
IMPLEMENTATION AND PERFORMANCE
ANALYSIS OF CONTEXT-AWARE ROLE-BASED
ACCESS CONTROLS FOR CLOUD-BASED IOT

PLATFORM

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Mete Mertkan DÖŞEMECİ

September 2019
İZMİR

We approve the thesis of Mete Mertkan DÖŞEMECİ

Examining Committee Members:

Assoc. Prof. Dr. Tolga AYAV
Department of Computer Engineering, İzmir Institute of Technology

Dr. Nesli ERDOĞMUŞ
Department of Computer Engineering, İzmir Institute of Technology

Assoc. Prof. Dr. Ahmet Tuncay ERCAN
Department of Computer Engineering, Yaşar University

27 September 2019

Assoc. Prof. Dr. Tolga AYAV
Supervisor, Department of Computer Engineering
İzmir Institute of Technology

Assoc. Prof. Dr. Tolga AYAV Prof. Dr. Aysun SOFUOGLU
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would like to express my special thanks of gratitude to my teacher Prof. Dr.

Yusuf Murat ERTEN who game me the opportunity to do this project.

I would also like to thank Dr. Emrah TOMUR who helped me a lot for this project

in a limited time frame.

ABSTRACT

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CONTEXT-AWARE
ROLE-BASED ACCESS CONTROLS FOR CLOUD-BASED IOT PLATFORM

IoT has received substantial attention in both industry and the scholarly world

in the recent years. The main idea is to interconnect the physical world with the digital

world. Sensors read physical world and present processible data. This data needs to be

secured. Currently, most of the cloud based IoT platforms use some sort of Role-Based

Access Control (RBAC) , which is one of the approaches to control access to the devices,

hence the data. In some cases RBAC is insufficient for fulfilling constantly changing re-

quirements of IoT. ABAC (Attribute Based Access Control) can be flexible enough for

fulfilling. However ABAC requires higher level of maintenance. We wanted to imple-

ment a access control method that uses both RBAC’s and ABAC’s advantages. We called

it OBAC(Operation Based Access Control). Authorization is being implemented in a plug

and play manner. We implemented that way because; It is designed for cloud platforms

and we wanted to switch between access control methods easily. The results of the exper-

iment shows that proposed access control(OBAC) had minimum latency and management

steps across other access control methods.

iv

ÖZET

BULUT TABANLI NESNELERİN İNTERNETİ PLATFORMU İÇİN
BAĞLAM-DUYARLI ROL TABANLI ERİŞİM DENETİM YÖNTEMLERİ

UYGULAMASI VE PERFORMANS KARŞILAŞTIRMASI

IoT, son yıllarda hem endüstride hem de bilim dünyasında büyük ilgi gördü. Ana

fikir, fiziksel dünyayı dijital dünya ile birleştirmektir. Sensörler fiziksel dünyayı okur ve

işlenebilir veri sunar. Bu verinin güvenceye alınması gerekiyor. Şu anda, bulut tabanlı

IoT platformlarının çoğu, cihazlara erişimi kontrol etmek için kullanılan yaklaşımlar-

dan biri olan Rol Tabanlı Erişim Kontrolü (RBAC) kullanıyor. Bazı durumlarda RBAC,

IoT’nin sürekli değişen şartlarını yerine getirmede yetersizdir. ABAC (Özellik Tabanlı

Erişim Kontrolü), doldurma için yeterli olabilir. Ancak ABAC daha yüksek düzeyde

bakım gerektirir. Hem RBAC’i hem de ABAC’in avantajlarını kullanan bir erişim kon-

trol yöntemi uygulamak istedik. Buna OBAC (Operasyon Bazlı Erişim Kontrolü) adını

verdik. Yetkilendirme, takma ve oynatma tarzındadır. Bu şekilde uyguladık çünkü; Bulut

platformları için tasarlandı ve erişim kontrol yöntemleri arasında kolayca geçiş yapmak

istedik. Deneyin sonuçları, önerilen erişim kontrolünün (OBAC) diğer erişim kontrol

yöntemleri arasında minimum gecikme ve yönetim adımlarına sahip olduğunu göster-

mektedir.

v

To my lovely fiancé

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

CHAPTER 1. INTRODUCTION . 1

1.1. Motivation . 2

1.2. Aim of Thesis. 2

1.3. Outline of Thesis . 3

CHAPTER 2. RELATED WORK . 4

2.1. Context-Aware Access Control Models . 4

2.2. RBAC with ABAC Extension . 6

2.3. Iot Environment . 7

CHAPTER 3. BACKGROUND . 8

3.1. Context-awareness . 8

3.1.1. Context . 8

3.2. Related Access Control Models . 9

3.2.1. RBAC: Role Based Access Control . 9

3.2.2. ABAC: Attribute Based Access Control . 10

3.3. MQTT (Message Queuing Telemetry Transport) . 12

3.4. Fiware . 12

3.5. Dependency diagram . 13

3.6. Onion Architecture . 14

3.7. Middleware . 15

3.8. Overall Structure . 16

3.9. Database Diagram . 16

vii

CHAPTER 4. EXPERIMENT . 19

4.1. Designed Model: OBAC . 19

4.1.1. Model . 19

4.1.2. Attribute Assignment . 20

4.1.3. Subject Attribute - Operation Assignment . 21

4.1.4. Object Attribute - Operation Assignment . 21

4.1.5. Working Principle of Model . 22

4.2. Scenario . 25

4.2.1. RBAC implementation of the scenario . 29

4.2.2. ABAC implementation of the scenario . 29

4.2.3. OBAC implementation of the scenario . 30

CHAPTER 5. RESULTS . 37

5.1. Results . 37

5.1.1. Latency . 37

5.1.2. Sustainability . 38

CHAPTER 6. FUTURE WORK . 40

6.1. Future Work . 40

6.1.1. Real World Implementation . 40

6.1.2. Another Access Control Method Addition . 40

REFERENCES . 41

APPENDICES

APPENDIX A. CORE PART OF THE CODE BASE . 44

A.1.1. Abac Authorization Manager . 44

A.1.2. Rbac Authorization Manager . 46

A.1.3. Obac Authorization Manager . 48

A.2.1. Abac Authorization Middleware . 51

A.2.2. Rbac Authorization Middleware . 53

A.2.3. Obac Authorization Middleware . 55

viii

LIST OF FIGURES

Figure Page

Figure 3.1. Flat Role Based Access Control (Sandhu et al., 2000). 10

Figure 3.2. Attribute Based Access Control . 11

Figure 3.3. MQTT Example Scenario . 12

Figure 3.4. Dependency diagram . 14

Figure 3.5. Onion Architecture . 15

Figure 3.6. Database diagram . 18

Figure 4.1. Attribute Assignment to Subjects and Objects . 21

Figure 4.2. SA - Operation Assignment . 22

Figure 4.3. OA - Operation Assignment . 24

Figure 4.4. Flow Diagram of Working Principle . 25

ix

LIST OF TABLES

Table Page

Table 4.1. Rule set of CA-RBAC . 29

Table 4.2. Rule set of CA-RBAC (cont.) . 31

Table 4.3. Complexity Analysis of CA-RBAC Model . 32

Table 4.4. Rule set of ABAC . 33

Table 4.5. Complexity Analysis of ABAC Model . 34

Table 4.6. Rule set of CA-IRBAC . 35

Table 4.7. Complexity Analysis of CA-IRBAC Model . 36

Table 5.1. Test case’s average execution time in milliseconds . 37

Table 5.2. Number of steps for questions defined above . 38

x

LIST OF ABBREVIATIONS

IoT . Internet of Things

AWS . Amazon Web Services

GCP. .Google Cloud Platform

RBAC . Role Based Access Control

ABAC . Attribute Based Access Control

CA-RBAC . Context Aware - Role Based Access Control

UCON . Usage Control Model

SA . Subject Attribute

OA . Object Attribute

CR . Context Rule

MCR . Multiple Context Rules

AAT . Attribute Assignment Table

SAOA . Subject Attribute Operation Assignment

OAOA . Object Attribute Operation Assignment

1 Working

principle algorithm23

xi

CHAPTER 1

INTRODUCTION

The advancement of the internet towards IoT will immensely affect the lives of

residents in a positive way. Smart devices in the house making everyday life easier.

New applications can be created by the mix of the physical and digital world. Mobiles,

wearable sensors, and smart gadgets with improved capacities to enable them act inde-

pendently can be utilized to support new applications for human services, such as trans-

portation and healthcare, as well as to improve business efficiency and upgrade security,

ultimately benefiting the quality of life of residents.

One of the significant aspects of the IoT applications is context awareness. Con-

text awareneess is having ability to understand and adjust itself according to changing

environmental conditions. These days, environmental conditions changes very fast and

unpredictable way therefore IoT devices such as, smart homes, smart vehicles, smart

cities should adapt themselves those changing conditions in order to provide comfortable

living spaces for people. In any case, one of the most noteworthy concerns about these

applications are the protection and security requirements. 2018 Owasp IoT Top 10 vul-

nerabilities’ 3rd entry : (The OWASP IoT Security Team, 2018): "Insecure web, back-

end API, cloud, or mobile interfaces in the ecosystem outside of the device that allows

compromise of the device or its related components. Common issues include a lack of

authentication/authorization, lacking or weak encryption, and a lack of input and out-

put filtering. (The OWASP IoT Security Team, 2018)". also 8th entry indicates : (The

OWASP IoT Security Team, 2018): "Lack of security support on devices deployed in

production, including asset management, update management, secure decommission-

ing, systems monitoring, and response capabilities. (The OWASP IoT Security Team,

2018)".

