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ABSTRACT

ON RELATIVE PROJECTIVITY OF SOME CLASSES OF MODULES

The main purpose of this thesis is to study R-projectivity and max-projectivity of
some classes of modules, and module classes related to max-projective modules. A right
R-module M is called max-projective provided that each homomorphism f : M — R/I
where / is any maximal right ideal, factors through the canonical projection 7 : R — R/I.
We call a ring R right almost-QF (resp. right max-QF) if every injective right R-module
is R-projective (resp. max-projective). In this thesis we attempt to understand the class
of right almost-QF (resp. right max-QF) rings. Among other results, we prove that a
right Hereditary right Noetherian ring R is right almost-QF if and only if R is right max-
QF ifand only if R = S X T, where S is semisimple Artinian and 7 is right small. A
right Hereditary ring is max-QF if and only if every injective simple right R-module is
projective. Furthermore, a commutative Noetherian ring R is almost-QF if and only if R
is max-QF if and only if R = A X B, where A is QF and B is a small ring. Moreover, we

introduced and studied some homological objects related with max-projective modules.
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OZET

BAZI MODUL SINIFLARININ BAGIL PROJEKTIFLIGI UZERINE

Bu tezde baz1 modiil simiflarinin R-projektifligi ve max-projektifliginin ve max-
projektiflikle baglantili modiil siniflarinin ¢alisilmasi amaglanmaktadir. Bir sag modiil
M’ye max-projektif modiil denir eger her maksimal sag ideal i¢in, her f : M — R/I
homomorfizmasi, 7 : R — R/I kanonik projeksiyonu iizerinden tasinabiliyorsa. Her in-
jektif sag R-modiilii R-projektif (max-projektif) olan halkalara sag almost-QF (max-QF)
halka denir. Bu tezde sag almost-QF (max-QF) halka siniflarin1 anlamaya calisacagiz.
Diger sonuglar arasinda, sag kalitsal sag Noether bir R halkasinin sag almost-QF olmasi
ancak ve ancak R halkasinin sag max-QF olmas1 ancak ve ancak S yaribasit Artin halka
ve T sag kiigiik halka olmak iizere R = § X T seklinde olmasidir. Sag kalitsal R halka-
nin max-QF olmasi ancak ve ancak her injektif basit sag R-modiiliin projektif olmasidir.
Dahasi, degismeli Noether bir R halkasinin almost-QF olmas1 ancak ve ancak halkanin
max-QF olmasi ancak ve ancak A halkas1 QF halka ve B halkasi kiiciik halka olmak {izere
R = A X B seklinde olmasidir. Bunlarin yaninda, max-projektif modiiller ile ilgili bazi

homolojik nesneleri tanimladik ve inceledik.
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CHAPTER 1

INTRODUCTION

Throughout, we shall assume that all rings are associative with identity and all
modules are unitary modules. Let R be any ring. Given right R-modules M and N, M
is said to be injective relative to N (or M is N-injective) if, for any submodule K of N,
any R-homomorphism f : K — M extends to an R-homomorphism g : N —- M. A
right module M is injective relative to every right R-module is called an injective right
R-module. A right R-module E is said to be max-injective (or m-injective for short) in
case for any maximal right ideal / of R, each homomorphism f : I — E can be extended
to a homomorphism g : R — E, i.e. Exty(R/I,E) = 0 for every maximal right ideal /
of Rg. A ring R is said to be right max-injective in case the right regular module Ry is
max-injective. Obviously, any injective module is max-injective. For the properties of
max-injective modules (see, (Wang and Zhao, 2005)).

Let M and N be right R-modules. M is called N-projective (projective relative
to N) if every R-homomorphism from M into an image of N can be lifted to an R-
homomorphism from M into N. M is called R-projective if it is projective relative to
the right R-module Rg. The module M is called projective if M is N-projective, for every
R-module N. In recent years, there is an appreciably interest to R-projective modules and
to the rings defined via these modules. We call a right R-module M is max-projective
provided that each homomorphism f : M — R/I where [ is any maximal right ideal,
factors through the canonical projection 7 : R — R/I. This notion properly generalizes
the notions R-projective modules and rad-projective modules studied in (Amin, Ibrahim
and Yousif, 2013).

Characterizing rings by projectivity of some classes of their modules is a classical
problem in ring and module theory. A result of Bass ( (Anderson and Fuller, 1992),
Theorem 28.4) states that a ring R is right perfect if and only if each flat right R-module is
projective. On the other hand, the ring R is QF if and only if each injective right R-module
is projective (Faith, 1976). Recently, the notion of R-projectivity and its generalizations
are considered in (Alhilali et al., 2017), (Amin, Ibrahim and Yousif, 2011), (Amin,
Ibrahim and Yousif, 2013), (Amini, Ershad and Sharif, 2008), (Sandomierski, 1964). The
rings whose flat right R-modules are R-projective and max-projective are characterized in
(Amini, Amini, and Ershad, 2009), (Amini, Ershad and Sharif, 2008) and (Biiyiikasik,



2012), respectively.

We call a ring R right almost-QF (resp. right max-QF) in case all injective right
R-modules are R-projective (resp. max-projective). Right almost QF-rings are max-QF.
The ring of integers is almost-QF, since Hom(E, Z/nZ) = 0 for each injective Z-module
E.

In Chapter 3, we investigate some properties of max-projective R-modules and
give some characterizations of almost-QF and max-QF rings. We obtain that R-projecti-
vity and max-projectivity coincide over the ring of integers and over right perfect rings.
Characterizations of semiperfect, perfect and QF rings in terms of max-projectivity are
given. As an application, we show that a ring R is right (semi)perfect if and only if
every (finitely generated) right R-module has a max-projective cover if and only if ev-
ery (simple) semisimple right R-module has a max-projective cover. By ( (Alhilali et
al., 2017), Lemma 2.1) any finitely generated R-projective right R-module is projective.
This result is not true when R-projectivity is replaced with max-projectivity. We prove
that if R is either a semiperfect or nonsingular self-injective ring, then finitely generated
max-projective right R-modules are projective. We show that any max-projective right
R-module of finite length is projective.

We also give some characterizations of almost-QF and max-QF rings. Every right
small ring is right max-QF, while a right small ring is right almost-QF provided R is right
Hereditary or right Noetherian. A right Hereditary right Noetherian ring R is right almost-
QF if and only if R is right max-QF if and only if R =S X T, where S is a semisimple
Artinian and 7 is a right small ring. A right Hereditary ring R is right max-QF if and only
if every simple injective right R-module is projective. A commutative Noetherian ring R
is almost-QF if and only if R is max-QF if and only if R = A X B, where A is QF and B
is a small ring. A right Noetherian local ring is almost-QF if and only if R is QF or right
small.

In Chapter 4, some homological objects which is related to the max-projective
modules are studied. Namely, max-injective and max-flat modules. A right R-module M
is called max-flat (or m-flat for short) if Tor’f(M, R/I) = 0 for any maximal left ideal /
of R (see (Wang, 2005)). A right R-module M is m-flat if and only if M is m-injective
by the standard isomorphism Ext}e(R I, M) = Torf(M, R/I)* for any maximal left ideal
I of R. Also, the concept of m-cotorsion modules is introduced. A right R-module M
is said to be m-cotorsion if Exty(N, M) = 0 for any m-flat right R-module N. Several
elementary properties of m-flat, m-injective and m-cotorsion modules are obtained in this

chapter. In what follows, we write I3, MF, MMC for the class of all m-injective left, all



m-flat right and all m-cotorsion right R-modules, respectively. We introduce the concept
of m-flat dimensions of modules and rings in terms of right derived functors of —® —. For
a left max-coherent ring R, we prove that R is left max-hereditary (i.e. if every maximal
left ideal is projective) if and only if every quotient of an m-injective left R-module is
m-injective if and only if every submodule of an m-flat right R-module is m-flat if and
only if every left R-module has a monic m-injective cover if and only if R is a left strongly
max-coherent ring and gl left MF-dim zM < 1 (gl right MI-dim zN < 1). For a left
max-coherent ring R, it is also shown that, R is left SF-ring if and only if gl right INJI-
dim gzt = O if and only if every cotorsion left R-module is m-injective if and only if
every cotorsion right R-module is m-flat if and only if R is left strongly max-coherent ring
and every m-cotorsion right R-module is m-flat. Similar to well known notion of pure
modules, in (Crivei, 2014), an exact sequence of left R-modules0 - A - B—- C — 0
is called s-pure exact provided that 0 - M ® A - M Qx B —» M ®z C — 0 is exact
for any simple right R-module. In this case, A is said to be an s-pure submodule of B.
In (Biiyiikasik and Durgun, 2015), the authors introduced that a left R-module N is s-
pure injective (in short sp-injective), (in ( Hamid, 2019) is called coneat injective) if
it is injective with respect to s-pure short exact sequences. Clearly, every SP-injective
module is pure-injective. Motivated by SP-injective modules, we introduce the concept
of SP-flat modules. We call a right R-module M SP-flat if for every s-pure exact sequence
0 — A - B — C — 0ofleft R-modules, the sequence 0 - M®A — M®B — M®C — 0
is exact. Some preliminary properties of SP-injective and SP-flat modules are obtained.
We then give several characterizations of s-purity and m-flat modules in terms of SP-
injective modules. Finally we prove that a ring R left SF if and only if every m-cotorsion
right (SP-injective right) R-module is injective if and only if every SP-flat left R-module
is flat if and only if gl left MF-dim Nig = 0.



CHAPTER 2

PRELIMINARIES

Throughout this thesis, R will denote an associative ring with identity. If not stated
otherwise, the symbol R, stands for a general ring and modules will be unital R-modules.

Essentially, we assume the fundamentals of module and ring theory and homologi-
cal algebra are known. All definitions which are not given here can be found in (Anderson
and Fuller, 1992), (Rotman, 1979), (Goodearl, 1976), (Lam, 1999) and (Enochs and
Jenda, 2000).

In this chapter we introduce our basic terminology for rings and modules, as well

as the fundamental results to be used in this thesis.

2.1. Injective Modules and Noetherian Rings

In this section we give some properties of relative injective modules which can
be found in (Anderson and Fuller, 1992) and (Lam, 1999). We also give the charac-
terizations of (commutataive) Noetherian rings in terms of (indecomposable) injective

modules.

Definition 2.1 Given right modules M and N, M is said to be injective relative to N (or
M is N-injective) if, for any submodule K of N, any R-homomorphism f : K — M extends
to an R-homomorphism g : N — M. A right module M is injective relative to every right

R-module is called an injective right R-module.
Lemma 2.1 Let p be a prime integer and m, n € Z*. If m < n, then Z is Zyn-injective.

Proposition 2.1 (Baer’s Criterion) A right module M is injective if and only if for any
right ideal I of R, any R-homomorphism f : [ — M can be extended to g : R — M.

A family of subsets {A; : i € I} in a set U is said to satisfy the Ascending Chain
Condition (ACC) if, for any ascending chain A;, € A;, € A;; C --- in the family, there

exists an integer n such that A; = A, , for each k € N. A family of subsets {A; : i € I}

in+k

in a set A is said to satisfy the Descending Chain Condition (DCC) if, for any descending



chain A; 2 A;, 2 A;; 2 --- in the family, there exists an integer n such that A; = A; , for
each k € N.

A module M is called Artinian (Noetherian) if the family of all submodules of
M satisfies DCC (ACC). A ring R is called right Artinian (Noetherian) if Ry is Artinian

(Noetherian). A similar definition can be made on the left. R is Artinian (Noetherian)

In In+k

if it is both right and left Artinian (Noetherian). M is Noetherian if and only if every
submodule of M is finitely generated. The Artinian and Noetherian properties are inher-
ited by submodules and factor modules. Finitely generated modules over a right Artinian
(Noetherian) ring are Artinian (Noetherian). If R is right Noetherian, then every finitely
generated module is finitely presented.

Direct summands and direct product of injective modules are injective. On the

other hand, it is not true that the direct sum of injective modules is injective.

Theorem 2.1 ( (Lam, 1999), Theorem 3.46 and 3.48) The following are equivalent for a
ring R.

(1) R is right Noetherian.
(2) Every direct limit (directed index set) of injective right modules is injective.
(3) Every direct sum of injective right modules is injective.

(4) Any injective module My, is a direct sum of indecomposable (injective) submodules.
We now proceed to understand the structure of a typical indecomposable injective

R-modules over a commutative noetherian rings.

