s_lights,e_lights,w_lights,clk,btn);
 ...
 always @(clk_point1hz)
 begin
 case (state)
 4'b0000: begin
 $display ("The value of input: %h, state
 %d", input_light_status,state) ;
 segment = 7'b0000001;
 if (btn==0) begin
 state = 4'b1000;
 output_ligth_status = 16'h1444;
 n_lights = 3'b001;
 s_lights = 3'b100;
 e_lights = 3'b100;
 w_lights = 3'b100;
 end
 ….
 4'b0111:
 ...
 4'b1000:
 ...
 endcase // case (state)
 end
endmodule

Fig. 4: A fraction of the HDL code for TLC

1) Modeling TLC
The FSM model in Fig. 5 is extracted from the HDL code of
TLC using JFLAP as a tool [22]. Table 2 depicts the be-
havior of TLC; the input/output combinations are encoded
and identified by symbols. The FSM model for TLC
has nine states and 18 transitions.

Fig. 5: FSM of the original (fault-free assumed) TLC

In Table 2, the symbol “g” stands for the light “green” , “y”
for “yellow”, and “r” for “red” that are coded in the circuit
by “001”, “010”, and “100” in binary format, respectively.

TABLE 2. ENCODING OF TRANSITIONS

Sym* Com** Sym* Com** Sym* Com**
a grrr 0 / yrrr g rrrg 0 / rrry n xxxx b - rrgr

0 / rrrr
b yrrr 0 / rgrr i rrry 0 / grrr o xxxx b - rryr

0 / rrrr
c rgrr 0 / ryrr j xxxx b - grrr

0 / rrrr
p xxxx b - rrrg

0 / rrrr
d ryrr 0 / rrgr k xxxx b - yrrr

0 / rrrr
r xxxx b - rrry

0 / rrrr
e rrgr 0 / rryr l xxxx b - rgrr

0 / rrrr
s xxxx 1 / rrrr

f rryr 0 / rrrg m xxxx b - ryrr
0 / rrrr

h xxxx 0 / grrr

*Sym: Symbol, **Com: Combination

2) Fault Modeling through Mutation

Exemplary, three mutants are constructed using the mutation
operators (Table 1) in Section II.B (Definition 2 through 7).
These mutants embody typical faults and will be used for
test generation (Section III.C).

Fig. 6: Mutant one of TLC

The first mutant (Fig. 6) models the fault that occurs as a
combination of the omission of a state and the insertion of
transition (Table 3). This fault depicts a sequence of events,
that is, the symbol “c” correctly occurs after the symbol “b”.
However, the symbol “d” follows the symbol “b” in the cor-
rupted sequence. So, the correct sequence is “bcd”, the
faulty one is “bde”.

TABLE 3: MUTATION OPERATORS TO CONSTRUCT MUTANT ONE OF TLC

Order Operators

1 SO(s2,c, s3, d, s4)δ: Q → Q ∖ (sଷ) and δ → δ
∖ {(sଶ, 𝑐, sଷ), (sଷ, 𝑑, sସ)

2 TI(s2, d , s3)δ: δ → δ ∪ (sଶ, d, sଷ).

The second mutant, shown in Fig. 7, models the fault that
occurs as a combination of omission and insertion of transi-
tions. This mutant represents a corruption in the input/output
sequence. The inserted transitions are u, v, and y that repre-
sent “ryrr 0/rrgg”, “rrgg 0/ rrgr”, and “xxxxx – rrgg 0/ rrrr”,
respectively.

Fig. 7: Mutant two of TLC

Table 4 lists the mutation operators to acquire Mutant two:
one state omission and three transition insertions operators,
applied consecutively to the original model.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

TABLE 4: MUTATION OPERATORS TO CONSTRUCT MUTANT TWO OF TLC

Order Operators

1 TO(s3, d, s4)δ: δ → δ ∖(s3, d, s4).

2 SI(s3,u, s9, v , s9)δ: Q → Q ∪ (s) and δ → δ
∪ {(sଷ, u, sଽ), (sଽ, v , sସ)

3 TI(s9, y , s0)δ: δ → δ ∪ (sଽ, y, s).

B. Example 2: Modeling Software And Their Faults

ISELTA (Isik’s System for Enterprise Level Web-Centric
Tourist Applications) is a commercial Internet portal for
hotel providers to market tourist services, for example
online reservations. It is a cooperative work between a travel
agency (ISIK Touristic) and University of Paderborn,
implemented in PHP. Following, the “Specials” module of
the ISELTA is used as an example that enables providers to
market their specific and periodical offers (Fig. 8).

