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In this study, the stochastic phenomenological bifurcations (P-bifurcations) of generalized

Chua's circuit (GCC) driven by skew-normal distributed noise have been investigated by nu-

merically obtaining the stationary distributions of the stochastic responses. The noise intensity

and/or skewness parameters of skew-normal distributed noise have been chosen as the bifur-
cation parameters to change the structure of the stochastic attractor. While the number of

breakpoints in the piecewise-linear characteristics of the GCC are ¯xed, it has been observed

that the number of scrolls have been changed by tuning the noise intensity and the skewness
parameter of the skew-normal distributed noise.

Keywords: Stochastic bifurcation; generalized Chua's circuit; skew-normal distributed noise;

P-bifurcation.

1. Introduction

The real-world systems are mostly in°uenced by inevitable internal or external

random perturbations. Although these random perturbations are considered to have

negative e®ects on the performance of a system, in the last three decades, the studies

on the stochastic resonance have demonstrated that the presence of an optimal

amount of noise can have positive impacts on the system [1–3]. There is still

an increasing interest on the problems of stochastic bifurcation occurring in

biological, economical, social systems [4–6]. Stochastic bifurcations have been de¯ned

as P-bifurcation and dynamical bifurcation (D-bifurcation) in [7]. Phenomenological
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bifurcation (P-bifurcation) is observed by the qualitative change in the stationary

probability distributions while D-bifurcation is observed by the changes of the sign of

Lyapunov exponents. In 2004, Ryagin and Ryashko have investigated the attractors

of Chua's circuit driven by the Wiener process [8]. In [9, 10], the existence of

stationary state densities as a stationary solution of Fokker–Plank equation for the

Chua's circuit excited with white noise have been analytically proven. However,

existence of stationary densities for Chua's circuit driven by skew-normal distributed

noise is not yet available in the literature. Limit cycles of the Lorenz system driven by

the Wiener process have been analyzed by P-bifurcation and D-bifurcation in [11],

and the e®ect of time delay on the stochastic bifurcation in Van der Pol oscillator

perturbed by white noise have been investigated in [12]. The e®ect of noise on the

dynamical systems which have hidden attractors has been investigated in [13], and

the analytical and numerical methods for the problem of localization of hidden

attractors in Chua's circuit have been developed in [14, 15].

Stochastic L�evy type dynamical system is a more general class of random

dynamical systems [16, 17]. Recently, the applications of stochastic dynamical sys-

tems driven by L�evy process have found interest on the stochastic neural networks

[18, 19] and on biological systems such as tumor-immune system [5]. Bifurcations for

a simple non-linear dynamical system under additive L�evy noises have been analyzed

in [20]. The common assumption in the extensively studied stochastic dynamical

systems is that the noise has either Gaussian or symmetric �-stable L�evy-type dis-

tribution. However, stochastic °uctuations cannot have a perfect symmetry in

practice. Since many physical phenomena and observed data exhibit non-symmet-

rical characteristics, asymmetry (skewness) should also be taken into account in

statistical modeling. Basically, asymmetric distributions might have high kurtosis

which cause heavy tails in the distributions with in¯nite higher-order moments

[21, 22]. In [23], the changes in the dynamics of generalized Chua's circuit (GCC)

have been investigated through �-stable L�evy noise in the framework of the stochastic

bifucation concept. By choosing the parameters of the impulsiveness, skewness and

the intensity of �-stable noise as bifurcation parameters, the qualitative changes

have been observed in the stationary probability distributions and in the structures

of the stochastic attractors. However, since the observations are recorded in a certain

duration, the e®ect of the asymmetric behavior of the noise needs to be formulated

with a ¯nite variance in practice. Therefore, rather than modeling with impulsive

distributions having an in¯nite variance, the probability density functions (pdfs) are

modeled with skew-normal distribution proposed in [24] in order to characterize the

real skew distributed data within a ¯nite observation interval. The skew-normal

distribution is therefore a proper candidate to ¯t the histogram of the data having

di®erent variances around the mean. In the literature, skew-normal distributions are

reported to be utilized in various applications such as modeling the ¯nancial data

[25], modeling non-line-of-sight (NLOS) channel for wireless communication systems

[26], sensing asymmetric signals [27] and modeling the data pro¯le in biomedical

imaging [28]. In the presented stochastic generalized Chua's circuit (SGCC), the
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variations in the structure of the attractors have been observed by changing the

intensity and/or skewness parameters of the skew-normal distributed noise while

¯xing the number of breakpoints in piecewise-linear characteristics of GCC, which

indeed determines the number of scroll in the corresponding attractors [29].

