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a b s t r a c t 

In this work, we give results for asymptotic stability of nonlinear time varying systems using Lyapunov- 

like Functions with indefinite derivative. We put a nonlinear upper bound for the derivation of the Lya- 

punov Function and relate the asymptotic stability conditions with the coefficients of the terms of this 

bound. We also present a useful expression for a commonly used integral and this connects the stabil- 

ity problem and Lyapunov Method with the convergency of a series generated by coefficients of upper 

bound. This generalizes many works in the literature. Numerical examples demonstrate the efficiency of 

the given approach. 
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1. Introduction 

Relaxation of the Lyapunov’s Direct Method is recently one of

the most common problems for engineering studies. Even though

Lyapunov Function (LF) is required to have a decreasing fashion,

recent studies have shown that stability can be proved with a LF

which has an indefinite derivative as well. However, the amount

of the interval that LF can increase or the magnitude of the LF for

these intervals and how it is related with the corresponding sys-

tem structure are quite difficult problems for various types of non-

linear systems, Ahmadi [2] and Michel et al. [21] . 

One of the research directions for the relaxation of the LF V is

to put an upper bound function for ˙ V instead of 0. The pioneer

work of Michel [20] proposed to put an upper bound G ( V , t ) and

so gave some conditions for the stability of nonlinear time vary-

ing systems. A similar idea has also been applied to some differ-

ent systems, Grujic [9] . Structure of G ( V , t ) has been specified in

the forms φ( t ) or u ( t ) V 

n ( x ( t )) for practical and finite time stability

(PS, FTS) of the system by Michel and Porter [22] and Chen and

Yang [5] . Details about PS and its relation with LF can be found

in the book of Laksmikhantam et al. [14] . n = 1 case of the latter

form was also used by Wu and Sun [30] but for the stability of

stochastic systems, introducing the concept of p-moment stability .
E-mail addresses: gsahan@iyte.edu.tr , sahangokhan@yahoo.com 
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ome other following works improved this idea for stochastic sys-

ems with Markovian Switching as well, Peng and Zhang [27] . 

The idea to bound 

˙ V by a linear form of V , i.e. to put the con-

ition 

˙ 
 (t, x ) ≤ μ(t ) V (t , x ) (1)

nd to give conclusions for asymptotic, exponential, uniform and

nput to state stability (AS, ES, US and ISS) for general nonlinear

ystems or nonlinear delay systems was also utilized recently by

umerous works. However, many authors added some conservative

onditions on the coefficient μ( t ) such as finiteness [4,25,27,31] or

eing bounded by another function [18,19] . However this assump-

ion has been removed by some works of Chen and Yang [3] , Zhou

33] and Zhou and Zhao [35] . This new idea also has been the sub-

ect of Linear Time-Varying (LTV) Systems [3,32] and Time-Varying

witched Systems (TVSS) [4,10] for stability and stabilizability of

he system. For all of these works, the linear bound condition

1) has been given with the condition 

1 (‖ x ‖ ) ≤ V (t, x ) ≤ α2 (‖ x ‖ ) 

here αi belongs to class K, K ∞ 

or some other comparison func-

ion classes, i = 1 , 2 . αi ’s have been adapted as matrix bounds for

TV systems by Chen and Yang [3] and Zhou [32] because of the

tructure of V ( t , x ) in LTV systems and converted to some other dif-

erent forms for TVSS by Junjie et al. [10] . The conclusions drawn

n these works generalized many results in the existing literature. 
rved. 

https://doi.org/10.1016/j.ejcon.2020.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2020.02.006&domain=pdf
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G. Ş ahan / European Journal of Control 56 (2020) 118–123 119 

 

w

x  

w

V  

w  

a

V  

w  

t  

x  

x

V  

V  

w  

[

a  

l

 

b  

A  

l  

[

 

f

V  

w  

t  

[  

t  

b  

n  

t  

w

 

b  

t  

s  

C  

r  

f

2

 

l  

x

D

 