Fig. 8: The opening window of “Special” module for ISELTA

1) Modeling ISELTA
The FSM in Fig. 9 models the GUI of “Specials” module,
constructed using the graph designer JFLAP [22] as already
used for the FSM of TLC (see Section 2).

Fig. 9: Original (fault-free) FSM of “Specials”

Table 4 lists the letters that symbolize actions of the user, for
example, for filling an input box, clicking a button, or
removing a text from an input box.

TABLE 4. GUI ACTIVITIES ON THE GUI OF “SPECIALS”

Symbol Action Symbol Action

k Click edit z Set description text

l Click save r Remove all text

v Click Add t Remove title input

u Set title text p Remove price input

x Set number value n Remove number input

y Set price value

2) Fault Modeling through Mutation

Again, the mutation operators defined in Section 2 will be
used to generate typical faults as mutants of “Specials”.
TABLE 5: MUTATION OPERATORS TO CONSTRUCT MUTANT ONE OF

“SPECIALS”
Order Operators

1 TO(s0, u , s9)δ: δ → δ ∖ (s, u, sଽ)

2 TO(s3, u , s4)δ: δ → δ ∖ (sଷ, u, sସ)

3 TI(s8, z , s4)δ: δ → δ ∪ (s଼, z, sସ).

4 TI(s2, z , s4)δ: δ → δ ∪ (sଶ, z , sସ).

Fig. 10 shows a mutant of the original FSM. The tester
needs to consecutively apply the mutation operators given in
TABLE 5 to acquire mutant one.

Fig. 10: Mutant one of “Specials”

Fig. 11 illustrates the Mutant two of the original FSM,
which will be constructed by consecutively applying the
mutation operators given in TABLE 6.

TABLE 6: MUTATION OPERATORS TO CONSTRUCT MUTANT TWO OF

“SPECIALS”
Order Operators

1 TR(s0, k, s6)δ: TO(s0, k, s6)δ and TI(s0, k, s5)δ.

2 TR(s5, k, s6)δ: TO(s5, k, s6)δ and TI(s5, k, s5)δ.

Fig. 11: Mutant two of “Specials”

C. Test Generation From Models and Testing

Holistic testing requires the generation of test sequences
from both fault-free model and its mutants for positive and
negative testing, respectively. Graphwalker [4] offers
options also for test generation and coverage criteria
selection. Exemplary, random test generation option and
edges (transition) coverage criterion is chosen. The edge
coverage criterion is set to %85 to avoid excessive run times
of the tool.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

1) Test Generation TLC

For the fault-free model of TLC (Section III.A.1),
Graphwalker [4] generates a test suite, a subset of which is
listed in TABLE 7. These test sequences will be executed on
mutants of the HDL program (Fig. 4) for positive testing.

TABLE 7: A TEST SUITE FOR TLC (SEE TABLE 2 FOR SYMBOLS OF THE TEST

SEQUENCES)

 Test Sequence
1 hablss
2 habcdeo
3 habcdefgiabcdefgijss
4 habcdnsss
5 habcdefgiabcmss

Similarly, a set of test sequences are generated from the
three mutant models and executed on a fault-free HDL
program for negative testing.

2) Test Generation ISELTA

Graphwalker will be used also for positive and negative test-
ing of “Specials” module of ISELTA (TABLE 8).

TABLE 8: A TEST SUITE FOR “SPECIALS” OF ISELTA

 Test Sequence
1 kxlkzuyxl
2 yxzuv
3 yxzuvklkuyl
4 yxzuv
5 xyzuvkzuyl

D. Tests and Results

In positive testing of the examples, sets of test sequences
generated from the original model of TLC and ISELTA
execute on mutant HDL and GUI programs, respectively. In
positive and negative testing, the test sequences generated
from fault-free and mutant models are executed on fault-free
and mutant programs, respectively. To validate the actual
programs of TLC and ISELTA with respect to
corresponding models, test sequences generated from these
models are executed on TLC and ISELTA. In negative
testing, the sets of test sequences generated from three
mutant models of TLC and ISELTA execute on fault-free
HDL and GUI programs. TABLE 9 shows the results
collected from the experiments for positive and negative
testing. Test sequences executes automatically on ISELTA
using Selenium [29] test automation environment and on
TLC using Xilinx Vivado [30] by means of simulation.

E. Discussion of the Results

Although only 85% transition coverage was selected, the
fault coverage is 100% for both positive and negative testing
of TLC and ISELTA for three mutants that model specific
faults. A fault is detected if any test sequence generated
from the corresponding model fails while running the
corresponding program. The length of test suites defines the
number of symbols contained in the set of test sequences.
This length is 1354 for the original model of TLC, as
random tests usually generate a great number of test
sequences. The length results depend also on the structure of
the model. For example, the length of the original model of
the “Specials” module of ISELTA is just 99 because a less
complex of model of ISELTA is chosen than the model of

the TLC. This fact affects the results of the test suite length
of mutant models.