Proposition 2.2 (See (Matlis, 1958)) Let R be a commutative Noetherian ring, P be a
prime ideal of R, E = E(R/P), and A; = {x € E : P'x = 0}. Then:

(1) A, is a submodule of E, A; C Aj+1, and E = | J A,

(2) If P is a maximal ideal of R, then A; C E(R/P) is a finitely generated R-module for

every integer I.

(3) E(R/P) is Artinian.

2.2. Projective Modules and Hereditary Rings

In this section we give some properties of relative projective modules which can

be found in (Anderson and Fuller, 1992) and (Lam, 1999). We also give some character-



izations of right hereditary, semihereditary and quasi-Frobenius rings in terms of injective

and projective modules.

Definition 2.2 Let M and N be right R-modules. M is called N-projective (projective
relative to N) if for each epimorphism g : N — K and each homomorphism f : M — K
there is an R-homomorphism h : M — N such that gh = f. M is called R-projective if it
is projective relative to the right R-module Rg. The module M is called projective if M is
N-projective, for every right R-module N.

Direct sums and direct summands of (R-)projective modules are (R-)projective. A

ring is a projective module over itself. Every free module is a projective module.

Proposition 2.3 ( (Anderson and Fuller, 1992), Proposition 17.2) The following proper-
ties hold for a right R-module P.

(1) P is projective;
(2) Every epimorphism M — P — 0 splits;
(3) P is isomorphic to a direct summand of a free R-module.

Proposition 2.4 ( (Anderson and Fuller, 1992), Proposition 17.14) Every non-zero pro-

Jjective module contains a maximal submodule.

Definition 2.3 A ring R is called right hereditary if each right ideal of R is projective. A
ring R is called right semihereditary if each finitely generated right ideal of R is projective.

Dedekind domains and Priifer domains are hereditary and semihereditary rings,
respectively. The following Theorem shows that if R is hereditary, projective modules are

closed under submodules and injective modules are closed under quotient modules.

Theorem 2.2 ( (Rotman, 1979), Theorem 4.23) The following are equivalent for a ring
R.

(1) R is right hereditary.
(2) Every submodule of a projective module is projective.
(3) Every factor module of an injective module is injective.

The ring R is called a QF (quasi-Frobenius) ring if R is right and left self-injective
and Artinian. Equivalently, R is a right self injective ring which is right or left Noetherian.

The class of QF rings is one of the most interesting classes of non-semisimple rings.



Theorem 2.3 ( (Lam, 1999), §15) The following are equivalent for a ring R.
(1) Ris QF
(2) R is left or right artinian, and R is left or right self-injective.
(3) R is left or right noetherian, and R is left or right self-injective.
(4) R has ACC on left or right annihilators, and R is left or right self-injective.
(5) Every injective right (or left) module is projective.
(6) Every projective right (or left) R-module is injective.

One can formulate the Dual Baer Criterion as follows: a module M is projective if
and only if it is R-projective. In general, the dual to the Baer Criterion is not true as there
are examples of R-projective modules that are not projective. From this point of view, it
is natural to consider the rings over which dual Baer Criteria hold. Dualizations are often
possible over perfect rings. In (Sandomierski, 1964), Sandomierski proved that, dual
Baer Criteria hold over right perfect rings. Later on, C. Faith conjectured that, the rings
over which dual Baer Criteria is hold are exactly the right perfect rings, (Faith, 1976).
Recently, in (Trlifaj, 2019) it is proved that the Faith conjecture is undecidable.

2.3. Flat Modules and Regular Rings

The purpose of this section is to give some properties of flat modules which can
also be found in (Lam, 1999) and (Rotman, 1979).

Definition 2.4 Given a left module M and a right module N, M is N-flat if for every
submodule K of N the map 1y ® i : K®@ M — N ® M is a monomorphism, where
i : K — N is the inclusion map and 1), is the identity map on M. A left R-module M that
is flat relative to every right R-module is called a flat left R-module.

Proposition 2.5 ( (Rotman, 1979)) The following statements are equivalent for a right
R-module M.

(1) M is flat;

(2) The sequence 0 - M ® I — M ® R is exact for every left ideal I of R;



(3) The sequence 0 - M ® I — M ® R is exact for every finitely generated left ideal 1
of R.

(4) Tori(M,N) = 0 for any left R-module N.
(5) Tori (M, R/I) = 0 for any maximal left ideal I of R.

We arrive now at the following remarkable connection between injective modules

and flat modules.

Theorem 2.4 ( (Lam, 1999), Theorem 4.9) A right R-module M is flat if and only if its

character module M™ is injective left R-module.

Let R be aring. A left R-module M is called finitely presented if there is an exact
sequence 0 - K — F — M — 0 where F is finitely generated free and K is finitely
generated. An exact sequence of left R-modules 0 - A - B — C — 0 is called pure
exact provided that 0 - M®gRA — M&gB — M®zC — 0 1is exact for any right R-module
M (Warfield Jr., 1969). A is said to be a pure submodule of B. M is called absolutely
pure (or FP-injective) if it is pure in every module containing it as a submodule. Any
split short exact sequence is pure.

For any family of right R-modules {B;}, ®;;B; is a pure submodule of [[;; B; for
any index set I. Also it is known that injective modules are F P-injective, but the converse

is not true in general.

Example 2.1 Let F; be a field for each i € I, where I is an infinite set and M = ®;;F;
and R = [];e; Fi. Then My is F P-injective but not injective.

Theorem 2.5 ( (Megibben, 1970), Theorem 3) R is right Noetherian if and only if each

F P-injective right module is injective.

F P-injective modules play precisely the same role relative to semihereditary rings

that injectives play relative to hereditary rings.

Theorem 2.6 ( (Megibben, 1970), Theorem 2) A ring R is right semihereditary if and

only if the homomorphic image of an F P-injective R-module is F P-injective.

Theorem 2.7 ( (Lam, 1999), Theorem 4.30) Let M be a finitely presented module over
any ring R. Then M is flat if and only if M is projective.

The relationship between flat modules and pure exact sequences is given in the

following theorem.



Theorem 2.8 ( (Lam, 1999), Proposition 4.14) Let 0 - K — P — M — 0 be a short
exact sequence, where P is a projective module. Then M is flat if and only if K is a pure

submodule of P.

Similar to well known notion of pure exact sequences, an exact sequence of left
R-modules 0 - A — B — C — 0 is called s-pure exact provided that 0 - M ®z A —
M ®r B — M Qg C — 0 is exact for any simple right R-module M (Crivei, 2014). A is
said to be an s-pure submodule of B. M is called absolutely s-pure if it is s-pure in every

module containing it as a submodule.

Definition 2.5 A ring R is called a von Neumann regular ring if for each x € R, there

exists y € R such that xyx = x.

Theorem 2.9 ( (Goodearl, 1979), Theorem 1.1 ) The following are equivalent for a ring
R.

(1) R is von Neumann regular;
(2) Every principal right (left) ideal of R is generated by an idempotent;
(3) Every finitely generated right (left) ideal of R is generated by an idempotent.

The following Theorem gives relation between flat modules and von Neumann

regular rings.

Theorem 2.10 ( (Goodearl, 1979), Corollary 1.13) For any ring R, the following are

equivalent.
(1) R is von Neumann regular;
(2) Every right module is flat;

(3) Every cyclic right module is flat.

2.4. Singular Submodules And Small Rings

In this section we recall the definition of a singular module and state some results
about singular and nonsingular modules. Also we recall the definition of a small ring and

give some characterizations of it.



A submodule N of a right R-module M is said to be an essential (or a large)
submodule of M, written N < M, if N N K # 0O for each nonzero submodule K of M.

Given any right module M, the singular submodule of M is the set
Z(M) ={m € M : mI = 0 for some essential right ideal I of R}.

An R-module M is said to be singular (nonsingular) if Z(M) = M (Z(M) = 0).
A ring R is called a right nonsingular ring if R is nonsingular as a right R-module. Z,(R)
will be used for Z(Rg). Similarly, we say that R is left nonsingular ring if Z;(R) = 0. Right

and left nonsingular rings are not equivalent ( (Goodearl, 1976), Exercise 1).

Proposition 2.6 (Goodearl, 1976) The following hold for any ring R.

(1) A module N is nonsingular if and only if Hom(M, N) = 0 for all singular modules
M.

(2) If R is a right semihereditary ring, then Z,(R) = 0.
(3) If Z,(R) = 0, then Z(M/Z(M)) = 0 for all right R-modules M.
(4) If N < M, then Z(N) = N N Z(M).

(5) Suppose that Z,(R) = 0. A right module M is singular if and only if Hom(M,N) = 0

for all nonsingular right modules N.

Let M be an R-module and N < M. If N is an essential submodule of M, then
M/N is singular. Converse is not true in general. For example, let M = Z/2Z and N = 0.
M/N is singular but N is not an essential submodule of M. The following Proposition

shows when the converse true.

Proposition 2.7 ( (Goodearl, 1976), Proposition 1.21) Let M be a nonsingular module
and N < M. Then M/N is singular if and only if N is an essential submodule of M.

The class of all singular right modules is closed under submodules, factor modules
and direct sums. On the other hand, the class of all nonsingular right modules is closed

under submodules, direct products, essential extensions and module extensions.

Proposition 2.8 ( (Goodearl, 1976), Proposition 1.24) If M is any simple right R-module,

then M is either singular or projective, but not both.

Let M be an R-module and N € M. N is called small in M, written N < M, if,
for every submodule L C M, the equality N + L = M implies L = M.
Let M be an R-module. The jacobson radical of M is defined by
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Rad(M) = ({K € M | K is a maximal submodule in M}
=Y{LC M| L is a small submodule in M}

If M has no maximal submodule we set Rad(M) = M. For aring R, J(Rg), J(rR)
are equal, and we denote both of them by J(R).
In (Ramamurthi, 1982), aring R is called right small if Rg is small in its injective

hull E(Rp).

Lemma 2.2 (See (Ramamurthi, 1982), 3.3) For a ring R the following are equivalent.
(1) R is a right small ring.
(2) Rad(E) = E for every injective right R-module E.

(3) Rad(E(R)) = E(R).

2.5. Local, Semilocal, Perfect and Semiperfect Rings

A nonzero ring R is called local if R has a unique maximal left ideal or equivalently

R has a unique maximal right ideal.

Proposition 2.9 ( (Lam, 2001), Theorem 19.1) For a ring R, the following are equivalent.
(1) Ris local.
(2) R has a unique maximal left ideal.
(3) R has a unique maximal right ideal.
(4) R/J(R) is a division ring.
(5) J(R) is the set of all non-invertible elements of R.
(6) the sum of two non-invertible elements of R is non-invertible.

Definition 2.6 A ring R is said to be semilocal if R/ J(R) is semisimple Artinian.

Let R be a semilocal ring. Then, for every right module M, RadM = MJ(R). Thus
M/RadM is a semisimple R/J(R)- module. Hence, M/RadM is a semisimple R-module
(Anderson and Fuller, 1992).
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Definition 2.7 (1) Two idempotents ey, e; € R are said to be orthogonal if eje, = eye1 =
0.

(2) An idempotent e is said to be a local idempotent if eRe is a local ring.

Proposition 2.10 ( (Lam, 2001), Proposition 21.18) Let e be an idempotent in R, and let
R = R/J(R). Then e is a local idempotent in R if and only if eR/eJ(R) is a simple right

R-module.

Now, we give the definitions of perfect and semiperfect rings.

Definition 2.8 A ring R is called semiperfect if R is semilocal and idempotents of R/J(R)
can be lifted to R.

Theorem 2.11 ( (Lam, 2001), §23 and §24) The following are equivalent for any ring R.
(1) R is semiperfect.

(2) The identity element 1 can be decomposed into e\ + e, + ... + e,, where the es are

mutually orthogonal local idempotents.
(3) Every finitely generated right R-module has a projective cover.
(4) Every cyclic right R-module has a projective cover.
(5) Every simple right R-module has a projective cover.

Theorem 2.12 ( (Lam, 2001), Theorem 23.11) A commutative ring R is semiperfect if and

only if it is a finite direct product of (commutative) local rings.

Our next goal is to introduce the notion of left and right perfect rings. For this, we

need a new notion of nilpotency called 7 -nilpotency.