 

 

 

[

L

y  

w  

A

t

 

o

E

x

a

V

 

s  

n  

[  

i  

p  

f

 

c  

o  

p  

o  

t  

[

 

V  

p  

i

 

m

a

⇒

w  

c  

b  

e  

t  

o  

a  

(  

i

 

s  

c  

a  
The structure of (1) has been improved by some subsequent

orks. For the AS of an uncontrolled system 

˙ 
 = f (t, x ) , x (t 0 ) = x 0 , t 0 ≥ 0 (2)

here f ∈ C[ J × R 

n , R 

n ] , the forms 

˙ 
 (t, x ) ≤ g(t ) α(V (t , x )) , ˙ V (t , x ) ≤ −α(V (t, x )) (3)

ere used by Chen and Yang [3] and Lin, Sontag and Wang [17] ,

nd 

˙ 
 (t, x ) ≤ μ(t ) V (t , x ) + π(t) (4)

as used by Mazenc and Malisof [18] and Zhou [33] for the func-

ion V ∈ C 1 [ J × R 

n , R ] with some additional assumptions on α( V ( t ,

 )), g ( t ), μ( t ) and π ( t ). On the other hand, for a controlled system

˙  = f (x, d) , the forms 

˙ 
 (t, x ) ≤ −α(| x | ) + σ (| d| ) (5)

˙ 
 (x ) ≤ −α(| x | ) + g(| x | , | d| ) (6)

ere utilized by Sontag and Wang [29] and Liberzon and Shim

16] respectively, again with some additional assumptions on α, σ
nd g . Differing from the others, Liberzon and Shim [16] also re-

ates ISS with the limit of the ratio 

g(| x | , | d| ) 
α(| x | ) . 

There exist also some works that put some similar upper

ounds on 

˙ V (t, x ) for small gain theorem on ISS networks, for

S of a controlled time-varying system, for ISS of nonlinear de-

ay systems or to construct Lyapunov-Krasovskii Functionals, (see,

6,12,26,34] , respectively). 

In this study, we improve the conditions above and give results

or AS of system (2) using the form 

˙ 
 (t, x ) ≤ π(t ) V 

m (t , x ) + μ(t ) V (t , x ) (7)

here 1 � = m ∈ R . In addition, we alternatively change or remove

he conditions given together with (4) by Mazenc and Malisof

18] and Zhou [33] and recommend some other conditions using

he integral expressions in Lemma 2 below. This converts the sta-

ility problem into a convergency and limit problem of an infi-

ite series, and also relates the stability problem with the ratio of

he coefficients in (7) for some cases, thus connecting the problem

ith the existing literature [16] . 

Nomenclature: Throughout the paper we use the following ab-

reviations and definitions. By the negative powers of V , we mean

he multiplicative inverse of it, not functional inverse; R is the

et of real numbers; J := [0 , ∞ ) , J + := (0 , ∞ ) , J − := (−∞ , 0) ; by

 

n [ A, B ] we mean n times differentiable functions from A to B ; PC

epresents piecewise continuous functions, and K and K ∞ 

are the

amily of class K and K ∞ 

functions [13] . 

. Stability of nonlinear time-varying systems 

Throughout this work we will consider the uncontrolled non-

inear time-varying system (2) . We assume that the vector field f ( t ,

 ) is piecewise continuous in t and locally Lipschitz in x . 

efinition 1. [13] The equilibrium x = 0 of (2) is said to be: 

• stable if, for each ε > 0, there is a δ( ε, t 0 ) > 0 such that 

‖ x (t 0 ) ‖ < δ ⇒ ‖ x (t) ‖ < ε, ∀ t ≥ t 0 ≥ 0 ; (8)

• uniformly stable if, for each ε > 0, there is a δ( ε) > 0, indepen-

dent of t 0 , such that (8) is satisfied; 

• AS if it is stable and there is a positive constant c = c(t 0 ) > 0
such that x ( t ) → 0 as t → ∞ , for all ‖ x ( t 0 ) ‖ < c . 
We give the concept of stable function which was introduced in

32] . 

emma 1. Consider the following scalar LTV system 

˙ 
 (t) = μ(t ) y (t ) , t ∈ J (9)

here y (t) : J → R is the state function, μ(t) ∈ PC (J, R ) . Then μ( t ) is

S if the system (9) is AS which is equivalent to 

lim 

→∞ 

∫ t 

t 0 

μ(λ) dλ = −∞ . 