Security is a basic requirement for the IoT. The quantity of associated gadgets is

expanding exponentially. This has offered ascend to an alluring and new attack surface.

Access control is a fundamental part of security solutions for IoT according to Owasp’s

3rd and 8th entries. Major cloud suppliers, for example, Amazon Web Services (AWS) ,

1

Microsoft Azure, Google Cloud Platform (GCP), use customized version of RBAC with

predefined roles and permissions for their access control requirements in the cloud. How-

ever, a formal access control demonstrating genuine cloud based IoT stages is still lack-

ing. Due to large number of devices in the IoT environment RBAC suffers role explosion

problem. Role is a way of grouping permissions for each device and role explosion prob-

lem is having tremendous amount of roles. This makes the whole system unmanageable.

Adding a new role usually requires system level update. On the other hand, in ABAC

(Attribute based access control) , roles are replaced with the subject attributes which in-

troduces higher granularity. Like RBAC, ABAC is also works best with a centralized

architecture, making system level updates more difficult.

1.1. Motivation

As previously stated in the introduction, the ever-increasing appropriation of IoT

in our daily lives raises serious questions on privacy and security. In IoT environment, it

is expected to contain billions of devices interacting with each other through networks.

Privacy becomes prerequisite in those kind of environments since they may contain sen-

sitive information. Traditional access controls such as RBAC and ABAC may not be the

perfect approach when one considers context data.

Our motivation was using the advantages of the RBAC and ABAC in context

aware environment. Implement such code base and compare their performance. To focus

on implementation and comparing we had to mock context data. Integrating authorization

into implementation is not a ideal choice for us since we are going switch between access

control methods. Plug and play concept allows to switch between access control methods

easily. Authorization is designed to be a step in the request pipeline. This way we can use

in a plug and play fashion.

1.2. Aim of Thesis

The objective of the thesis is to implement OBAC in context aware environment

and compare it with access control models RBAC and ABAC with context information to

specifically meet the requirements of IoT applications. Such as time of the day, location

2

of the requestor, emergency alarm status.

1.3. Outline of Thesis

The rest of the thesis is organized as follows: In chapter 2 we took a look at related

studies. In chapter 3, the concept of context awareness has been given in section 3.1 and

all compared access controls in section 3.2. In chapter 4 we explained the experiment. In

chapter 5 we present the test results and In chapter 6 we present the possibilities to take

the work further.

3

CHAPTER 2

RELATED WORK

For this work two concepts were the key. One of them is the usage of context in

access control, and the other one is to combine advantages of RBAC and ABAC together.

When both concepts merged we can obtain flexible, fine-grained, easy to manage and

scalable access control model.

Utilizing context awareness in access control guarantees a fine-grained and in-

creasingly powerful access control system. In this manner, a large number of the spe-

cialists proposed various works that coordinate context awareness with access control,

however the proposed models in these studies focused on the general computing applica-

tions that include basic situations with less number of communicating components (one-

to-many), for example, smart home, smart office and so on. The term IoT, as we use it

here, refers to many-to-many kind of communication with various individuals from ap-

plication (inhabitant, process, service, device) through the cloud infrastructure and social

networks. For such situations, access control for IoT applications ought to be dynamic

and more fine-grained requiring the use of context information wisely.

RBAC is the most embraced access control model by business environment, since

it has the benefit of simple organization through role utilization.On the other hand, pre-

defining all interactions between things isn’t a simple procedure while considering IoT

environment with complex communications. Moreover, role creation stage is additionally

tedious since the environment has such a large number of subjects with various rights,

which cause the making of unnecessary number of roles prompting role-explosion issue.

For this reasons, it is accepted that the use of RBAC model alone is deficient to guarantee

the security of IoT applications. ABAC is a more advantageous access control model for

use in situations with dynamic communication, since it provides flexibility with attribute

usage. In spite of this feature, the policy survey as far as organization is unwieldy since

any gathering capacity like role isn’t utilized in this model. Thus, it is required to produce

another bound together access control model that joins the adaptability of ABAC effort-

lessly of organization. These two methodologies are evaluated independently beneath.

4

2.1. Context-Aware Access Control Models

(Covington et al., 2001) has broadened the general role based access control ap-

proach by including environmental roles that catch the security relevant data from the

environment for fine-grained access control. Context data is characterized as a role in

their study. Roles activated with the context information from the environment. At the

point when an individual access to a specific asset, the member’s subject role decide

the permitted assets and the related environment roles express the imperatives. In other

words, the permissions are associated with both subject roles and environmental roles.

For instance; in a context aware home, the individual assigned to the babysitter role can

reach the intercom service if the weekday and working hour roles are dynamic. However,

this methodology will build the quantity of roles by allocating role to the environment

conditions like the day of the month, time, specific area in the house and so on. This is

unfortunate for IoT applications that as of now contain numerous components.Execution

of this proposed model is performed by (Covington et al., 2002).

(Al-Muhtadi et al., 2003) displayed an authentication mechanism and context-

aware access control model that is called Cerberus. The authentication mechanism part

composed of two modules; one included the communication protocols like SESAME,

username-password, Kerberos etc. and the other contained the authentication devices

such as fingerprint scanner, PDA, smart badge etc. Separation of these two modules gave

adaptable authentication mechanism. The context data procured by a pretty basically

planned context infrastructure which utilizes first request predicates and boolean algebra.

The access control part of this project is controlled by the inference engine. The system

is offered a dynamic access control that suggests the consistent checking of context. If

there should be an occurrence of identification of any infringement in context data, access

to a specific gadget or asset is ended. This study differs from ours in where it works. The

designed system is not for the IoT applications as it is dawned on proposed scenario.

Another work that consolidates RBAC with context awareness, produced for gen-

eral computing applications is exhibited by (Kulkarni and Tripathi, 2008). In this study

the context data is likewise utilized for conceding a user to a role and to keep being an

individual from that role. For a patient information system given in the paper, the worldly

requirements can be utilized to concede a nurse to the ’NurseOnDuty’ role just inside the

working hours. At the point when the imperatives are never again hold, the nurse’s partic-

ipation in NurseOnDuty role is ended. Likewise the roles are dynamically created in the

5

application design period and activated only during related application’s execution time.

As a matter of fact the context data is utilized for various tasks, for example, role per-

mission assignment, permission activation and resource access. As referenced over, this

study is produced for general computing applications that don’t utilize the connections of

numerous things like individual, process, devices and so forth. This CA-RBAC model

isn’t appropriate for IoT applications that contain numerous components, as unique role

creation for each application will prompt excess of roles.

The most similar study to ours is the ConUCON security module that was devel-

oped for the Web of Thing applications by (Bai et al., 2014). ConUCON make use of

the context awareness to provide security and privacy in usage control. The main differ-

ence of this work is that it is based on UCON (Usage Control Model) instead of RBAC.

In RBAC we can use role feature for grouping the users but in ConUCON every subject

managed individually

(Abdella et al., 2016) used combination of context awareness and RBAC in An-

droid based mobile applications. The context data is associated with the permissions. To

gain an access to a resource, defined context information should be ensured. Their model

does not offer a dynamic access control and not suitable for IoT environment.

2.2. RBAC with ABAC Extension

According to the NIST, the first integrated access control model initiative called

RABAC (Role-Centric Attribute Based Access Control) is proposed by (Jin et al., 2012).

In this model, the subjects are assigned to roles and permissions are grouped by roles as

the base of RBAC and the subjects and objects are associated with attributes. To be able

to constrain the permissions according to the subject and object’s attributes, they added a

new module, permission filtering policy (PFP). Proposed model is good at addressing the

role-explosion problem since it uses constraints/filters on permissions, however they did

not use environmental attributes like time of day or location. We believe that, it can be

crucial in IoT systems.

Another access control model proposed by (Rajpoot et al., 2015) is AERBAC.

AERBAC is content based context aware access control. They used conditions associated

with permissions in order to overcome the role explosion problem. Also, they addressed

the role-permission explosion problem by using object attributes in permissions.In their

6

model single permission can include an object group which have a few objects with com-

mon attributes instead of a unique object. This approach reduces the number of related

permissions with roles. However, as any increment in object attributes cause to exponen-

tial grow in number of object groups, attribute based object grouping can cause another

managing problem in an environments having huge amount of objects.

(Hasiba et al., 2017) likewise proposed a model that extends properties of ABAC

and RBAC by joining role and attribute ideas in a role driven way. As in RBAC, subjects

are assigned to roles and roles have permission rules that limited with constraints. The

rules are separated into two; private and shared object rules. This methodology empowers

limiting every user to access just his/her own information without requiring separate role

or rule. This model addressed both the role-explosion and role-permission explosion

problems.

(Qi et al., 2015) proposed a model that is created the roles based on static attributes

and formed the rules considering dynamic attributes. Therefore, they utilized attributes in

both user to role assignment and role to permission assignment. Thus, number of roles in

RBAC and number of rules in ABAC are significantly reduced.

As can be seen from the reviewed papers, attribute based and context-aware RBAC

approaches are similar in terms of limiting permissions. However, none of the papers in

this section are addressing IoT applications.

2.3. Iot Environment

Kevin Ashton first mentioned the term "Internet of Things". It was the title of the

his presentation at Procter & Gamble (P&G) in 1999. IoT is the trend topic nowadays.

Notion means that any device with an on/off switch can be connected to, and controlled

through the Internet (Morgan, 2014). IoT domain hosts tremendous amount of many-to-

many interaction that introduces many challenges. Most important ones are the security

and privacy challenges. For this part of security, usage of access control models plays an

important role.