Definition 2.9 A subset A of a ring R is called left (right) T-nilpotent if, for any se-
quence of elements {a|,a,,---} C A, there exists an integer n > 1 such that a,a,...a, = 0

(a,...aa; = 0).
Definition 2.10 A ring R is called right (left) perfect if R/ J(R) is semisimple and J(R) is
right (left) T-nilpotent. If R is right and left perfect, we call R a perfect ring.

Semiperfect rings are left-right symmetric, while left (right) perfect rings are always
semiperfect. Both of these notions are generalizations of one-sided Artinian rings.
The following result offers various other characterizations for right perfect rings.

This Theorem says that one sided Artinian rings are right and left perfect rings.
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Theorem 2.13 ( (Lam, 2001), §23 and §24) The following are equivalent for any ring R.
(1) R is right perfect;
(2) R satisfies DCC on principal left ideals;
(3) Any left module M satisfies DCC on cyclic submodules;

(4) R does not contain an infinite orthogonal set of nonzero idempotents, and any

nonzero left module M contains a simple module.
(5) Every right R-module has a projective cover.
(6) Every flat right R-module is projective.

From the definitions of above, it is clear that a ring R is left perfect if and only if
R is semiperfect and right semiartinian.

A module M is said to be uniserial if the lattice of submodules of M is totally
ordered by inclusion. A ring R is called a right (left) uniserial ring (or chain ring) if Rg
(gR) is a uniserial module. Any direct sum of uniserial modules called a serial module.
A ring R is said to be right (left) serial ring if the module Ry (zR) is serial. A ring R is
called a serial ring if R is both left as well as right serial. If R is a right or left serial ring,

then R/J(R) is a semisimple Artinian ring.

2.6. m-injective and m-flat Modules

Definition 2.11 A right R-module E is said to be max-injective (or m-injective for short)
in case for any maximal right ideal I of R, each homomorphism f : I — E can be
extended to a homomorphism g : R — E, i.e. Exty(R/1,E) = 0 for every maximal right
ideal I of Rg. A ring R is said to be right max-injective in case the right regular module

Ry is max-injective.

Obviously, any injective module is max-injective. Max-injectivity was first introduced in

(Wang and Zhao, 2005), which was used to characterize QF-rings.

Definition 2.12 (Wang, 2005) A right R-module M is called max-flat (or m-flat for short)
ifTorf(M, R/I) = 0 for any maximal left ideal I of R.

A right R-module M is max-flat if and only if M~ is max-injective by the standard
isomorphism Ext}e(R/ I, M) = Torf(M, R/I)* for any maximal left ideal I of R.
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For convenience in concepts, the max-injective and max-flat modules are called

m-injective and m-flat in this thesis.

2.7. Covers, Envelopes and Cotorsion Pairs

Definition 2.13 Let R be a ring and € a class of R-modules. Then for an R-module M, a
morphism ¢ : M — F, where F € C, is called C-envelope of M if

(1) any diagram with F’ € €
M—~~F

jf %
FI
can be completed such that gp = f and

(2)

can be completed only by automorphisms of F such that g = .

If ¢ : M — F satisfies (1) but may be not (2), then it is called an C-preenvelope of M.

If envelopes exist, they are unique up to isomorphism.

Definition 2.14 Let R be a ring and € a class of R-modules. Then, for an R-module M, a
morphism ¢ : C — M, where C € Cis called an C-cover of M if

(1) any diagram with C’ € €
C/

N
8
C—2-Mm

can be completed to a commutative diagram such that ¢g = f and
(2) the diagram
X
8

C—--M
can be completed only by automorphisms of Csuch that g = ¢.

If ¢ : C —> M satisfies (1) but may be not (2), then it is called an C-precover of M.
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If a C-cover exists, then it is unique up to isomorphism.

Following (Enochs and Jenda, 2000), a monomorphism & : M — C with C € Cis
said to be a special €-preenvelope of M if coker(a) €+ €. Dually, we have the definitions
of a (special) €-precover and a C-cover. C-envelopes (C-covers) may not exist in general,
but if they exist, they are unique up to isomorphism.

Given a class € of right R-modules, we will denote by €+ = {X : Ext3(C,X) = 0
for all C € €} the right orthogonal class of €, and by *€ = {X : Exty(X,C) = 0 for all
C € €} the left orthogonal class of €.

Definition 2.15 (Enochs and Jenda, 2000) A pair (¥, €) of classes of right R-modules is
called a cotorsion theory (for the category of R-modules) if & = € and € = §.

(M, 3Inj) and (Proj, M) are cotorsion theories where N denotes the class of right
R-modules and 3Inj and Proj denotes the classes of injective and projective modules.

We note that (, €) is a cotorsion theory, then § and € are both closed under
extensions and summand, and ¥ contains all the projective modules while € contains all
the injective modules. Also, § is closed under arbitrary direct sums and € is closed under
arbitrary direct products.

A cotorsion theory (¥, €) is called perfect (complete) if every right R-module
has a C-envelope and an F-cover (a special C-preenvelope and a special F-precover).
A cotorsion theory (%, €) is said to be hereditary ( (Enochs, Jenda and Lopez-Ramos,
2004)) if whenever 0 - L' — L — L" — 0 is exact with L,L" € &, then L  is also
in §. By (Enochs, Jenda and Lopez-Ramos, 2004), (&, €) is hereditary if and only if
0> C - C—-C" > 0isexact with C,C" € €, then C” is also in €.

The following result is useful while proving whether a class of modules is (pre)en-

veloping or (pre)covering.

Lemma 2.3 (/) ( (Rada and Saorin, 1998), Corollary 3.5(c))) If a class M of modules
over a ring is closed under pure submodules, then M is preenveloping if and only

if it is closed under direct products.

(2) ( (Holm and Jprgensen, 2008), Theorem 2.5) If a class M of modules over a ring
is closed under pure quotients, then M is precovering if and only if it is covering if

and only if it is closed under direct sums.
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CHAPTER 3

ALMOST-QF AND MAX-QF RINGS

The purpose of this chapter is to characterize the rings whose injective R-modules

are R-projective and max-projective, respectively.

3.1. Max-projective Module

In this section, we study the properties of max-projective R-modules and give

some characterizations of semiperfect, perfect and QF rings in terms of max-projectivity.

Definition 3.1 A right R-module M is said to be max-projective if for every epimorphism
f : R = R/I where I is a maximal right ideal of R and every homomorphism g : M —
R/I, there exists a homomorphism h : M — R such that fh = g.

Example 3.1
(a) Every projective R-module is max-projective.

(b) The Z-module Q is max-projective since Hom(Q, Z,) = 0 for each simple Z-module
Zp.

(c) Every simple max-projective R-module is projective. For if S is a simple right R-
module and 1g : S — S is the identity map, then by max-projectivity of S there is
a homomorphism f : S — R such that nf = lg, where 1 : R — S is the natural

epimorphism. Then R = K ® S, so S is projective.

(d) Any R-module M with Rad(M) = M is max-projective since M has no simple factors.

Given modules M and N, M is said to be N-subprojective if for every homomor-
phism f : M — N and for every epimorphism g : B — N, there exists a homomorphism
h: M — B such that gh = f (see (Holston et al., 2015)).

Lemma 3.1 For an R-module M, the following are equivalent.
(1) M is max-projective.

(2) M is S -subprojective for each simple R-module S .



(3) For every epimorphism f : N — S with S simple, and homomorphism g : M — §,
there exists a homomorphism h : M — N such that fh = g.

Proof (2) & (3) By definition. (3) = (1) is clear.

(1) > 3) Let f : N — § be an epimorphism where S is a simple R-module and g :
M — S a homomorphism. Since S is simple, there exists an epimorphism 7 : R — §.
By the hypothesis there exists a homomorphism # : M — R such that 7h = g. Since
R is projective, there exists a homomorphism #° : R — N such that fi’ = n. Then

f(W'h) =rh = g, so M is max-projective. O

We need the following result in the sequel.

Lemma 3.2 The following conditions are true.

(1) A direct sum ®;c;A; of modules is max-projective (resp. R-projective) if and only if

each A; is max-projective (resp. R-projective).

2) If0 - A - B — C — 0is an exact sequence and M is B-projective, then M is
projective relative to both A and C.

Proof (1) Since itis similar to the one provided in ( (Anderson and Fuller, 1992), Propo-
sition 16.10) for R-projective modules, the proof is omitted for max-projective modules.
(2) is clear by ( (Anderson and Fuller, 1992), Proposition 16.12). ]

Next we characterize semisimple rings in terms of max-projective modules.

Corollary 3.1 Fora ring R, the following are equivalent.
(1) R is semisimple.
(2) Every right R-module is max-projective.
(3) Every finitely generated right R-module is max-projective.
(4) Every cyclic right R-module is max-projective.

(5) Every simple right R-module is max-projective.
Proof (1)= (2)= (3) = (4) = (5) are clear.
(5) = (1) Example 3.1(c) and the hypothesis implies that each simple right R-

module is projective. Thus R is semisimple. m|
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In (Amin, Ibrahim and Yousif, 2013), the module M is called rad-projective if,
for any epimorphism o : R — K where K is an image of R/J(R) and any homomorphism
f : M — K, there exists a homomorphism g : M — R such that f = og. We have the
following implications:

projective = R-projective = rad-projective = max-projective

Proposition 3.1 Let R be a semilocal ring and M an R-module. Then the following are

equivalent.
(1) M is rad-projective.
(2) M is max-projective.

(3) Every homomorphism f : M — R/J(R) can be lifted to a homomorphism g : M —
R.
Proof (1) = (2) Clear. (3) = (1) By ( (Amin, Ibrahim and Yousif, 2011), Proposition
3.14).

(2) = (3) Since R/J(R) is semisimple, R/J(R) = &, K;, with each K; simple as
an R-module. Let ; : @ | K; — K;, and 7 : R — & | K;. Set h := m;x. By the hypothesis,
there exists a homomorphism g : M — R such that hg = 7, f. Since R/J(R) is semisimple,
each 7; splits and there exists a homomorphism g; : K; — & K; such that g;r; = 1z ).
Then ng = g;hg = gimif = f. O

In the next Proposition we provide a sufficient condition for an R-module to be

max-projective. We establish a converse for self-injective rings.

Proposition 3.2 If M is a right R-module such that Exty(M,I) = 0 for every maximal
right ideal I of R, then M is max-projective. The converse is true when R is a right
self-injective ring.

Proof By applying Hom(M, —) to the short exact sequence 0 - I - R — R/I — 0,
with I being a maximal right ideal of R, we obtain the following exact sequence:

0 - Hom(M,I) - Hom(M,R) - Hom(M,R/I) — Exty(M,I) — Exty(M,R) — .... If
Ext}(M,I) = 0 for every maximal right ideal / of R, it follows that M is max-projective.
Conversely, since R is right self injective, Extp(M, R) = 0. If M is a max-projective right
R-module, then the map Hom(M, R) — Hom(M, R/I) is onto, so Ext}e(M, I) = 0 for any

maximal right ideal / of R. O

18



Proposition3.3 Let 0 - A — B — C — 0 be a short exact sequence. If M is A-

subprojective and C-subprojective, then M is B-subprojective.

Proof Lety: F — B be an epimorphism with F projective. Then using the pullback
diagram of y : F — Band 8 : A — B and applying Hom(M, —), we get a commutative

diagram with exact rows and columns:

00— Hom(M, K)—=Hom(M, X)—~Hom(M, A)—=0
0——Hom(M, K)—Hom(M, F)——Hom(M, B)—0

Hom(M, C)—2~Hom(M, C)

Since M is A-subprojective and C-subprojective, 6 and ¢ are epic. Hence, y* is
epic by ( (Anderson and Fuller, 1992), Five Lemma 3.15).

Proposition 3.4 Let M be an R-module. M is max-projective if and only if M is N-

subprojective for any R-module N with composition length cl(N) < oo.

Proof Let M be a max-projective R-module and N an R-module with c/(N) = n. Then
there exists a composition series 0 = Sy € §;... € §,, = N with each composition factor
Si+1/S i simple. Consider the short exact sequence 0 — S| — S, — §,/S5; — 0. Since
M is max-projective, by Lemma 3.1, M is S ;-subprojective and S, /S ;-subprojective. So,
by Proposition 3.3, M is S ,-subprojective. Continuing in this way, M is S ;-subprojective
for each 0 < i < n. Hence, M is N-subprojective. Conversely, since each simple right

R-module has finite length, M is max-projective by Lemma 3.1. O

In the following corollary we obtain that R-projectivity and max-projectivity co-

incide over the ring of integers.