Now, we state a motivating example which explains the idea of

ur main results. 

xample 1. Consider the following system. 

˙ 
 = t sin (t ) x − t 3 x 3 

2 

, x (t 0 ) � = 0 , t ∈ (1 , ∞ ) 

nd the function V (x ) = x 2 . Then, 

˙ 
 (x ) = 2 t sin (t ) x 2 − t 3 x 4 

≤ 2 tV (x ) − t 3 V 

2 (x ) 

=: μ(t) V (x ) + π(t) V 

2 (x ) 

(10) 

Note that the right hand side of this inequality is not

trictly negative and thus the classical Lyapunov approach can-

ot be applied. Also the recently developed methods in works

3,4,18,25,33] that assume the right hand side of the above inequal-

ty as μ( t ) V ( x ) or μ(t) V (x ) + π(t) such that μ( t ) is AS cannot be

erformed. This is because of both the instability of μ( t ) and the

actor V 

m of π ( t ). 

On the other hand, to deal not only with the first power of the

andidate Lyapunov Function but also with some different powers

f V is quite a common case in the literature. Higher or lower order

owers of V are encountered in sliding mode control (see p.2859

f [23] ), in the construction of Lyapunov Krasovskii functional for

ime-varying systems with delay, (see Assumption 4 of the work

18] ) and in some other works. 

Therefore, a more general structure on the upper bound of
˙ 
 (t, x ) makes the nonlinear system analysis easier and the Lya-

unov Method more flexible, providing more suitable LF’s to utilize

n analysis. 

Now we continue to solve the problem above and to explain the

ethod that we’ll use. We multiply the each side of (8) by −V −2 e t 
2 

nd revise. Then, we have 

d 

dt 

[ 
V 

−1 e t 
2 
] 

≥ t 3 e t 
2 

 V (x ) ≤ e t 
2 

∫ t 
t 0 

τ 3 e τ 2 dτ + V 0 

(11) 

here V 0 := 

e 
t 2 
0 

x 2 
0 

. The integral of the type 
∫ t 

t 0 
f (τ ) e g(τ ) dτ is quite a

ommon integral for many applications. Thus, it has been studied

y many authors (see the argument in p.1437 of [33] and the ref-

rences therein). While some classes of functions were developed

o bound the exponential part of integrand by Kalman [11] , some

ther conclusions were also given for this integral to be bounded

nd its limit to be zero by Gelig et al. [8] . For the AS of the system

2), at this stage, the work [33] proposes to assume this class of

ntegrals to be bounded and its limit to be zero. 

We alternatively will recommend some other conditions in-

tead of these. According to the structure of π ( t ) and μ( t ), this

ondition relates the problem with the ratio of the functions f ( τ )

nd g ( τ ). (Here note that f ( τ ) is actually (1 − m ) π(τ ) and g ( τ ) is

(m − 1) 
∫ 

μ(λ) dλ that lie in the upper bound) 
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Consider the following integral ∫ 
τ 3 e τ

2 

dτ. (12)

It can be solved as ∫ 
d 

dτ

[(
τ 2 

2 

− 1 

2 

)
e τ

2 

]
. 

With a general overview, we construct the ratio f (τ ) 
g ′ (τ ) 

first and

then divide the derivation of this ratio by −g ′ (τ ) again for the next

integral, if necessary. 

