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ABSTRACT

F(METRIC-AFFINE) GRAVITY:
DISFORMAL AND CROSS-CURVATURE EFFECTS

The present thesis consists of two main studies, in the first part, after giving a
brief formulation of gravity theories on the metric, affine and metric-affine frameworks,
we study the effects of the disformal coupling term e R, V#V". We track the effects of
the disformal term up to field equations, then construct the Einstein tensor G, and sub-
sequently identify an effective energy-momentum tensor Tlfff to extract effective energy
density and pressure. We conclude the first part by comparing the results of metric-affine
disformal theory with metrical disformal theory. In the second part, we study the cos-
mological effects of cross-curvature theory with the functional /'(R,RR). We derive both
Friedmann equations with the general functional F'(R, R) and compare our findings with

the known F'(R) theory results.
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OZET

F(METRIK-AFIN) KUTLE CEKIiMI:
DISFORMAL VE CAPRAZ-EGRILIK ETKILERI

Mevcut tez, iki ana calismadan olugsmaktadir, ilk kistmda metrik, afin ve metrik-
afin yapilarinda kiitle cekim teorilerinin kisa bir formulasyonunu verdikten sonra, disfor-
mal ciftlenim teriminin € R, V#V" etkilerini ¢alistyoruz. Disformal terimin etkilerini
alan denklemlerine kadar izleyerek, sonrasinda Einstein tensoriinii G, olusturuyoruz
ve ardindan efektif enerji yogunlugu ve basing terimlerini saptamak i¢in efektif enerji-
momentum tensdriinii belirliyoruz. Ilk kismi, metrik-afin disformal etkilerinin bulgu-
larim, metrik disformal etkilerinin bulgular ile karsilagtirarak sonuglandirtyoruz. Ikinci
kisimda, F'(R, R) fonksiyoneli ile capraz-egrilik teorisinin kozmolojik etkilerini ¢aligiyoruz.
Genel fonksiyonel F'(R, R) ile her iki Friedmann denklemlerini de tiireterek, bulgularimizi,

bilinen F'(R) teorisinin sonuglart ile kargilagtirtyoruz.
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CHAPTER 1

INTRODUCTION

Gravity, despite being exposed to physics more than any other phenomenon, peo-
ple still debate over its formulation. With every new observation that contradicts our
understanding of the gravity, we try to adapt ourselves by either modifying the accepted
theory or even develop a new one based on the different fundamental grounds.

It was Galileo Galilei who is first to conduct many experiments with falling ob-
jects, inclined planes and even with pendulums [1]. In 1665, Isaac Newton gave us the
famous “inverse-square law” to explain the motion of celestial bodies and clear descrip-
tion of motion of projectiles in our everyday life [2]. Although Newton’s gravity managed
to explain all of the features of gravity in his time, it failed at some point. With the techno-
logical advance of observational astrophysics, Le Verrier observed the famous precession
of perihelia of the planed Mercury in 1855. This observed precession was in contradiction
with the Newtonian gravity and guided by his previous prediction of Neptune in 1846, he
predicted that there must be an another, unobserved “dark™ planet closer to the sun [3].
This dark planet, allegedly responsible for Mercury’s precession was never discovered.
Finally, in 1915, Einstein presented his theory of General Relativity (GR) based on differ-
ent fundamental grounds than Newtonian gravity. In his previous work Special Relativity
(SR), he combined space and time into 4-dimensional space-time which was known to
be two different things until his clear description. Then he rejected the idea of “absolute
space”, which is the fundamental concept of Newtonian gravity. Unlike Newton’s “static”
absolute space, Einstein’s space-time was “dynamic”, it can be bend, stretch or even twirl
by the matter/energy.

Einstein’s GR, not only explained the precession of perihelia of the Mercury, it
predicted new phenomenons such as gravitational deflection of light rays by massive ob-
jects which is successfully measured during a solar eclipse by Sir Arthur Eddington in
1919 [4], the gravitational redshift of lights wavelength moving in a gravitational field
[5], and even gravitational waves are the distortion of the fabric of space-time’s itself [6].

Once again in the light of cosmological and astrophysical observations that have
been conducted in the last few decades, physicists began to question Einstein’s GR whether
it is a complete theory or not. Evidence coming from various observations seem to indi-

cate that only %4 of the total energy of our universe comes from ordinary baryonic matter,



with the remaining %20 ”dark” matter and %76 is “dark” energy. Dark matter here refers
to an undiscovered type of matter which behaves similarly to ordinary matter and related
to velocity of stars rotating around galaxy centers. Both dark matter and ordinary matter
satisfies the strong energy condition and they have clustering properties under the effect
of gravitation. Dark energy, on the other hand, does not satisfy the strong energy condi-
tion, therefore, does not cluster as ordinary baryonic matter and it is related to late-time
accelerated expansion of our universe [12].

Most of the experimental tests those GR has passed are held in relatively low
curvature environments. GR has never been put the test near a neutron star or black hole
where the curvature of space-time is much more higher than the curvature of our solar
system.

Even before cosmological observations to question GR as a complete theory of
gravity, people investigated its “special” formulation. GR is formulated in a purely met-
rical fashion where metric is the only fundamental variable and affine connection of the
space-time is chosen to be Levi-Civita of the metric. One must understand that this is a
very special way to formulate theory because we are assuming there is a priori relation
between affine connection and the metric. There is another formulation of gravity where
the affine connection is chosen to be independent of the metric which we call metric-affine
theory of gravity. Relaxing the assumption that connection is dependent to metric allows
us to formulate gravity based on two independent variables and as we will see in chapter
2 theory ”dynamically” reduces to GR given the same gravitational action. Lastly another
formulation of gravity which is partly developed by the very same man who provided the
experimental verification of GR by measuring the deflection of light rays through suns
gravitational field. Eddington formulated gravity with only the affine connection is being
a fundamental variable and no priori given metric. He successfully obtained the Einstein
field equations in vacuum.