Corollary 3.2 A Z-module M is max-projective if and only if M is Z-projective.

Proof By the Fundamental Theorem of Abelian Groups, a cyclic Z-module M is iso-
morphic either to Z or to a finite direct sum of Z-modules of finite length. Now the proof

is clear by Proposition 3.4. O
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Corollary 3.3 Let M be an R-module with finite composition length. If M is max-projective,
then it is projective.

Proof Let f : R® — M be an epimorphism. The module M is M-subprojective by
Proposition 3.4. That is, there is a homomorphism g : M — R" such that 1,, = fg. Thus

the map f splits, so M is projective. O

Submodules of max-projective R-modules need not be max-projective. Consider
the ring R = Z/p?Z, for some prime integer p. R is max-projective, whereas the simple
ideal pR is not max-projective, since the epimorphism R — pR — 0 does not split.

Recall that a ring R is called right V-ring (resp. right GV-ring) if all simple (resp.

all singular simple) right R-modules are injective.

Proposition 3.5 Consider the following conditions for a ring R:
(1) Ris aright GV-ring.
(2) Submodules of max-projective right R-modules are max-projective.
(3) Submodules of projective right R-modules are max-projective.
(4) Every right ideal of R is max-projective.
Then, (1) = (2) = (3) = (4). Also, if R is a right self injective ring, then
@) = ().

Proof (1) = (2)Let N be a submodule of a max-projective right R-module M. Consider

the following diagram:

0—=N—>M

)

R——§ ——0

where § is a simple right R-module, i : N — M is the inclusion map and 7 : R — §
is the canonical quotient map. Since, by Proposition 2.8, the simple module S is either
projective or singular, the former implies 7 : R — S splits and there exists a homomor-
phism € : § — R such that er = 1. In the latter one, S is singular, so it is injective
by the hypothesis. Thus, there is a homomorphism g : M — S such that gi = f. Since
M is max-projective, there is a homomorphism 4 : M — R such that 7h = g. Hence,
n(hi) = gi = f. In either case, there exists a homomorphism from N to R that makes the

diagram commute. This implies that N is max-projective.
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(2) > (3) = (4) Clear. (4) = (1) Let I be aright ideal of R and J a maximal right

ideal of R. Consider the following diagram:

where R/J is a simple right R-module, i : I — R is the inclusion map and 7 : R — R/J is
the canonical quotient map. Since [ is max-projective, there is a homomorphism  : I —
R such that 7h = f. Since R is injective, there exists a homomorphism A4 : R — R such

that Ai = h. Now the map 8 = nd : R — R/J satisfies i = ndi = wh = f, as required. O

Proposition 3.6 Let R be a commutative or semilocal ring. Then pure submodules of

max-projective R-modules are max-projective.

Proof Let M be a max-projective (right) module and N a pure submodule of M. Let §
be a simple (right) module and f : N — § be a homomorphism. Since S is pure-injective
and N is a pure submodule of M, thereis g : M — S such that gi = f, wherei: N - M is
the inclusion map. By max-projectivity of M, there is a homomorphism 4 : M — R such
that g = mh, where 7 : R — S is the natural epimorphism. Now we have f = gi = mhi, i.e.

hi : N — R lifts f. This proves that N is max-projective. O

Lemma 3.3 Let R be a ring and 7 a preradical with T(R) = 0. If M is a max-projective
R-module, then M/T(M) is max-projective.
Proof Let M be a max-projective R-module and f : M/7(M) — S a homomorphism

with S simple R-module. Consider the following diagram:

M —2Z M/7(M)
lf
R—1 -§ 0

Since M is max-projective, there exists a homomorphism g : M — R such that fr =

ng. Since g(r(M)) € 7(R) = 0, 7(M)) C Ker(g), and so there exists a homomorphism
h: M/T(M) — R such that hxr = g. Now, since nhr = ng = fn and « is an epimorphism,
nh = f, and so M/7t(M) is max-projective. O
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Remark 3.1 Recall that any finitely generated R-projective module is projective, ( (Alhi-
lali et al., 2017), Lemma 2.1). This is not true for max-projective modules in general. Let
R be a right V-ring which is not right semihereditary. Then R has a finitely generated right

ideal which is not projective. By Proposition 3.5, each right ideal of R is max-projective.

Proposition 3.7 Let R be a right nonsingular right self-injective ring. Every finitely gen-

erated max-projective right R-module is projective.

Proof Let M be a finitely generated max-projective right R-module. As R is a right
nonsingular ring, by Lemma 3.3, M/Z(M) is max-projective. Since M/Z(M) is finitely
generated, there exists an epimorphism f : FF — M/Z(M) such that F is finitely generated
free. This means Ker(f) is closed in F. By the injectivity of F, Ker(f) is a direct summand
of F, so M/Z(M) is projective. Then, M = Z(M) & K for some projective submodule K
of M. We claim that Z(M) = 0. Assume to the contrary that Z(M) # 0. Since, Z(M) is a
finitely generated submodule of M, there exists a nonzero epimorphism g : Z(M) — S for
some simple right R-module S. Then, by Lemma 3.2, Z(M) is max-projective, so there
exists a nonzero homomorphism 4 : Z(M) — R such that th = g, where 7 : R — § is
the natural epimorphism. But then A(Z(M)) C Z(Rg) = 0, a contradiction. Thus we must

have Z(M) = 0, whence M is projective. O

Aring R is called right max-ring if every nonzero right R-module M has a maximal
submodule i.e. Rad(M) # M.

Proposition 3.8 The following conditions are true.

(1) Over a semiperfect ring R, every max-projective right R-module with small radical

is projective.

(2) A ring R is right perfect if and only if R is semilocal and every max-projective right
R-module is projective.
Proof (1) Let M be a max-projective right R-module with Rad(M) <« M. Since R is
semilocal, M is rad-projective by Proposition 3.1. Hence M is projective by ( (Amin,
Ibrahim and Yousif, 2011), Theorem 4.7).

(2) Since over a right perfect ring R every right R-module has small radical, it fol-
lows from (1) that every max-projective right R-module is projective. Conversely, assume
that R is semilocal and every max-projective right R-module is projective. Let M be a
nonzero right R-module. We claim that Rad(M) # M. Assume to the contrary that M
has no maximal submodule, i.e. Rad(M) = M. Since Hom(M,S) = 0 for any simple
right R-module, M is max-projective. Thus M is projective, by the hypothesis. Since,

22



by Proposition 2.4, projective modules have maximal submodules, this is a contradiction.
Hence, every right R-module has a maximal submodule. Since R is semilocal, R is right
perfect by ( (Anderson and Fuller, 1992), Theorem 28.4). O

Recall that if R is a right perfect ring, every R-projective right R-module is projec-
tive, (Sandomierski, 1964). Thus the following result follows from Proposition 3.8(2).

Corollary 3.4 Let R be a right perfect ring and M be a right R-module. Then the follow-

ing are equivalent.
(1) M is projective.
(2) M is R-projective.

(3) M is max-projective.

The following Remark is an example of a right nonperfect ring R such that every

max-projective module is R-projective.

Remark 3.2 Let K be a field, and R the subalgebra of K“ consisting of all eventually
constant sequences in K“. For each i < w, we let e; be the idempotent in K“ whose
ith component is 1 and all the other components are 0. Notice that {e; : i < w} a set
of pairwise orthogonal idempotents in R, so R is not perfect, ( (Trlifaj, 2019), Lemma
2.3). By ( (Trlifaj, 2019), Lemma 2.3 and Lemma 2.4), R/S oc(R) is simple R-module and
a module M is R-projective if and only if it is projective with respect to the projection
m: R — R/Soc(R). Thus, an R-module M is max-projective if and only if M is R-

projective.

The following Corollary follows from ( (Trlifaj, 2019), Theorem 3.3) and Remark 3.2.

Corollary 3.5 Let K be a field of cardinality < 2¢ and R the subalgebra of K consisting
of all eventually constant sequences in K“. Assume Godel’s Axiom of Constructibility

(V = L). Then all max-projective R-modules are projective.

Lemma 3.4 If My, is max-projective right R-module and R = R/ J(R), then (M Rad(M))
Ls max-projective.
Proof Letn: Rz — Kj be an R-epimorphism with K simple R-module. Consider the

following diagram:

M — M/Rad(M)
L.f
R R d Kr 0
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Since M is max-projective, there exists a homomorphism A : Mz — R such that 71 = f7.
Since A(Rad(M)) € Rad(R/J(R)) = 0, Rad(M) C Ker(1), so there exists a homomorphism
5 : (M/Rad(M))zs — Ry such that 65 = A. Now, since 76y = nd = fn and 7 is an
epimorphism, 76 = f, so (M/ Rad(M))y is a max-projective R-module. O

It is well-known that a ring R is semiperfect if and only if every simple R-module
has a projective cover. In the next Proposition, we extend this result by replacing projec-
tive covers with max-projective covers. Let R be a ring and Q a class of right R-modules
which is closed under isomorphisms. A homomorphism f : P — M is called an Q-cover
of the right R-module M if P € Q and f is an epimorphism with small kernel. That is to
say, if Q is the class of max-projective right R-modules, the homomorphism f : P - M
is called max-projective cover of M. With the help of an argument similar to the one
provided in ( (Amin, Ibrahim and Yousif, 2013), Theorem 18), we can establish the next

Proposition.

Proposition 3.9 For a ring R, the following are equivalent.
(1) R is semiperfect.
(2) Every finitely generated right R-module has a max-projective cover.
(3) Every cyclic right R-module has a max-projective cover.

(4) Every simple right R-module has a max-projective cover.

Proof (1)= (2) = (3) = (4) are clear.

(4) = (1) We first show that R = R/J(R) is a semisimple ring. Let S be a simple right
R-module. By the hypothesis Sz has a max-projective cover Pg, say f : P — S with
Rad(P) = Ker(f) < P. Since S is simple and P/ Rad(P) = §, P/Rad(P) is a simple
R-module. So, (P/Rad(P)); is max-projective by Lemma 3.4, whence (P/Rad(P)); is
projective. Consider the map f : P/Rad(P) — S. This map induces an isomorphism.
Since P/ Rad(P) is projective R-module, P/ Rad(P) is the projective cover of S z. Hence,
R is a semiperfect ring. Therefore, R is semisimple as an R-module, and hence semisimple
as an R-module. Write R = R/J(R) = @', K;, with each K; simple as a right R-module,
and let L; be a max-projective cover of K;, 1 <i < n, as right R-modules. Now, in order to
prove that R is a semiperfect ring, it is enough to show that each L;, 1 < i < n, is projective
as a right R-module. Clearly, L = &_ L;, as a right R-module, is a max-projective cover

of Rg. Consider the diagram
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Lg

el

RR—ﬂ-)RR—)O

with f being the max-projective cover of Rz and 7 the canonical R-epimorphism. By
the max-projectivity of Lg, f can be lifted to a map g : Lg — Ry such that 7g = f.
Since R = Im(g) + J(R) and J(R) < R, we infer that R = Im(g), and g is onto. By the
projectivity of R, the map g splits, and Lgz = Ker(g) ® A for a submodule A of Lg. Since
Ker(g) € Ker(f) <« Lg, Ker(g) = 0, and Ly = Ry is projective. Therefore, each L;,

1 <i < n,is projective as a right R-module, and R is semiperfect. O

Proposition 3.10 For a ring R, the following conditions are equivalent.
(1) R is right perfect.
(2) Every right R-module has a max-projective cover.

(3) Every semisimple right R-module has a max-projective cover.
Proof (1) = (2) = (3) are clear.
(3) = (1) By Proposition 3.9, R is a semiperfect ring. Let M be a semisimple right
R-module and f : P — M a max-projective cover of M. Since Rad(P) = Ker(f) < P, P1is
projective by Proposition 3.8(1). Thus every semisimple right R-module has a projective

cover, so R is right perfect. O

Let R be any ring and M an R-module. A submodule N of M is called radical
submodule if N has no maximal submodules, i.e. N = Rad(N). By P(M) we denote the
sum of all radical submodules of a module M. For any module M, P(M) is the largest
radical submodule of M, so Rad(P(M)) = P(M). Moreover, P is an idempotent radical
with P(M) € Rad(M) and P(M/P(M)) = 0, (see (Biiyiikasik, Mermut and Ozdemir, 2010
)

In ( (Dinh, Holston, and Huynh, 2012), Lemma 1), the authors prove that over a
right nonsingular right V-ring, max-projective right R-modules are nonsingular. Regard-

ing the converse of this fact, we have the following.

