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ABSTRACT

DIGITAL FONT GENERATION USING LONG SHORT-TERM MEMORY
NETWORKS

Long Short-Term Memory (LSTM) Networks are powerful models to solve se-
quential problems in machine learning. Apart from their use on sequence classification,
LSTMs are also used for sequence prediction. Predictive features of LSTMs have been
used extensively to generate handwriting, music and several other types of sequences.
Configuration and training of LSTM networks are relatively more arduous than non-
sequential models, especially when input data is complex. In this research, the aim is
to train LSTM networks and its different variations, use their generative features on a rel-
atively obscure and complex type of sequences in machine learning; digital fonts. Con-
trolled experiments have been performed to find the effects of different model parameters,
input encodings or network architectures on learning font based sequences. All in all, in
this document; the procedure of creating a dataset from digital fonts are provided, training
strategies are demonstrated and the generative results are discussed.

Keywords: long short-term memory, sequence generation, digital fonts
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OZET
UZUN KISA VADELI BELLEK AGLARI ILE SAYISAL YAZI TiPl URETIMI

Uzun Kisa Vadeli Bellek Aglari, makine 6grenmesi alaninda, dizisel veri iceren
problemlerde basariyla kullanilmaktadir. Dizi siniflandirma alanindaki yaygin kullanim-
larina ek olarak, Uzun Kisa Vadeli Bellek Aglari’ndan, dizi 6ngoriisii alaninda da yarar-
lanilmaktadir. Bu aglarin tahmin yetenekleri, el yazisi iiretimi, miizik iiretimi, ve diger
diziler iizerinde iiretim icin de genis capta tercih edilmektedir. Ancak, diger makine
ogrenmesi yontemleri ile karsilastirildiklarinda; Uzun Kisa Vadeli Bellek Aglarinin kon-
figiirasyonlar1 ve egitim asamalari, egitilecek veri karmagiklastik¢ca daha fazla zorlagsmak-
tadir. Bu arastirmanin hedefi, Uzun Kisa Vadeli Bellek Aglarinin ve tiirevlerinin, goreceli
olarak karmagik bir veri olan sayisal yazi tipleri iizerinde denemektir. Bu amagla kon-
trollii deneyler yapilmig, Uzun Kisa Vadeli Bellek Aglarinin farkli konfigiirasyonlardaki
basarilart 6l¢iilmiis ve karsilastirilmistir. Bu dokiimanda, sayisal yazi tipleri kullanilarak
bir makine 6grenmesi veri tabani olusturulma siireci, makine egitimi asamalar1 ve strate-
jilert agiklanmus, sayisal yazi tipi iiretim sonuglart gosterilmis ve incelenmistir.

Anahtar Kelimeler: uzun kisa vadeli bellek, dizi iiretimi, sayisal yaz tipleri
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CHAPTER 1

INTRODUCTION

Fonts are almost always the medium of textual communication today. Apart from
their primary use case, representing text; the styles and properties of different fonts affect
readers’ perception on the information that is written. Having a long history, font design
is a very established but still an active branch of visual arts. This research aims to apply
the generative abilities of Long Short-Term Memory networks on sequential data from
digital fonts and to create machine-generated fonts.

Sequence generation is a very popular use case of Recurrent Neural Networks and
Long Short-Term Memory Networks [1, 2]. There is plenty of research on generating
handwriting [3], music [4] and text [S] with RNNs. They are also used for computer
vision based tasks such as image recognition [6], classification [7] and captioning [8].

Furthermore, a few number of studies have been conducted on font generation
topic. The major approach on this purpose is using example based methods to create
composite fonts. This approach requires user input and a separate dataset for blended
generation of fonts [9, 10]. With these requirements, mentioned studies are mainly estab-
lished on artistic style learning and transfer learning concepts. Studies on font generation
are based on several methods such as numerical methods [11], genetic algorithms [12],
feed-forward neural networks [10] and generative adversarial networks [13, 14]. The
main drawback on these approaches are their representation of font glyphs in training.
Font glyphs and optionally user input are generally extracted from rasterized image data
in most studies. Even the expected generative outputs are either image data or outline
vectors; the concept of not using vector data directly from native digital font definition
vectors introduces impurity and a need for data inference during training.

This study uses sequential vector data that is defined in modern digital fonts as
both input and expected output. With this approach, we strive to preserve the purity
of native font data and create high-quality output that is in native sequential form and
encodable into commercially distributed fonts without data loss.

In this research, the endeavour is to generate glyph outlines from digital fonts
using Long Short-Term Memory Networks and discuss the effects of different training

strategies on generative performances of LSTM models on digital font data.



1.1. Motivation

Sequence generation on 2-dimensional coordinate systems is a well researched
subject, because of popular topics such as ”Online Handwriting Generation”. Handwrit-
ing generation is in a partly similar context with the domain of this dissertation. The main
difference is, while online handwriting data is basically a set of independent pen strokes,
vector font glyphs are sets of closed shapes called contours or outlines.

In some aspects, generating glyph outlines is a more complex problem than gen-
erating strokes. The primary reason is that, handwritten characters have single contours,
while to form closed shapes, glyph outlines have at least two contours. In other words,
while drawing a border of a handwritten character, one draw in a single direction is re-
quired. Contrarily, to draw a border of a character in a digital font, at least two lines
or curves in two opposite directions are needed. Figure 1.1 visualizes the differences

between a handwritten character and a font glyph.

Figure 1.1. The handwritten f character (left) is formed of two strokes, while the font
glyph for the same letter (right) is represented with its outline which is a
complex closed shape.

Another challenging situation in digital font generation is the necessity of closing
shapes. By definition, font glyphs are defined as sets of closed shapes and to assure the
validity of generated glyphs, the generative model should end each outline at its starting
point.

The main motivation of this research is to tackle the challenge of generating this

relatively complex type of sequences with Long Short-Term Memory Networks.



1.2. Aim and Objectives

The aim of this project is to create a dataset from digital font definitions, to train
an LSTM network with the dataset and to discuss the generation results. The experiment
results are used to analyse the capabilities of LSTM networks in variable sized, multi-
feature, complex sequences.

Besides, the objectives of this research are:

To create a sequential machine learning dataset from digital font data,

To create LSTM deep learning models and train them with the dataset,

To generate glyph outline representations from trained models,

To benchmark and analyse the experiment results.

1.3. Disposition

The first chapter of this document is the Introduction. The brief definition of the
problem and data are explained in it, the motivation, aim and objectives of this study are
declared.

Chapter 2: Related Work is an overview of previous studies on sequential learning
in 2-dimensional coordinate systems.

Chapter 3: Background prefaces the history and characteristics of font data, re-
views learning based methods such as Recurrent Neural Networks and Long Short-Term
Memory Networks, their variants and optimization methods.

Chapter 4: Methodology is a step by step explanation of the proposed system
including dataset creation, data preprocessing, training strategies and generation. Sec-
tion 4.1: Preprocessing; contains details about dataset creation and feature engineering
work on font data. Section 4.2: Training, is a comprehensive background of training the
proposed system with different strategies and parameters. In this section, the variations
on training approaches are elaborated in groups for each variant. Section 4.3: Digital Font
Generation, summarizes the workflow of the generation logic in this study.

Chapter 5: Experiments, demonstrates the generative results of experiments that
are performed through this research. The results are grouped by control points that are

mentioned in Section 4.2.



Chapter 6: Results, contains remarks on this research process and discussion about
its output. Subjective opinions about possible enhancements and modifications on this

work are given.



CHAPTER 2

RELATED WORK

There are plenty of research in literature on sequence generation with deep learn-
ing models. As mentioned in Chapter 1, these researches are made in numerous data
domains such as text, video and music and more [3-5].

In perspective of research domain, handwriting generation is the most engaging
area of research to font generation and these two terms are frequently used at close quar-
ters [13, 15]. Apart from their relation of representing the same information in different
structures, font data and digital handwriting data have similar data features and charac-
teristics. Both data domains are defined in 2-dimensional coordinate systems. Also, the
primitives of both data domains are sets of curves.