The present study is organized as follows: In Chapter 2 we give a bried formula-
tion of the three theory of gravitation starting from Einstein’s purely metric formulation
then affine formulation and lastly the metric-affine formulation of the gravity. In Chap-
ter 3 we study the disformal effects in metric-affine theory. In Chapter 4 we review the
cross-curvature effects in metric-affine theory. In Chapter 5 we conclude our study and

summarize the results of both modified actions.



CHAPTER 2

GRAVITY THEORIES

2.1. Metrical Theory

Einstein’s general theory of relativity (GR) can be formulated in a classical field
theory fashion with the only independent field given as metric g,,,. Due to Hilbert’s
motivation for writing a generally covariant action from the derivatives of metric, action
of the theory commonly known as Einstein-Hilbert action and given as [7, 8]

2
M

Slgu) = = [ d'av=g ROT) + Suls, vl e

where S); represents the action of matter field . R((I') = g"“R,,, is the Ricci
curvature scalar constructed from Ricci tensor R, and the inverse metric gt”, g =
Det[g,,] is the determinant of the metric g,,, M, = 1/1/87Gy is the reduced planck
mass with Planck’s constant /1 and speed of light ¢ are taken as unity. Ricci tensor R, is
defined as the only independent contraction of the Riemann tensor R* 5, with first and
third indices contracted. Definition of the Riemann tensor and Levi-Civita connection
e[ respectively [14]

uv

R%up0 = 05515, — 0,510 + 5,51, — 515,515, (2.2)
and
1 g
grzy = égA (a,ugau + augau - aag,uu) . 2.3)

The relation between Levi-Civita connection gFfw and the metric g, is the direct
consequence of two priori assumptions, that the affine connection is symmetric under the

exchange of lower indices I'}, = I'

() and it preserves the metric

Vg = 0. (2.4)

Since metric and inverse metric is related to eachother by the relation g"” g, = %
and Kronecker delta is invariant under any variation, variations in g"” will be equivalent

to variations in g,,,. In order to obtain equations of motion, we vary the Einstein-Hilbert



action (2.1) with respect to inverse metric, variation of the gravitational part of action can

be written as

M2
55 = sz / d4x(\/_—g 2" R, + /=2 Ry 08" + R 5«/_—g). (2.5)

Second term is already in the desired form. Last term contains variation of the

determinant of metric, hence we can use the variation of the identity

In(Det g,,) = Tr(ln gu), (2.6)

to put it into same form as the second term. With the use of the above identity and

variation of Kronecker delta we get

1
0V—8=—5V—88uw 08" (2.7

The first term in (2.5) contains metric through Levi-Civita connection, we can

write the variation of Ricci tensor in terms of variations of Levi-Civita connection as

Mlgl 4 v
0Sc = - d*z/—g g" oR,,

M2
= Tpl /d4x\/—g gh” [V,\(M‘i‘u) - Vy(éfiu)]
M2

S [ ateymg va[gery,) - g er)| @8

where we have used the identity

SRy = Va(T},) — V,(6T3,), 2.9)

relabelled some dummy indices and used the metric compatibility equation (2.4).
We still need to express (2.8) in terms of dg#”, taking the variation of (2.4) and using

cyclic permutation, we can write 01", in terms of 0g"” as

1
oy, =—3 [gm YV, (68) + gy V,u(68) — guagus V7 (5g7) . (2.10)



Putting this into (2.8) we get the following

Mlgl 4 o v oA
0Sq1 = 5 d*zy/—g V, (gu,, Ve (0gh) — V(g )> 2.11)

Since it is a volume integral of the covariant divergence of a vector, we can use
Stokes’ theorem to write this as a surface term at infinity and the least action principle
tells us that the variation of the fields which is metric in this case will be set to zero at
the surface. However, our surface term also contains first derivatives of the metric and it
is not always zero by default. Therefore in order to get the right field equations from the
action (2.1), Einstein-Hilbert action must be supplemented by an additional term to cancel
unwanted surface term. This unwanted surface term is not going to be present when we
formulate the theory within the metric-affine framework.

Going back to (2.5), we can rewrite variation of the gravitational part of the action

as

M? 1
556 = / Ao/ —2 [RW — 5Rew| o™ (2.12)
Adding variation of the matter part and equating to zero, we get the Einstein field

equations as

1 1
“Reg,, = ——
2 B

where 7}, is the energy-momentum tensor of the matter fields defined as

R — Ty, (2.13)

T = -2 0SSy
v — \/__g(sg,uu.

Eq.(2.13) is actually a set of 10 second order differential equations for the field

(2.14)

variable g,,,, commonly know as Einstein’s field equations. Left-hand side of the field
equations (2.13) reflects the dynamics of the geometry via Ricci tensor and Ricci scalar

whereas the right-hand side of the equations acts as a source for the curvature [14].

2.2. Affine Theory

In the absence of matter, another way of formulating gravitation is taking the affine
connection as the only independent variable and building an invariant action only from
this connection. Since one only needs an affine connection to differentiate mathematical

entities, we can drop the priori given metric and formulate gravitation in terms of affine



connection alone. Not long after Einstein formulated his general theory of relativity in
a metrical way, Eddington suggested the simplest action you can build from the affine

connection alone as [9, 10]

Sell),) = / d*zv-R, (2.15)

where R = Det[R,,, | is the determinant of the symmetric part of the Ricci tensor
R, (I"). Applying the least action principle to (2.15) leads to desired equations of motion

for the field variable affine connection

Vi[V-R (R™)*] =0, (2.16)

which can be solved by introducing a new invertible tensor field g,,, multiplied by

a constant A such that

R, = Ag. (2.17)

If we interpret the new field g, as the metric, we see that Eqn.(2.9) is exactly
same as the Einstein field equations in a vacuum with the cosmological constant. There
are two important remarks of this approach, firstly we did not impose any priori metric in
our formulation of the gravitation but the metric emerged as a dynamical property of the
theory. Secondly, similar to dynamically emerged metric, cosmological constant emerges
naturally as an integration constant from the Eq.(2.17).