Although we obtain finite terms depending on the structure of

the functions f ( τ ) and g ( τ ), we may have an infinite and divergent

series as well. In addition, instead of using the higher order deriva-

tives, it’s also possible to use higher order integrals and again inte-

gration by parts. So one may also attempt to write integral (12) as

follows by performing integration by parts infinite times. 

∫ 
d 

dτ

[(
τ 4 

4 

+ 

τ 6 

4 . 6 

(−2) + · · · + 

τ 2 n +2 

4 . 6 ... (2 n + 2) 
(−2) n −1 + · · ·

)
e τ

2 

]

Here note that while one of the terms of d 
dτ

( τ
4 

4 e 
τ2 

) is giving

the integrand of (12) , the other term remains as a surplus term.

But the next resulting term cancels it out and the process follows

this path. However, mathematically, this is only possible when the

series is convergent, Agarwal et al. [1] . Notice that the series 

τ 4 

4 

+ 

τ 6 

4 . 6 

(−2) + · · · + 

τ 2 n +2 

4 . 6 ... (2 n + 2) 
(−2) n −1 + · · ·

is a convergent power series for any finite τ values. This time, the

methodology to construct each term is based on integration of f ( τ )

first, say h 0 , and then integration of g ( τ ) h 0 . 

We conclude these conditions formally as follows. 

Lemma 2. Consider the integral ∫ 
f (t) e g(t) dt (13)

where f, g ∈ C (J, R ) and the following series’: 

1. H 1 (t) = h 0 (t) + h 1 (t) + · · · such that 

h 0 (t) = 

∫ 
f (t ) dt , h j+1 (t ) = 

∫ 
h j (t )(−g ′ (t )) dt , 

j = 0 , 1 , 2 , . . . (14)

2. H 2 (t) = h 0 (t) + h 1 (t) + · · · such that g ′ ( t ) � = 0 for t ∈ J and 

h 0 (t) = 

f (t) 

g ′ (t) 
, h j (t) = 

d 
dt 

(h j−1 (t)) 

−g ′ (t) 
, j = 0 , 1 , 2 , . . . (15)

If H i ( t ) is convergent for i = 1 or 2, then ∫ 
f (t) e g(t) d t = 

∫ 
d 

d t 

[
H i (t) e g(t) 

]
= H i (t) e g(t) . 

Proof. The i th terms are cancelled out by the previous or later

terms for i > 0. Thus the proof can be done easily using mathe-

matical induction. �

Now, let us turn back to Example 1 . As a result, (11) can be

written as 

 (x ) ≤ 1 

t 2 −1 
2 

+ K 0 e −t 2 
, K 0 ∈ R . (16)

The righthand side of (16) is bounded and its limit tends to

zero for the given region. Thus the system that we consider in

Example 1 is asymptotically stable. 

Consequently, we both used the different powers of the Lya-

punov Function and related the problem with the convergency and
ehaviour of the resulting finite/infinite series. These terms are de-

eloped from the relation of m , π and μ as well. 

Here, to obtain the AS of the system in Example 1 , we needed

he boundedness and zero limit. These two conditions can also be

eceived automatically in case of taking the functions f ( t ) and g ( t )

rom some special classes, [8] and Lemma 3 of [33] . However, the

ero limit condition itself can also imply the boundedness for some

 and g as the following lemma shows. 

emma 3. Consider the function 

(t, t 0 ) := 

∫ t 

t 0 

f (τ ) e g(τ ) dτ

here f ∈ PC (J, J) , g ∈ C (J, R ) . 

1. If g(t) → −∞ as t → ∞ and lim t→∞ 

κ(t, t 0 ) = 0 , then the

function κ( t , t 0 ) is bounded. 

2. If lim t→∞ 

κ(t, t 0 ) = ∞ , then the function κ( t , t 0 ) is bounded

from below. 