TABLE 9: RESULTS OF POSITIVE AND NEGATIVE TESTING OF THE EXAMPLES
 TLC ISELTA
 PT NT PT NT
Fault Coverage 100 100 100 100
Length of Test
Suite (number of
symbols)

1354 813* 99 66*

Test Generation
Time (seconds)

15 16* 14 15*

*Average of three mutants, PT: Positive Testing, NT: Negative Testing.

TABLE 9 shows the average results for the length of test
suites and test generation time for negative testing.
However, surprisingly, the test generation time for both
TLC and ISELTA are close to each other, about 15 seconds
in positive and negative testing. Despite this closeness of the
test execution times (both about 15 seconds), the length of
the test suite of TLC is almost 10 times greater than the
length of the test suite of “Specials” module of ISELTA.

A drawback of testing experiment is selection small set to
calculate metrics given in TABLE 9. However, the results
provide preliminary observation of usefulness of the
approach proposed. To calculate more realistic metrics, we
plan to generate random mutants with proper amount to
evaluate effectiveness and generality of the approach.

F. Threats to the Validity

Current work proposes a uniform modeling hardware and
software systems including their faults. This uniform model
is supposed to be a deterministic FSM. The faults are then
represented by mutants of this FSM obtained by mutation
operators. However, an operator, or a combination of
operators, may lead to a nondeterminism, allowing more
than one option for transferring a state to another one. This
would lead to a threat to internal and external validity.

The examples used in this paper do not contain
nondeterminisms. This cause, however, no limitation of the
approach, because for any nondeterministic FSM an
equivalent, deterministic one can be constructed [21].

Further, the original model will be supposed to be fault-free.
This assumption is of crucial importance, not only for the
approach introduced in this paper, but for any fault-oriented
validation method, because the model of the SUT will be
used as a reference for generating test cases (oracle
problem, [25]). Several techniques have been suggested for
ensuring the correctness of the model, for example model
checking [26].

Finally, the used mutants provide model-based mutation ex-
amples carried on model domain. However, the mutants lead
special types of fault models which also can be utilized by
code-based mutation. The reader may refer to [7] for code-
based mutants of ISELTA. Moreover, the current paper
utilizes mutation testing for generation of fault specific
models and programs instead of qualification of test suites
as it is in conventional usage.

IV. RESULTS AND CONCLUSION

This paper proposes a uniform modeling approach to hard-
ware and software systems under consideration (SUC).
Finite state machines (FSM) are exemplary used for

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

modeling both integrated circuits, implemented in HDL, and
for modeling graphical user interfaces (GUI), implemented
in PHP. Faults are modeled by mutants using novel,
formally defined mutation operators.

Two non-trivial, real-life examples illustrate the approach,
and enable tool-supported experiments to analyze its critical
features, such as performance of the test generation and test
execution times, fault detection capability. Although a rela-
tively low coverage criterion is chosen, a 100% fault detec-
tion could be achieved.

The domains of the selected fault models for hardware and
software are mapped into the code domain by using code-
based mutation operators. However, the codes of the
mutants corresponding to the model-domain faults of the
software example are publicly available [7].

Future work is planned to extend the formal foundation of
the approach by considering more powerful modeling tech-
niques, for example by advanced (colored) Petri nets and
pushdown automata. This theoretic work is to immediately
be accompanied by empirical validation. Moreover, it is
possible to encounter problem of state explosion if the
program or model becomes very complex and large. To
cope with this problem, in our future work, we plan to use
the techniques for model refinement [26] and/or model
decomposition [28] to increase the scalability of the
proposed approach.

REFERENCES

[1] T. S. Chow, (1978), Testing software design modeled by finite-state
machines. IEEE transactions on software engineering, (3), 178-187.

[2] A. Gill. "State-identification experiments in finite automata."
Information and control 4.2-3 (1961): 132-154.

[3] G. H. Mealy, (1955), A method for synthesizing sequential circuits.
The Bell System Technical Journal, 34(5), 1045-1079.

[4] GrapWalker tool, Available Online: http://graphwalker.github.io/,
Last accessed August 2019.

[5] O. Kilincceker, E. Turk, M. Challenger, and F. Belli. "Applying the
Ideal Testing Framework to HDL Programs." In ARCS Workshop
2018; 31th International Conference on Architecture of Computing
Systems, pp. 1-6. VDE, 2018.