One of the biggest struggles of purely affine formulation is the incorporating mat-
ter field into theory. Absence of a priori defined metric in the formulation greatly limits
the construction of invariants in the action level, therefore, one has to find other ways to
incorporate matter into purely affine theories. One way to include matter into affine theory
is, adding the appropriate kinetic terms of matter fields into determinant in (2.15) [15].
Recent study shows that, adding the kinetic structure of scalar field into invariant volume
element can even induce inflation, which is the theorized exponential expansion of the
very early universe to solve cosmological problems [16, 17]. Another way of including
matter in purely affine theory is, extending the invariant volume element in (2.15) with
Riemann curvature tensor and identifying an “effective” energy-momentum tensor from
the dynamical equations [18].

Although there are some limitations in purely affine theory, it looks fundamental
and it can be widened by relaxing some assumptions such as permitting Ffw to have an

anti-symmetrical part which is called “Torsion”. There is increasing literature of affine



studies involving the effects of torsion and some other important quantities (such as non-

metricity) which is not present in the metric formulation [19-21].

2.3. Metric-Affine Theory

Another approach to formulating gravity is known as the metric-affine gravity,
where both the metric g, and the affine connection M v 18 treated as independent vari-
ables of the theory [12, 13]. Einstein-Hilbert action (2.1) with the addition of matter

action, can be written in terms of independent variables as

M2
Sla, 1) = = / d'zy g R(T) + Sule, v, 2.18)

where now the curvature scalar R(I") given as R(I") = g""R,,, (') and the Ricci
tensor R ,,,(T") is entirely constructed from affine connection I'* .. Following the standart
procedure to obtain equations of motion, we variate the action with respect to both vari-
ables. Knowing that R, (I') is independent of metric, variating with respect to g and

equating to zero leads to

1 1
R, (I) = SR8 = 775 Lo (2.19)
pl

Taking the variation of (2.19) with respect to affine connection Ffw and using the

identity (2.9) we get
M2
65 = TP’ / d*z/=g g R,
]\/[2 4 A A
- / dda/—g g [vk(arw) - vy(arm)], (2.20)

Using integration by parts for the covariant derivatives we find

2

08 = %/ |: v,\(\/_ g‘“’)(SFA —I—V)\(\/_ g“y(ﬂ_‘)\ )
+ Vo (V=g &)y, — V(=g gy, |. (2.21)



Again we see that 2nd and 4th terms are covariant divergence of a vector and they
can be written as a surface term at infinity, but this time since connection is indepen-
dent variable, it is fixed at the boundary and variation of the connection 51“21, vanishes.
Neglecting the surface terms and relabeling some dummy indices we can write it as

55 = 7 [ e - VavTEe™) + ValvTr g Jn,. @22)

Since connection is arbitrary the expression in the brackets must be equal to zero.

One final step to simplify above expression is to contract the indices v and A then substi-

tute back to expression, finally we have

Valv=gg") =0. (2.23)

Above expression is equal to (2.4) which is the relation for metric compatibility.
With metric compatibility equation at hand, we can solve for the affine connection in
terms of metric and see that it dynamically equals to Levi-Civita connection.

Now we see the remarks of the metric-affine formulation. First, the surface terms
vanishing on the boundary means that we don’t have to modify our initial action to get
right field equations, whereas in the metric formulation we need to add an additional term
to our action to cancel unwanted surface terms. Second, we didn’t even need to impose
metric compatibility, it comes out naturally by the dynamics of the theory.

En passant, it proves useful to mention here also the Palatini formalism [22]. It
arises when the matter action is independent of the affine connection. In reality, how-
ever, Palatini formalism is hard to realize. The reason is that the fermion kinetic term
does always involve affine connection through the spin connection. We will, therefore, al-
ways focus on metric-affine theory as the self-consistent formalism based on independent

metric and connection variables.



CHAPTER 3

DISFORMAL METRIC-AFFINE GRAVITY

In general, action for the F' (R, g"") theory can be written as

S = Sc+ Swu, (3.1

where Sg and Sy are the gravitational and matter parts of the full action, respec-
tively. In the present study we examine the case where matter action is independent of the

connection such as Sy = SM(gw,). Then variation of the matter action will be

5Su = / diz 05 Sgh. (3.2)
oghv

Corresponding energy-momentum tensor can be defined as

-2 5SM
T,=—— . (3.3)
" Vg og
Gravitational part of the general F' (R,,,, g/"") theory can be written as
Se =ay /d4x\/—g F (R, g"). (3.4)

where a; is a constant of appropriate dimension. Variation of the gravitational part

of the action is given by

556 = a / a2 6 (V8 F Ry, g™)

oF 1 oF
_ 4y = - __F H Rl - .
o [ate v (g — 5w ) 08+ g R 6

Variation of the Ricci tensor with respect to connection given as

OR,, = Vool — V,0T%,. (3.6)

Substituting (3.6) in the second line of (3.5) we get



0Sa = /d4x vV—g ( 8Fy — %Fg#,,) ogh” (3.7
/d4x V-

8RW (Vadls, — V,0I%,),

where covariant derivatives are with respect to connection Ffw. Using integration

by parts in the second line we have

1

0Sg = /d4x V- <8 T §Fgw) ogh” (3.8)

oOF OF
ir |-V — = A
+/d x { A (\/ g aRW) +V, (\/ g 8RW> 54 5T,

where we suppressed the surface terms since they are linear in o Ffw and will vanish
at the boundary. We are ready to write variation of the full action and apply least action

principle. Corresponding field equations are

OF 1 1
— —Fg,, = —T .
agwj 9 Suv 2@1 nz (3 9)

and
or oF
-V, (x/—g GRW) + Vg <\/ O]RM> oy = 0. (3.10)

We can go further and take trace of the (3.10) and substitute it back to obtain

OF
Y (x/—g B ) = 0. 3.11)
uv

From this equation, we can define a dynamical metric h,,
oF
——
OR

where its covariant derivative with respect to general connection will vanish. Since

= h (3.12)

us

R, is symmetric, h,, is also symmetric therefore the general connection Fﬁy will be
symmetric in the indices p and v. Covariant conservation of £, allows us to write Fﬁy in

terms of the Levi-Civita connection £T'),, of the metric g,,,.

sz - grﬁv + %(h_l)/\p (gvuhvp + BVl — gvphw) ’ (3.13)



where covariant derivatives 2V, corresponds to Levi-Civita connection 2", The

Ricci tensor of the general connection R, (I') can also be written in terms of ¢R,,, (g) as

1
R,uu - gRMV + Z(h_l)aﬂ |: B 2( gvﬁ gvahlw - gvﬁ gvlvtha (314)

— BV AV b+ BV, 5Vhag ) + (07 (= 25V BV el
VB ( BV sk — 25V ) + 2 BV, B SV s s
b BV s BV b — 2 5V kg 5V e + BV o EV, hign

+ BV sl BV B — 2 5V AR gvth)} .