Now we generalize the idea in Example 1 . 

heorem 4. Consider (2) and assume that there exist 

• V : J × R 

n → J, V ∈ C 1 ; 
• α ∈ K; 

• μ(t) ∈ C ∞ (J, R ) ; 

• π(t) ∈ C ∞ (J, I) , I = 

{
J + , m < 1 

J −, m > 1 

such that 

(‖ x ‖ ) < V (t, x ) , (17)

nd (7) holds. Assume also that one of the series H i (t) : J →
 in Lemma 2 is convergent for f ( t ) := π ( t ) and g(t) := (m −
) 
∫ t 

t 0 
μ(λ) dλ := μ(t) provided that 

lim 

→∞ 

H i (t) = L (18)

xists or ±∞ . Then system (2) is AS if one of the following conditions

old. 

1. m < 1, μ( t ) is AS and L = 0 , 

2. m > 1 and μ( t ) is AS, 

3. m > 1 and L = −∞ . 

roof. 1) Let m < 1. Multiply each side of (7) by (1 −
 ) V −m (t, x ) exp( μ(t)) and revise. Then we have the following

or t ≥ t 0 : 

d 

dt 

[ 
V 

1 −m (t, x ) exp( μ(t)) 
] 

≤ (1 − m ) π(t) exp( μ(t)) 

 

1 −m (t, x ) exp( μ(t)) − V 0 ≤
∫ t 

t 0 

(1 − m ) π(τ ) exp( μ(τ )) dτ (19)

here V 0 := V 1 −m (t 0 , x 0 ) . Now, by Lemma 2 , (19) can be written as

ollows, 

 

1 −m (t, x ) exp( μ(t)) ≤ (1 − m ) 

∫ t 

t 0 

d 

dτ

[ 
H i (τ ) exp( μ(τ ) 

] 
+ V 0 

= (1 − m ) H i (t ) exp( μ(t )) + K 0 

uch that 

 0 := V 0 − (1 − m ) H i (t 0 ) . (20)

ote that we ensure the positivity of the righthand side of (19) be-

ause of the definition of π . Using also inequality (17) , we have 

(‖ x (t) ‖ ) ≤ V (t, x (t)) ≤
[
(1 − m ) H i (t) + 

K 0 

exp( μ(t)) 

]
1 

1 −m . (21)
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Define the function 

 (t, x 0 ) := (1 − m ) H i (t) + 

K 0 

exp( μ(t)) 
. 

We know by Lemma 3 -1 that the right hand side of (19) is

ounded and so (1 − m ) H i (t) is. For any arbitrarily choosen ε > 0,

here exists such a δ( ε, t 0 ) > 0 that 

(‖ x (t) ‖ ) ≤ V (t, x (t)) ≤
[ 

G (t, x 0 ) 
] 

1 
1 −m 

≤
[ 

G (t 0 , x 0 ) 
] 

1 
1 −m ≤ α(ε) (22)

here G (t 0 , x 0 ) := sup t≥t 0 G (t, x ) for ‖ x 0 ‖ < δ. This implies

 x ( t ) ‖ ≤ ε for t ≥ t 0 . 

The asymptotic convergence is also implied as V ( t , x ) → 0 as

 → ∞ . 

2-3) Now assume that m > 1. This time we have 

 

1 −m (t, x ) exp( μ(t)) ≥
∫ t 

t 0 

(1 − m ) π(τ ) exp( μ(τ )) dτ + V 0 (23)

⇒ V 

1 −m (t, x ) ≥ (1 − m ) H i (t) + 

K 0 

exp( μ(t)) 
(24)

We guaranteed the positivity of the righthand side of (23) and

o (24) by conditions of the theorem. This also shows that H i ( t ) < 0,

 0 > 0. As a result, it’s possible to get a similar form with (21) as

ollows. 

(‖ x (t) ‖ ) ≤ V (t, x (t)) ≤
[

1 

(1 − m ) H i (t) + 

K 0 
exp( μ(t)) 

]
1 

m −1 (25)

Now define E (t 0 ) := sup t≥t 0 exp ( μ(t)) . Then for any ε > 0, we

ave 

(‖ x (t) ‖ ) ≤ V (t, x (t)) 

[
1 

G (t, x 0 ) 

]
1 

m −1 ≤
[

E (t 0 ) 

K 0 

]
1 

m −1 ≤ α(ε) (26) 

or ‖ x 0 ‖ < δ. This implies ‖ x ( t ) ‖ ≤ ε, t ≤ t 0 . for Case 2). 