This paper is organized as follows: In Sec. 2, skew-normal distributed noise model

have been brie°y presented and P-bifurcation of SGCC have been numerically

analyzed. In the last section, the simulation results have been presented.

2. GCC Driven By Skew-Normal Distributed Noise

The dynamics of GCC [29] are described by the following set of three di®erential

equations:

_x ¼ �½y� hðxÞ�;
_y ¼ x� yþ z;

_z ¼ ��y;

ð1Þ

where � and � denote bifurcation parameters, and the piecewise-linear character-

istics hðxÞ is given as

hðxÞ ¼ m2q�1xþ 1

2

X2q�1

i¼1

ðmi�1 �miÞðjxþ cij � jx� cijÞ; ð2Þ

where the number of breakpoints \q" determines the number of scrolls.

The stochastic state equations driven by skew-normal distributed noise can be

written in the form as

dx ¼ �½y� hðxÞ�dt;
dy ¼ ðx� yþ zÞdt;
dz ¼ ��ydtþ ��ðtÞdt;

ð3Þ

where �ðtÞ indicates skew-normal noise introduced in [24] and � is the noise intensity.

Equation (3) can be rewritten in the Itô form of SDE,

dX ¼ fðXÞdtþ gdMðtÞ; ð4Þ
where

X ¼ ½x y z�T ;

fðXÞ ¼
�ðy� hðxÞÞ
x� yþ z

��y

2
4

3
5; g ¼

0

0
�

2
4

3
5 ð5Þ

and the increment \dMðtÞ ¼: �ðtÞdt" is a random variable which has a skew-normal

distribution.

The approximate numerical solution of Eq. (4) can be obtained by using the

Euler–Maruyama method given in [21, 30] as

Xti ¼ Xti�1
þ fðti�1;Xðti�1ÞÞ� þ gðti�1;Xðti�1ÞÞ 4Mi; ð6Þ

Stochastic Bifurcation in Generalized Chua's Circuit Driven by Skew-Normal Distributed Noise

1830002-3

Fl
uc

t. 
N

oi
se

 L
et

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
07

/2
2/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



where the skew-normal random variable 4Mi is de¯ned by

4Mi ¼ M�ð½ti�1; ti�Þ � SNð�; �; �Þ ð7Þ
is generated using the method given in [31].

2.1. Skew-normal distributions

The skew-normal distribution is a generalization of the standard normal distribution,

and the density function of the skew-normal distribution is given as

�ðx;�Þ ¼ 2�ðxÞ�ð�xÞ ð�1 < x < 1Þ; ð8Þ
where � and � are the standard normal density and distribution functions, respec-

tively. The integral function of �ðx;�Þ is denoted by �ðx;�Þ. The skewness param-

eter � lying in the interval ð�1;1Þ tunes the asymmetry and it is also called as the

slant parameter in [32]. For � > 0, the distribution is skewed to the right and, for

� < 0, the distribution is skewed to the left as shown in Fig. 1. Note that an increase

in the absolute value of the skewness parameter results in an increased asymmetric

distribution.

The normal distribution is a special case of the skew-normal distribution with

� ¼ 0. The limit distribution is de¯ned as the half-normal distribution given below.

lim
�!1

’ðx;�Þ ¼ 2’ðxÞI½0;1ÞðxÞ; ð9Þ

where I½0;1Þð�Þ is indicator function of a set ½0;1Þ. As � ! 1, �ðx;�Þ tends to the

half-normal density, where an approximate of half-normal density is simulated as

shown in Fig. 2.

Fig. 1. Skew-normal distribution for di®erent values of �.
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If Z is a continuous random variable with density function �ðx;�Þ given in Eq. (8),

then the variable Y ¼ � þ wZ is called a skew-normal variable with location pa-

rameter �, scale parameter w and skewness parameter �, and having the distribution

as Y � SNð�;w2; �Þ. The random variable Y at x 2 R satis¯es

2

w
�

x� �

w

� �
� �

x� �

w

� �
� 1

w
�

x� �

w
;�

� �
: ð10Þ

2.2. P-bifurcation of stochastic GCC

The dynamical behavior of the system given in Eq. (3) is investigated numerically

with the vectors m ¼ ½m0;m1; . . . ;m2q�1�, and c ¼ ½c1; c2; . . . ; c2q�1�. The skewness

parameter � and the noise intensity � are considered as the bifurcation parameters.