7

CHAPTER 3

BACKGROUND

In this chapter, the main ideas that the thesis is based on are explained separately.

3.1. Context-awareness

Context-awareness is getting more popular every day. The term was first put for-

ward by (Schilit et al., 1994). The application that can adapt themselves to context was

their definition. This means, an application that just displays the context is not context

aware. In order to be context aware, the application needs to adapt itself to the context.

An example situation can be the following scenario in a smart home. Let us imag-

ine the following components: main door, inhabitants, and smart home application. An

inhabitant can open or close the door via smart home application. In an emergency such as

fire, we expect the smart home to do nothing different, but if that application has context-

awareness, we expect the smart home application to never let the main door stay closed

during a fire. The initial setup was following orders from humans, but in an emergency

situation it should adapt itself to the environment.

This is a specific example. The most general definition that consists of both us-

ing context and adapting to context is asserted by (Abowd et al., 1999): "the system is

context-aware if it uses context to provide relevant information and/or services to user,

where relevancy depends on the user’s task (Abowd et al., 1999)".

3.1.1. Context

There are several different definitions for context, but the most comprehensive

and accepted explanation is also introduced by Abowd et al. in 1999. According to them,

"context is any information that can be used to characterize the state of an entity. An

entity can be a person, object or place that is considered relevant to the interaction

between a user and an application, including the user and application itself (Abowd

8

et al., 1999)". It means that any information from any sensor, or extracted through internet

can be used if that information has relevance to your system, such as location, time of the

day, temperature, and air quality.

3.2. Related Access Control Models

Access control is a security mechanism that limits who or what can view or use re-

sources in the system based on predefined roles, permissions or policies. There are various

types of access control models, but in this project, we will focus on two of them: "Role

based access control" and "Attribute based access control". Definitions and structure is as

follows:

3.2.1. RBAC: Role Based Access Control

Role Based Access Control has widespread use in industry, business, government

etc. After significant studies, NIST has proposed a nearly completed RBAC model in

2003 under a document named NIST solution (Weber, 2003). In this document, four

versions of RBAC are explained in detail. The variations originated from used features

like hierarchy and constraints. The common aspect of these different versions is that the

base model depends on three core elements in its nature; users, roles and permissions, and

this version is called as Flat RBAC (Sandhu et al., 2000). Users, roles and permissions,

and their relationships are explained separately below.

Users: The users are the entities who can gain access on any object in the system. A user

can be a person or non-person like computer or process.

Roles: Function of the role can be considered as grouping operation of users who have

same permissions. On the other hand, it also enables grouping the permissions. Therefore,

a role which is the main element of RBAC, is a bridge between both the group of users

and their permissions. Title, department or job can be an examples of roles.

Permissions: A permission is composed of operations and objects. An object can be a

file, document or anything that need to be protected. Operation is an action that is allowed

to be performed on a specific object like reading, writing, updating, etc. The diagram that

illustrates the relationship between these elements is given below in Figure 3.1.

9

U: Users R: Roles P: Permissions

UA: User
Assignment

PA: Permission
Assignment

Figure 3.1. Flat Role Based Access Control (Sandhu et al., 2000).

In general terms, RBAC is the method of assigning a role to each user and having

its own permissions for each role. It offers a simple and elegant way of administrative

management.

• Advantage of RBAC is given below:

– Simple to manage individual user permissions.

• Disadvantages of RBAC are given below:

– Role Explosion Problem: In order to satisfy large organizations it requires

large number of roles and permissions. That leads to high number of storage

requirements and reading operations from disk. Moreover, every role needs to

be created with caution, otherwise duplication is inevitable.

– Role Permission Explosion Problem: Large number of objects require indi-

vidual permissions and that causes many permissions under a single role.

– Role Creation Time Problem: Complexity of the system requires a complex

relationship with roles and users and this causes time consumption problem.

3.2.2. ABAC: Attribute Based Access Control

Attribute based access control gives more flexibility over RBAC. It introduces at-

tribute concept into RBAC. Users have attributes, and attributes are used to decide grant-

ing access (Jin et al., 2012). Attributes are any information that is used for identification.

There are 3 kind of attributes:

10

Subject Attributes: Any information about a user are subject attributes, such as title, job,

location, etc.

Object Attributes: Any information regarding object, such as type, status, etc.

Environmental Attributes: Any information defining environment, such as time of the

day, temperature, etc.

ABAC decides granting or denying access based on the rules created with at-

tributes of subjects, objects and environment. ABAC model is given below in in Fig-

ure 3.2.

Access
Decision

Subject
Attributes

Object
Attributes

Environmental
Attributes

Rules

GRANT or DENY

Figure 3.2. Attribute Based Access Control

• Advantages of ABAC are given below:

– Roles are replaced with subject attributes which speeds up the process.

– It has high granularity.

– It is more suitable for dynamic environments.

• Limitation of ABAC is given below:

– It is hard to determine individual users permissions and limitations.

11

3.3. MQTT (Message Queuing Telemetry Transport)

MQTT was invented by Dr Andy Stanford-Clark and Arlen Nipper in 1999.

It is a publish/subscribe, simple and lightweight messaging protocol. The design princi-

ples are for minimizing bandwidth and device’s resource usage. Those principles turn to

be great for machine to machine communication.

MQTT protocol is based on a server and clients, such as any other internet pro-

tocol. Server has specific name in this protocol, MQTT Broker. When a client wants to

send data to MQTT broker, it is called publish. When a client wants to receive data from

MQTT broker, it is called subscribe.

Let’s think about a machine to machine communication example. Image there are

three clients: Temperature sensor, mobile phone and laptop. Scenario goes as follows, we

want to send temperature sensor data to mobile phone and laptop. MQTT broker creates a

channel called "Temperature Information" and Temperature sensor publishes data to that

channel. Mobile phone and laptop subscribes to same channel and they receive when a

data publishes to that channel. Figure 3.3 demonstrates the given example.

Temperature
Sensor

MQTT
BROKER

Mobile
Phone

Laptop

Publish

19.2 C
Subscr

ibe

Subscribe

19.2
C

19.2 C

Figure 3.3. MQTT Example Scenario

12

3.4. Fiware

Fiware is a context data management tool which focuses on IoT. Fiware was

choosen for this project because it is an open source and can be containerized.

Advantages of the fiware are listed below:

• It has an easy development and deployment process. This allows to create simple

or complex structures up and running in a short term.

• Open source platform provides contribution from many other developers outside of

the creators of the Fiware. Extra objective eyes from outside are always appreciated

for this kind of platforms.

• Scalability is a must in today’s environment. Using the power of Docker, a devel-

oper can scale up the Fiware system simply by duplicating the Docker image.

3.5. Dependency diagram

Figure 3.4 is the dependency diagram of the project.

Numbers on the 3.4 represents the usage in the specific project.

• Definition was used for business logic entities. Base response and request objects.

Access control method spesific entities such as permissions, roles, rules, users, ob-

jects.

• Data was used for database operations.

• ContextEngine was used for providing context information. Since this is a simula-

tion context information is arbitrary.

• Repository was used as layer between data and rest of the project. Every database

operation should go from repository project. It is the door for the data layer.

• Mapper was used as helper class for mapping definition entities to servis layer en-

tities. That way we managed to secure definition layer objects. Exposing definition

layer object may lead to security vulnerabilities.

13

Figure 3.4. Dependency diagram

• Authorization was used to authorize the client. It uses context engine and repository

projects.

• Service was used as layer between web and repository.

• DependencyInjection was used for decoupling the creation of the usage of an object.

• Web was used for user interface for client.

3.6. Onion Architecture

The term "Onion Architecture" was coined by Jeffry Palermo back in 2008 in a

series of blog posts. The architecture is designed as a solution to common problems like

coupling and separation of concerns. In this project we used onion architecture on the

backend implementation. Onion architecture is based on inversion of control principle.

Instead of depending concrete classes, it encourages to depend on interfaces. The ar-

chitecture does not depend on Data layer as in classical n-tier architecutes it depends on

Domain layer.

14

• Domain Layer is in the center of the architecture. This layer has business and

behavior objects.

• Repository Layer creates a bridge between domain objects and business logic.

• Service Layer holds the business logic and this layer is used for communicating

between repository and UI.

• UI Layer is the highest layer and it interacts with clients.

Figure 3.5 is an example representation of the onion architecture.

Domain

Repository

Service

UI

Figure 3.5. Onion Architecture

3.7. Middleware

Asp.NET Core allows to write middleware services to control the request life cy-

cle. In this project, we used authorization as a middleware that way we can switch be-

tween authorization methods with one line of code change. A request comes with an

15

authorization token in the header, after validating the token we identify the user, we de-

termine the action want to be taken. Then we check if identified user has privileges to

execute the determined action. If user has required privileges we forward that action to

Fiware, If user doesn’t have required privileges we simply return "access denied".

3.8. Overall Structure

The following figure represents the overall structure. User sends a command to

our project. That command goes to authorization module. If user does not have required

permission,the user gets a response as ’access denied’, otherwise that command goes

to a decision manager.The decision manager receives the command and it uses context

information forwarding that command to Fiware. Fiware uses orion context broker to

execute the command coming from user. Orion context broker allows to manage entire

lifecycle of the connected devices.

Oven

Smart Door

Washing Machine

Dish Washer

Camera

Insulin Pump

Orion

FIWARE

Context

Engine

Decision

Manager

Authorization

RBAC/ABAC/OBAC

Our App

Send Command

User

16

3.9. Database Diagram

Figure 3.6 is the database diagram of the project.