This time we define G (t 0 , x 0 ) := In f t≥t 0 G (t, x ) with the help of

emma 3 -2. So (26) should be written as follows. 

(‖ x (t) ‖ ) ≤ V (t, x (t)) 

[
1 

G (t, x 0 ) 

]
1 

m −1 ≤
[

1 

G (t 0 , x 0 ) 

]
1 

m −1 ≤ α(ε) (27) 

or ‖ x 0 ‖ < δ. This implies ‖ x ( t ) ‖ ≤ ε, t ≤ t 0 . 

For the cases 2 to 3, asymptotic convergence is also implied as

he denominator part tends to ∞ when μ( t ) is AS or L = −∞ . But

ote that for all of the items, it’s not possible to remove the de-

endency on t 0 . Thus we can not get uniform stability. �

emark 1. (Comparison with existing literature) 

As well as relaxing the monotonicity constraint of classical

F, Theorem 4 of our work also improves the conditions of

3,18,33] from many aspects. 

The works [18,33] present stability conditions by putting a lin-

ar upper bound function as (4). While [18] puts some additional

ssumptions on μ( t ) as boundedness, in the work [33] 

• Theorem 1 utilizes the AS of μ( t ) in case of π(t) = 0 . 

• Theorem 2 utilizes the AS of μ( t ), boundedness of κ( t ) and

L = 0 condition for m = 0 where 

κ(t) := 

∫ t 

π(τ ) exp(μ(τ )) dτ, lim κ(t) = L. 

t 0 

t→∞ 

e  
We showed that the boundedness assumption of κ( t , t 0 ) in The-

rem 2 of [33] is already implied by the rest of the hypothesis. In

ddition, we generalized Theorem 2 of [33] . Consider 

(t) := (1 − m ) 

∫ t 

t 0 

π(τ ) exp( μ(τ )) dτ. 

We replaced the conditions of having a bounded κ( t ) and L = 0

ith just the L = 0 condition of (18). It is also equivalent to say

hat lim t→∞ 

κ(t) = 0 . However, we also gave the AS of (2) for any

 ∈ R in (7) . We even removed the AS of μ( t ) for some m values.

hen π ( t ) and μ( t ) are some suitable polynomials, it’s easier to

erify the AS of (2) . 

On the other hand, Lemma 1 and 2 of [3] also use the AS of μ( t )

nd π(t) = 0 form of (7) . Hence, it’s a special case of Theorem 4 of

ur work. 

The works [3,32] adapt these conditions to Linear Time Varying

ystems and generalize numerous works in the literature. 

From the point of view of our Theorem 4 , briefly [3,32] present

S 

• Assuming that the vector field f in (2) is linear, π ( t ) in (7) is

zero, 

• Changing the function α in (17) with matrix bounds. 

There are also many works which are generated by the conclu-

ions of works [3,32] . 

Now, let us interpret Example 1 from the point of view of

heorem 4 above. In Example 1 , 

• m = 2 , 

• μ(t) = 2 t and not AS, 

• H i ( t ) should be choosen as 1 −t 2 

2 . It is the i = 2 case for

Lemma 2 , so H 2 ( t ). 

H 2 ( t ) tends to −∞ as t → ∞ , and so holds conditions of Theo-

em 4-3, and thus the system is AS. 