In the absence of noise (� ¼ 0), by choosing q ¼ 1 and the deterministic bifurca-

tion parameters � ¼ 4:6, � ¼ 6:02, the vectors m ¼ ½�1=7; 2=7� and c ¼ 1, two

single-scroll coexisting attractors are obtained, and a phase trajectory belongs to

either one attractor or the other one depending on the initial conditions. Projection

of the single scroll attractor on the x� y plane is shown in Fig. 3(a). The addition of

a small amount of the symmetric Gaussian noise (� ¼ 0) is reported to induce jumps

between the attractors as shown in Fig. 3(b), which is called as coherence resonance

[33]. Under random disturbances, the trajectories of the stochastically forced Chua's

circuit form some bundles.

To indicate the e®ect of asymmetry of skew-normal distributed noise on the

behavior of a single-scroll attractor, the system given in Eq. (4) is perturbed by the

skew-normal distributed noise with � 6¼ 0. As an illustrative example, the noise in-

tensity � is kept ¯xed and the skewness parameter is chosen as � ¼ 4 and � ¼ �4,

respectively. By varying the skewness parameter, it has been observed that one of the

scrolls of the attractors enlarges while the other scroll shrinks. The opposite behavior

φ
λ

(a) � ¼ �1000 (Negative-skewed)
φ

λ
(b) � ¼ 1000 (Positive-skewed)

Fig. 2. Half-normal densities.
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is observed when the sign of the skewness is changed as shown in Figs. 3(c) and 3(d),

respectively.

Apart from the changes in the structure of the attractor, the qualitative changes

are also observed in the resulting joint normalized histogram, which corresponds to

the joint probability densities (stationary densities) pðx; yÞ with respect to the states

x and y as shown in Figs. 4(a) and 4(b) for skewness parameters � ¼ 4 and � ¼ �4,

respectively. The color bar indicates the intensity of the PDF. Depending on the

skewness, the trajectory mostly remains at the opposite states which can be observed

as shown in Figs. 4(a) and 4(b).

2.3. P-bifurcation of 7-scroll attractor

In the following, the deterministic bifurcation parameters are chosen as � ¼ 9,

� ¼ 14:286. The piecewise-linear characteristics of the GCC is kept ¯xed, and the

(a) Deterministic case (� ¼ 0) (b) Symmetric Gaussian with � ¼ 0

(c) SN distributed noise with � ¼ 4 (d) SN distributed noise with � ¼ �4

Fig. 3. Noise-induced attractors.
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7-scroll attractor in GCC has been speci¯cally chosen since the variations of the

7-scroll attractor can be clearly seen through P-bifurcation by varying the noise

intensity. By choosing q ¼ 4 and the vectors m and c as

m ¼ ½0:9=7; �3=7; 3:5=7; �2:4=7; 2:52=7; �1:68=7; 2:52=7; �1:68=7�;
c ¼ ½1; 2:15; 3:6; 6:2; 9; 14; 25�; ð11Þ

7-scroll attractors have been obtained from Eq. (3) in the absence of noise and its 2D

phase portrait is given in Fig. 5(a).

The system given in Eq. (4) with the parameters given in Eq. (11) is perturbed

by the skew-normal distributed noise with various values of the noise intensity �.

Note that the skewness parameter is chosen as � ¼ 4 to maintain the same asym-

metric behavior of the skew-normal noise. Figures 5(b)–5(f) present the results

of phase plots of the stochastically perturbed 7-scroll attractor for the ¯xed piece-

wise-linear characteristic of the GCC. It is observed that an increase in the value of

the noise intensity exceeding a critical value �� of the skew-normal distributed noise

has the e®ect of reducing the number of scrolls. Thus, the multi-scroll attractors of

GCC can be adjusted by tuning the intensity of the skew-normal distributed noise.

The bifurcation of GCC have been investigated numerically through a qualitative

change of normalized histogram pðxÞ of the state x to show P-bifurcation.