From here, one can go further and contract this equation with g"” and find a rela-
tion between R(I") and 8R(g).

Up until now, we have dealt with a general function F' (R,,, g"). It is, however,
useful to focus on a realistic functional structure to reveal salient features of such extended

gravity theories. To this end, we consider the case

F (R, g") = R,,g" + R, VAV, (3.15)

where € is a dimensionless parameter, it represents the coupling strength of V# to
curvature R ,,,. Here, V* can be taken as either as an Abelian vector field or a generic cos-
mological 4-velocity field ("background velocity field”). Each option has its own physics
implications. Cosmological implications of the special case where € = 0 is studied in [36]
since theory can be written in terms of F'(R) in that case.

Before going into cosmological implications, we note that, with the specific form

in (3.15), the dynamical metric A, in (3.12) takes the form

hyw = g + € V,V,,, (3.16)

and the corresponding inverse metric (2~!)*” becomes

(1) = g — = ViV, (3.17)
— €

Existence of the second term in (3.16) breaks the conformal relation between dy-
namical and gravitational metric, hence this kind of relation between h,,,, and g, is called

the disformal transformation [23]. Disformal transformations alter the angles between

11



geodesics and may change the causal structure of the given manifold. In order to preserve
causal behavior of the particles exists in the manifold, square of the infinitesimal line

element on the trajectory of a physical particles must have a time-like separation such as

ds* = h,, dztdz” <0
= (gudatda” + € V,V,da"dz") < 0. (3.18)

Namely, € must be negative [23, 24]. Another important property of the metric
is the signature of g,,. Since we can always define a local Lorentz coordinates with
a lorentzian signature, disformally transformed metric 5, must have the same metric
signature as the minkowski metric 7.

Having revealed the disformal structure, we now turn to the same dynamical equa-
tions in a cosmological setting. With the given functional form of F' (R, g""), field
equations Eq.(3.9) becomes

1 1
]R,uz/ = —T,uu + 5

20, R g + %e(R)gW, (3.19)

where (R) is the shorthand notation defined as (R) = R ,,v*v”. We can go further
and eliminate curvature terms in the right-hand side of the (3.19) and express R, (I")
solely in terms of energy-momentum tensor 7,,. multiplying the above equation with

VEVY we have

1 1
R) — (— T) — R), 3.20
(R) 2+e€e\q ) (3-20)
where we have used the rest-frame normalization condition g, V#V" = —1 for

the 4-velocity field and (7") is again the shorthand notation defined as (7') = 7}, V*V" to
simplfy equations. Taking the trace of (3.19) we find

R = ——T — 2(R). (3.21)

2@1
Substituting both (3.20) and (3.21) to (3.19) leads to

1

R = 50 [T = 5 (T = (T )] (3.22)

Eq.(3.22) expresses Ricci tensor R, (I') in terms of energy-momentum tensor

T,,, and 4-velocity field V,,. Turning back to (3.14), we can use the explicit form of our

12



dynamical metric (3.16) to find relation between R, and . Keeping in mind that all

the covariant derivatives in (3.14) are with respect to Levi-Civita connection, we get

Ru = *R + % =V, BVEVY, =V, BVEVEV, + 1, BV BV, Ve (3:23)

+V, BV EV, VY + 8V, 8V, V, + 8V°V, 8V, V, + e<vuvy BV 5V, VAV

1 | |
—V,V, 8V,V, gvavﬁ) o <vagva EV,V, + VOV, 5V, V, + 8V, V° &V, V,

+ BV VO EY,V, + e<vavy 5V, V, gVVP + VOV, BV, V, gV, V7

+VOVE eV, V, 8V 5V, + VOV, 8V, 8V, V, + VOV, 8V 8V, 1,

+ 8V, Ve nga> + (€= 2) BV, V, EVV, — EVAVIVY, BV, V7 gWV")

Eq.(3.23) gives us the “geometrical” relation between the affine Ricci tensor R, (I")
and the “metrical” Ricci tensor ®R,,, and it is sourced from the connection field equations
whereas Eq.(3.22) comes from the metrical field equations and as we said before it relates
affine geometry to energy-momentum tensor of matter fields. Combining both equations
and solving for 8R,,, will give us a chance to represent theory in a metrical fashion where
we can make a clear comparison to GR and ultimately pinpoint the effects of the disformal

coupling. Substituting (3.23) to (3.22) and solving for #R,,, leads to

ER,, = 2%1 T — ! - (7 = 1)) | = 5 | = V2 5VaEVV, (3.24)

— V8V BV, + V, 8V, BV, V* +V, 8V, 2V, V® + 8V°V, 8V, V,
+ EVOV, 8V, V, + e(vuvy BV Vo EVIVE —V,V, 8V;5V, gvavﬂ)

1
1—c¢

+ 8V, V8V, V, + G(VO‘VV eV, V, eV3VP + VOV, 8V, V, gV,3V 7P

+

(va BV, 5V, V, + VOV, 8V, V, + BV, V5V, T,

+VeVE Y, V, 8V 5V, + VOVEV, 8V 8V, V, + VOV, 8V 8V, 1,

Y

+ 8V, Ve gvﬁva) + (e —2) BV, V, 5V°V, — EVOVAV,V, 6V, V° gvﬂvg)

13



and the corresponding curvature scalar R can be easily found by taking the trace

of Eq.(3.24), giving

¢R = %M[T— 2f€<T—e<T>>] (3.25)

1
—e [va EV5 8V, V7 + 5(2+6) 5Vl syiye

- g( BV 5V, EVAV 4 VOV P By, VO gvm,)
1

+1—e

GR AN CEAS gvﬁvﬁ)} .