Proposition 3.11 [f every max-projective right R-module is nonsingular, then R is right

nonsingular and right max-ring.

Proof Clearly the ring R is right nonsingular. If R is a right V-ring, then Rad(M) =
0 for any right R-module M. Thus R is a max-ring. Suppose R is not a right V-ring,
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and let S be a noninjective simple right R-module. We shall first see that P(E(S)) =
0. Suppose Rad(P(E(S))) = P(E(S)) # 0. Then P(E(S))/S is singular. Furthermore,
since Rad(P(E(S))/S) = P(E(S))/S, P(E(S))/S is max-projective. This contradicts with
the hypothesis. Therefore, for every simple right R-module S, P(E(S)) = 0. Let M
be a nonzero right R-module. We claim that Rad(M) # M. Assume to the contrary
that Rad(M) = M. Let 0 # x € M and K be a maximal submodule of xR. Then the
simple right R-module S = xR/K is noninjective because S small. Now, the obvious map
XR — E(S) extends to a nonzero map f : M — E(S). Since P(Im(f)) € P(E(S)) =0,
P(M/ Ker(f)) = 0. This contradicts with P(M) = M. Hence Rad(M) # M for every right

R-module M, so R is a right max-ring. O

Corollary 3.6 For a ring R, the following are equivalent.
(1) R is semilocal and every max-projective right R-module is nonsingular.

(2) R is right perfect and right nonsingular.

3.2. Almost-QF and max-QF rings

In this section, we give some characterizations of almost-QF and max-QF rings.
Recall that a ring R is QF if and only if every injective (right) R-module is projective (see,

(Faith, 1976)). We slightly weaken this condition and obtain the following definition.

Definition 3.2 A ring R is called right almost-QF if every injective right R-module is
R-projective. We call R right max-QF if every injective right R-module is max-projective.
Left almost-QF and left max-QF rings are defined similarly.

We note that our notion of almost-QF ring differs from the other definition of almost-QF
ring introduced by Harada (Harada, 1993 ).

Clearly, we have the following inclusion relationship:

{QF rings} C {right almost-QF rings} C { right max-QF rings}.

Example 3.2 The ring of integers Z is a right almost-QF but not QF : For every injective
Z-module E, we have Rad(E) = E. Thus Hom(E,Z/nZ) = 0, for each cyclic Z-module

Z[nZ. This means that each injective Z-module is Z-projective, so Z is almost-QF.
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Remark 3.3 Sandomierski (Sandomierski, 1964) proved that if R is a right perfect ring,
then every R-projective right module is projective. Thus a ring R is right perfect and right
almost-QF if and only if R is QF.

Now we investigate some properties of almost-QF rings. The next result shows

that being almost-QF is preserved by Morita equivalence.

Proposition 3.12 Let R and S be Morita equivalent rings. Then, R is right almost-QF if
and only if S is right almost-QF.

Proof An R-module M is R-projective if and only if M is N-projective for any finitely
generated projective R-module N. Now, by ( (Anderson and Fuller, 1992), Propositions
21.6 and 21.8 ), since injectivity, relative projectivity and being finitely generated are

preserved by Morita equivalence, the proof is clear. O

Lemma 3.5 Let R| and R, be rings. Then R = R; X R, is right almost-QF (resp. right
max-QF) if and only if Ry and R, are both right almost-QF (resp. right max-QF).

Proof Let M be an injective right R;-module. Then M is an injective right R-module,
as well as an R-projective module by the hypothesis. Hence, by Lemma 3.2, M is R;-
projective, so Ry is right almost-QF. Similarly, R, is right almost-QF. Conversely, let
M be an injective right R-module. Since we have the decomposition M = MR, ® MR,,
MR, is an injective right R-module, whence it is an injective right R;-module. On the
other hand, since (MR,)R, = 0, MR, is an R;-module, so it is an injective R;-module.
This means that MR, and MR, are R;-projective by the hypothesis. Then, by Lemma
32, M = MR, ® MR, is R,-projective. Similarly, M is R,-projective. Therefore, M is
R-projective. Since it is similar to the one provided for almost-QF rings, the proof is

omitted for max-QF rings. O

To prove the main result of this section we need the following Proposition.

Proposition 3.13 Let R be a right Hereditary ring and E an indecomposable injective

right R-module. Then the following are equivalent.
(1) E is R-projective.
(2) E is max-projective.

(3) Either Rad(E) = E or E is projective.
Proof (1) = (2) Clear.
(2) = (3) Assume that Rad(E) # E. Then E has a simple factor module isomor-

phic to R/I. Let f : E — R/I be a nonzero homomorphism. Since E is max-projective,
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there exists a homomorphism g : £ — R such that Im(g) # 0. By the fact that R is right
Hereditary, Im(g) is projective, whence E = Im(g) @ K for some right R-module K. Since
E is indecomposable, either K = 0 or Im(g) = 0, where the latter case implies that g = 0
which is a contradiction. In the former case K = 0 implying that E is projective.

(3) = (1) Conversely, if E is projective, then E is clearly R-projective. Now suppose
Rad(E) = E and let f : E — R/I be a homomorphism. Then f(E) = f(Rad(E)) C
Rad(R/I) < R/I. Moreover f(E) is a direct summand of R/I since R is right Hereditary.
Therefore f(E) = 0, so f can be lifted to R. O

Corollary 3.7 If R is a right Hereditary right small ring, then R is right almost-QF.

Proposition 3.14 If R is a right semihereditary right small ring, then Hom(E,R) = 0,
for any injective right R-module E. In particular, R is right almost-QF if and only if
Hom(E, R/I) = O for any right ideal I of R.
Proof Let E be an injective right R-module and f € Hom(E, R). Then f(E) = f(Rad(E))
C J(R). Since R is right semihereditary, f(E) is F'P-injective by Theorem 2.6. This means
that R/ f(E) is flat by Theorem 2.8. Then, by ( (Lam, 1999), §4 Exercise 20), f(E) = 0,
i.e. Hom(E, R) = 0. Hence, the rest is clear. O
Recall that by Example 3.1(d), any right small ring R is right max-QF. Moreover,

if R is right Noetherian, we have the following.

Proposition 3.15 If R is a right Noetherian and right small ring, then R is right almost-
QF.

Proof Let E be an injective right R-module. Then, by Lemma 2.2, Rad(E) = E. Now let
f : E = R/I be ahomomorphism for any right ideal / of R. This implies that f(E) C R/I,
and since Rad(E) = E, we have Rad(f(E)) = f(E). By the right Noetherian assumption,
R/I is a Noetherian right R-module, and its submodule f(E) is finitely generated, i.e.
Rad(f(E)) # f(E). Also since Rad(f(E)) = f(E), this means that f(E) = 0, whence
f + E — RJ/I can be lifted to R. Consequently, E is R-projective. O

Now we give a characterization of almost-QF and max-QF rings over right Hered-

itary and right Noetherian rings.

Theorem 3.1 Let R be a right Hereditary and right Noetherian ring. Then the following

are equivalent.
(1) R is right almost-QF.
(2) R is right max-QF.
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(3) Every injective right R-module E has a decomposition E = A®B, where Rad(A) = A

and B is projective and semisimple.

(4) R=S XT, where S is a semisimple Artinian ring and T is a right small ring.

Proof (1) = (2) Clear.

(2) = (3) Let E be an injective right R-module. Then E has an indecomposable de-
composition E = @,.rA; where A;’s are either projective or Rad(A;) = A; by Proposition
3.13. Let A = {j € I' : A; is projective}. So the decomposition of E can be written as
E = (®jeaA j))®(®ier-aA;). We claim that each A is simple for j € A. Since A} is projective
for j € A, Rad(A;) # A;. So, there exists a simple factor B; of Aji.e. B; = A;/N = R/I
for some maximal submodule N of A; and for some maximal right ideal I of R. Since B;

is injective, by (2), the following diagram commutes.

B;

Y

£y
R R/I——0

With the Hereditary assumption on R, Im(g) = B; is projective, so A; = N @ B;. However
A is indecomposable, whence N = 0. Consequently, each A; is simple for j € A.

(3) = (1) Let E be an injective right R-module. By the assumption, £ = A @ B,
where Rad(A) = A and B is semisimple and projective. Since B is R-projective, we
only need to show that A is R-projective. By the Noetherian assumption, the injective
R-module A has a decomposition A = ®,.rA;, where each A; is indecomposable injective
with Rad(A;) = A;. Proposition 3.13 implies that each A; is R-projective, whence A is
R-projective by Lemma 3.2. Therefore, M = A ® B is R-projective by Lemma 3.2.

(2) = (4) Let S be the sum of minimal injective right ideals of R. Then S is in-
jective since R is right Noetherian. Thus, we have the decomposition R = § @ T for some
right ideal T of R such that Soc(S) = §, and T has no simple injective submodule. If
f S — T is anonzero homomorphism, then f(Soc(S)) = f(S) € Soc(T), where f(S) is
injective by the Hereditary assumption, so Soc(T') contains a semisimple injective direct
summand f(S). This means that f(S) = 0, a contradiction. Thus, we have Hom(S,7) = 0
, 50 S is a two sided ideal. On the other hand, if g : T — § is a nonzero homomorphism,
then 7'/ Ker(g) = Im(g) € S, so T/ Ker(g) is projective by Hereditary assumption. Also,
since S is a semisimple injective R-module, 7'/ Ker(g) is semisimple injective, whence

K/ Ker(g) is semisimple injective for any maximal submodule K/ Ker(g) of T/ Ker(g).
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This implies that 7/ Ker(g) = K/ Ker(g) ® T/K. Then the simple R-module 7/K is in-
jective and projective, so 7' contains an isomorphic copy of a simple injective R-module
T/K, yielding a contradiction. Therefore, Hom(7,S) = 0, so T is a two sided ideal. Con-
sequently, R = § & T is a ring decomposition. Now, let E(T’) be the injective hull of T as
an R-module. The injective hull E(T) is also a T-module by the fact that E(7T)S = 0. We
claim that Rad(E(T)) = E(T). Suppose the contrary, and let K be a maximal submodule
of E(T). Then E(T)/K is injective by the Hereditary assumption, and it is max-projective
by (2). Since E(T)/K is a simple right R-module, it is isomorphic to R/I for some maxi-
mal right ideal I of R, so R/I is injective. Then, the isomorphism a : E(T)/K — R/I lifts
top: E(T)/K — R i.e. the following diagram commutes.

E(T)/K

2,

R/1 0

e h

R

Since 8 is monic and E(7T)/K injective, U = B(E(T)/K) is a direct summand of R. It
is easy to see that U is also a right 7-module, so U C T. On the other hand, since U
is minimal and injective, U is also contained in §, a contradiction. So we must have
Rad(E(T)) = E(T), whence T < E(T) by Lemma 2.2. This proves (4).

(4) = (1) Clear, by Lemma 3.5 and Proposition 3.15.

Theorem 3.2 Let R be a right Hereditary ring. Then the following are equivalent.
(1) R is right max-QF.
(2) Every simple injective right R-module is projective.
(3) Every singular injective right R-modules is R-projective.
(4) Every singular injective right R-modules is max-projective.
(5) Rad(FE) = E for every singular injective right R-module E.

(6) Every injective right R-module E can be decomposed as E = Z(E) ® F with
Rad(Z(E)) = Z(E).
Proof (1) = (4),(3) = (4) and (6) = (5) are clear.
(4) = (2) Let S be a simple injective right R-module. We claim that S is projec-

tive. Assume that S is not projective. Then it is singular by Proposition 2.8. This implies,
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by our hypothesis, that S is max-projective, hence S is projective, this is a contradiction.
The conclusion now follows.

(2) = (1) Let E be an injective right R-module and f : E — S where S is a simple
right R-module. If f = 0, there is nothing to prove. We may assume that f is a nonzero
homomorphism, so f is an epimorphism. Since R is right Hereditary, S is injective, and so
by (2), S is projective. Hence, the natural epimorphism 7 : R — S splits, i.e. there exists
a homomorphism 7 : § — R such that g = 15. Then, i f = f, so E is max-projective.