• Context table is used for storing the context.

• It has fields from the scenario that we mentioned on section 4.2.

• Rule Sets table is for storing the rules for ABAC model.

• Permissions, AspNetRoles, AspNetUsers are for RBAC implementation of the model.

• Object, Object Attributes, Operations, AspNetRoles, AspNetUsers tables are for

OBAC implementation of the model.

17

Figure 3.6. Database diagram

18

CHAPTER 4

EXPERIMENT

4.1. Designed Model: OBAC

This model can be considered as combination of RBAC and ABAC. Role feature

of RBAC enables the grouping of the users and permissions, and this provides sustainable

user and permission management.ABAC has subject attributes feature which gives more

granularity. We combined both features in the designed model. However, IoT environ-

ment has dynamic interactions of vast amounts of devices, and it is not possible to define

all interactions among these devices exactly and in advance. Besides, forcing to assign a

role to each subjects will lead to creation of excessive number of roles due to the variety

of vast amount and different types of subjects. So, it is inefficient to write predefined roles

and permissions for RBAC and rules for ABAC beforehand. Considering the existence

of role-explosion problem of RBAC, it is obvious that a optimal solution is needed to

remove these problems for kaleidoscopic environment. The solution in this model is to

group the operations like reading, writing, turning off and so on with subject attributes

since the number of operations that can be executed in a system are always limited. This

way we prevented the role-explosion problem which have high occurrence probability for

IoT environment. Also, object attributes are used to group the objects in order to enable

easy administration of objects and to prevent the role - permission explosion. This model

is introduced in "Context Aware Role Based Access Control Model for Internet of Things

Applications" (Genc, 2018).

4.1.1. Model

Operations (Op): Operations indicate defined actions that are allowed to perform on an

object in a system, and the subjects are grouped under specific operations.

Subjects(S): Subjects are the entities that have access right on objects under a particular

19

situation. In the IoT environment; users, services, processes, applications, devices can be

the subjects of the system.

Subject Attributes (SA): Subject attributes capture the properties of each subjects. Each

subject should have at least one subject attribute. There is a many-to-many mapping

between SA’s and subjects which means a SA can be assigned to many subjects and a

subject can have more than one SA.

Objects (O): Objects are the resources that are protected by the security policies.

Object Attributes (OA): Object attributes are assumed to be given by the manufacturer or

administrator of the system, and it defines the properties of the object. Each object should

have at least one object attribute. There is many-to-many relationship between objects

and OA’s like the mapping between subject and SA’s.

Context Expression (Con): In this model, the constraints limiting the access to an object

is called as context since the restriction is based on context information which contains

subject, object or environmental attributes. Contexts are stored in the database as follows:

Coni=<ContextName, Operator, Value> where Coni ∈ Con.

For comparison operators; equal (=), not equal (6=), greater than (>), less than (<),

greater than and equal (≥), less than and equal (≤), not (¬) can be used.

Context Rule (CR): Context rules are the expressions that are evaluated to decide whether

access to associated object will be allowed or denied. CR is composed of two terms: con-

text and action. Action can be allowed or denied. CR is represented as follows:

CRi=<(ContextName, Operator, Value), Action> where CRi ∈ CR.

Multiple Context Rules (MCR): For some of the cases, access to an object can be related

to many contexts which needs to be checked, so many context rules are required. Multiple

context rules enable to write combined context rules by using logical operators like and

(∧), or (∨). MCR is stored in the form of:

MCRi=<((CR1 ∧ CR2) ∨ CR3), Action> where MCRi ∈ MCR and CRj ∈ CR.

4.1.2. Attribute Assignment

Attribute Assignment Table (AAT) includes mapping between attributes and sub-

jects/objects. For simplicity, both SA assignment to subjects and OA assignment to ob-

jects are held in the same table. Both of the subjects and the objects can have multiple

attributes. The records of the AAT consist of; (Sj, Atti) or (Oj, Atti) where Atti ∈ SA or

20

OA and Sj ∈ S, similarly Oj ∈ O. Figure 4.1 given below shows the relation between the

entities and the attributes.

S1

Subjects/Objects

S2

O1

A1

Attibutes

A2

A3

Figure 4.1. Attribute Assignment to Subjects and Objects

4.1.3. Subject Attribute - Operation Assignment

Subject attribute assignment to operation is used for to get easy administration

by grouping the subject attributes (implicitly subjects) under allowed operations. Subject

attribute - operation assignment (SAOA) table stores data as follows; (Opk, SAt) where

SAt ∈ SA and Opk ∈ Op. Figure 4.2 shows the relationship between the subject attributes

and operations.

As seen in the Figure 4.2 a many-to-many relationship exist between subject at-

tributes and operations: SAOA ⊆ SA X Op. This means that, a SA can be allowed to

perform more than one operation, so can be assigned to different operations. Similarly,

one operation may contain many subject attributes.

4.1.4. Object Attribute - Operation Assignment

This access control model designed to facilitate the use of different authentica-

tion methods. Some objects may be accessed by using different authentications, whereas

accessing to an object requiring high security can be limited with only a specific au-

thentication method. Therefore, authentication methods are related with object attributes

21

SA1

Subject Attribute

SA2

Op1

Operation

Op2

SA1

SA3

Figure 4.2. SA - Operation Assignment

and operations. Object Attribute - Operation Assignment (OAOA) table is consisted of 4

columns which are operations, object attributes, context and authentication. Each record

should include 4 elements; (Opu, Authz, OAv, Cony) where Opu ∈ Op, Authz ∈ Auth, OAv

∈ OA and Cony ∈ Con. Figure 4.3 illustrates the relationship between operation, OA,

authentication and context rule.

As the Figure 4.3 illustrates, Op1 is allowed to access objects that only have OA1,

however these objects can be reached by using different authentication methods with each

having distinct contexts. Op2 can not be performed on objects in group OA1, but it can

access to objects having OA2 and OA3. While OA1 and OA2 accept the access requests

by using different authentication methods associated with various contexts, access to OA3

can only be allowed through a specific authentication. Some of the object attributes have

no context associated with it, which means that all subjects having SA that are assigned

to related operation are granted to perform that operation on requested OA. Allowing

to utility of various kinds of authentication methods is enabled to access control being

flexible and fine-grained.

4.1.5. Working Principle of Model

Operations, subject attributes, object attributes and context is being checked step

by step in Figure 4.4.

22

Algorithm 1 Working principle algorithm
Input: Access_ Request (Request<Subjectid, Objectid, Operation, AuthType, Contex-

tInformation>)
Output: Access

1: Operations← List_Operations
2: if (Op) in list Operations then . Check if requested operation defined in the list
3: SA← get_attributes(Sid)
4: else
5: Access = Deny
6: end if
7: SA_List← List_Subject_Attibutes(Op) . Get the list of the subject attributes

defined for that operation
8: if (SA) in list SA_ List then
9: OA← get_attributes(Oid) . Get the object attributes of the requested object

10: else
11: Access = Deny
12: end if
13: OA_List← List_Object_Attibutes(AuthType,Op) . Get the object attributes

with provided Authentication type and operation
14: if ((OA) in list OA_ List) then
15: Context← context(AuthType,Op,OA) . If we can find any object attribute

get the context information with provided authentication type and operation
16: else
17: Access = Deny
18: end if
19: Result← evaluate(Context, ContextInformation) . Evaluate stored context

and provided context information if it is a match
20: if Result = False then
21: Access = Deny
22: return(RequestDenied)
23: else
24: Access = Grant
25: return(RequestGranted)
26: end if

23

Op1

Operation

Auth1

Authentication

Op2

Auth3

OA1

Object Attribute

OA1

Auth1 OA2

Auth2 OA2

OA3

CR1

Context Rule

MCR2

No Context

CR2

MCR3

Figure 4.3. OA - Operation Assignment

The working principle flow diagram of the designed model is given in Figure 4.4

to show the general idea of the execution sequence.

Login is required to use our application. Providing correct username and pass-

word to login endpoint returns a bearer access token. After receiving access token, every

request should be done with this token. When a user sends a command, firstly it is being

checked by the authorization module for the correct token. After validating the token we

can proceed with the algorithm.

The following technologies have been used for this project: Asp.NET Core, Re-

act.Js, EntityFramework, Docker, Fiware.

The backend of the project is written in Asp.NET Core. Asp.NET is a widely used

technology in web development. Core framework is designed to work on non-Windows

machines too.

EntityFramework is an object-relational mapper for .NET developers to work with

24

Request

Is the requested operation
defined in the system

Is the attribute of the requester subject in the list
of assigned attributes to the requested operation ACCESS DENIED

According to the requester’s authentication
mechanism, are the requested object

attributes in the list of assigned object
attributes to the requested operation

Is there any context query
related with the requested object

Is related context query fulfilled

ACCESS GRANTED

Yes

Yes

No

Yes

No

Yes

No
No

Yes

Figure 4.4. Flow Diagram of Working Principle

database with .NET objects.

React.Js is a javascript library for building user interfaces. React.Js allows to cre-

ate single page applications.

Docker is an application that performs operating-system-level virtualization. In

this project we run fiware on docker for isolation.

25

4.2. Scenario

For testing purposes we come up with a scenario. All the access control methods

compared in this paper (RBAC, ABAC and OBAC) are evaluated using this scenario.

There are 8 subjects and 6 objects, we compared access control methods under various

contexts.