Last step is the construct left-hand side of (2.5) which is commonly known as

Einstein tensor G, defined as

1
G = R — D) R g (3.26)

Putting (3.24) and (3.25) into (3.26) we find the left-hand side of Einstein field

equations as

«

( 1V_ —EVEV V7 (3.27)

2@1

1 e (T
G,uz/ - —{Tuy + ﬁ (E + <T>>g’ul/ + a€

+ BV, VO EV VP — %vavﬁ EV, V7 V5V, 4+ VO BV 42V, VP

1—c¢

2 |
- ‘2” ETV5 EVIV — SEVV, 59V g,, — —— (VOEVLEV,Y,

£ VOEVETV, = (2 FVLY, BTV, + VOV VLY, BV, )

€

- VM< — EVEVV, + BVLEV, VO VAV, VY

— €
£ T VIVIEVEVLY,) = V(= BVLEVOY, - VLA,V

€

+ - - VO VLV, 5V 4 Vv gvggvav“)
2

VIV VLV BV, 4 €V Ve (59, - 5V,V)

1

1
— EVOV, BV, Ve — BV, RV Y SAGE AN

o

€
1—c¢

BV, VBV, V,
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Now we are ready to compare Eq.(3.27) to Eq.(2.5), remembering that a, is the
constant with the appropriate dimensions to construct action and corresponds to szl /2
in (2.5), we see that the expression in the curly brackets acts as a “effective” energy-

momentum tensor Tﬁ{: ! identified as

(1 L G+ (3.28)

— €

. e (T
S A

- % a%aq + Voa® — 2V, V3 VAV — e VAV V(,ﬁ‘@))&w
1
— €

~ V(- OV + Vv, Vet

(2 OV Vi + 2V Vi) — (2= VoV, VOV, + ¢ aua,,)

€ €
0
1—ea +1—e
€ €
_ 0 a
v,,( Vit VaVuV® + ——a, 0+ ——

Ve (Vavi)

Ve (Vav,)
62
T ViV aaa + € VY, vﬁva( VaVs — vﬁva)

€

2
— 2V VipVa = 1 0 VY = 1 SV.V VLY,

b

where we have dropped the superscript g for covariant derivatives since all the

— €

derivatives are with respect to Levi-Civita connection and defined further simplifications
commonly used in the literature. Box operator is the d’ Alembertian for 4-dimensional
space-time defined as [J = V,V. Dot represents the derivative with respect to proper
time and given as () =VeV,(..) = %. ¢ is known as the expansion of the congruence
of geodesics, it represents the change in volume of the small sphere of test particles with
respect to their central geodesic and it is one of the key parameters of Raychaudhuri’s
equation [25-27]. 4-acceleration vector a,, is just derivative of 4-velocity V,, with respect
to proper time 7 defined as a, = V*V,V, = %.

Looking at the Eq.(3.28) we see that standard energy-momentum tensor 7, gets
multiple contributions from disformal coupling term, contributions comes in various or-
ders of € up to €3. Again we see that canceling the disformal term (e = 0) gives back the
standard energy-momentum tensor as expected. Assuming both Tlfff and 7, are in the

form of perfect fluid such as

Tw = (p+p)V.V, + 08, (3.29)

where p, p and V), are the rest-frame energy density, pressure and 4-velocity of
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the fluid, we can further identify the effective energy density p.r¢ and effective pressure
Peys Of Tlf,ff in terms of p, p and contributions from disformal coupling. Remembering
the normalization condition for V,,, energy density p can be found by multiplying energy-

momentum tensor 7}, with V#1'¥

p=T, V'V (3.30)

Similarly, pressure p can be found by multiplying 7,,, with the projection operator
H" defined as

HW = g 4+ VIV, (3.31)

H" projects the multiplied expression onto subspace that is orthogonal to V'#
and satisfies the relation H#”V,, = 0 as it can be easily verified using the normalization
condition. With the help of projection operator, pressure p can be calculated as

aw

Using Eq.(3.30) and (3.32), we find the corresponding p.¢r and p.¢s as

2(26— o (+30) + “16{@

= VTV +2V5Va ) + VOV VP

Peff =P — +2a%a,

+ %( — %t + VPV(V V) — vﬁva)ﬂ , (3.33)
and
= +;( +3 )+ae ﬂ—kgaaa
p(’ff_p 2(2—6) /0 p 1 3(1—6) 3 «
2 1
+ gvgvavﬁva - gvavﬁvﬁva + VOV, VP
+ %( — a®ay + VPVH(V V- vgva))} . (3.34)

Before concluding this chapter, we give a brief study of the disformal coupling

effects in the metric formulation and show the differences between both formulation even
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with same coupling term.

3.1. Disformal Metric Gravity

Similar to metric-affine action (3.4), gravitational part of the action can be written

as

Sa = a / d*zv/=g F (R, g™, (3.35)

where the functional F'(R,,, g"") is now constructed from the metrical Ricci ten-

sor R,,,. Open form of the functional F'(R,,,, g"") is given as

F(Ru,g") =Rug" +eR, VIV (3.36)

Adding the matter action to (3.35) and finding the stationary points where the

action is stationary, we find the following field equations as

1 € T
_ - - BY _
G = S {TW + 7. (<T) + 5 >g#,, +a; € [QVBVV(VNV ) =0V, V)

— 8w VaVa(VVP) + ﬁgw(zvavavgvg(vavﬂ) — V"V“D(VUVQ)ﬂ }

(3.37)

where the expression inside curly brakects is the Tj,ff for the metrical theory.
Assuming T[jlf I and T, is in the form of perfect fluid, we apply the same procedure as

before and find the corresponding (pefr)cr and (pesr)ar as

= p— ; 2 ) o
(Perflar = p 22— ¢) (p + 3p> +as€ {9 + 0+ Vaa

4(1 —
- %( — Ve VsV VP —a%a, — VOV vavﬁ)] : (3.38)

and
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(Peff)ar =p+ ﬁ <p + 3p> + aq€ [g (92 +0 + Vaaa>