There are several studies in literature on handwriting generation using Bayesian
Networks [16], Beta-Elliptic Models [17], Hidden Markov Models [18] and Variational
Auto-Encoders [19]. Having a close relation to the methodology of our research, "Gen-
erating Sequences with Recurrent Neural Networks" by Graves [3] contains an influential
study on handwriting generation with LSTM models. An output sample from that paper

is shown in Figure 2.1.

He, diswmissed fan deoc
when fhe. nefuork i Drimed) P e Qo gpeponse
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W\QCLQDW\QO\ QPV\QJSIQV\ m@&@@a/mza(_u.,p version

GQ Jr\m Oﬂ%\ m\ SJRG\Q

Figure 2.1. Generative results of handwriting from LSTM networks in different writ-
ing styles (Source: [3]).

Besides, as mentioned in Chapter 1, previous studies on font generation were



mainly based on systems that require user interaction to perform artistic style learning in
combination with font datasets. Suveeranont and Igarashi [9] proposed a skeletal glyph
representation to apply styles of handwritten characters to outline fonts. Also, Lian et.
al. [10] used vectorization of raster font images and handwritten character strokes for
font generation and experimented sequential deep learning models for handwritten glyph
strokes in their proposed style learning system. Yoshida et. al. [12] proposed a genetic
algorithm based system for generating blends of multiple vector fonts as raster images.
Using Bézier Curves for Chinese character strokes, Li et. al. [15] introduced a proce-
dural font generation algorithm. Finally, Hayashi et. al [14] and Jiang et. al. [13] used
generative adversarial networks for font style learning and generation.

This study proposes LSTM networks for learning and generating vector font glyph
outlines. In the proposed system, glyph outlines are defined as sequential input and output,

aiming minimal loss in purity of original font definitions.



CHAPTER 3

BACKGROUND

3.1. Material

The material and the expected output of this study is digital fonts. Fonts are very
diverse and well structured data sources having a long historical background. This section
contains brief information about terminology, history and mathematical background of

digital fonts.

3.1.1. Fonts and Typefaces

Fonts are defined as “an assortment or set of type or characters all of one style
and sometimes one size” according to Merriam-Webster Online Dictionary [20]. They
are used in almost every printed document and digital devices today, in order to provide
any information in textual format.

On the other hand, typefaces are families of fonts that have common design. Type-
faces can contain multiple fonts in several styles, weights and postures. For instance;
Helvetica is a typeface and Helvetica Bold is a font.

Fonts have a long history starting with the Medieval Age and have been evolving
more rapidly than ever after the digitalization of the world. This section provides a concise

history of fonts and their evolution.

3.1.1.1. Early History

The history of fonts has started with the invention of the printing press. At that
time, letters and punctuation marks were being smelted into metal blocks and aligned
together as page blocks to create page layouts. That representation helped to keep an
entire document in a uniform visual language. The first printed document in history:

"The Gutenberg Bible (1455)” (Figure 3.1) is printed with the first font of the world,



"Textura”. This font had been designed by Johannes Gutenberg who is also the inventor

of printing press. Textura was designed as a uniform representation of gothic handwritten

letters in that era.
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Figure 3.1. Excerpt from Gutenberg Bible (1455) featuring Textura font (Source: [21]).

3.1.1.2. Analogue Era

After Gutenberg, until the invention of computers, typography had become a
prevalent domain of Renaissance art. A large number of typefaces had been designed
and used in press and architecture. Thereupon, typefaces were being designed in an ana-
logue way. The glyph designs were usually being drawn on plain or graph papers. The
glyph proportions were either not defined explicitly or defined with the help of basic ge-
ometrical shapes [22].

Geometric shape based typefaces were applicable to any scale, as a result of hav-
ing ratio based definitions. The printing heads in different scales were able to be created

keeping the original design specifications [22].

3.1.1.3. Digital Era

The invention of computers and devices with electronic displays led to a need for
digital font rendering. For this purpose, digital fonts were defined in a digital data schema.
A typical digital screen is basically a matrix of pixels. Considering the number

of available pixels is varied between devices, correctly rendering text in various sizes on
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Figure 3.2. Standardization attempts in early era of fonts were based on several ge-
ometric guides. The design specification of letter B is an example of a
combination of grid based design (left), and circular shape based design
(right) (Source: [22]).

screens had been critical. To render fonts on pixel areas in different scales correctly, a
scalable definition like the geometric definition mentioned in Section 3.1.1.2: Analogue
Era, should had been defined.

Several industrial pioneers of that time created their own standards for that pur-
pose, yet the basic idea was similar: Keeping font definitions in vector representation.
The details about the standards are given in Section 3.1.2.1 and the most widely used

vector representation is elaborated in Section 3.1.2.2.



3.1.1.4. Categorization

While typefaces are sets of letters in visual consistency, they have various char-
acteristics and psychological effects on readers. For example, "Garamond” is known as
a good typeface for paragraph content, while ”Futura” is more appropriate for headings
such as news article titles [23]. These versatile characteristics created a need for cate-
gorization. Some typeface categories and categorization choices are opinionated, yet the
widespread categorization is accepted and used in this study.

Fonts and typefaces are categorized in several ways and there are plenty of cat-
egories in each criterion. For simplicity, most common criteria and categories are men-
tioned in this report. Figure 3.3 is a visual example of different font and typeface charac-

teristics.

Normal I7alic Oblique
Light Normal Bold
Serif Sans-Serif Slab-Serif Monospace

Roman Grotesque Humanist Geometric

Figure 3.3. Fonts are categorized by their posture (first row), weight (second row), by
several design approaches (third row), and by artistic movements (bottom
row). Texts denote categories of each example.

3.1.2. Digital Fonts

Modern Digital fonts can be described as sets of glyph definitions that contain
external features such as hinting, ligatures, baselines and offsets, alongside glyph outline

definitions. Not every digital font is vector-based, a part of fonts are known as raster fonts

10



or bitmap fonts by reason of being defined in bitmap image matrices. The comparison of

raster fonts and vector fonts are shown in Figure 3.4.

Figure 3.4. A raster font (left) is represented in an image matrix, which does not scale
to different sizes. A vector font (right) is represented in a 2-dimensional
coordinate system which can be scaled without loss of readability.

Bitmap fonts had been widely preferred on primitive computers and gaming con-
soles such as Commodore 64 and Nintendo Entertainment System, because the advantage
of sparing computational force and memory to parse and render vector fonts were critical.
The drawback was that these fonts would lose their legibility on different scales.

Almost all modern fonts are represented by vectors today. The main advantage
of using vector fonts are their scalability on different sizes and adaptability to different
screens and print environments. [24]

In this research, the aim is to generate vector fonts. Raster fonts are out of the

scope of this work.

3.1.2.1. Vector Formats

There are several standards for representation of vector fonts on digital devices.
Though, the main idea is almost the same. Adobe, Microsoft, Apple and other industrial
pioneers created different standards. Adobe’s PostScript and Type I formats, Apple’s and
Microsoft’s TrueType and Adobe and Microsoft’s OpenType formats are very similar to
each other. The differences between them are mostly rendering or encoding extensions.
In this research, the main interest is on Glyph Outlines, which are almost the same in all
of these formats.

For description of a font format, OpenType standard is used in this section. How-

ever, almost all of the specification applies also to other formats.

11



OpenType fonts are described as a set of tables. Those tables represent different
mappings that are needed to render a font, including; (eg: character-to-glyph, index-to-
location), metadata, glyph representations, scaling, hinting, rendering guides and more.

For the purpose of this study, glyph representations are primarily needed. In Open-
Type and TrueType formats, that information is stored in GLYF table. GLYF table contains
one or more outline shapes for each glyph in Bézier-Spline format.