Subjects:

1. Katie (mother)

2. John (father)

3. James (child)

4. Joe (child)

5. Sue (child)

6. Jessica (babysitter)

7. Smart Home Application

8. Smart Healthcare Application

Objects:

1. Smart Door

2. Oven

3. Washing Machine

4. Dish Washer

5. Camera

6. Wearable Insulin Pump

Subject Attributes:

◦ Title: Parent, Children, Babysitter, Healthcare App, Home App

Object Attributes:

26

◦ Object Type: Smart Door, Camera, Household Appliances, Wearable Devices

Environmental Attributes:

◦ Authentication: Mobile Device, Biometric

◦ Time: school hours, working hours

◦ Location: inside house, outside house

◦ Distance

◦ Parent’s Approval: yes, no

◦ Somebody in front of door: yes, no

◦ Emergency: yes, no

Object type and title are the defined attributes for objects and subjects respectively.

Each object and subject should have at least one attribute. There are 7 environmental

attributes defined to achieve fine-grained access control. Distance attribute is defined as

atomic valued, and the others are defined as set type attributes. Principals are free to

use biometric or mobile device authentication. Subjects included are both person and

application. The scenario is explained in detailed below:

Smart Door: The smart door can be opened in given cases by predefined subjects via

different authentication type usage:

• In all cases, mother and father can open the smart door by using biometric authen-

tication.

• Mother and father can also open the smart door by using their mobile device if their

smart car, that is defined in the system, is at less than 10 meters to the house, and

the time is outside the working hours.

• If the children are outside the house, in all situations, they can open the smart door

by using biometric authentication. However, if they are inside the house, to open

the smart door some adult(at least one of the parents, or babysitter) should be inside

the house.

• When the school bus is closer than 10 meters to the house, and the time is outside

the school hours, the door can be opened by children using their mobile devices.

27

• Babysitter can open the smart door using only biometric authentication if he/she is

outside the house and time is working hours for her. When babysitter is inside the

house and there is somebody in front of the door, parent’s approval is required to

be able to open the door. However, in the same situation, if nobody is outside the

house, parent’s approval is not needed to open the door.

• Smart home application can also send request to open the smart door if emergency

situation context is asserted, and the ambulance is close to the house less than 10

meters away.

Household Appliances:

• Mother and father can turn the oven, dish washer and washing machine on using

their mobile devices when they are not inside the house.

• Children are not allowed to turn any electrical household appliances on or off.

• Babysitter can turn the electrical household appliances on by using his/her mobile

device if he/she is inside the house, and the time is within the working hours.

• Mother, father and smart home application can turn the electrical household ap-

pliances off, if 30 minutes passed since turn them on request has been made, and

parent or babysitter is not inside the house.

Camera:

• Camera can be viewed by people who have parent attribute via biometric authenti-

cation.

• Mother and father can view camera using their mobile devices if the emergency

situation context is enabled.

• Smart home application can also view camera in case of emergency.

Wearable Insulin Pump:

• Smart healthcare application can read data from wearable insulin pump at all times

since no context is assigned to this object.

• Smart home application can also read data from wearable devices in emergency

situations to verify the context.

28

4.2.1. RBAC implementation of the scenario

For RBAC implementation of the scenario, each subject have roles, and the roles

have corresponding permission sets. Role members are given below the role names in

the Table 4.1. The permissions consist of object and the operation. The context terms

are assigned to the permissions in this model. The ’Access’ column shows the results of

evaluation in case of fulfilling the context. Rule set is given in Table 4.1 and Table 4.2.

Table 4.1. Rule set of CA-RBAC

Roles Permission Context Access

PARENT

Katie
John

Open the smart door Authentication=biometric ALLOW

Open the smart door
Authentication=mobile device
∧ time>working hour
∧ distance(car)<10m

ALLOW

Surveillance camera Authentication=biometric ALLOW

Surveillance camera Authentication=mobile device
∧ emergency=yes ALLOW

Turn the oven on Authentication= mobile device
∧ loc(requestor)= ¬inside house ALLOW

Turn the oven off

Authentication= mobile device
∧ (loc(requestor) ∨
loc(Jessica-babysitter))= ¬inside
house ∧ time(req-turn the oven on)
- time(current)>30min

ALLOW

Turn the
washing machine on

Authentication= mobile device
∧ loc(requestor)= ¬inside house ALLOW

Turn the
dish washer on

Authentication= mobile device
∧ loc(requestor)= ¬inside house ALLOW

CHILDREN

James
Joe
Sue

Open the smart door Authentication=biometric
∧ loc(requestor)=outside house ALLOW

Open the smart door

Authentication=biometric
∧ loc(requestor)=inside house
∧ (loc(Katie-mom) ∨
loc(John-dad) ∨
loc(Jessica-babysitter)=inside house
∨ emergency=yes)

ALLOW

The RBAC scenario rule set continues in Table 4.2 below.

The roles, operations, objects and the contexts are shown in Table 4.3 below.

29

4.2.2. ABAC implementation of the scenario

Rule sets for ABAC has been designed as follows: <Context, Operation,

Access>

Matching between the subject’s context and the specified context within the evaluated

rule, the result which is stated in ’Access’ parameter, that can be allow or deny, will be

returned to the subject. Rule engine searches the rules until finding the contexts that are

matching with the subject’s. When it finds such a match between the contexts, if the

access parameter is ’deny’, it denies the request, or if the access parameter is ’allow’, it

allows the request. Rule set of ABAC is given below in Table 4.4.

Complexity analysis of the ABAC model is given below Table 4.5.

4.2.3. OBAC implementation of the scenario

In the OBAC implementation roles are replaced with operations. Each subjects,

who are allowed to perform an operation, have attributes and these attributes are assigned

to corresponding operations. Object attributes are assigned to operations that indicate the

actions allowing to perform on related object.

The security policies of OBAC model is given in Table 4.6.

The related attributes, contexts and operations are shown in Table 4.7.

30

Table 4.2. Rule set of CA-RBAC (cont.)

CHILDREN Open the smart door Authentication=biometric
∧ loc(requestor)=outside house ALLOW

BABYSITTER

Jessica

Turn the
dish washer on

Authentication= mobile device
∧ loc(requestor)=inside house
∧ time=working hour

ALLOW

Turn the oven on
Authentication= mobile device
∧ loc(requestor)=inside house
∧ time=working hour

ALLOW

Turn the
washing machine on

Authentication= mobile device
∧ loc(requestor)=inside house
∧ time=working hour

ALLOW

Open the smart door
Authentication=biometric
∧ loc(requestor)=inside house
∧ sb. in front of door=no

ALLOW

Open the smart door
Authentication=biometric
∧ loc(requestor)=outside house
∧ time=working hour

ALLOW

Open the smart door

Authentication=biometric
∧ loc(requestor)=inside house
∧ sb. in front of door=yes
∧ parent’s approval=yes

ALLOW

SMART HOME
APPLICATION

Home app.

Turn the oven off
Authentication=mobile device
∧ time(req-turn the oven on)
- time(current))>30 min

ALLOW

Open the smart door
Authentication=mobile device
∧ distance(ambulance)<10m
∧ emergency=yes

ALLOW

Surveillance camera Authentication=mobile device
∧ emergency=yes ALLOW

Data read from
insulin pump

Authentication=mobile device
∧ emergency=yes ALLOW

SMART
HEALTHCARE
APPLICATION

Healthcare app.

Data read from
insulin pump No context ALLOW

31

Table 4.3. Complexity Analysis of CA-RBAC Model

Number of Created Roles 5 Parent, Babysitter, Children,
Smart Home App., Smart Healthcare App.

Number of Operations 3 Data Read, Open, Turn off

Number of Objects 6 Smart door, Camera, Washing Machine,
Dishwasher, Oven, Insulin Pump

Number of Contexts 13

Authentication: Biometric, Mobile Device
Distance
Parent’s Approval: yes, no
Sb. in front of door: yes, no
Location: inside house, outside house
Time: working hour, school hour
Emergency: yes, no

32

Table 4.4. Rule set of ABAC

RULES
<(SA=parent ∧ OA=smart door ∧ auth=biometric), open, allow>
<(SA=children ∧ OA=smart door ∧ auth=biometric ∧ ((loc(requestor) ∧
(loc(parent) ∨ loc(babysitter)))=inside house ∨
emergency=yes), open, allow>
<SA=children ∧ OA=smart door ∧ auth=biometric ∧
loc(requestor)=outside house, open, allow>
<SA=babysitter ∧ OA=smart door ∧ auth=biometric ∧
loc(requestor)=outside house ∧ time=working hour, open, allow>
<SA=babysitter ∧ OA=smart door ∧ auth=biometric ∧
loc(requestor)=inside house ∧ sb. in front of door=yes ∧
parent’s approval=yes, open, allow>
<SA=babysitter ∧ OA=smart door ∧ auth=biometric ∧
loc(requestor)=inside house ∧ sb. in front of door=no, open, allow>
<SA=home app. ∧ OA=smart door ∧ auth=mobile device ∧
distance(ambulance)<10m ∧ emergency=yes, open, allow>
<SA=children ∧ OA=smart door ∧ auth=mobile device ∧
time>school hour ∧ distance(schoolbus)<10m, open, allow>
<SA=parent ∧ OA=household appliances ∧ auth=mobile device ∧
loc(requestor)=¬inside house, open, allow>
<SA=babysitter ∧ OA=household appliances ∧ auth=mobile device ∧
loc(requestor)=inside house ∧ time=working hour, open, allow>
<SA=parent ∧ OA=camera ∧ auth=biometric, data read, allow>
<SA=parent ∧ OA=camera ∧ auth=mobile device ∧
emergency=yes, data read, allow>
<SA=home app. ∧ OA=camera ∧ auth=mobile device ∧
emergency=yes, data read, allow>
<SA=home app. ∧ OA=wearable devices ∧ auth=mobile device ∧
emergency=yes, data read, allow>
<SA=healthcare app. ∧ OA=wearable devices ∧
auth=mobile device, data read, allow>
<(SA=home app. ∨ parent) ∧ OA=household applicances ∧ auth=mobile device ∧
(time(req-open the household appliances) - time(current))>30min∧
loc(requestor) ∨ loc(babysitter)=¬inside house, turn off, allow>
<SA=parent ∧ OA=smart door ∧ auth=mobile device ∧
time>working hour ∧ distance(car)<10m, open, allow>

33

Table 4.5. Complexity Analysis of ABAC Model

Number of Subject Attributes 5 Parent, Babysitter, Children,
Smart Home App., Smart Healthcare App.