4(1 —¢)

* 3(2—¢)

( — a%ay — VO VgV, VP — voys vavﬁ)] . (3.39)

In order to determine the differences between metric-affine formulation and metric
formulation of disformal effects clearly, we express results as a difference between both

formulations, such that

Apess = (peff)mac — (peff)ar

_ ale{ - (f —)(+6%) + (—16 et EQ)ao‘aa + (6 — 56)\/“ VARG

—€ 4 — 2e¢ 2—¢€
2—¢ €(6 —€)
— §7ﬁ‘/a§7 ‘/ _ V,B‘fav ‘r _v e
( 2 ) arh <2(2—€)> bla o }’ (3.40)

and similarly for the pressure part we have

Apesr = (Peff)mac — (Deff)ar

= a16{ (%) (9 +6%) + (16 g(;gj—;&?) (aaaa + V3V, VBVC“>

10 — 7e
3(2—¢)

)va AV gvaa“}. (3.41)

+ (2 i 3€)vuvﬁ vive o+ (

In this chapter, we have studied the effects of background 4-vectors on metric-
affine and metric framework. Our findings show that, when viewed from the field equa-
tions perspective, disformal effects contributes to standard energy-momentum tensor 7},
and can be seen as an effective energy-momentum tensor Tj{f /. Some of the contributions
involves the 7}, and it’s trace 7" whereas other contributions comes from the derivatives
of the 4-velocity. We have seen that the disformal coupling effects differs between the
metric and metric-affine formulation and presented the difference in terms of Ap,; and

Ap.ss. These differences contains various order of magnitudes in e.
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CHAPTER 4

CROSS-CURVATURE METRIC-AFFINE GRAVITY

4.1. Metrical F'(R) Theory

Generalized action of the metrical F'(R) theory is described by the action [28-30]

Slg) = o 2 [ deyTg FR) + Suls v @1

where R is the curvature scalar of the Levi-Civita connection gFfw, g is the deter-

minant of the metric g, and the M, is the reduced planck mass given as

1
M, = . 4.2
pl 87TGN ( )

!

Standard procedure to obtain field equations is the applying least action principle

to action (4.1). Varying the gravitational part of the action with respect to g"” gives
ying the g P P g g

e p——_ /d4x{5\/_F+\/_—5R}

/ d%{ V8 pg.0g" + \/— R,Wég’“’ +v-8 —g’“’éR }
1 oF OF
4 _ _ Y4 iy 72 a «Q
- /d T/~ g{ ZFgMV—F aRRW)(Sg + R Vadly, Vyérm”.

4.3)

First term in curly braces in Eq.(4.3) is already in the form of expression multiplied

by g, integrating by parts the second term and neglecting the surface terms we have
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03 (e
+ g [ v (2—9 5T, + vy(g—Q 51“3&} } (4.4)

Before we go into next step, we need to express 0}, in terms of variation of
the inverse metric 0g"”, which can be easily found from taking the variation of metric

compatibility equation (2.4) such as

8(Vagun) = O(Dati — Tiaor — Tt ) =0, (45)

where we have used the open form of covariant differentiation. Expanding the

above equation for three different permutations of indices we get

0o 08w — anégm, — 170080 — 5FZagUV — 0170 8us =0
auéguoz - quégoa - Fguégua - 5Fglugaa - 5F2ugua =0
0,080n — 10,080, — Fzyégw — 010, 8ou — 5Fzygw =0. (4.6)

We add the first and second equation and subtract the third one, and identify the

covariant differentiation of metric variation dg,,,, to obtain

25PZagUV = Vu<5gw> + vu(égw)) - VV((;gau)- 4.7)

Last step to obtain 0I'7,, in terms of 5g®?, we multiply the Eq.(4.7) with inverse
metric g“* and switch the variations of metric to variations of inverse metric via the rela-

tion 0(g""g,«) = 0. The result is

1
6FZV = D) [gauvvwgag) + gavvu((sgag) - guaguﬁvo(égaﬁ)] . (4.8)

Now we can plug in the above equation to (4.4) and get the desired form. After

integrating by parts and relabelling some dummy indices we find variation of the gravita-
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tional part of action as

OF

M? 1 oF
5SG = Tpl d4a:\/—g{ - §Fgw + ERHV - [V,uvl/ - guuvava} _}5g‘uy‘

OR
(4.9)

Finally adding the matter part and applying the least action principle 6.5 = 0 we

find the field equations for the '(R) theory in metrical formulation as

1 1
~3F(R)gu + frRy - (vyv# _ gWD> fo = @Tw, (4.10)

where 0 = V,V* and fy is a shorthand notation for differentiation of the F'(R)

with respect to its subscript

JF(R)
= — 4.11
and the energy-momentum tensor 7}, is by definition given as
—2 0Su
T, =—— . (4.12)
Vg ag

One can go further and construct the Einstein tensor GG, from Eq.(4.10) and define
an effective energy momentum tensor to study its properties [28]. Our plan is to study
the cosmological effects of the F'(R) theory. Combining computer based simulations
with cosmological observations of the cosmic microwave background (CMB) and galaxy
distributions indicate that our universe is highly homogeneous and isotropic at the large
scale [32-35, 37]. A mathematical representation of our universe can be given by the

metric

dr?
1 —kr?

which is known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in

ds® = —df? + a(t)2( +7?(d0* + sin®0 d<b2)) (4.13)

the literature. This is the common form of the FLRW metric where a(t) is the dimension-
less scale factor determines how big is the 3-dim space at the given time, k represents the
type of geometry of the space-time and can be greater than, equal to, or less than one. We
can now plug in the FLRW metric into our field equations to study the cosmological ef-

fects of F'(R) theory in the metrical framework. Assuming the energy-momentum tensor
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of the matter field is described by the perfect fluid as in (3.30), we can calculate modified

Friedmann equations from the field equations (4.10) as [28]