The second table that is needed for this study is CMAP table. This table maps
characters to corresponding glyphs. One important thing to point out about character-
glyph mapping is that, a character may be mapped to multiple glyph definitions at once.
Or a glyph can consist of multiple glyphs. Those types of glyphs are called Composite

Glyphs. Figure 3.5 shows an example of this situation.

/ /

Figure 3.5. Glyph "e" (Left), is combined with glyph "acute" (Middle), to form a
composite glyph "eacute" (Right). With this concept, it’s possible to
create accented letters or composite symbols without using extra space.

As using composite glyphs do not contribute to the generative purposes of this

research. They are discarded for simplicity.

3.1.2.2. Bézier Curves and Splines

Bézier curves are parametric curves that are used extensively to represent high-
order 2-dimensional curves. These curves use multiple control and anchor points to define
a curve. Details about control and anchor points are given in Section 3.1.2.3

Since font outlines are basically closed shapes, to model them, multiple con-

12



secutive Bézier curves are needed. Bézier-Splines, which are also called as Compos-
ite Bézier Curves are effective representations of multiple connected cubic or quadratic

Bézier curves.

Control Point (OFF)

P a)
3 Control Point (OFF)

Anchor Point (ON)

Anchor Point (ON)

Figure 3.6. This cubic Bézier curve has two anchor points, one at the beginning and
one at the end and two consecutive control points between anchors. The
distance between these two control points and their relative distances to
their neighbouring anchor points, define the direction and orientation of
the curve.

3.1.2.3. Bézier Control and Anchor Points

In Bézier Curves and Splines, there are two types of points: ON and OFF points.
ON points are named as on-the-curve or anchor points, and OFF points are named as
off-the-curve or control points. This classification is necessary for all point time-steps.

Relevant definitions of Bézier format for this study are,

e Two consecutive ON points represent a line.

e One OFF point following an ON point represents a single Quadratic Bézier Curve.

13



e Two consecutive OFF points following an ON point represents a single Cubic Bézier

Curve.

Figure 3.7. Quadratic Bézier curve parabola (left) has one control point. Cubic Bézier
curve parabola (middle-left) forms a parabola with two control points.
Cubic Bézier curve hyperbola (middle-right) also has two control points.
Bézier line (right) is defined by two consecutive anchor points.

3.1.2.4. Point Classification Tokens

A glyph representation can contain one or more outlines. Each outline has a start-
ing point, a sequence of control or anchor points, and an ending point. Those signals are
important for any generative approach in order to learn when to stop or alter state. This
data is not defined explicitly in either OpenType or TrueType formats. Nevertheless it is
trivial to extract that information using raw glyph outline data. The details on gathering

that data are given in Section 4.1.

3.1.2.5. Glyph Labels

To learn which outline correspond to which glyph, labelling is needed. This data
is extracted from CMAP table as glyph indexes and used as a non-temporal feature. Since
this feature is non-temporal, different encoding schemes to feed it into the generative
model are tested. Details on extraction of this feature and encoding strategies are given in

Section 4.1.

14



3.1.3. Dataset

In this research, Google Fonts Archive [25] is used, This archive contains almost
3000 free and open-source OpenType and TrueType fonts, and their metadata at the time
of this writing. While the choice of dataset in this project is Google Fonts Archive, any
set of OpenType or TrueType fonts is compatible to be used while creating the dataset.

The main reason why Google Fonts Archive used in this project, is all the fonts
have properly formatted metadata files. This metadata are used to filter and group different
types of fonts. For example: While creating dataset, only Bold, Italic and Sans-Serif fonts
can be selected and processed.

The relevant information that are defined in metadata files are:
e Weight: One from [100 ,200, 400, 600, 800]
e Posture: One from [Normal, Italic]
e Style: One from [Sans-Serif, Serif, Display, Handwriting, Symbol]

This dataset is not usable as-is for our sequential models. Preprocessing should be

done on this data to form a LSTM-compatible input from raw data.

3.2. Sequential Deep Learning

As mentioned before, the purpose of this research is to use font data as sequences
of points. To learn and generate structures of consecutive points, sequential models are
needed instead of feed-forward models. This section is a concise review on sequential
learning methods with deep learning, their internals and variants. Furthermore the opti-

mization methods for training these models are mentioned and compared in this section.

3.2.1. Recurrent Neural Networks

RNN is a powerful model to solve machine learning problems where the data is
sequential. The main idea behind RNNs is to enhance feed-forward neural networks with
circular data flow, to learn temporal structure in data.

Nodes in RNNs have more than one input and output gates unlike FFNN nodes

which have one for each. Those gates connect nodes in multiple directions. With the help
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Feed-Forward Neural Network with one hidden layer Recurrent Neural Network with one hidden layer

Figure 3.8. In a feed-forward neural network (left), the data flows in a single direction
throughout the network, while in a recurrent neural network (right), nodes
of hidden layers recirculate data and learn temporal structures in consecu-
tive input timesteps.

of this modification, when sequential data is fed to a RNN, previous data remains for a
while in the network.

On back-propagation, the gradient is also calculated with errors from multiple
directions. Figure 3.9 shows forward flow in blue and backward flow in yellow.

One problem that arises in RNN training is " Vanishing / Exploding Gradient Prob-
lem”[26]. When sequences get longer and training time increases, the earlier nodes in
RNN gets very small weight updates because the value of error gets smaller at back-
propagation of each layer. While this problem is not specific to RNNs and may apply to
every deep neural network, RNNs should be deep and have longer data flow by definition.

Because of it, this problem hurts almost all RNNs in general.

3.2.2. Long Short-Term Memory Networks

Among a large number of trials to solve the flaws of RNNs, one successful at-

tempt is Long Short-Term Memory Networks [1]. This approach enhances RNNs at node
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Figure 3.9. RNN Nodes (Unrolled). 4 represent the temporal state between nodes,
while x and y represent inputs and outputs of nodes.

level. In LSTM specification, node definition in RNN is enhanced with two main addi-
tions, a memory cell and a forget gate. The first addition enables the node to remember
longer temporal dependencies with maintaining state over time. The second addition is
instrumental to clear internal state when the window of interest ends. This feature is a
powerful tool to learn from variable-length sequences and manually clean temporal win-
dow of interest before starting to learn from a new sequence. Figure 3.10 shows the main

differences between a naive RNN node and an LSTM node.

.’
A

Figure 3.10. While RNN node (left) has only a tanh activation gate in its data flow,
LSTM node (right) also has a cell-state which can be updated or flushed
when needed.
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3.2.3. Bidirectional Long Short-Term Memory Networks

Bidirectional Recurrent Neural Network (BRNN) [27] is a modification of RNN
which can be trained simultaneously in positive and negative time directions. In this
approach, half of the state neurons are assigned to forward data and the other half to
backward data. This modification strives to enhance the learning ability of models with
complex data patterns. This approach is also applied to LSTM networks (BLSTM). Bidi-
rectional Long Short-Term Memory Networks have been used successfully in different
problem domains such as; speech recognition [28], handwriting recognition [29], se-

quence tagging [30] and many more.

3.2.4. Optimization Methods

As font generation problem is a supervised regression problem, there are a number
of choices for optimization. The experiments in this research are performed with several
optimization methods.

Stochastic Gradient Descent (SGD) (3.1) is a simple method to minimize error
on almost any topic in science and engineering. [31] This approach is an iterative and
probabilistic method to minimize loss after each batch of data. Almost all deep learning
focused optimization methods that are used today are based on this mathematical model.
The weakness of the naive usage of this method is high risk of finding local minima

instead of global minima.

0=0—n-VoJ(0;2";y") 3.1)

RMSProp (3.2) is an extension on SGD which is proposed by Geoffrey Hinton
in his Neural Networks course [32]. This approach uses a moving average of squared
gradients instead of using raw gradient. With this, the step size adapts itself using previous
gradients, prevents both exploding or vanishing gradient problem and also decreases risk

of settling in a local minima.