Number of Object Attributes 4 Smart door, Camera, Household Appliances,
Wearable Devices

Number of Environmental
Attributes 13

Authentication: Biometric, Mobile Device
Distance
Parent’s Approval: yes, no
Sb. in front of door: yes, no
Location: inside house, outside house
Time: working hour, school hour
Emergency: yes, no

Number of Operations 3 Data Read, Open, Turn off

34

Table 4.6. Rule set of CA-IRBAC

Operation Auth. OA Context Access

OPEN:

Parent
Babysitter
Home App
Children

Biometric Smart Door

SA= parent ALLOW
SA=children ∧
loc(requestor)=outside house ALLOW

SA=children ∧
(loc(requestor)=inside house
∧ loc(parent) ∨
loc(babysitter)=inside house)
∨ context=emergency

ALLOW

SA=babysitter ∧
loc(requestor)=outside house
∧ time=working hour

ALLOW

SA=babysitter ∧
loc(requestor)=inside house
∧ sb. in front of door=yes ∨
parent’s approval=yes

ALLOW

SA=babysitter ∧
loc(requestor)=inside house ∧
sb. in front of door=no

ALLOW

Mobile
Device

Smart Door

SA=Home app ∧
distance(ambulance)<10m ∨
emergency=yes

ALLOW

SA=parent ∧
time>working hour ∧
distance(car)<10m

ALLOW

SA=child ∧
time>school time ∧
distance(schoolbus)<10m

ALLOW

Household
Appliances

SA=parent ∧
loc(requestor)=¬inside house ALLOW

SA=babysitter ∧
loc(requestor)=inside house ∧
time=working hour

ALLOW

DATA READ:

Parent
Home App.
Healthcare App.

Biometric Camera SA=parent ALLOW

Mobile
Device

Camera
SA=Home app. ∧
context=emergency ALLOW

SA=parent ∧
context=emergency ALLOW

Wearable
Devices

SA=Healthcare app. ALLOW
SA=Home app. ∧
context=emergency ALLOW

TURN OFF:

Home App.
Parent

Mobile
Device

Household
Appliances

(time(req-open the household
appliances) - time(current))
>30 min ∧ (loc(requestor)
∨ loc(babysitter)=¬inside
house)

ALLOW

35

Table 4.7. Complexity Analysis of CA-IRBAC Model

Authentications 2 Biometric, Mobile Device

Number of Object Attributes 4 Smart door, Camera, Household Appliances,
Wearable Devices

Number of Contexts 16

Subject Attributes: Parent, Children, Babysitter,
Home app., Healthcare app.
Distance
Parent’s Approval: yes, no
Sb. in front of door: yes, no
Location: inside house, outside house
Time: working hour, school hour
Emergency: yes, no

Number of Operations 3 Data Read, Open, Turn off

36

CHAPTER 5

RESULTS

5.1. Results

Section 5.1.1 represents the execution times in millisecond. Execution time mea-

surement is not deterministic, so we run the same cases for 100 times each and calculated

the average. There are four cases for each of the access control methods. We have used

four keywords. "Accept" means grant access. "Deny" means deny access. "Complex"

means context with at least three parameters. These can be authentication type, location

of the requester, time of the request, etc. "Simple" means context with one parameter

which is authentication type.

5.1.1. Latency

Accept Complex Accept Simple Deny Complex Deny Simple
RBAC 107.8 84.8 106.2 90.5

ABAC 773.0 27.4 647.2 30.7

OBAC 104.3 32.6 110.7 29.9

Table 5.1. Test case’s average execution time in milliseconds

We can interpret following from the results:

1. RBAC is better than ABAC when handling complex context information

2. ABAC is better than RBAC when handling simple context information

In this project we aimed to use both access control method’s advantages. Being

fast and flexible at the same time.

37

• RBAC was faster with complex context, our app showed similiar execution times.

• ABAC was faster with simple context, our app showed similiar execution times.

Therefore we managed to overcome ABAC’s complex context issue and RBAC’s

limited usage.

5.1.2. Sustainability

We asked two questions for sustainability:

1. How many steps are required to find out one person’s whole rights?

2. How many steps are required to create a new rule?

Question 1 Question 2
RBAC 2 1

ABAC 2 5

OBAC 2 2

Table 5.2. Number of steps for questions defined above

Let us check for each access control method:

1. RBAC

(a) Two steps required. First get user’s permissions, second get role’s permissions

which user in it.

(b) One step required. Either create a row into user’s permissions or role’s per-

missions.

2. ABAC

(a) Two steps required. Find user’s role and get all operations linked to that role.

(b) Five steps required. Operation, Role, Object attribute and Context need to be

defined and then all of them need to be linked into one rule.

3. OBAC

38

(a) Two steps required. First get user’s role, then get that role’s permissions.

(b) Two step required. Create the related context and link with permission and

user’s role with it.

With OBAC we tried to achieve as easy as RBAC with as flexible as ABAC. La-

tency and sustainability results show that we achieved that goal.

39

CHAPTER 6

FUTURE WORK

6.1. Future Work

The following sections are ideas for taking this work further.

6.1.1. Real World Implementation

IoT devices were simulated with Fiware. As a future work we can implement the

same system in real world. We may not predict everything from simulation. Real world

implementation may bring unexpected directions for the project.

6.1.2. Another Access Control Method Addition

Using middlewares was the key approach for this project. This way helped to

switch between access control methods really quick. This approach also follows open-

close relationship. Open for extension close for modification. Another access control

method not mentioned in this project can be implemented and included in the comparison.

40

REFERENCES

Amazon AWS user management. https://docs.aws.amazon.com/IAM/

latest/UserGuide/id.html. Accessed: 2019-09-02.

Azure Active Directory management. https://docs.microsoft.

com/en-us/azure/active-directory/fundamentals/

active-directory-manage-groups. Accessed: 2019-09-02.

Google Cloud identity management. https://cloud.google.com/iam/docs/

overview. Accessed: 2019-09-02.

Abdella, J., M. Özuysal, and E. Tomur (2016). Ca-arbac: privacy preserving using

context-aware role-based access control on android permission system. Security and

Communication Networks 9(18), 5977–5995.

Abowd, G. D., A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles (1999).

Towards a better understanding of context and context-awareness. In International

symposium on handheld and ubiquitous computing, pp. 304–307. Springer.

Al-Muhtadi, J., A. Ranganathan, R. Campbell, and M. D. Mickunas (2003). Cerberus:

a context-aware security scheme for smart spaces. In Pervasive Computing and

Communications, 2003.(PerCom 2003). Proceedings of the First IEEE International

Conference on, pp. 489–496. IEEE.

Bai, G., L. Yan, L. Gu, Y. Guo, and X. Chen (2014). Context-aware usage control for

web of things. Security and Communication Networks 7(12), 2696–2712.

Covington, M. J., P. Fogla, Z. Zhan, and M. Ahamad (2002). A context-aware security

architecture for emerging applications. In Computer Security Applications Confer-

ence, 2002. Proceedings. 18th Annual, pp. 249–258. IEEE.

Covington, M. J., W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, and G. D. Abowd

(2001). Securing context-aware applications using environment roles. In Proceed-

41

ings of the sixth ACM symposium on Access control models and technologies, pp.

10–20. ACM.

Dr Stanford-Clark, A. and A. Nipper (1999). Message Queuing Telemetry Transport.

http://mqtt.org.

Genc, D. (2018). Context aware role based access control model for internet of things

applications.

Hasiba, B. A., L. Kahloul, and S. Benharzallah (2017). A new hybrid access control

model for multi-domain systems. In Control, Decision and Information Technologies

(CoDIT), 2017 4th International Conference on, pp. 0766–0771. IEEE.

Jin, X., R. Krishnan, and R. Sandhu (2012). A unified attribute-based access control

model covering dac, mac and rbac. In IFIP Annual Conference on Data and Applica-

tions Security and Privacy, pp. 41–55. Springer.

Jin, X., R. Sandhu, and R. Krishnan (2012). Rabac: role-centric attribute-based ac-

cess control. In International Conference on Mathematical Methods, Models, and

Architectures for Computer Network Security, pp. 84–96. Springer.

Kulkarni, D. and A. Tripathi (2008). Context-aware role-based access control in per-

vasive computing systems. In Proceedings of the 13th ACM symposium on Access

control models and technologies, pp. 113–122. ACM.

Morgan, J. (2014). A simple explanation of’the internet of things’. Retrieved Novem-

ber 20, 2015.