We give some more examples that explain the use of the rest of

he items in Theorem 4 and that show the efficiency of the given

onditions. 

xample 2. Consider the following system 

˙ 
 = 

−3 t 2 

4 

x + t 
x 

x 4 + 1 

, t ∈ J, 

nd the candidate Lyapunov Function V (x ) = x 2 . Then, 

˙ 
 (x ) = 

−3 t 2 

2 

x 2 + 2 t 
x 2 

x 4 + 1 

≤ −3 t 2 

2 

x 2 + 2 tx −2 

=: μ(t) V (x ) + π(t) V 

−1 (x ) 

(28) 

Now we assess the example in view of Theorem 4 . 

• m = −1 , 

• μ( t ) is AS, 

• H 2 (t) = 

1 
3 t + 

1 
3 2 t 4 

+ 

4 
3 3 t 7 

+ · · · 3 n −2 
3 n +1 t 3 n +1 + · · · , 

• L = 0 

The series H 2 ( t ) is convergent for t > t ∗
0 
, and this constant t ∗

0 
is

etermined by the coefficients of μ( t ) and π ( t ). The system is AS

y Theorem 4-1. We actually get this conclusion without solving

he system and without using a classical LF. 

emark 2. Observation of Example 1 -2 yields that our methodol-

gy is especially effective for some degenerated forms of Bernoulli

ifferential Equation, Murphy [24] and Ross [28] . Here, the cru-

ial point is to enlarge ˙ V (t, x ) by performing some algebraic op-

rations and finally to achieve a Lyapunov inequality form of the
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Bernoulli Differential Equation and appropriate μ( t ) and π ( t ) coef-

ficients for hypothesis of Theorem 4 . Then conclusions can be given

using Theorem 4 above. 

Example 3. Consider the following system which is a perturbed

version of Liao et al. [15] -Example 4.6.3, Zhou [33] - Example 1 , Lak-

shmikantham et al. [13] -Example 4.18. 

˙ x = − x 

t + sin (x ) 
+ p(t) x 2 m −1 , t ∈ J = (1 , ∞ ) , (29)

where 1 � = m ∈ R , p(t) is a rational polynomial for t ∈ J . Consider

also a function V (x ) = x 2 . Then, 

˙ 
 (x ) = − 2 x 2 

t + sin (x ) 
+ 2 p(t) x 2 m (x ) 

≤ − 2 

t + 1 

V (x ) + 2 p(t) V 

m (x ) 

= μ(t) V (x ) + π(t) V 

m (x ) 

Here, μ(t) = 

−2 
t+1 is an AS function. Bearing in mind the condi-

tions of Theorem 4 , it’s possible to give the amount of perturbation

by p ( t ). 

Let m < 1, p ( t ) > 0 for t ∈ J . The system (29) is AS for any choice

of p ( t ) provided that H i ( t ) is convergent and L = 0 . For example, if

i = 2 , then we only check the convergency and L = 0 case for the

following series 

p(t)(t + 1) 

1 − m 

+ 

d(p(t)(t+1) 
dt 

(t + 1) 

−2(1 − m ) 2 
+ ... 

and it’s computationally tractable. 

Now let us give a multidimensional example that demonstrates

the quality of the conclusions of our main result. 

Example 4. Consider the following system. [
˙ x 1 

˙ x 2 

]
= 

[
μ1 (t) x 1 + μ2 (t) x 2 + π1 (t) x 3 1 + π2 (t) x 1 x 

2 
2 

−μ2 (t) x 1 + μ3 (t) x 2 + π3 (t) x 3 2 + π4 (t) x 2 1 x 2 

]
(30)

and the function V = 

x 2 
1 
+ x 2 

2 
2 where μi (t) ∈ C ∞ (J, R ) , π j (t) ∈

 

∞ (J, J −) , i = 1 , 2 , 3 ; j = 1 , 2 , 3 , 4 . Then we have 

˙ 
 = μ1 (t) x 2 1 + μ3 (t) x 2 2 + π1 (t) x 4 1 + 

[
π2 (t) + π4 (t) 

]
x 2 1 x 

2 
2 + π3 (t) x

Let μi ’s and π i ’s be upper bounded as follows. 