E[¢*); = 0.9E[¢%],—1 + 0.1¢7
n (3.2)

Oy = 0, — —L—g
t+1 t E[gQ]t+€ t

Momentum (3.3) is another extension on SGD. This extension updates step sizes
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with momentum, using previous gradient value, and lets the learning gets faster as it goes.

[33]

vy = Y1 + Ve J(0)
0=60— (0

(3.3)

Nesterov Accelerated Gradient (3.4) peeks ahead in to update step sizes with mo-

mentum instead of backward direction. [34]

vy = Y1 +nVeJ (0 — yvi-1)
0=60— Ut

(3.4)
ADAM (Adaptive Moment Optimization) 3.5 is a combination of RMSProp and

Momentum optimizers, keeps using moving average of squared gradients while adding

momentum to have faster training. [35]

my = Prme—1 + (1 - 51)915

vy = Bovey + (1= Bo)g; (3.5)
6t+1 =0, — ﬁmt
t

NADAM 3.6 a version of ADAM optimizer that uses Nesterov Momentum instead
of Momentum. [35]

. (=8
Opir = 0 — ——— NP S 1
t+1 t T + E(ﬁlmt 1 5{

) (3.6)
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CHAPTER 4

METHODOLOGY

This chapter is a summary of computational methods and approaches that are
taken in this study. Overall system architecture and internal steps are described, math-

ematical backgrounds of methods are mentioned. Figure 4.1 is an overview of the sug-

] \

gested system.

TTF / OTF y :
Samie r[Pr‘epr‘ocessng Dataset
Y
Configuration ] ‘(

rl Training

y

. Trained
Generation Model

Outlines

Generated [
Glyph l

Figure 4.1. The proposed system in this study consist of three modules; Preprocessing,
Training and Generation. The input of the system is a set of TTF or OTF
fonts and the expected output of the system is an LSTM-generated set of
glyph outlines.

4.1. Preprocessing

To form deep learning data from OpenType and TrueType font files, preprocessing
steps such as Parsing, Subsetting and Formatting have defined. The primary aim in those
steps is to prune all non-relevant data and create learnable sequences. To parse and subset

raw font files, FontTools Open Source Font Manipulation Library [36] is used.
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Figure 4.2. In preprocessing, binary TTF fonts are encoded into learnable glyph se-
quences. The raw fonts are filtered by their characteristics, and their re-
quired parts such as specific groups of glyphs are extracted. After filtering,
fonts are converted to TTX which is a traversable representation for font
data. Their learning features are extracted from TTX and encoded into
numeric sequential dataset. Additionally, optional phases such as normal-
ization are also performed in this module.

Config >

Q?’l

i

4.1.1. Parsing

TrueType and OpenType fonts are binary file formats. To be able to extract and
use data from them, there is a need for conversion to a non-binary format. 77X ("TT”
for TrueType and ”X” for XML) is a human-readable format based on XML, that can be
encoded from or decoded to TrueType binary formats.

FontTools provides an internal tool to convert TTF files to TTX with subsetting

options. Created 77X files can be parsed and traversed easily to form the dataset.
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4.1.2. Subsetting

TrueType and OpenType fonts contain several tables to keep extensive definitions
about fonts such as encoding, rendering parameters, hinting and antialiasing guides. The
scope of this thesis is limited to glyph outline definitions, so all the definitions except
glyph outlines can be excluded from training as they are obsolete.

Furthermore, apart from table subsetting; the glyphs that are not to be trained
should also be excluded. CMAP table is used to get glyph mappings from GLYF table, for
each glyph outline definition. Only these two tables are used in preprocessing phase to
form a dataset from a single glyph or a group of glyphs.

Another phase of subsetting is filtering by font metadata. Google Fonts Archive
includes metadata definitions for each font file. Before forming the dataset, fonts files
are filtered by their style, weight and posture. This allows focused experiments to be
performed.

For experiments in this research, several subsetting parameters are used. In exper-
iments, the model is trained with either multiple glyphs or a single glyph, The filtering of
specific glyphs from fonts have been done in subsetting phase. Metadata based subset-
ting parameters are also changed in different experiments but most of the experiments are
made with Sans-Serif, Regular Postured, Medium Weight fonts. The reason of this choice

is that, these parameters represent the most common sense fonts.

4.1.3. Encoding and Feature Definitions

It is mentioned that all glyph outline definitions are formed from one or more
closed shape definitions. These closed shapes have sequences of control and anchor
points.

The primary feature of a point in 2-dimensional space is its x and y coordinates.
These coordinates are defined in range between 0 and 1000. Scaling and normalization
are optionally used for coordinates in this study.

Another feature of a point is the flag if the point is an anchor or a control point.
This feature is also explicitly defined in font files and used as an integer-coded boolean in
this study.

An important aspect in sequential learning is the knowledge of when a sequence

starts and ends. Though, the data is defined for each glyph, glyph outlines have vari-
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able lengths and all outlines should be flattened into a single sequence to be useful as
LSTM input. Therefore, all points should had been flagged with their state. 4 point
states are defined for this purpose; START_CONTOUR, END_CONTOUR, DRAW_TO and
END_GLYPH. This states are also integer-coded in input sequences.
Though it is not a temporal feature, glyph name is also included in each time-step.
Unique integer values are assigned to each glyph and added as a feature of sequences.
As an alternative of integer encoding, one-hot encoding is also experimented for

point states and glyph indexes.

4.1.4. Adjusting Starting Point

Glyph outline definitions in digital font representations are closed shapes and their
starting points are ambiguous. This creates noise in data and affects learned patterns
negatively in training. At preprocessing phase, all glyph outlines are adjusted to start from
their bottom-left points to assure consistency. Figure 4.3 is an example of this adjustment

on uppercase E glyph.

700 4 1 700 4 L 2
3 2 4 3

600 600 -

500 4 500
400 4 = 400 A >

7 6 8 7
300 4 300 4
200

8

200

100 4

9 100 + 9 10

-200 0 200 400 600 800 -200 0 200 400 600 800

Figure 4.3. Raw glyph with point indexes (Left),are rolled to start from their closest
point to origin for consistency (Right).

23



4.2. Training

This section details the training processes of this study and mentions the strategies

that are taken to cope with different limitations of learning glyph sequences. An overview

of the training module is shown in Figure 4.4.

Dataset

%

Glyph
Indexes
Sequence

Points
Sequence

and Output
Data

L 3 |Create Batches

Glyph
Index
Batches

Glyph
Point
Batches

Split
Glyph —>
Indexes
Sequential
Input
—>
)
Save Model |€«— No epoch < MAX
Trained Model

Yes

Testing ](—————{

Training ](J'—

A

Split Test
Batches

Training
Batches

Test

D
Batches

Figure 4.4. The pre-formed dataset is fed into the network after a flattening. Glyph in-
dexes and temporal point sequences from flattened sequence are separated
to created batches of data, a part of batches are used for testing, and rest
of the batches are fed into the network for training. After the predefined
epoch count is reached, model weights are saved to be used in generation

module.

4.2.1. Input Representation

As mentioned in Section 4.1.3, each point in a glyph sequence represent a single

time-step in the sequential model, so there is a need to represent temporal data about the

point and also non-temporal data about the glyph in overall.
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Table 4.1.: Input representation of font dataset.

Feature ‘ Type ‘ Values Description

x-coordinate | int [0, 1000] Raw x-coordinate of point in
2D space.

y-coordinate | int [0, 1000] Raw y-coordinate of point in
2D space.

on bool | {on, off} Bézier point flag, indicating if
the point is on-curve or off-
curve

flag int {StartContour, DrawTo, End- | Point flag indicating the role of

Contour, EndGlyph} point for the glyph outline.

glyph-index | int [0, 255] Non-temporal glyph indicator.
Same throughout each glyph
outline representation

5 features for each point are selected to be included in inputs. These features are
shown in Table 4.1:

The generated time-steps can be fed into LSTM networks one by one or in batches.
Considering that almost all machine learning models work with less features [37], the
input representation is designed to have minimum features while keeping all relevant data.
This representation provides all the information to define a glyph outline in a simplistic

way.