(4) = (5) Let E be a singular injective right R-module. Assume to the contrary
that E has a maximal submodule K such that E/K = R/I for some maximal right ideal
I of R. So, there is a nonzero homomorphism f : E — R/I, and by (4), there exists a
nonzero homomorphism g : £ — R such that 7g = f, where 7 : R — R/I is the canonical
epimorphism. Since E is singular, Im(g) is singular. Moreover, Im(g) C R, so Im(g) is
nonsingular. This implies that g(E) = 0, yielding a contradiction.

(5) = (6) Let E be an injective right R-module. Since R is a right nonsingular
ring, Z(E) is a closed submodule of E, so £ = Z(E) ® F for some submodule F of E.
Then, by (5), Rad(Z(E)) = Z(E).

(5) = (3) Let E be a singular injective right R-module. This implies, by our
hypothesis, that Rad(E) = E. Let f : E — R/I be homomorphism for some right ideal /
of R. Since Rad(E) = E and Rad(R/I) # R/I, f : E — R/I is not an epimorphism. By
the right Hereditary assumption, f(E) is injective, so f(E) is a direct summand of R/I.
But since f(E) C Rad(R/I), we must have f(E) < R/I. This means, f(E) = 0, whence
Hom(E, R/I) = 0 for each right ideal I of R. Therefore, E is R-projective. ]

Proposition 3.16 Let R be a local right max-QF ring. Then R is either right self-injective

or right small.

Proof Let J be the unique maximal right ideal of R and E the injective hull of the
ring R. Assume first that R is not a small ring i.e. Rad(E) # E. Then E has a maximal
submodule K such that E/K is isomorphic to R/J and denote this isomorphism by f.
Consider the composition fr where 7 : E — E/K is the canonical projection. Since R is

right max-QF, there is a nonzero homomorphism g : £ — R such that

.,m

31



commutes. Furthermore, 4 is a small epimorphism and f7 is an epimorphism, which
means g : E — Ris also an epimorphism and splits. Thus, £ =2 R® T for some 7. Hence,

R is a right self injective ring. O

Corollary 3.8 Let R be a right Noetherian local ring. Then the following are equivalent.
(1) R is right almost-QF.
(2) R is right max-QF.

(3) Ris QF or right small.

Proof (1) = (2) Clear. (3) = (1) Follows from Proposition 3.15.
(2) = (3) Clear by Proposition 3.16 since right Noetherian right self-injective

rings are QF. O

Proposition 3.17 Let R be a semiperfect ring. Then the following are equivalent.
(1) R is right almost-QF and direct sum of small right R-modules is small.
(2) R is right max-QF and direct sum of small right R-modules is small.
(3) R is right almost-QF and Rad(Q) < Q for each injective right R-module Q.
(4) R is right max-QF and Rad(Q) < Q for each injective right R-module Q.

(5) Ris QF.
Proof (1) = (2) and (3) = (4) Clear. (2) = (3) and (3) = (1) By ( (Rayar, 1967),
Lemma 9).
(4) = (5) Let M be an injective right R-module. Since M is max-projective with
Rad(M) <« M, by Proposition 3.8(1), M is projective. Hence R is QF by Theorem 2.3.
(5) = (3) Let M be an injective right R-module. By the hypothesis, M is pro-
jective. Since R is right Artinian, every right R-module has a small radical, whence

Rad(M) < M. O

In (Crivei, 2014), a submodule N of a right R-module M is called coneat in M
if Hom(M, S) — Hom(¥, §) is epic for every simple right R-module S. In (Biiyiikagik
and Durgun, 2015), N is called s-purein M if N® § — M ® S is monic for every simple
left R-module S. M is absolutely coneat (resp., absolutely s-pure) if M is coneat (resp.,
s-pure) in every extension of it. If R is commutative, then s-pure short exact sequences

coincide with coneat short exact sequences, ( (Fuchs, 2012), Proposition 3.1).
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Proposition 3.18 Consider the following conditions for a ring R:
(1) R is right max-QF.
(2) Every absolutely coneat right R-module is max-projective.
(3) Every absolutely s-pure right R-module is max-projective.
(4) Every absolutely pure right R-module is max-projective.

Then (3) = (4) = (1) = (2). Also, if R is a commutative ring, then (2) = (3).

Proof (3) = (4) = (1) Clear.
(1) = (2) Let M be an absolutely coneat right R-module. Consider the following

diagram:

0——=M—~EWM)

where S is a simple right R-module, i : M — E(M) is the inclusion mapand 7 : R — §
is the canonical quotient map. Since M coneat in E(M), there is a homomorphism g :
E(M) — S such that gi = f. Also, by (1), there exists a homomorphism /# : E(M) — R
such that 7h = g. Hence, (rh)i = gi = f.

(2) = (3) Let M be an absolutely s-pure right R-module. Then M is s-pure in
E(M). Since R is commutative, M is coneat in E(M). Hence, M is max-projective by
2). O

In ( (Nicholson, 1976), Lemma 1.16), it was shown that for a projective module
M, if M = P + K, where P is a summand of M and K C M, then there exists a submodule
Q € K with M = P& Q. By using the same method in the proof of ( (Amini, Amini, and
Ershad, 2009), Theorem 2.8), one can prove the following result.

Proposition 3.19 A ring R is right almost-QF if and only if for every injective right R-
module E, if E = P + L, where P is a finitely generated projective summand of E and
L CE, then E=P@&K for some K C L.

Let R be a ring and Q a class of R-modules which is closed under isomorphic
copies. Following Enochs, a homomorphism ¢ : G — M with G € Q is called an Q-
precover of the R-module M if for each homomorphism ¢ : H — M with H € Q, there
exists A : H — G such that oA = .
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Lemma 3.6 Let R be a right self-injective ring. Then the following are equivalent.
(1) R is right almost-QF.
(2) Every finitely generated right R-module has injective precover which is R-projective.

(3) Every cyclic right R-module has an injective precover which is R-projective.

Proof (1) = (2) Let M be a finitely generated right R-module and g : R* — M an
epimorphism. For any homomorphism f : E — M with E is injective, there exists
h: E — R" such that gh = f. Since R" is injective, g is an injective precover of M.

(2) = (3) Clear.

(3) = (1) Let E be an injective right R-module and / a right ideal of R. Suppose
that f : E — R/[ is a homomorphism, 7 : R — R/I is the natural epimorphism and
g : G — R/I be an injective cover of R/I. So, there is h : E — G such that gh = f. By
hypothesis, G is R-projective, and hence there is k : G — R such that 7k = g. Let f = kh.
Sonf = nkh = gh = f. Therefore, E is R-projective, so R is right almost-QF. O
In (Enochs and Jenda, 1991), a module M is said to be copure-injective if Ext}e(E ,M)=0
for any injective module E. Now we give the characterization of almost-QF rings in terms

of copure-injective modules.

Proposition 3.20 Let R be a ring. Then the following are equivalent.
(1) R is right almost-QF and Ry is copure-injective.
(2) Every right ideal of R is copure-injective.

(3) Every submodule of a finitely generated projective right R-module is copure injec-

tive.

Proof (1) = (2) Let E be an injective right R-module and 7 a right ideal of R. By
applying Hom(E, —) to the short exact sequence 0 —- I — R — R/l — 0, we ob-
tain the following exact sequence: 0 — Hom(E,/) —» Hom(E,R) — Hom(E,R/I) —
Exty(E,I) — Exty(E,R) — ... Since Ry is copure-injective, Exty(E,R) = 0. Then the
map Hom(E, R) — Hom(E, R/I) is onto since E is R-projective. Hence, Ext}e(E, nH=0
for any injective R-module E.

(2) = (3) Suppose that every right ideal of R is copure-injective. First, by induc-
tion, we show that every submodule of R" is copure-injective. The case n = 1 follows
by the hypothesis. Now suppose that n > 1 and every submodule of R""! is copure-
injective. Let N be a submodule of R", and consider the exact sequence 0 —» N N R*! —

N — N/(N N R*') — 0. By induction hypothesis, N N R"~! is copure-injective, and
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N/(NNR"") = (N +R"")/R"" ¢ R"/R"" = R is also copure-injective. Therefore,
for any injective right R-module E, consider the exact sequence Exti(E,N N R"™') —
Extp(E, N) — Exty(E, N/(NNR")). Since Exty(E, NNR"™") = Extp(E,N/(NNR"™")) =
0, we have Exty(E, N) = 0. Therefore, N is copure-injective. Now if M is a submodule of
a finitely generated projective right R-module P, then thereisn > 1 suchthat M C P C R".
By the above observation, M is also copure-injective. (3) = (2) is clear. (2) = (1) by

Proposition 3.2. o

Proposition 3.21 Let R be a ring. Then the following are equivalent.
(1) R is semisimple.
(2) R is right almost-QF right V-ring.

(3) R is right almost-QF and every submodule of an R-projective right module is R-

projective.

(4) R is right self-injective and every submodule of an R-projective right module is
R-projective.
Proof (1)= (2),(1) = (3)and (1) = (4) are clear.
(2) = (1) Since R is a right V-ring, every simple right R-module is injective. By
the hypothesis, every simple right R-module is R-projective, whence projective.
(4) = (1) Let M be a cyclic right R-module and 7 a right ideal of R. Consider the

following diagram:

0——=I1—+R

|

R—+~M—=0

where i : I — R is the inclusion map and 7 : R — M is the canonical quotient map. Since
I is R-projective, there exists & : [ — R such that 7h = f. By the injectivity of R, there
exists 4 : R — R such that Ai = h. Then (7d)i = mh = f, and 7d : R — M is the required
map.

(3) = (1) Since every simple right R-module can be embedded in an injective R-
module, every simple right R-module is R-projective, and so every simple right R-module

is projective. Hence, R is semisimple. O
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3.3. Almost-QF Rings Over Commutative Rings

In this section we deal with almost-QF and max-QF rings over commutative
rings. We also give a complete characterization of almost-QF and max-QF rings over
commutative Noetherian rings.

Let R be a commutative semiperfect ring, then by Theorem 2.12, R = Ry X ... X R,
where R; is a local ring (1 < i < n). Let m; be the maximal ideal of R; (1 < i < n).
Then every maximal ideal of R is of the form: M; = Ry X ...R;_; X m; X Riy1 X ... X R,.
Since (0, ...,0,1,0,...,0) € R\ M; (1 is in the ith coordinate), we can easily show that

Ry, = (R)m, = R;. Therefore, by Lemma 3.5 we can prove the following Proposition.

Proposition 3.22 Let R be a commutative semiperfect ring. Then R is almost-QF (resp.
max-QF) if and only if for any maximal ideal M of R, the ring Ry, is almost-QF (resp.
max-QF ).

The following example shows that the semiperfect condition in Proposition 3.22, is es-

sential.

Example 3.3 Let {F,},>1 be a family of fields and let R = ||, F,. Then R is a von
Neumann regular ring. By ( (Lam, 2001), Exercise 4.15), for any maximal ideal M of R,
the ring Ry, is a field (and hence almost-QF ). But R is not max-QF, otherwise, since every
simple R-module is injective, every simple R-module would be projective, so R would be

a semisimple ring.

Corollary 3.9 Let R be a commutative semiperfect ring. If R is max-QF, then R =S X T

where S is self-injective and T is small.

Proof Let R be a commutative semiperfect ring, then by ( (Lam, 2001), Theorem

23.11), R = Ry X ... X R,, where R; is a local ring (1 < i < n). Hence, by Lemma

3.5 and Proposition 3.16, R can be written as a direct product of local max-QF rings and

every local max-QF ring either self-injective or small. O
We do not know whether every right chain ring is almost-QF. But the following

result will imply that each right chain ring with P(R) = 0 is right almost QF.

Proposition 3.23 Let R be a right chain ring and J = J(R). Then P(R) = (51 J".

Proof Assume first that J* = 0 for some n € Z*. Then (),5; J" = 0, and so by (
(Facchini, 1998), Proposition 5.3(b)), R is a right Noetherian ring with P(R) = 0. On
the other hand if we suppose that J* # 0O for all n € Z*, then, by ( (Facchini, 1998),
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Proposition 5.2(d)), A = (=1 J" is a completely prime ideal. Let us now look at the case
A # AJ. Then A/AJ simple right R-module and AJ < A. Leta € A\ AJ. If we have
A = aR + AJ, then A = aR, whence either A = J(R) or A = 0, by ( (Facchini, 1998),
Proposition 5.2(f)). If A = (,5; J" = 0, then R is a right Noetherian ring with P(R) =
Mys1 J" = 0. Otherwise, if A = J(R) = (,»; J", then J = J?, but since A # AJ, this is
not the case. If we look at the case A = AJ, then A C P(R). Since P(R) = P*(R), P(R)
is a completely prime ideal of R, and so, by ( (Facchini, 1998), Lemma 5.1), P(R) C A.
Hence, P(R) = A = (1 J". O

Corollary 3.10 Let R be a right chain ring. Then R/P(R) is a right almost-QF ring.