Qi, H., H. Ma, J. Li, and X. Di (2015). Access control model based on role and attribute

and its applications on space-ground integration networks. In Computer Science and

Network Technology (ICCSNT), 2015 4th International Conference on, Volume 1,

pp. 1118–1122. IEEE.

Rajpoot, Q. M., C. D. Jensen, and R. Krishnan (2015). Attributes enhanced role-based

access control model. In International Conference on Trust and Privacy in Digital

42

Business, pp. 3–17. Springer.

Sandhu, R., D. Ferraiolo, R. Kuhn, et al. (2000). The nist model for role-based access

control: towards a unified standard. In ACM workshop on Role-based access control,

Volume 2000, pp. 1–11.

Schilit, B., N. Adams, and R. Want (1994). Context-aware computing applications. In

Mobile Computing Systems and Applications, 1994. Proceedings., Workshop on, pp.

85–90. IEEE.

The OWASP IoT Security Team, T. (2018). Owasp Internet of Things Vulnerabilities

Top 10 2018. https://www.networkworld.com/article/3332032/

top-10-iot-vulnerabilities.html.

Weber, H. A. (2003). Role-based access control: the nist solution. SANS institute InfoSec

Reading Room.

43

APPENDIX A

CORE PART OF THE CODE BASE

A.1. Managers

Managers are the decision makers of the access controls. All access control methods

have one in the project.

A.1.1. Abac Authorization Manager

u s i n g System ;

u s i n g System . Linq ;

u s i n g C o n t e x t E n g i n e ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

u s i n g M i c r o s o f t . En t i tyFrameworkCore ;

namespace A u t h o r i z a t i o n

{

p u b l i c c l a s s A b a c A u t h o r i z a t i o n M a n a g e r

{

p r i v a t e r e a d o n l y WebDbContext _dbCon tex t ;

p r i v a t e r e a d o n l y UserManager < A p p I d e n t i t y U s e r >

_userManager ;

p u b l i c A b a c A u t h o r i z a t i o n M a n a g e r (WebDbContext

dbContex t , UserManager < A p p I d e n t i t y U s e r >

userManager)

{

44

_dbCon tex t = dbCon tex t ;

_userManager = userManager ;

}

p u b l i c boo l CanAccess (s t r i n g r e q u e s t p a t h , s t r i n g

username)

{

v a r pathModel = P a t h S e r v i c e . S e p e r a t e R e q u e s t (

r e q u e s t p a t h) ;

v a r f o u n d O b j e c t = _dbCon tex t . O b j e c t s . I n c l u d e (o

=>o . O b j e c t A t t r i b u t e s) . F i r s t O r D e f a u l t (o=>o .

Name . Eq ua l s (pathModel . ObjectName ,

S t r i n g C o m p a r i s o n . I n v a r i a n t C u l t u r e I g n o r e C a s e)

) ;

v a r f o u n d O p e r a t i o n = _dbCon tex t . O p e r a t i o n s .

F i r s t O r D e f a u l t (o =>

o . Name . E qu a l s (pathModel . Act ion ,

S t r i n g C o m p a r i s o n .

I n v a r i a n t C u l t u r e I g n o r e C a s e)) ;

v a r f o u n d R o l e s = _userManager . GetRolesAsync (

_userManager . FindByNameAsync (username) .

R e s u l t) . R e s u l t ;

v a r r u l e S e t = _dbCon tex t . R u l e S e t s . I n c l u d e (r s =>

r s . Role)

. I n c l u d e (r s => r s . O b j e c t A t t r i b u t e)

. I n c l u d e (r s => r s . C o n t e x t) . I n c l u d e (r s => r s .

O p e r a t i o n) . T o L i s t () ;

r u l e S e t = r u l e S e t . Where (r s => f o u n d R o l e s .

C o n t a i n s (r s . Role . Name)) . T o L i s t () ;

45

r u l e S e t = r u l e S e t . Where (r s => r s . O b j e c t A t t r i b u t e .

Id . E qua l s (f o u n d O b j e c t . O b j e c t A t t r i b u t e s .

F i r s t O r D e f a u l t () . O b j e c t A t t r i b u t e I d)) . T o L i s t

() ;

r u l e S e t = r u l e S e t . Where (r s => r s . O p e r a t i o n . Id .

Eq ua l s (f o u n d O p e r a t i o n . Id)) . T o L i s t () ;

foreach (v a r r u l e i n r u l e S e t)

{

i f (Objec tCompare r . IsSame (pathModel . Contex t

, r u l e . C o n t e x t))

r e t u r n t r u e ;

}

r e t u r n f a l s e ;

}

}

}

A.1.2. Rbac Authorization Manager

u s i n g System ;

u s i n g System . C o l l e c t i o n s . G e n e r i c ;

u s i n g System . Linq ;

u s i n g System . T h r e a d i n g . Tasks ;

u s i n g C o n t e x t E n g i n e ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

u s i n g M i c r o s o f t . En t i t yFrameworkCore ;

u s i n g R e p o s i t o r y . I n t e r f a c e s ;

46

namespace A u t h o r i z a t i o n

{

p u b l i c c l a s s R b a c A u t h o r i z a t i o n M a n a g e r

{

p r i v a t e r e a d o n l y WebDbContext _webDbContext ;

p r i v a t e r e a d o n l y UserManager < A p p I d e n t i t y U s e r >

_userManager ;

p r i v a t e r e a d o n l y RoleManager < A p p I d e n t i t y R o l e >

_ro l eManage r ;

p u b l i c R b a c A u t h o r i z a t i o n M a n a g e r (WebDbContext

dbContex t , RoleManager < A p p I d e n t i t y R o l e >

ro leManager , UserManager < A p p I d e n t i t y U s e r >

userManager)

{

_webDbContext = dbCon tex t ;

_userManager = userManager ;

_ ro l eManage r = ro l eManage r ;

}

p u b l i c boo l CanAccess (s t r i n g r e q u e s t p a t h , s t r i n g

username)

{

v a r pathModel = P a t h S e r v i c e . S e p e r a t e R e q u e s t (

r e q u e s t p a t h) ;

v a r u s e r s R o l e = _userManager . GetRolesAsync (

_userManager . FindByNameAsync (username) .

R e s u l t) . R e s u l t ;

v a r c o n t e x t s = _webDbContext . Contex tAwareRoles .

Where (c a r =>

c a r . P e r m i s s i o n . Name . Eq ua l s (pathModel .

Act ion , S t r i n g C o m p a r i s o n .

I n v a r i a n t C u l t u r e I g n o r e C a s e) &&

47

u s e r s R o l e . C o n t a i n s (c a r . Role . Name))

. I n c l u d e (c a r => c a r . Role)

. I n c l u d e (c a r => c a r . C o n t e x t)

. I n c l u d e (c a r => c a r . P e r m i s s i o n) . T o L i s t () ;

foreach (v a r c o n t e x t i n c o n t e x t s)

{

i f (Objec tCompare r . IsSame (c o n t e x t . Contex t ,

pa thModel . C o n t e x t))

{

r e t u r n t r u e ;

}

}

r e t u r n f a l s e ;

}

}

}

A.1.3. Obac Authorization Manager

u s i n g System . C o l l e c t i o n s . G e n e r i c ;

u s i n g System . Linq ;

u s i n g C o n t e x t E n g i n e ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n .ABAC;

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

namespace A u t h o r i z a t i o n

{

p u b l i c c l a s s O p b a c A u t h o r i z a t i o n M a n a g e r

{

48

p u b l i c boo l CanAccess (s t r i n g r e q u e s t p a t h , s t r i n g

username , WebDbContext dbContex t ,

UserManager < A p p I d e n t i t y U s e r > userManager ,

RoleManager < A p p I d e n t i t y R o l e > ro l eManage r)

{

v a r r e q u i r e d P a r a m e t e r s = P a t h S e r v i c e .

S e p e r a t e R e q u e s t (r e q u e s t p a t h) ;

/ / check o p e r a t i o n e x i s t

v a r o p e r a t i o n = dbCon tex t . O p e r a t i o n s .

F i r s t O r D e f a u l t (o => o . Name . E qua l s (

r e q u i r e d P a r a m e t e r s . A c t i on)) ;

i f (o p e r a t i o n == n u l l)

r e t u r n f a l s e ;

/ / check o p e r a t i o n e x i s t i n r o l e O p e r a t i o n s t a b l e

v a r r o l e O p e r a t i o n s = dbCon tex t . Set <

R o l e O p e r a t i o n > () . Where (ro => ro . O p e r a t i o n I d .

Eq ua l s (o p e r a t i o n . Id)) . T o L i s t () ;

i f (! r o l e O p e r a t i o n s . Any ())

r e t u r n f a l s e ;

v a r r o l e L i s t F r o m O p e r a t i o n s = new L i s t < s t r i n g > ()

;

foreach (v a r r o l e O p e r a t i o n i n r o l e O p e r a t i o n s)

{

r o l e L i s t F r o m O p e r a t i o n s . Add (ro l eManage r .

FindByIdAsync (r o l e O p e r a t i o n . Ro le I d) .

R e s u l t . Name) ;

}

v a r u s e r = userManager . FindByNameAsync (username

) . R e s u l t ;

v a r r o l e s = userManager . GetRolesAsync (u s e r) .

49

R e s u l t ;

v a r r o l e I n t e r s e c t i o n R e s u l t = r o l e s . I n t e r s e c t (

r o l e L i s t F r o m O p e r a t i o n s) ;

i f (! r o l e I n t e r s e c t i o n R e s u l t . Any ())

r e t u r n f a l s e ;

v a r f o u n d O b j e c t = dbCon tex t . O b j e c t s .