μi (t) ≤ μ(t) f or i = 1 , 3 

π j (t) ≤ π(t) f or j = 1 , 4 

πk (t) ≤ 2 π(t) f or k = 2 , 3 . 

where μ(t) ∈ C ∞ (R, R ) , π(t) ∈ C ∞ (R, J −) 

⇒ 

˙ V ≤ 2 μ(t) V + 4 π(t) V 

2 

Now we can apply the items 2 and 3 of our main result Theorem 4 .

If we choose the upper bounds π ( t ) < 0 and μ( t ) in such a way that

• The corresponding μ( t ) is AS and L exists or 

• L = −∞ 

Then (30) is AS. Note that, here the system (30) can be written

as [
˙ x 1 

˙ x 2 

]
= 

[
μ1 (t) μ2 (t) 

−μ2 (t) μ3 (t) 

][
x 1 

x 2 

]
+ 

[
π1 (t) x 3 1 + π2 (t) x 1 x 

2 
2 

π3 (t) x 3 2 + π4 (t) x 2 1 x 2 

]

So the system (30) can be regarded as a perturbed LTV system.

Observation of the Example 4 yields that Theorem 4 of this work
also give the amount of perturbation for an AS LTV system. 
. Conclusion and future works 

In summary, this paper addresses the stability problem of non-

inear time-varying systems using LF with indefinite derivative. The

yapunov inequality version of the classical Bernoulli Differential

quation is utilized, and so numerous works in the literature are

eneralized. This adaptation can also be regarded as a different

ersion of the Bellman-Gronwall Inequality, Flett [7] and its appli-

ation. In addition, a useful integral expression is given and so a

orrelation is obtained between the stability and the convergency

f the series generated by ratio of the corresponding coefficients.

s a future work, the same idea can be reduced to some simi-

ar nonlinear differential equations like Riccati, Euler , [24] , [28] and

ome different upper bounds can be found for ˙ V (t, x ) . The same

ethodology can also be applied for different forms of G ( V , t ) or

or ISS of the nonlinear time-varying systems. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

ppendix A. 

roof. ( Lemma 3 ) 

1. First of all, the functions f ( τ ) and e g ( τ ) are positive and so κ
is. As a result, it’s bounded from below by 0. Consider [ t 0 , T ]

for a finite T ∈ R . The function f ( τ ) e g ( τ ) is a piecewise con-

tinuous function by hypothesis and so has finite number of

jump discontinuities there, say t 0 < t 1 < t 2 < ... < t p := T . De-

fine I = { 1 , 2 , ...p} and 

κ(t i , t 0 ) − κ(t i −1 , t 0 ) := κ i (31)

where i ∈ I . As f ( τ ) e g ( τ ) is continuous for the interval (t i −1 , t i )

and not infinity at bounds, we guarantee κ i ∈ R there. 

As the limit of κ is zero, we have such a number a ∈ R 

+ and

a moment T ∗ ≥ t 0 by the definition of the limit that 0 < κ( t ,

t 0 ) ≤ a for t ≥ T ∗. Hence it’s bounded for t ∈ [ T ∗, ∞ ). 

First step is valid for any finite choice of T . Choose T = T ∗.

As a result, we have 0 ≤ κ(t, t 0 ) ≤ a + 

∑ 

κ i . 

Consequently, if the functions f ( τ ) and e g ( τ ) are given piece-

wise continuous and continuous functions respectively, pro-

viding the limit condition, corresponding κ function is

bounded. 

2. Consider [ t 0 , T ] for a finite T ∈ R , the numbers t i ’s and so I

and the definition (31) again. Let M := min 
[
K i 

]
for i ∈ I . Then

κ( t , t 0 ) ≥ pM . This time as the limit is ∞ , we have such a

number A ∈ R 

+ and a moment T ∗ by the definition of the

limit that κ( t , t 0 ) ≥ A for t ≥ T + . Choosing T = T ∗ we have

κ(t, t 0 ) ≥ pM + A so bounded from below. 

�

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejcon.2020.02.006 . 
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