9 1

_ Rf’~ F(R)
- 3M3

2

(f)~ (p n _3HR f”), (4.14)

2H +3H? = —— (fH7! (p + (R)2f" +2HRf" + Rf" + %(F(R) — Rf’)), (4.15)

M

where f’ is the differentiation of functional F'(R) with respect to its argument,
H is known as the Hubble parameter defined as H = a/a. Hubble parameter is one
of the key parameters in cosmological studies and observations, it is related to rate of
expansion of the universe at the given time. Current value of the Hubble parameter is
called Hubble constant, H,. Latest value of the Hubble constant H, coming from the
direct measurements is Hy = 74.03 £ 1.42km s~ *Mpc~! [38]. Mpc stands for mega-
parsec, which is an unit of distance commonly used in cosmology and it is defined as
1 Mpc = 3.086 x 10* km. Unit of Hubble constant means that for every 3.086 * 10'° km
further away a star or galaxy is from us, it appears to be recedes away from us with the
speed of 74.03 km/s because of the expansion of the universe. Indirect measurements
of the H, involves applying a cosmological model to CMB observations which is the
relic radiation from early universe. Latest indirect measurement coming from the planck
group is Hy = 67.440.5km s~ Mpc~! [34]. This increasing discrepancy between direct
and indirect (model dependent) measurements known as “Hubble tension”, and it indi-
cates that we might need a new cosmological model to describe features of our universe

[39-41].

4.2. Metric-Affine Formalism of F'(R)

Action of the generalized metric-affine theory can be written as [31]

M2
SIC.g) = " [ dtoy=g F (R)+ Sulg, vl (@.16)
where F'(R) is the functional of affine curvature scalar R(I") and again we examine
the case where matter part of the action is independent of the affine connection. Varying
the action with respect to g,,,, and applying least action principle as before yields

1 1

_QF(R)gMV + f]RR;w = @T

nz

(4.17)

Similarly varying the action with respect to general affine connection Fﬁy gives
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Ve (V=g 8" fi) = 0. (4.18)

Following the same approach as in section 3, we can define a dynamical metric

Iy as

hul/ - f(R)gul/ (419)

Using the covariant conservation of the dynamical metric h,,,, we can solve affine

nvs
connection I ,,, in terms of Levi-Civita connection #I",,, plus contributions from the deriva-

tives of F'(R). The result is

1
Db = 50 + 5 ()™ (820, + 620, 2 — 8800 fz ) (4.20)

with the corresponding affine Ricci tensor R, (I') can be written in terms of met-

rical Ricci tensor R, (8T") plus contributions from the derivatives of F'(R), such as

RIW(F) = R,lw(gr) + %(fR)_Q gv,ufR gvaR (421)
- (fR)il gvu gvufR - %(fR)il guv ngR-

All the derivatives in the above equation are with respect to Levi-Civita connection
gl“fw and the box operator has the same definition as before. As we mentioned in the
last section, at this point, it is possible to construct Einstein tensor G, with the help of
Eq.(4.21) and define an effective energy-momentum tensor. Turning back to cosmological

setup, we can calculate Ry, and R;; from (4.21) with the FLRW metric (4.13). The results

are
a : 2 . .
Roo = 3% + 2 (fa)” ((J;“%) ~ fa— Hfz), (4.22)
Ry = a° g +oH? + %( fr)Y(5H fr + ij)]. (4.23)

Substituting Eq.(4.22) and (4.23) back into the field equations (4.17) and as before

assuming the form of perfect fluid for the 7,

T,uzz = (p + p)vuvy +p Suv, (424)

23



we find the modified Friedmann equations as [42]

1fa\2 1, . (p + 3p)
<H+§fTR> —g(fR) 1<F(R>+W5[>a (4.25)

o Loaptp 3R
H—_§<fIR<) 1(2M§l T3 g +fR—HfR>7 (4.26)

where definitions are same as the previous. Looking at the Eq.(4.25), we notice
that Hubble parameter H gets an additive term in the metric-affine formulation which was

not present in the metric formulation.

4.3. Metric-Affine Formalism with Cross-Curvature terms F'(R, R)

Our main goal of this chapter is the study the cosmological effects of cross-
curvature F'(R, R) theory, where F'(R, R) is now the functional of both curvature scalars
R(8T") and R(I"). Since we are formulating the theory in the metric-affine framework, our
priori assumption is, the curvature of our space-time is represented by the affine Riemann
tensor RQQV(I’) and the affine connection Fﬁy should be the connection which is respon-
sible for the motion of material particles. If one is to study the motion of particles in
space-time, he should use the affine connection Ff;l, in the geodesic equation [12]. Then
one might ask, what is the reason for using R(®I") in the functional at all? We simply
approach to problem from the perspective of classical field theory, where both Ffw and
e, are the fields with corresponding field strengths R, (') and Ry, (5). As in the

previous sections, we study the non-fermionic matter fields for simplicity. Most general

action including the cross-curvature terms can be written as

2

M
SIrg) =~ [ doy=E F(RR) + Suls. vl @27)

Varying the action with respect to metric and affine connection respectively yields

1
Ty, (4.28)

1
__F(R7R>g 1/+fRRu+fRRy_ gvygv — 8 ugD fR:—
5 " " 1 ( " " ) M;?l

Ve (V=g 8" fir) = 0. (4.29)
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Now field equations Eqn.(4.28) and (4.29) includes contributions from both cur-
vature scalars through F'(R,R) and its derivatives. As always, Eq.(4.29) lets us to de-
fine dynamical metric /1, which will be covariantly conserved by the affine connection,
therefore we can write affine connection F;\W in terms of Levi-Civita connection & F;}V and

contributions from the derivatives of F'(R,R) such as

D) = 00, + 31l ™ (000, fe + 030, fx — "800 f). (4.30)

and the corresponding R, can be calculated by simpliy putting affine connection

into definition of R, given by (2.2). Resulting expression is

Ruu(L) = Ry (1) 4 5 (f2) 2 5V, /o Y, @31)

(o) #V, SV fe — () g SO

Eliminating R, (I") from (4.28) and (4.31) yields

= 3 1
Ryw = (/) [ —5(fe) 7 EVufe BV fr + S F(R R)gyu, (4.32)
5V, 5V g 05 f i) + 1T
o v "z 9 Mgl pv |
where we defined f to slightly simplify equations as
f= e+ fa (4.33)

Following the same procedure as in section 4.2, we get the following modified

Friedmann equations for the cross-curvature theory as

(H + %%)2 — %(f)-l (F(R, R) + %) (4.34)
-5 [3002(5 = 3) e (o ).
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3 (fr)?