4.2.2. Foundational Neural Network Model

A foundational neural network model is defined to make independent modifica-
tions for controlled experiments. This model is designed to be as simplistic as possible,
and based on models that created successful output to related works in literature. [3]. This
model can be defined as a generalized sequence learning and prediction workflow.

Figure 4.5 represents the architecture of the foundational model. Though it is
selected as the main architecture for all experiments; in Section 4.2.6, different network

architectures are proposed and discussed.
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Figure 4.5. The foundational model is a simple 2-layer LSTM network followed by a
single dense layer having size as the number of output features.

4.2.3. Batching

Batch size is an important hyper-parameter of neural networks. Especially the
training and prediction performances of sequential models such as RNNs and LSTMs
are highly effected by batch size. Considering sequential models are supposed to learn
temporal structure inside data, the clarity and unity of sequence batches is critical.

Glyph outline definitions have unequal lengths. Even for the same glyph, various
fonts define different number of points in a single glyph. As the primary intent is to train
the model for the purpose of generating complete glyph outlines after training; in training
it is crucial to isolate different glyph definitions from each other. Then all internal states
in the LSTM model should be cleared after each glyph, to prune all non-relevant temporal
information inside model.

In this research, 3 different batching approaches are evaluated.

4.2.3.1. Padded and Masked Sequential Training

In this approach, all the input sequences are pre-padded or post-padded with a spe-
cific value to create equal-sized batches. This method guarantees that all batches contain
exactly one glyph and all glyphs are contained inside only one batch.

One drawback of this approach is that there is a requirement to define a static
batch size. The defined batch size should not be very large for two reasons. The first
reason is; when batch size is too big in an LSTM, training time and memory consumption
increases dramatically. The other reason is, if a batch contains little information about the
sequence and most of the batch size is filled with padded values, learning ability of the
model decreases.

Figure 4.6 is an example of pre-padding and post-padding data for static batch size
of 20.
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To prevent the second issue mentioned in last paragraph, masking logic is used.
Getting a batch input, a Keras model can ignore specific time-step inputs with a layer
called Masking Layer. This layer does not let specific time-steps to pass into next layers
and keeps LSTM model clean if when is placed before it. In this batching approach,
Masking Layer is placed between input layer and the first LSTM layer.

321, €6, 1, 1, 5] [0, 0, 0, 0, 5] [y —dy —Hy—Ly—IL]
[3, 427, 0, 2, 5] [123, 123, 0, 1, 5] [-1, -1, -1,-1,-1]
[635, 18, 1, 3, 5] [423, 23, 1, 2, 5] [=l; =ly =1g=l1yz=1]
[0, o, 0, 0, 5] [3, 423, 0, 2, 5] =1, =1; =%,=1,=l]
[123, 123, @, 1, 5] [575, 48, 1, 2, 5] [y —dy —dy—dy—iL]
[423, 23y 1, 25 5] [1264 573, 1, 24 5] =1y =1y =13-13-1]
[35 423, 0, 2, 5] [123; 123, 1, 25 5] [=1l; =l =1z=lz=1]
[575, 48, 1, 2, 5] [123, 123, 0, 3, 5] [=Ly =1, =d,~1,~1]
[126, 573, 15 2, 5] [dy —3y —13—1y—1] [Ly =1y —1y—1,—1]
[12B, 123, 1, 2, 5] [=ly =1y =1y~=1,4=1] [=1lg =1y =1y=1,=1]
[123, 123, 0, 3, 5] =1, =1, =1,=1,=1] =1, =1, =%,=1,=l]
[423, 26, 1, 0, 5] [y —dy —Ly—dy—l] [y —dy —dy—dy—L]
[3, 433, 0, 1, 5] [-1, -1, -1,-1,-1] [0, 0, 0, 0, 5]
[559, 48, 1, 1, 5] [=1l; =1z =1z=1;=1] [123, 123, 0, 1, 5]
[5653, 23, 1, 1, 5] [-1, -1, -1,-1,-1] [423, 23, 1, 2, 5]
[Ly 413, 0, 1, 5] [dy =3y —13—15—1] [2, 423, 0, 2, 5]
[625, 48, 1, 1, 5] [=1y5 =13 =1lz=1z=1] [575, 48, 1, 2, 5]
[423, 23, 1, 1, 5] [=ly =l =1lsg=lz=1] [1265 5735 15 2; 5]
[3, 473, 0, 2, 5] [<1l, =1, =1,-1,=1] [123, 123, 1, 2, 5]
[835, 18, 1, 2, 5] [l —1y —15—15—1] [128, 123, @, 3, &]
(a) Original Data (b) Post-Padded Data (c) Pre-Padded Data

Figure 4.6. Separate glyphs are originally consecutively located inside data (a). To
apply padding-masking logic, the data is either post-padded (b), or pre-
padded (c) with a predefined timestep.

4.2.3.2. Point by Point Training

This approach takes inputs in sequences one-by-one, having batch size exactly 1.
The strength of this method is keeping original dataset clean, without needing any
padding or masking logic, feeding data into network as-is. All glyphs are concatenated to

form a single sequence and are fed into the network.
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The flaw of this approach is having a big number of gradient updates, as the model
performs back-propagation for each batch of data. This increases the computational time
needed for each epoch dramatically. Also having large number of gradient updates may
lead to overfitting in network. Furthermore, in consequence of feeding temporal data
point by point, the network does not learn long temporal structures in data. Instead it
learns point to point mappings which is inferior for the generative aims of this research.

To make the network to learn long temporal structure in data, internal states of
LSTM nodes should be cleared manually in this approach. To perform it, when a point that
is flagged as END_GLYPH is fed into the network, the implementation should reset LSTM
internal temporal states. Keras has a feature called Stateful LSTM for this purpose. This
LSTM nodes, does not clear their internal states after each batch, instead they wait for a
method called reset_states to perform internal state clearing. In the implementation,
only after a point with END__GLYPH flag is processed, reset__states method is called.

Though, this feature prevents point-by-point learning, the computational burden is still

high.
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Figure 4.7. Flowchart of point-by-point training. With this approach, the network pro-
cesses every point as the input and expects a single output for each gradient
update.
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4.2.3.3. On-line Training

A more sophisticated approach for batching problem is using dynamic batch sizes [38].
This idea is mainly preferred for On-line Learning with LSTM networks, since on-line
data characteristically have arbitrary sizes. Having similar properties, glyph outlines are
also compatible with this approach. Using this idea for glyph outlines, the input can re-
main as-is and the data can be fed into networks in self-contained full sequence batches
in various lengths.

In the implementation for on-line training, LSTM models are created without
specifying batch sizes. Glyph outline sequences are kept as-is and each batch is defined
as a sequence of points for one glyph. In training, each input and output sequence is fed

into the network variable-sized batches.
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Figure 4.8. Flowchart of dynamic batch-sized training. Having batches per glyph, the
input and output are self contained with only required information to be
learned by the model.

4.2.4. Learning Rate Strategies

Learning rate is another important parameter for LSTM training. The optimal
value of learning rate primarily depends on the network size, data size and feature count

for each time-step. The learning ability of LSTM model is very sensitive to learning rate
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while training. To find optimal learning rate to generate typefaces, several approaches

have experimented in this study.

4.2.4.1. Static Learning Rate

The typical way to define learning rate in a deep learning model is to specify it
as a constant value. The selection of learning rate is done manually for each training
experiment and, cumulative losses after each epoch is tracked to measure performance
of the selected learning rate. In this experiment, using high learning rates such as 0.1
or 0.01 are performed well in initial epochs of training but the losses are converged
to relatively high values in later epochs. These experiments are failed because of not
finding acceptable loss values and generative results. Contrarily, low learning rates such
as 0.00001 have converged to lower loss values on the long run, but the number of

epochs, hence the need of time to train the network became higher.