The normalized histograms can also be modeled by the ¯nite mixture of �-stable

(FM�S) distributions presented in [34]. Qualitative changes of histograms with re-

spect to the critical noise intensity �� are shown in Figs. 6(a)–6(f). According to these

results, it can be observed that one of the maxima of the corresponding pdf pðxÞ
disappears and qualitative changes in the histograms occur. Correspondingly,

the stationary histograms evolve from multi-peaks to less-peaks which indicate

P-bifurcation depending on the noise intensity ��.

(a) SN distributed noise with � ¼ 4 (b) SN distributed noise with � ¼ �4

Fig. 4. Joint normalized histogram pðx; yÞ of the states x� y.
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(a) Deterministic case (� ¼ 0) (b) SN distributed noise with �* ¼ 0:001

(c) SN distributed noise with �*¼ 0:0028 (d) SN distributed noise with �*¼ 0:0044

(e) SN distributed noise with �*¼ 0:014 (f) SN distributed noise with �*¼ 0:03

Fig. 5. Variations in 7-scroll attractors induced by skew-normal distributed noise with � ¼ 4.
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(a) Deterministic case (� ¼ 0) (b) SN distributed noise with intensity �* ¼ 0:001

(c) SN distributed noise with intensity �*¼ 0:0028

(d) SN distributed noise with intensity

�*¼ 0:0044

(e) SN distributed noise with intensity �*¼ 0:014 (f) SN distributed noise with intensity �*¼ 0:03

Fig. 6. Stochastic bifurcations related to 7-scroll attractors with respect to the noise intensity.
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The variation of attractor structures depending on the noise intensity and skewness

are characterized by the normalized histograms in this paper. These histograms

correspond to the distribution pðxÞ of the time series obtained from the state x.

The entropy as a measure of complexity can be de¯ned as

H ¼ �
X

pðxÞlnðpðxÞ; ð12Þ
where the distributions pðxÞ's are as shown in Figs. 6(a)–6(f).

The variation of entropy with respect to the critical noise intensity for skewness

parameter � ¼ 4 is given in Table 1. It is clearly seen from Table 1 that the entropy

decreases while the number of scrolls is decreased for the corresponding critical noise

intensity.

The absolute value of � has also a certain e®ect on the structure of the multi-scroll

attractors, as the signs of the skewness parameter � and the noise intensity � have. It

can be numerically observed that when the skewness parameter is increased then the

critical value of the noise intensity to observe P-bifurcation becomes lower. As the

numerical example, the critical values of the noise intensity �� have been presented in

Table 2 for the case of skewness parameter � ¼ 4 and � ¼ 10.

3. Conclusion

The P-bifurcation of the SGCC driven by skew-normal distributed noise have been

presented. Stochastic P-bifurcations induced by the skewness parameter and the

noise intensity have been observed via the qualitative changes in the normalized

histograms. The GCC with 7-scroll attractor has been chosen as the case study,

Table 1. The variation of entropy with respect to the noise

intensity �� for the skewness parameter � ¼ 4.

# of scrolls Noise intensity �� for � ¼ 4 Entropy

6 0.001 3.9728

5 0.0028 3.9133
4 0.0044 3.8773

3 0.014 3.7518

2 0.03 3.7152

Table 2. Variations in the number of scrolls with respect to the noise
intensity �� for the skewness parameter � ¼ 4 and � ¼ 10.

# of scrolls Noise intensity �� for � ¼ 4 Noise intensity �� for � ¼ 10

7 0 0
6 0.001 0.0001

5 0.0028 0.0004

4 0.0044 0.004

3 0.014 0.0075
2 0.03 0.054
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where the skewness parameter � and noise intensity � have been selected as the

bifurcation parameters. The results from numerical simulations have demonstrated

that it is possible to decrease the number of scrolls by properly choosing the sto-

chastic excitation which have asymmetric distributions while preserving the chaotic

regime. Throughout this paper, the results have been obtained through the simu-

lations. The analytical approach to prove the existence of the stationary densities for

stochastic Chua's circuit driven by skew-normal noise is needed as a future study.

Furthermore, it has been observed that the entropy decreases while the number of

scrolls is decreased with the change of critical noise intensity. It should be noted that

an increase in the noise intensity results in a decrease in the number of scrolls if the

noise exhibits asymmetric behavior ð� 6¼ 0Þ. Another important observation is that if

the absolute value of skewness parameter � increases, the critical value of the noise

intensity �� required for P-bifurcation decreases. The e®ect of hidden attractors on

the stochastic bifurcation phenomenon and the role of the noise type for detecting

the hidden attractors are subjects for future investigations.
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