[6] O. Kilincceker, E. Turk, M. Challenger, and F. Belli. "Regular
Expression Based Test Sequence Generation for HDL Program
Validation," 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), Lisbon, 2018,
pp. 585-592.

[7] T. Mott, (1969). E. J. McCluskey. Introduction to the theory of
switching circuits. McGraw-Hill Book Company, New York, St.
Louis, San Francisco, Toronto, London, and Sydney, 1965, xv 318 pp.
Journal of Symbolic Logic, 33(4), 631-631. doi:10.2307/2271427

[8] Mutants of ISELTA, Available Online: http://iseltamutants.ivknet.de/,
Last accessed August 2019.

[9] F. Belli, Finite state testing and analysis of graphical user interfaces.
Software Reliability Engineering, 2001. ISSRE 2001. Proceedings.
12th International Symposium on. IEEE, (2001).

[10] F. Belli, A. T. Endo, M. Linschulte & A. Simao, (2014). A holistic
approach to model‐based testing of Web service compositions.
Software: Practice and Experience, 44(2), 201-234.

[11] F. Belli & M. Linschulte (2008). On negative tests of web ap-
plications. Annals of Mathematics, Computing & Teleinformatics,
1(5), 44-56

[12] F. Belli, C.J. Budnik, and A. Hollmann. "Holistic Testing of
Interactive Systems Using Statecharts." Sicherheit. 2006.

[13] G. Mercan, E. Akgündüz, O. Kilincceker, M. Challenger, and F. Belli,
(2018, September 10-12). Android uygulaması testi için ideal test ön
çalışması. A. Tarhan and Murat E. (Eds.), Paper presented at 12th
Turkish National Software Engineering Symposium, UYMS 2018;
Istanbul; Turkey.

[14] R. A. DeMillo, J. L. Richard, and F. G. Sayward. "Hints on test data
selection: Help for the practicing programmer." Computer 11.4
(1978): 34-41.

[15] R.G. Hamlet, "Testing Programs with the Aid of a Compiler", IEEE
Trans. Software Eng., vol. 3, no. 4, pp. 279-290, July 1977.

[16] Y‐S. Ma, J. Offutt, and Y. R. Kwon. "MuJava: an automated class
mutation system." Software Testing, Verification and Reliability 15.2
(2005): 97-133.

[17] S. C. P. F. Fabbri, , J. C. Maldonado, and M. E. Delamaro.
"Proteum/FSM: a tool to support finite state machine validation based
on mutation testing." Proceedings. SCCC'99 XIX International
Conference of the Chilean Computer Science Society. IEEE, 1999.

[18] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, & W. E. Wong,
(2016). Model-based mutation testing—approach and case studies.
Science of Computer Programming, 120, 25-48.

[19] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, & S.
Tiran, (2015). Killing strategies for model‐based mutation testing.
Software Testing, Verification and Reliability, 25(8), 716-748.

[20] Xilinx Vivado, Available online: https://www.xil-
inx.com/products/design-tools/vivado.html, Last accessed August
2019.

[21] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Harlow, Essex:
Pearson Education, 2014.

[22] S. Rodger, T. Finley, JFLAP - An Interactive Formal Languages and
Automata Package, ISBN 0763738344, Jones and Bartlett (2006).

[23] A. M. Memon, "An event‐flow model of GUI‐based applications for
testing." Software testing, verification and reliability 17.3 (2007):
137-157.

[24] Y. D. Salman, and N. L. Hashim. "Automatic test case generation
from UML state chart diagram: a survey." Advanced Computer and
Communication Engineering Technology. Springer, Cham, 2016.
123-134.

[25] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, & S. Yoo, (2014).
The oracle problem in software testing: A survey. IEEE transactions
on software engineering, 41(5), 507-525.

[26] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. 2000. Model
Checking. MIT Press, Cambridge, MA, USA.

[27] F. Belli, N. Güler, and M. Linschulte: Layer-centric testing. FERS-
Mitteilungen: vol. 30, no. 1 (2012).

[28] S. Devadze, E. Fomina, M. Kruus, and A. Sudnitson,: Web-based
system for sequential machines decomposition. In: EUROCON 2003,
The IEEE Region 8, vol. 1, pp. 57-61 (2003).

[29] Selenium Test Automation Environment, Available Online:
https://www.seleniumhq.org/ , Last accessed August 2019.

[30] Xilinx Vivado, Available online:
https://www.xilinx.com/products/design-tools/vivado.html, Last
accessed August 2019.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 06,2021 at 12:50:21 UTC from IEEE Xplore. Restrictions apply.