4.2.4.2. Decaying Learning Rate

To prevent both early convergence and long learning times, a combined approach
is performed. In this approach, an initial learning rate is defined at the beginning of train-
ing and it decreased periodically after a specific number of epochs. This approach requires
two more parameters to be defined alongside learning rate; decay rate and decaying pe-
riod. Using dynamic learning rate by decaying logic, training times are optimized and

final loss values have stayed low.

4.2.5. Data Encoding

In preprocessing phase (Section 4.1), several ways to create input data are defined.
To find an optimal way of representing glyph outline data, different adjustments have been

made in preprocessing phase. The adjustments are grouped per feature in this section.
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4.2.5.1. Coordinates Encoding

Glyph anchor/control point coordinates are the most important feature of glyph

outlines that should be trained to LSTM in this research. In the raw TrueType dataset that

is used, this feature is generally in range: (x : [0,1000],y : [0,1000]) and both x and

y are represented as integers. Since the range of coordinate features are relatively very

large compared to other features in input data that is mentioned at Table 4.1, it may dom-

inate other features. Interestingly, because the importance of coordinate features are also

relatively high, this may have positive effect to expected training and generation perfor-

mance in this research. To find the most optimal coordinate representation for research, 6

different encodings are experimented.
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Figure 4.9. Point coordinates are used as-is (a), Min-Max scaled (b), Z-Score Normal-
ized (c), or as relative distances from previous point (d).
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Raw Coordinates Keeping coordinates as-is and training the model is the simplest ap-
proach without any requirement of data preprocessing.

The downside of this approach is, when raw data is fed into the model, model
becomes very responsive to outliers. Since in this case an outlier is not necessarily a
single noisy point, it can be a full sequence too. To eliminate those outliers, or at least

reduce their effects on the learning, preprocessing should be done on coordinate features.

Scaled Raw Coordinates A simple modification on raw glyph coordinates is scaling
their value in a specified range. Scaling stands for downscaling in this context, because
the aim is to reduce the range of coordinate data. While this approach narrows the range
of coordinates, the scaled data still have the outliers, only in a different scale.
X — X
Xee = ﬁ 4.1
Experiments have been made using Min-Max Scaling Equation (4.1), and the gen-

eration results were similar to the results of raw coordinates.

Normalized Raw Coordinates Normalization is a powerful method to both downscale
coordinate data and also to eliminate outliers. To normalize coordinate values in experi-
ments, Z-Score Normalization Equation (4.2) has been used. In this method, the expected
range is also defined but the scaling logic is more sophisticated. Z-Score uses standard
deviations and means to adaptively scale data. This helps to reduce the effects of outliers

in data, also downscaling can be done at the same time.

4.2)

Relative Coordinate Differences One other approach that is preferred in related re-
searches [3], [39] is altering raw coordinates to relative differences. In this approach, a
glyph starts at a predefined point in coordinate system (e.g. z = 0,y = 0), and for all the
following points, coordinate features are their relative distances from their predecessors.
This approach is widely used because it is a more natural representation of drawing data,

also the range is smaller and zero centred.

Scaled Relative Coordinate Differences Relative coordinates have a smaller range
than raw coordinates. But still, though they are not very common, long jumps between

points have to large values in data. Similarly as it is done in raw coordinates; to test the
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effectiveness of range scaling on learning performance, scaling also applied to relative

coordinate differences in experiments.

Normalized Relative Coordinate Differences To equalize the relative point distances
from different glyphs to the same range, Z-Score normalization is also applied to relative
coordinate differences. One situation to remark here is; the relative coordinates of glyph
outlines are either positive or negative and it is vital to keep those properties of data not
to deform training and generation.

By definition, Z-Score normalization can convert a negative value to positive or
vice versa because it scales every data into a zero-centred range. However, relative dis-
tances from glyph outlines are not exposed to this risk. Since all the relative distances

form a closed shape, the mean of all relative distances in each glyph is exactly zero.

4.2.5.2. Point Flag Encoding

To specify behavioural flags of points, 4 different states: (START_CONTOUR,
DRAW_TO, END_CONTOUR, END_GLYPH) are defined. Considering the number of
these flags are relatively low, integer encoding is selected as the encoding of this feature,
at the first sight. Although, as this feature is categorical, one-hot encoding is also tried in

the experiments.

4.2.5.3. Glyph Index Encoding

Glyph indexes are non-temporal categorical features of the typeface dataset in this
research. Glyph index feature is only meaningful while training networks with multiple
glyphs. For per-glyph trainings, this feature is obsolete.

To encode glyph indexes; both integer encoding and one-hot encoding is used.
However, unlike point flags, glyph indexes have a relatively big range. Integer encod-
ing has a potential of underperformance in big ranges of data. Thus, different network

architectures to use one-hot encoding are defined in Section 4.2.6.
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4.2.6. Alternative LSTM Architectures

Though most of the experiments are performed using the foundational model de-
clared in Chapter 5, several network architectures are also tried. Most of the adjustments
on the foundational network architecture is made on input layers.

Foundational model is not compatible with one-hot encoded categorical data. To
represent categorical glyph index feature, integer encoding should had been chosen. Input

layer and the architecture of the foundational model is shown in Figure 4.10.

Point Input +
Glyph Name LSTM —> LSTM Output
(int-encoded)

Figure 4.10. Input layer and architecture of foundational model

As an alternative; input layer of the foundational model is modified to feed dif-
ferent features of sequential time-steps in separate input layers. Input layer modifications
are primarily developed to feed one-hot encoded features alongside continuous features
in a disjoint structure. The main motivation to separate one-hot encoded data from other
data is to prevent domination of one-hot data which require large number of input slots
when they are fed into the network. Having separate input gates for continuous data and
one-hot vectors, enables the capability of weighting the effect of individual features and
preventing domination. Two alternative LSTM architectures are shown in Figure 4.11 and
Figure 4.12.

LSTM

'

Glyph Name

(one-hot) L

Figure 4.11. The first alternative architecture separates temporal data from categorical
glyph name data using separate input layers and dedicated LSTM nodes
for each input. Outputs of these two LSTM nodes are concatenated into a
dense layer, then fed into a common LSTM node.
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23N

Glyph Name
(int-encoded)

Dense —> LSTM Output

Figure 4.12. In second alternative architecture, only temporal features have a dedicated
LSTM node. Glyph name feature is merged with that LSTM node with a
dense layer, then fed into common LSTM node.

4.3. Digital Font Generation

Predictive features of LSTM networks are extensively used for generating se-
quences. To generate glyph outlines with LSTM networks, training with digital font
dataset that is defined in Section 4.1 is used. After the model learns the temporal struc-
ture inside glyph representations, generation has performed using predictive features of
the network using the trained model. Figure 4.13 is a visual summary of the generation

module and its components.

4.4. Software Infrastructure

Long Short-Term Memory networks are used in different compositions in this re-
search. Several hyper-parameters such as learning-rate, hidden layer size, dropout, differ-
ent optimizers and loss functions are used. Also, experimental network architectures are
tried in this project. To prototype models with these large number of variations, additional
libraries and frameworks are used in this study.

To create models and and run the experiments, ”Keras: Python Deep Learning
Library” [40] is used. This library is a deep learning frontend that uses several back-
end frameworks for computation. For computations on Nvidia GPUs, “Tensorflow Open
Source Machine Learning Platform” [41] and "Nvidia CUDA Parallel Computing Plat-
form” [42] is used. For computations on other GPU and CPUs, ”PlaidML Portable Tensor
Compiler” [43] is used. The code in this study is written merely using Keras. The two

backends mentioned, provided same results with a single Keras implementation.
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LSTM Network Point
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{Append Point H Glyph Points)*

Figure 4.13. A static START_CONTOUR input with no specified point coordinates is
fed to the network alongside a GLYPH_INDEX, then the network starts
predicting next possible points of generated glyphs. All predicted points
are passed through a sampling process, then fed again into the network
together with the sampled point to predict the next point in glyph. While
training data is designed to contain point states such as START__CONTOUR,
END_CONTOUR or END_GLYPH, the prediction ends at a point when it
predicts a point with END_GLYPH flag. At this point, the shape that is
created is closed by drawing a line or a curve (depending on the ON state)
to the starting point of the current contour.
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CHAPTER 5

EXPERIMENTS

This chapter presents the results of the experiments in this research and discus-
sions on performances of different parameters in controlled experiments. The perfor-

mance criterion and their examples are also detailed in this chapter.