F i r s t O r D e f a u l t (o => o . Name . E qua l s (

r e q u i r e d P a r a m e t e r s . ObjectName)) ;

v a r f o u n d O b j e c t O b j e c t A t t r i b u t e s = dbCon tex t . Set

< O b j e c t O b j e c t A t t r i b u t e > ()

. Where (oa => oa . O b j e c t I d . Equ a l s (f o u n d O b j e c t

. I d)) . T o L i s t () ;

v a r f o u n d O b j e c t A t t r i b u t e s = new L i s t <

O b j e c t A t t r i b u t e > () ;

foreach (v a r o b j e c t O b j e c t A t t r i b u t e i n

f o u n d O b j e c t O b j e c t A t t r i b u t e s)

{

f o u n d O b j e c t A t t r i b u t e s . Add (dbCon tex t .

O b j e c t A t t r i b u t e s . F i r s t O r D e f a u l t (oa =>

oa . Id . E qua l s (o b j e c t O b j e c t A t t r i b u t e .

O b j e c t A t t r i b u t e I d))) ;

}

v a r o p e r a t i o n O b j e c t A t t r i b u t e s = dbCon tex t . Set <

O p e r a t i o n O b j e c t A t t r i b u t e > ()

. Where (ooa => ooa . O p e r a t i o n I d . Equ a l s (

o p e r a t i o n . Id)) . T o L i s t () ;

v a r o p e r a t i o n O b j e c t A t t r i b u t e L i s t = new L i s t <

O b j e c t A t t r i b u t e > () ;

foreach (v a r o p e r a t i o n O b j e c t A t t r i b u t e i n

o p e r a t i o n O b j e c t A t t r i b u t e s)

50

{

o p e r a t i o n O b j e c t A t t r i b u t e L i s t . Add (dbCon tex t .

O b j e c t A t t r i b u t e s . F i r s t O r D e f a u l t (oa =>

oa . Id . E qua l s (o p e r a t i o n O b j e c t A t t r i b u t e .

O b j e c t A t t r i b u t e I d))) ;

}

v a r o b j e c t I n t e r s e c t i o n R e s u l t =

f o u n d O b j e c t A t t r i b u t e s . I n t e r s e c t (

o p e r a t i o n O b j e c t A t t r i b u t e L i s t) ;

i f (! o b j e c t I n t e r s e c t i o n R e s u l t . Any ())

r e t u r n f a l s e ;

r e t u r n Objec tCompare r . IsSame (r e q u i r e d P a r a m e t e r s

. Contex t , C o n t e x t P r o v i d e r . G e t C o n t e x t ()) ;

}

}

}

A.2. Authorization middlewares

Authorization in this project has been used as middlewares. The following files are the

implementation of each method.

A.2.1. Abac Authorization Middleware

u s i n g System ;

u s i n g System . T h r e a d i n g . Tasks ;

u s i n g A u t h o r i z a t i o n ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

u s i n g M i c r o s o f t . AspNetCore . H t tp ;

51

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

namespace Web . A u t h o r i z a t i o n

{

p u b l i c c l a s s A b a c A u t h o r i z a t i o n M i d d l e w a r e

{

p r i v a t e r e a d o n l y R e q u e s t D e l e g a t e _ n e x t ;

p u b l i c A b a c A u t h o r i z a t i o n M i d d l e w a r e (R e q u e s t D e l e g a t e

n e x t)

{

_ n e x t = n e x t ;

}

p u b l i c a sync Task Invoke (H t t p C o n t e x t c o n t e x t ,

WebDbContext dbContex t , UserManager <

A p p I d e n t i t y U s e r > userManager)

{

v a r r e q u e s t P a t h = c o n t e x t . Reques t . Pa th ;

i f (! PageHe lpe r . I s F r o n t E n d (r e q u e s t P a t h))

{

v a r t o k e n = c o n t e x t . Reques t . Headers ["

A u t h o r i z a t i o n "] . T o S t r i n g () . Rep lace ("

B e a r e r " , " ") ;

i f (s t r i n g . I sNul lOrEmpty (t o k e n))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

r e t u r n ;

}

v a r t o k e n S e r v i c e = new T o k e n S e r v i c e () ;

v a r username = t o k e n S e r v i c e . A u t h e n t i c a t e (

t o k e n) ;

52

i f (s t r i n g . I sNul lOrEmpty (username))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

r e t u r n ;

}

v a r a u t h o r i z a t i o n M a n a g e r = new

A b a c A u t h o r i z a t i o n M a n a g e r (dbContex t ,

use rManager) ;

i f (a u t h o r i z a t i o n M a n a g e r . CanAccess (

r e q u e s t P a t h , username))

{

a w a i t _ n e x t (c o n t e x t) ;

}

e l s e

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

}

}

e l s e

{

a w a i t _ n e x t (c o n t e x t) ;

}

}

}

}

A.2.2. Rbac Authorization Middleware

u s i n g System . T h r e a d i n g . Tasks ;

u s i n g A u t h o r i z a t i o n ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

53

u s i n g M i c r o s o f t . AspNetCore . H t tp ;

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

u s i n g R e p o s i t o r y . I n t e r f a c e s ;

namespace Web . A u t h o r i z a t i o n

{

p u b l i c c l a s s R b a c A u t h o r i z a t i o n M i d d l e w a r e

{

p r i v a t e r e a d o n l y R e q u e s t D e l e g a t e _ n e x t ;

p u b l i c R b a c A u t h o r i z a t i o n M i d d l e w a r e (R e q u e s t D e l e g a t e

n e x t)

{

_ n e x t = n e x t ;

}

p u b l i c a sync Task Invoke (H t t p C o n t e x t c o n t e x t ,

WebDbContext dbContex t , RoleManager <

A p p I d e n t i t y R o l e > ro leManager , UserManager <

A p p I d e n t i t y U s e r > userManager)

{

v a r r e q u e s t P a t h = c o n t e x t . Reques t . Pa th ;

i f (! PageHe lpe r . I s F r o n t E n d (r e q u e s t P a t h))

{

v a r t o k e n = c o n t e x t . Reques t . Headers ["

A u t h o r i z a t i o n "] . T o S t r i n g () . Rep lace ("

B e a r e r " , " ") ;

i f (s t r i n g . I sNul lOrEmpty (t o k e n))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

r e t u r n ;

}

v a r t o k e n S e r v i c e = new T o k e n S e r v i c e () ;

54

v a r username = t o k e n S e r v i c e . A u t h e n t i c a t e (

t o k e n) ;

i f (s t r i n g . I sNul lOrEmpty (username))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

r e t u r n ;

}

v a r a u t h o r i z a t i o n M a n a g e r =

new R b a c A u t h o r i z a t i o n M a n a g e r (dbContex t ,

ro leManager , use rManager) ;

i f (a u t h o r i z a t i o n M a n a g e r . CanAccess (

r e q u e s t P a t h , username))

{

a w a i t _ n e x t (c o n t e x t) ;

}

e l s e

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

}

}

e l s e

{

a w a i t _ n e x t (c o n t e x t) ;

}

}

}

}

A.2.3. Obac Authorization Middleware

55

u s i n g System ;

u s i n g System . T h r e a d i n g . Tasks ;

u s i n g A u t h o r i z a t i o n ;

u s i n g Data ;

u s i n g D e f i n i t i o n . A u t h e n t i c a t i o n ;

u s i n g M i c r o s o f t . AspNetCore . H t tp ;

u s i n g M i c r o s o f t . AspNetCore . I d e n t i t y ;

namespace Web . A u t h o r i z a t i o n

{

p u b l i c c l a s s O p b a c A u t h o r i z a t i o n M i d d l e w a r e

{

p r i v a t e r e a d o n l y R e q u e s t D e l e g a t e _ n e x t ;

p u b l i c O p b a c A u t h o r i z a t i o n M i d d l e w a r e (R e q u e s t D e l e g a t e

n e x t)

{

_ n e x t = n e x t ;

}

p u b l i c a sync Task Invoke (H t t p C o n t e x t c o n t e x t ,

WebDbContext dbContex t , UserManager <

A p p I d e n t i t y U s e r > userManager ,

RoleManager < A p p I d e n t i t y R o l e > ro l eManage r)

{

v a r r e q u e s t P a t h = c o n t e x t . Reques t . Pa th ;

i f (! PageHe lpe r . I s F r o n t E n d (r e q u e s t P a t h))

{

v a r t o k e n = c o n t e x t . Reques t . Headers ["

A u t h o r i z a t i o n "] . T o S t r i n g () . Rep lace ("

B e a r e r " , " ") ;

i f (s t r i n g . I sNul lOrEmpty (t o k e n))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

56

r e t u r n ;

}

v a r t o k e n S e r v i c e = new T o k e n S e r v i c e () ;

v a r username = t o k e n S e r v i c e . A u t h e n t i c a t e (

t o k e n) ;

i f (s t r i n g . I sNul lOrEmpty (username))

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

r e t u r n ;

}

v a r a u t h o r i z a t i o n M a n a g e r = new

O p b a c A u t h o r i z a t i o n M a n a g e r () ;

i f (a u t h o r i z a t i o n M a n a g e r . CanAccess (

r e q u e s t P a t h , username , dbContex t ,

userManager , ro l eManage r))

{

a w a i t _ n e x t (c o n t e x t) ;

}

e l s e

{

c o n t e x t . Response . S t a t u s C o d e = 403 ;

}

}

e l s e

{

a w a i t _ n e x t (c o n t e x t) ;

}

}

}

}

57