Proof Since P(R) is an ideal of R and every factor ring of a right chain ring is a right
chain ring, without loss of generality we may assume that P(R) = 0. Then, by Proposition
3.23 and ( (Facchini, 1998), Proposition 5.3), R is a right Noetherian ring. We have two
cases for J = J(R): if J is nilpotent, then R is Artinian. This implies that R is right self-
injective by ( (Facchini, 1998), Lemma 5.4) which then yields, R is QF. So, now assume
that J is not nilpotent. Then R is a domain by ( (Facchini, 1998), Proposition 5.2(d)),
whence R is right small. So, R is right almost-QF by Proposition 3.15. Thus in any case
R is right almost-QF. O

We shall characterize commutative Noetherian max-QF rings.

Lemma 3.7 Let R be a commutative Noetherian ring, and let E = E(R/Q) for a maximal

ideal Q of R. The following are equivalent.
(1) E is R-projective.
(2) E is max-projective.

(3) Rad(E) = E or E is projective, local and isomorphic to an ideal of R.

Proof (1) = (2)is clear.

(2) = (3) Assume that Rad(E) # E. Since R is commutative, Rad(E) = (. IE,
where A is the set of all maximal ideals of R, ( (Anderson and Fuller, 1992), Exercises
15.(5)). Now we will show that /E = E for any maximal ideal / distinct from Q. Let
I be a maximal ideal distinct from Q. The fact I + Q = R implies I/ + Q" = R for any
n e N. Let x € E. Then Q"x = 0 for some n € N by Proposition 2.2. We have 1 =y + z,
where y € I, z € Q", and then x = yx € IE. Hence, Rad(E) = e, [E = QF # E. Since
R is commutative and (E/QFE)Q = 0, E/QFE is a semisimple R/Q-module, so E/QE
semisimple as an R-module. Then E/QE is finitely generated by Artinianity of E, and
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hence QF + K = E for some finitely generated submodule K of E. Since K is finitely
generated, K is a submodule of A, for some n, by Proposition 2.2. Thus Q"K = 0. Since
QE+K = E, Q"'E = Q"E, implying Q"E C P(E). On the other hand, Q*E + QK = QE,
and so Q*E + K = E. Continuing in this manner Q"E + K = E, whence E/Q"E is finitely
generated. Since R is Noetherian, P(E/Q"E) = 0, so P(E) = Q"E. Since E/P(E) is
finitely generated, E/P(FE) has finite composition length by Proposition 2.2(3). By max-
projectivity of E and Lemma 3.3, E/P(E) is max-projective. Thus E/P(E) is projective
by Corollary 3.3. Then, E = P(E) @ L for some projective submodule L of E. Since E
is indecomposable and P(E) # E, E = L. Therefore E is projective. Furthermore, since
E is indecomposable, the endomorphism ring of E is local by ( (Facchini, 1998), Lemma
2.25). By ((Ware, 1971), Theorem 4.2), E is a local module, soitiscyclicand R = E® [
for some ideal I of R. Hence E is isomorphic to an ideal of R. This proves (3).

(3) = (1) is obvious. O

Lemma 3.8 ( (Kasch, 1982), [9.7]) Suppose R is a commutative Noetherian or semilocal
right Noetherian ring, and let {M;},c; be a class of right R-modules. Then Rad(]];c; M;)
= [Lie; Rad(M)).

Lemma 3.9 Let R be a commutative Noetherian ring. Then the following are equivalent.
(1) Ris a small ring, i.e., R < E(R).

(2) Rad(E(S)) = E(S) for each simple R-module S .
Proof (1) = (2): Clear by Lemma 2.2.
(2) = (1): Let A be a complete set of representatives of simple R-modules. Then
C = @5eaE(S) 18 an injective cogenerator. Then, for some index set /, the injective hull
E(R) of R is a direct summand of C’. By Lemma 3.8, Rad(C’) = C’. Since E(R) is a
direct summand of C!, we have Rad(E(R)) = E(R). Thus R is a small ring by Lemma
2.2. O

Theorem 3.3 Let R be a commutative Noetherian ring. Then the following are equiva-

lent.
(1) R is almost-QF.
(2) R is max-QF.

(3) R=AX B, where A is QF and B is small.
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Proof (1) = (2)is clear.

(2) = (3) First suppose that Rad(E(S)) = E(S) for all simple R-module S. Then
R is a small ring by Lemma 3.9. On the other hand, if Rad(E(S)) # E(S) for some simple
R-module S, then E(S) is isomorphic to a direct summand of R by Lemma 3.7. Let X be
sum of minimal ideals U of R with Rad(E(U)) # E(U). Then E(U) is isomorphic to an
ideal of R. Thus without loss of generality we can assume that E(U) is an ideal of R. Since
R is Noetherian, X is finitely generated, and so A = E(X) = E(U;) ® --- ® E(U,) where
each E(U;) is an ideal of R. Thus R = A @ B for some ideal B of R. Now A is injective and
Noetherian, so A is a QF ring. On the other hand, let V be a simple B-module, then V is
a simple R-module. Let E(V) be the injective hull of V. As V is a B-module, VA = 0. If
Rad(E(V)) # E(V), then this would imply V C A, by the same arguments above. Thus
Rad(E(V)) = E(V), and so B is a small ring by Lemma 3.9.

(3) = (1) Clear, by Proposition 3.15 and Lemma 3.5. O
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CHAPTER 4

ON M-FLAT AND M-COTORSION MODULES

The purpose of this chapter is to mention the study of some homological objects
which is related to the max-projective modules. Namely, m-injective and m-flat modules.
Recall that a right R-module E is said to be m-injective if Exiip(R/1,E) = 0 for every
maximal right ideal I of Ry (see, (Wang and Zhao, 2005)). A right R-module M is
called m-flat if Torf(M, R/I) = 0O for any maximal left ideal I of R (see (Wang, 2005)).
Also, the concept of m-cotorsion modules is introduced. A right R-module M is said to
be m-cotorsion if Exty(N, M) = 0 for any m-flat right R-module N. Several elementary

properties of m-flat, m-injective and m-cotorsion modules are obtained in this chapter.

4.1. m-flat and m-cotorsion Modules

Recall that R is called a left coherent ring if every finitely generated left ideal of
R is finitely presented. Following (Xiang, 2010), a ring R is said to be left max-coherent
if every maximal left ideal is finitely presented. Obviously, Noetherian rings are max-

coherent. But, left coherent rings need not be max-coherent.

Lemma 4.1 ( (Xiang, 2010)) Let R be a left max-coherent ring, the following are true.

(1) Any maximal left ideal is finitely generated, and any direct product of m-flat right

R-modules is m-flat.
(2) A left R-module M is m-injective if and only if M is m-flat.
(3) A right R-module N is m-flat if and only if N** is m-flat.
(4) M3 is closed under pure submodules, pure quotients and direct sums.
(5) Every right R-module has an M F-preenvelope.

Recall that an exact sequence of left R-modules 0 - A — B — C — 0 is called
s-pure exact provided that 0 - M®zA - M &g B - M ® C — 0 is exact for any simple
right R-module M, (Crivei, 2014). In this case, A is said to be s-pure submodule of B. In
(Biiyiikasik and Durgun, 2015), a submodule N of a left R-module M is called neat in M
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if for every simple R-module S, every homomorphism f : § — M/N can be lifted to a

homomorphism g : § — M.
Lemma 4.2 The following are true for a ring R.

(1) M3 is closed under extensions, direct products, direct summands and neat submod-

ules.
(2) MF is closed under s-pure quotients.

(3) MF is closed under extensions, direct sums, direct summands, pure submodules and

pure quotients.

Proof (1) The class of m-injective left R-modules is closed under extensions, direct
products, direct summands by ( (Xiang, 2010), Proposition 2.4(1)). Let N be a neat
submodule of a m-injective left R-module M. For any maximal left ideal I of R, we have
the exact sequence Hom(R/I, M) — Hom(R/I, M/N) — Ext'(R/I,N) — Ext'(R/I, M) =
0. Since Hom(R/I, M) — Hom(R/I, M/N) is epic by neatness, Ext'(R/I,N) = 0. So N is
m-injective.

(2) Let N be an s-pure submodule of a m-flat left R-module M. For any maximal
left ideal I of R, we have the exact sequence
0=Tor(M,R/I) » Tor,(M/N,R/I) - N®R/I - M®R/I. Since,0 - N®R/I —
M ® R/I is exact, Tor;(M/N,R/I) = 0. So M/N is m-flat.

(3) The class of m-flat right R-modules is closed under extensions, direct sums,
direct summands by ( (Xiang, 2010), Proposition 2.4(2)). Let0 > N - M — M/N — 0
be a pure exact sequence of right R-modules where M is m-flat. Then Tor (M,R/I)* =
0 = Ext(R/I, M) for any maximal left ideal I of R. Since M™ is m-injective and 0 —
(M/N)* - M* — N* — 0 a split exact sequence, N* and (M/N)* is m-injective. Hence
N and M/N is m-flat. O

Definition 4.1 A right R-module M is said to be m-projective (resp. m-cotorsion) if
Ext}Q(M, N) =0 (resp. Extlle(N, M) = 0) for any m-injective (resp. m-flat) right R-module
N. The left version can be defined similarly.

Remark 4.1 By the definitions, any simple right R-module is m-projective and any SP-
injective right R-module is m-cotorsion. Moreover, any m-cotorsion right R-module is
cotorsion. (a right R-module C is called cotorsion provided that Exty(F,C) = 0 for any
flat right R-module F (Enochs and Jenda, 2000)).
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In what follows, P (resp. MCE) stands for the class of all m-projective left (resp.
all m-cotorsion right) R-modules.
As is known to all, every R-module has a cotorsion envelope and a flat cover. Now

we have the following Lemma.

Lemma 4.3 The following are true for a ring R.
(1) (MF,MC) is a perfect cotorsion theory.
(2) Every module has a special IE-precover and a special MCE-preenvelope.

(3) (MP,MI) is a complete cotorsion theory.

Proof (1) follows from Lemma 4.2(3) and ( (Holm and Jgrgensen, 2008), Theorem
3.4).

(2) A perfect cotorsion theory is always complete by Wakamatsu’s Lemmas (
(Xu, 1996), §2.1), that is every module has a special MiF-precover and a special INCE-
preenvelope.

(3) Let € be the set of representatives of simple left R-modules. Thus MI = €+,
Since MP =+ (€+) , the result follows from ( (Enochs and Jenda, 2000), Definition 7.1.5)
and ( (Eklof and Trlifaj, 2001), Theorem 10). |

Corollary 4.1 Let R be a ring. Then the following are equivalent.
(1) Every left R-module is m-projective.
(2) Every cyclic left R-module is m-projective.
(3) Every m-injective left R-module is injective.
(4) (MP,MI) is hereditary and every m-injective left R-module is m-projective.

In this case, if R is left max-coherent, R is left Noetherian.
Proof (1) = (2)and (1) = (4) are clear. (3) = (1) holds by Lemma 4.3(3).

(2) = (3) Let M be any m-injective left R-module and I any left ideal of R. Then
Ext}Q(R/I ,M) = 0 by (2). Thus M is injective, as desired.

(4) = (1) By Lemma 4.3(3), for any left R-module M, there is a short exact
sequence 0 - M — F — L — 0, where F is m-injective and L is m-projective. So (1)
follows from (4).

In this case, if R is a left max-coherent ring, every FP-injective left R-module is

m-injective and so injective. This means R is left Noetherian by Theorem 2.5. O
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Corollary 4.2 Let R be a left max-coherent ring. Then the following are equivalent.
(1) Every m-flat right R-module is flat.
(2) Every cotorsion right R-module is m-cotorsion.
(3) Every m-injective left R-module is FP-injective.
(4) Every finitely presented left R-module is m-projective.

In this case, R is a left coherent ring.
Proof (1) & (2)and (3) & (4) follow from Lemma 4.3.