5.1. Criterion on Generative Performance

Generation results are classified as successful or failed by several qualitative and
quantitative conditions. Even when a generation result passes all the quantitative condi-
tions of success, it should be visually seen to check if it represents the expected glyph

properties.

5.1.1. Overlaps

The first condition to success of a generation result is the inexistence of overlaps.
An overlap of two curves or lines cannot exist on a font glyph by definition of being
formed of closed-shapes. A generative result with any number of overlaps is classified as

a failed result. Figure 5.1 is an example of the usage of this criteria.

5.1.2. Closing Shapes

A font glyph is a set of closed shapes, thus if a generation result has any non-
closed shapes it is classified as a failed result. This criteria eliminates most of premature
generation results especially in undertrained models. An example of this criteria is shown

in Figure 5.2.
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(a) Failed Result (b) Successful Result

Figure 5.1. Overlap criteria is the most common way of filtering failed results in this
study. The failed result (a) is a qualitatively good representation of glyph
B, however, having a single wrong point prediction on its bottom-left, it
becomes a failed experiment having an overlapping line. Contrarily, while
the successful result (b) is a more primitive representation of glyph B, it
does not contain any overlaps, thus it’s a successful experimental result for
this criteria.

5.1.3. Contour Count

For almost every glyph, the number of contours are static. For example C has only
one contour, A has two contours and B has three contours. Any generation result that does
not contain that specified number of contours are classified as failed. Figure 5.3 is an

example of this criteria on glyph A.

5.2. Experimental Results

The experiments are performed per glyph and per glyph groups in this study. In
per glyph training, only one glyph is used to train the network. Contrarily in per group
training, a pre-defined set of glyphs are fed to the same network and that group of glyphs
are expected as output. Glyph groups are can be a full character-set such as an alphabet,
or can be a pre-defined group of glyphs that are formed by their characteristics.

Two main criteria are selected for characteristic glyph grouping. The first criterion

is Outline Count. Learning outline finishing points is an important indicator of generative
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Figure 5.2. The failed result (a) is a premature generation result from glyph t. In later
epochs, the successful result (b) is generated from the same model.

performance of point state feature. The other criterion is the presence of curves in glyphs.
This feature is an indicator of generative performance of anchor point and control point
learning.

In per glyph training, the fifth timestep feature glyph index becomes obsolete, thus
the dimensionality of input data is reduced. Also, since the variation of data is decreased,
the network becomes more focused and specialized to generate a specific glyph. In con-
trast, in per group training the network becomes more generalized and generates glyphs

in similar styles.

5.2.1. Per Glyph Training

Training a single network for one glyph is a simple approach that reduces dimen-
sionality and the variance of both input and output data of the network. Samples from
results of several per-glyph experiments are shown in this section.

Figure 5.7 shows the training results of glyph A with generative evolution through
epochs. In this experiment, a 2-layer LSTM network is trained with 10 monospace fonts.
The coordinates are normalized with Z-Score normalization and dynamic batching is used.

Figure 5.8 shows the training results of glyph e with generative evolution through
epochs. This experiment is done in exactly same environment with the previous experi-

ment, trained by 10 monospace fonts using a 2-layer LSTM network. The coordinates are
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Figure 5.3. The failed result (a) has 3 contours which is not the expected contour count
for glyph A. However, having 2 contours the successful result (b) passes
this condition for glyph A, regardless of its dissimilarity with the expected
glyph shape.

also normalized with Z-Score normalization and dynamic batching is used.

As mentioned in Section 4.3, in generation, every predicted point is passed through
a sampling phase and fed again into the network. With this approach, the generated glyphs
from the same network slightly vary in style. An example for generative variance is given
in Figure 5.4.

The details of the model that is used to generate single glyphs are given in Ta-

ble 5.1.

5.2.2. Per Glyph Group Training

To be able to generate multiple glyphs from a single model, training with groups
of glyphs is needed. Unlike single glyph training, GLYPH_INDEX feature which denotes
different glyphs is instrumental for this approach. In this section, samples from generative
results of different groups are shown. The groups are either formed by glyph characteris-
tics or randomly. A complete character set or an alphabet can also be selected as a group,
however in that case, the variance of data becomes very large and training requires a larger
dataset. Figure 5.5 and Figure 5.6 are generation results of two characteristically merged

groups of glyph training.
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Figure 5.4. Generative outputs of glyph N from a single model. The styles of the
glyphs vary in different generations.

Table 5.1.: Model parameters for single-glyph training.

Parameter Value

Glyph Style Monospace

Glyph Weight 400

Glyph Posture Regular

Number of Glyph Samples | 10

Model Architecture Foundational Model

Optimizer RMSProp

Learning Rate Strategy Decaying (%10 in every 50 epoch)
Initial Learning Rate 0.001

Layer Type Bidirectional LSTM

Coordinate Encoding Normalized Raw Coordinates (Z-Score)
Point State Encoding Integer Coded

Batching Strategy Dynamic Batching

5.3. LSTM and BLSTM Layers

As mentioned in Section 3.2.3, Bidirectional LSTMs create favourable results
when successive time-steps of sequences are available in training data. This requirement
is a root of incompatibility of BLSTMs with several problems such as on-line learning or
real-time forecasting. Unlikely, glyph outline data in this study contains full sequences of
trainable data and is compatible with BLSTM model. In experiments, BLSTM layers are
used for comparison with LSTM layers. The results of these two approaches have mean-
ingful contrast with different superiorities in dissimilar setups. A sampled performance

comparison between LSTM and BLSTM layers is given in Table 5.2.
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Table 5.2.: Performance comparison between LSTM and BLSTM layers. In the first sam-
ple h; Despite both generating visually almost identical results, the selection of LSTM
layer have a significant superiority over BLSTM layer for all criterion and also in con-
verged loss values. On the other hand, in the second glyph A, BLSTM layers have signif-
icantly better ratios in every criterion and also in loss values. Furthermore the placement
of the inner contour is visually better in the BLSTM sample. In the last example a, the
performances of both preferences are similar with a slight superiority of BLSTM layers.

| Glyph | LSTM | BLSTM |

Success: 40/100 Success: 22/100
Contour: 65/100 L. Contour: 42/100 =

h | Overlap: 40/100 / “~\" | Overlap: 22/100 / /\\\\
Closing: 94/100 L | Closing: 537100 L L
Loss: 0.0799 Loss: 0.0825
Success: 23/100 Success: 65/100
Contour: 34/100 - Contour: 72/100 A

A Overlap: 24/100 /g\ Overlap: 67/100 / z\l
Closing: 65/100 /N Closing: 83/100 L/ TN
Loss: 0.1053 Loss: 0.0692
Success: 13/100 Success: 16/100
Contour: 24/100 <=\ | Contour: 56/100 <

a | Overlap: 32/100 v, \ Overlap: 44/100 T i
Closing: 69/100 ‘ Q_\;;,: Closing: 61/100 A st
Loss: 0.0514 Loss: 0.0546
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Figure 5.5. Generative results of [E, H, I, W, X, Zz].This setof glyphs repre-
sent the non-curved and single outline glyphs from Latin uppercase letters.
These 6 glyphs are used to train a model with their integer-coded glyph
index features. The model succeeded to discriminate these glyphs and cre-
ated these results from different starting glyph flags in generation module.