: 1 -~ fp+P
i =—2(f) (

M2 2 fa

+f—Hf>

(4.35)

Before concluding this chapter, we give a comparison table of the key equations

for the both F'(R) and F'(R,R) theories in the metric-affine framework as follows

Comparison of F(R) and F'(R,R)

. _ P c \2
H = —5(fr) I(SJ\J}; - %(j}i) +

fr—Hfr) Eq.(4.26)

Grav. 2 2
art of Y6 = % Jdtay=g F(R) Se = % [ d*zy/=g F(R,R)
- Eq.(4.16) Eq.(4.27)
action
—3F(R)gu + feRpu = 32T, ~2F (R R)gu + frRy + feRp
2 guv RNy M2 L
" — (8V, 8V, —gut0) fr =
Field FEq.(4.17) X
Equations Pl
Vo (V=g fa) =0 "Va(vV=8g"fr) =0
Eq.(4.18) Eq.(4.29)
. H lf;lﬁ _ 1 N —1 F
(H_Flf;l%)Q — 1(]0 )_1<F+ < +2f> G(f) ( +
2 fr 6\/R (p+3P) l(f)fl i(f )Q(L_
: (p+3P) 2My, 2% 2R Ay
Friedmann o0z ) Eq.(4.25) | P .
’ X , Eq.(4.34
Equations ,) +a" (a fR)} q.(4.34)
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We have studied the cosmological effects of F'(R) and F'(R) up to Friedmann
equations in metric and metric-affine frameworks respectively and compared the cross-
curvature theory F'(R,R) with the latter one. We highlighted differences between F'(R)
and F'(R,R) in red. Friedmann equations in both theory highly depend on the functional
form of F, looking back at the Eq.(4.31), if the functionals dependence on curvatures is
linear (as in case of Einstein-Hilbert action) then the both Ricci tensors become equal
such as R(8") = R(I"). The difference of the formulation becomes emergent only when

quadratic or more power of curvature terms are involved in the action.
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CHAPTER 5

CONCLUSIONS

The present thesis mainly focuses on two distinct studies. In chapter 3, we have
derived the field equations for the general case of functional F'R,,,,, g#”, which is extended
form of the known F'(R) functionals. Having solved affine Ricci tensor R, in terms of
metrical Ricci tensor R, and contributions from dynamical metric /1, we then specified
our functional as (3.15) to examine the effects of disformal gravity. To pinpoint the effects
of disformal coupling in a cosmological setting, we constructed the Einstein tensor G,
defined in (3.26) and identified an effective energy-momentum tensor leff . We have
seen that Tjﬁf includes many contributions through derivatives of 4-velocity vector as
well as contributions from the standard energy-momentum tensors itself weighted by the
coupling strength e. Assuming either energy-momentum tensor can be written in the form
of a perfect fluid, we identified the effective energy density p.¢; and effective pressure
Pers. We then gave a brief derivation of disformal effects in the metrical framework and
compared the findings of both formulations. Even though both formulations have the
same starting point, namely the action, they lead to different predictions on the effective
energy density and pressure. We have shown the differences with the Egs.(3.40) and
(3.41). As we said before, contributions to Tﬁ,ff are highly dependent on the functional
form of F'R,,,, g", our model can be studied further with the modifications of (3.15). For
example, letting the coupling strength to be a function of space-time such as ¢ = e(z#),
of course the equations will be much more complicated in that setting.

Second focus of the present thesis is the study of cross-curvature effects on metric-
affine formulation. In chapter 4, for convenience, we have derived the known equations
of metric F'(R) and metric-affine '(R) up to Friedmann equations and presented the idea
of both curvature scalars in the functional such that F'(R, R). Our approach to the idea of
cross-curvature terms in the functional F'(R,R) was simple, we considered both connec-
tions as classical fields with corresponding field strengths given by the Ricci tensors and
derived the both Friedmann equations within the content of the cross-curvature theory.
Comparison of F(R) and F'(R,R) is presented in the table. Although there are similar
terms in between corresponding Friedmann equations, namely (4.25) to (4.34) and (4.26)
to (4.35), we can see the effects of the cross-curvature approach. Once again we should

point the importance of the open form the functional F'(R, R). We see from the Friedmann
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equations, F'(R,R) is the decisive factor for the study of cosmological parameters.

We presented both of our studies as general as possible, so that once the functional
forms are specified (functionals in the actions Eq.3.4 and Eq.4.27) , it is straightforward
to just plug it in the related expressions. Of course, there are infinite number of choices
for the functionals, so one might as “how to choose the right functional?”. The open
form of the functional should be deduced from careful examinations of observations and
measurements. For example, it is well known that the addition of quadratic curvature
terms to Einstein-Hilbert action can achieve gravity-driven inflation [43].

Another important point to improve the present study is that involvement of the
fermion fields in the actions. In both of our studies, we have approached from the cos-
mological perspective and assumed that our matter fields are in the form of perfect fluid
(3.29) which is naturally independent of the connections. Since fermions play a great role
in our universe, a comprehensive study must include them by relaxing both restrictive
assumptions that matter action is independent of connection and the affine connection is
symmetric. These two assumptions might not be independent of each other after all. As
we have said before, the study of fermions demands the involvement of the affine connec-
tion in matter action (through spin connection) and studies show that, this dependence on
the affine connection of the matter part couples to anti-symmetric part of the connection
(which is called torsion). Just as the metric dependent part of the matter action couples
to Ricci tensor (2.14), namely Einstein field equations. This clearly indicates that the

existence of spin itself induces the torsion in space-time [31, 44].
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