5.3.1. LSTM Layers

In experiments, as shown in Table 5.2, the choice of using LSTM layers have
created generally high-quality results on large sets of data and low learning rates.

Additionally; compared to BLSTM layers, LSTM layers have inferior ability of
learning relatively longer sequences. Yet, LSTM layers work well in short sequences;
in this case for simpler glyphs such as I and C. As LSTM layers learn data in single
direction, these layers have failed learning and generating more complex glyphs such as
E. Figure 5.9a shows an example of a generative result of glyph E from a model with
LSTM layers. As can be seen, the model has failed to generate the whole glyph. Instead
it failed at a point where the glyph have a similar pattern as the previously learned part
of the glyph. Instead of continuing generation of remaining parts of the closed shape,
it predicts an identical pattern as that previous pattern repeatedly. The awareness of the

forthcoming time-steps in the glyph may prevent this situation.
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Figure 5.6. Generative results of [C, G, J, S, U]J. This set of glyphs represent
the curved and single outline glyphs from Latin uppercase letters. This
model also succeeded to discriminate glyphs and created diverse results
from different starting glyph flags in generation module.

5.3.2. BLSTM Layers

As mentioned in Section 3.2.3, BLSTM layers learn patterns in data from two
directions. This ability of BLSTM layers, allows the model to make predictions of a
specific time-step; not only in consideration of previous patterns, but also forthcoming
patterns.

For glyph generation task, BLSTM layers are especially eligible in the case of
repetitive patterns in trained glyphs. Nevertheless, the experiments have demonstrated
that, the use of BLSTM layers does not contribute to a significant improvement when
training glyphs that do not have non-repetitive patterns, such as h and a which are shown
in Table 5.2. Still, while BLSTM networks have not significantly underachieved, com-
pared to LSTM layers in general, they become favourable in a generic model for the

purpose of consistency and broadness.
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Table 5.3.: Performance comparison between static and decaying learning rates. Experi-
ment results on 3 glyphs are provided in this table. The first glyph £ is a single-contour
curved glyph and the results of controlled experiments on this glyph shows that; while the
preference of using decaying learning rate increased the ratio of successful generations, it
also reduced the success rate of samples with correct number of contours. Also the visual
comparison of samples can be interpreted that, decaying learning rate created an over-
generalized version of that glyph. Contrarily; for the second glyph N, decaying learning
rate created higher quality generation results with also visually better representation of
the glyph. In the last experimental sample E; Decaying learning rate had significantly
improved the quality of the generation results, both in criterion rates and also visually.

Static Learning Rate

Decaying Learning Rate

Success: 3/100
Contour: 65/100
Overlap: 8/100
Closing: 72/100
Loss: 0.1072

Success: 7/100
Contour: 34/100
Overlap: 16/100
Closing: 75/100
Loss: 0.0963

oz
ji

Success: 71/100
Contour: 74/100
Overlap: 72/100
Closing: 92/100
Loss: 0.0625

Success: 82/100
Contour: 87/100
Overlap: 82/100
Closing: 98/100
Loss: 0.0205

|

N

Success: 59/100
Contour: 75/100
Overlap: 54/100
Closing: 74/100
Loss: 0.0749

Success: 97/100

Contour: 97/100

Overlap: 97/100

Closing: 100/100
Loss: 0.692

5.4. The Effect of Learning Rates

Apart from the effects of switching LSTM nodes with BLSTM nodes, the strategy
of defining learning rates had significant effects on generative performances of models.
As seen in Table 5.3, usage of decaying learning rates had positive effects on learning
performances, compared to static learning rates. Models that are trained with decaying
learning rates had converged to lower loss values than models with static learning rates.
Also, decaying learning rates reduced existence of overlaps which have been the most
common failing criteria among all criterion that are described in Section 5.1. Neverthe-
less, for several glyphs such as f, decaying learning rates also led to over-generalization
and dropped success rates of contour count criteria, despite increasing overall success

rates.
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(a) Ep: 50 (b) Ep: 100 (c) Ep: 200
(d) Ep: 500 (e) Ep: 1000 (f) Ep: 2000

Figure 5.7. Samples from generative results of training glyph A through epochs. Up-

percase A is a non-curved multi-contour glyph and so forth, the network
is expected to learn to end a contour and start another without the require-
ment of learning how to draw curves. At epoch 50 (a), the network learned
how to draw a line but could not form a closed-shape. At epoch 100 (b),
it drew a sequence of lines to form a closed shape but could not end glyph
and created loops on that area. However at 200 (c), it closed the shape but
did not draw the outer contour of A completely. At epoch 500 (d), network
successfully drew the outer contour and started the inner contour. At, 1000
(e) it can be seen that the inner and outer contours are created by the net-
work but the edges of the generated glyph had smooth edges which did not
express the style of the input data. Finally at epoch 2000 (f), the network
had learned the style of the data and created a sharp edged glyph.
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(d) Ep: 500 (e) Ep: 1000 (f) Ep: 4000

Figure 5.8. Samples from generative results of training glyph e through epochs. Low-
ercase e is a curved multi-contour glyph and so forth, the network is ex-
pected to learn both to draw multiple contours and of to learn how to draw
curves. At an early epoch 50 (a), the network learned how to draw a curve
without being able to close shapes, at epoch 100 (b), it could not create
a closed shape but created loops of curves on the same area. At 200 (c),
it closed the shape but ended early without forming the outer contour of
e. At epoch 500 (d), network still could not finished the outer contour and
could not start drawing the inner contour. At, epoch 1000 (e) the outer con-
tour had successfully created however the network did not end the contour
and drew an extra contour on the same path. Eventually at epoch 4000 (f),

the network had drew both inner and outer contours.
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(a) LSTM generation result. (b) BLSTM generation result.

Figure 5.9. LSTM layers do not have any projection about the further data and make
decisions only relying on previous timesteps. For glyphs having repetitive
patterns such as E, this characteristic of LSTM creates a repetition issue
(a). Contrarily BLSTM layers have projections of both past and future
of the data and do not create repetitive patterns in the same environment
(b). These two generative results are created from the identical learning
parameters in two models that contain LSTM nodes and BLSTM nodes
respectively.
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CHAPTER 6

CONCLUSION

This study is the pioneering study on Long Short-Term Memory Networks using
vector fonts as data domain. As its primary aim, this thesis proposes a model and guideline
for font generation with Long Short-Term Memory networks and provides samples from
generative results of several experiments. Additionally, a method of forming a sequential
deep learning dataset from fonts is proposed and detailed in this dissertation.

LSTMs have demonstrated great advancements on sequence learning tasks. They
achieved impressive results on several sequential problems in speech and handwriting
domains. However, complex patterns and high dimensionality on sequential data harms
performances of LSTMs dramatically. As its secondary aim, this study also has also
strived to assess the effect of different variations of LSTM models and data encoding
approaches on learning and generative performances, corresponding to solve a relatively
complex problem as generating digital fonts that are both high dimensional and have
perplexing sequential patterns.

As a discussion of performance, experimental results show that appropriate data
encoding is one of the most important factors in LSTMs. Especially batch consistency
and selection of normalization strategy had significant effects on generative abilities of
LSTMs. Additionally in experiments, the choice of generative network architecture is
proven to have great effects on learning complex patterns in sequences. Lastly, decaying
learning rates with correct parameters have exceptionally improved learning abilities of

models.

6.1. Future Work

This experimental research is a starting point for font generation using sequential
deep learning models. While the results of this study is not close to commercial-quality
fonts, the methods and the results in this study can be extended to create distributable high
quality machine generated vector typefaces. Generated glyph outlines can be encoded into
OpenType format with additional features such as hinting, spacing and ligatures.

Apart from font generation, this study can also be a foundation to create generative
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models for data in several domains inside 2-dimensional space. It can also be extended to
multidimensional spaces or can be evolved to support several data features.
It is possible to move this study further by implementing a domain oriented net-

work architecture for digital font generation and using generative adversarial models.
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