(1) = (3) Let M be any m-injective left R-module. Then M™* is m-flat by Lemma
4.1(2) and so M* is flat by (1). On the other hand, for any finitely presented left R-module
N, 0 = Torf(M*,N) = (Extj(N, M))*. Thus M is FP-injective.

(3) = (1) Let M be any m-flat right R-module. Then M™* is m-injective and so M*
is FP-injective by (3). Hence M is flat.

To prove the last statement, let M be an FP-injective left R-module with N a pure
submodule, then M/N is m-injective by ( (Xiang, 2010), Proposition 2.6) since R is left
max-coherent. Therefore M/N is FP-injective by (3) and hence R is a left coherent ring
by ( (Moradzadeh-Dehkordi and Shojaee, 2015), Theorem 3.7). O

In general, 9i3-cover need not be an epimorphism and MiF-preenvelope need not
be a monomorphism. In the following theorem, we will extend the result in ( (Xiang,

2010), Theorem 2.11).

Theorem 4.1 Let R be a left max-coherent ring. Then the following are equivalent.
(1) R is left m-injective.
(2) Every left R-module has an epic M3I-cover.
(3) Every right R-module has a monic ME-preenvelope.
(4) Every injective right R-module is m-flat.
(5) Every flat left R-module is m-injective.

(6) (MI,MI") is a perfect cotorsion theory.
Proof (1) & (2) & (3) follow from ( (Xiang, 2010), Theorem 2.11).

(3) = (4) is clear since by (3), every injective right R-module can be embedded

in an m-flat right R-module.
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(4) = (5) Let M be a flat left R-module. Then M* is injective, so M™ is m-flat by
(4). Thus M is m-injective by Lemma 4.1(2).

(5) = (6) Note that M3 is closed under extensions and by Lemma 4.1(4) is closed
under pure submodules, pure quotients and direct sums over a left max-coherent ring.
Hence by (5) and ( (Holm and Jgrgensen, 2008), Theorem 3.4), (NI, INI") is a perfect
cotorsion theory.

(6) = (1) is clear. O

We conclude this section with the following Theorem.

Theorem 4.2 Let R be a ring. Then the following are equivalent.
(1) Every quotient of an m-cotorsion right R-module is m-cotorsion.
(2) All m-flat right R-modules are of projective dimension < 1.

(3) For any s-pure exact sequence 0 - N — M — L — 0 of right R-modules with M
projective, N is projective.
Proof (1) > (3)Let0 - N - M — L — 0 be an s-pure exact sequence of right R-
modules with M projective. Then L is m-flat Lemma 4.2(2). Let A be any right R-module.
Then there is an exact sequence 0 - A — E — B — 0 with E injective. Note that B
is m-cotorsion by (1), and hence Ext*(L,A) = Ext'(L,B) = 0. Thus, pd(L) < 1, so N is
projective.
(3) = (2) Let M be any m-flat right R-module. There exists an exact sequence
0 - N —> P —> M — 0 with P projective. Since for any maximal left ideal I of R,
0=Tori(M,R/I) - N®R/I - PQR/I - M®R/I — 0 is exact, the sequence is s-pure,
so N is projective by (3). It follows that pd(M) < 1.
(2) = (1) Let M be any m-cotorsion right R-module and K a submodule of M. For
any m-flat right R-module N, the exactness of the sequence 0 - K - M — M/K — 0
induces the exact sequence 0 = Ext'(N, M) — Ext'(N,M/K) — Ext*(N, K). Note that
Ext*(N,K) = 0 by (2), so Ext'(N, M/K) = 0. ]

4.2. m-flat Dimensions

Since every right R-module over a left max-coherent ring R has a M F-preenvelope
by Lemma 4.1, every right R-module M has a right MF-resolution, that is, there is a

Hom(—, MF) exact complex 0 — M — F° — F! — ... (not necessarily exact) with each
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F' m-flat. On the other hand, every left R-module M over a left max-coherent ring R,
has a M3I-preenvelope by (Xiang, 2010). So M has a right MI-resolution, that is, there
is a Hom(—, M3) exact complex 0 - M — E° — E' — ... with each E’ m-injective.

Obviously, this complex is exact since injective R-modules are m-injective (Xiang, 2010).

Proposition 4.1 Let R be a left max-coherent ring, then —® — is right balanced on Mg X
N by MF x M.

Proof Let M be any right R-module and 0 - M — F° — F' — .. a right MF-
resolution of M. Suppose K is any m-injective left R-module. Note that K* is a m-flat right
R-module by Lemma 4.1. Hence, the sequence ... —» Hom(F',K*) — Hom(F°, K*) —
Hom(M,K*) — 0 is exact. Thus the sequence ... » (F'® K)* - (F'® K)" - (M ®
K)* — 0 is exact by ( (Rotman, 1979), Theorem 2.11). So the sequence 0 — M ®
K - F°® K — F'® K is exact. On the other hand, let N be any left R-module and
0—> N — E° - E' - ... aright MJ-resolution of N. We need to show that the sequence
0> F®N —> F®E’ - F®E' — .. is exact for any m-flat right R-module F. This

follows from the proof above by noting that F'* is a m-injective left R-module. O

Lemma 4.4 Let R be a ring. Then the following are equivalent.

(1) R is left max-coherent and if 0 - A — B — C — 0 is an exact sequence of left

R-modules with A and B m-injective, C is m-injective.

(2) R is left max-coherent and if 0 - N — M — L — 0 is an exact sequence of right

R-modules with M and L m-flat, N is m-flat.

(3) R is left max-coherent and Ext'(R/I, M) = O for every m-injective left R-module M,
every maximal left ideal I of R and every i > 1.

(4) R is left max-coherent and Tor,(N,R/I) = 0 for every m-flat right R-module N,
every maximal left ideal I of R and every i > 1.

Proof (1)= (2)Let0 - N - M — L — 0 be an exact sequence of right R-modules
with M and L m-flat. Then we get an exact sequence 0 - L* —- M* — N* — 0. Since
L* and M* is m-injective, so is N* by (1). Thus, N is m-flat.

2)= (1)Let0 - A - B — C — 0 be an exact sequence of left R-modules with
A and B m-injective. Then we get an exact sequence 0 — C* - B* — A* — 0. Note
that A* and B* are m-flat by Lemma 4.1. Thus C* is m-flat by (2), so C is m-injective by

Lemma 4.1.
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(2) = (4) Let N be a m-flat right R-module. Then there is an exact sequence
0 - K - F — N — 0 with F projective, so K is m-flat by (2). Thus, Tor,(N,R/I)
Tor (K, R/I) = 0 for every maximal left ideal I of R, hence (4) holds by induction.

(4) = (2) is easy. (1) & (3) is dual to that of (2) & (4). O

[l

We will call R a left strongly max-coherent ring if it satisfies the equivalent condi-

tions of Lemma 4.4.

Example 4.1

(a) Recall that a ring R is said to be left semiartinian if every nonzero left R-module has a
nonzero left socle. It is shown that if R is a left semiartinian ring, then every m-injective
left R-module is injective, (Wang and Zhao, 2005). Hence, every left max-coherent left

semiartinian ring is left strongly max-coherent by Lemma 4.4.

(b) If R is a left max-coherent left SF-ring (i.e, every simple left R-module is flat), then it

is left strongly max-coherent.

If R is a left max-coherent ring, then — ® — is right balanced on iz Xz M by
MF x M3 by Proposition 4.1. Let Tory(—, —) denote the nth right derived functor of
— ® — with respect to MF X M. Then, for any right R-module M and any left R-module
N, Torg(M, N) can be computed using either a right MF-resolution of M or a right MJ-
resolution of N by ( (Enochs and Jenda, 2000), Exercise 18, p. 177).

Let0— M -5 F0 2 7t S bea right MF-resolution of a right R-module
M. Applying —® N, we obtain the deleted complex 0 — FO@N CL@l F'®N — F’®N —
... Then Torg(M, N) is exactly the nth homology of the complex above. There exists a
canonical map8: M ® N — Tory(M,N) = ker(d’ ® 1)
defined by B(3.(m; @ n;)) = >.(e(m;) ® n;) for any > ,(m; ® n;) € M ® N.

Proposition 4.2 Let R be a left strongly max-coherent ring and M a right R-module. Then

the following are equivalent.
(1) M is m-flat.
2)Bp:M®N — Torg(M, N) is monic for any left R-module N.
B)B:M®N — Torg(M, N) is monic for any finitely presented left R-module N.

4 B:M®R/I — Torg(M, R/I) is monic for any maximal left ideal I of R.

Proof (1) = (2) holds by letting F° = M.
(2) = (3) = (4) are clear.
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1

€ d°
4 = (1) Let0 > M — F* — F! <, .bea right MF-resolution of M. For any

maximal left ideal 7 of R, we have the following commutative diagram:

MR/ —2 -~ FOoR/I -3 FloR/I

]

Tory(M,R/I)

By (4), e ® 1 is monic. Thus 0 - M -5 FOis s-pure exact and hence, M is m-flat by
Lemma 4.4(2) and Lemma 4.2(2). O

The right MiF-dimension of a right R-module M, denoted by right MF-dim M,
is defined as inf{n: there is a right MF-resolution of M of the form 0 — M — F° —
F! — ... — F" — 0}. If there is no such n, set right MF-dim M=co. The global right
IMF-dimension of Nk, denoted by gl right MF-dim Nig,is defined to be the sup {right
IMF-dim M: M € N } and is infinite otherwise.

Proposition 4.3 Let R be a left strongly max-coherent ring and M a right R-module.

Consider the following conditions.
(1) right MF-dim M < 1.
2)p:M®N — Torg(M, N) is epic for any left R-module N.
(3) B: M®N — Tory(M,N) is epic for any finitely presented left R-module N.
4) B: M®R/I — Tory(M,R/1) is epic for any maximal left ideal I of R.

Then, (2) = (3) = (4) = (1). The converse hold if R is a left m-injective ring.
Proof (2) = (3) = (4) trivial.
(4) = (1) Consider the exact sequence 0 - M — F° — D! — 0, where 0 - M — F°is
a MF-preenvelope. We only need to show that D' is m-flat. For any maximal left ideal /

of R, we have the commutative diagram with exact rows by (Enochs and Jenda, 2000):

M®R/I F0®R/1 D1®R/I 0
lﬁl jﬁz B3

0—=Tor2(M, R/ I)—=Tor%(F°, R/ I)—=Tor(D", R/I)

Note that 8, is monic by Proposition 4.2 and 3, is epic by (4). Hence 85 is monic by the
Snake Lemma. Thus D' is m-flat by Proposition 4.2.
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(1) = (2) By (1), M has a right MF-resolution 0 - M — F° — F!' — 0. Since R is left
m-injective ring, the above NiF-resolution is exact by the proof of Proposition 4.1. Thus
we get an exact sequence M @ N - F°® N — F' ® N — 0 for any left R-module N.
Hence g is epic. O

Note that every right R-module over any ring R has an m-flat cover by Lemma
4.3. So M has a left MM F-resolution, that is, there is a Hom(INF, —) exact complex ... —
Fy - Fy - M — 0 with each F; m-flat. Obviously, this complex is exact. The left
I F-dimension of a right R-module M, denoted by left MF-dim M, is defined as inf{n:
there is a left M F-resolution of M of the form 0 — F,... » F| > Fy > M — 0}. If
no such n exists, set left MF-dim M = oo. The global left MF-dimension of Nig, denoted
by gl left MF-dim Mg, is defined to be sup{left MF-dim M: M € Nig} and is infinite

otherwise.

Proposition 4.4 Let R be a left strongly max-coherent ring, n a nonnegative integer and

M a right R-module. The following are equivalent.
(1) left MF-dim M < n.
(2) Tor,x(M,R/I) = 0 for every maximal left ideal I of R and every k > 1.
3) Tor,.(M,R/I) =0 for every maximal left ideal I of R.

@ If0>K—->F,y—..—>F — Fy— M — 0is exact with each F; m-flat, then K
is m-flat.
Proof (2) = (3) is trivial.
(1) = (2) Since left WiF-dim M < n, there is a left MF-resolution of the form 0 — F" —
F'r''.. - F' -5 F° - M — 0. So, Tor,.x(M,R/I) = Tor,(F",R/I) = 0 for every
maximal left ideal 7 of R and every k > 1 by Lemma 4.4(4).

B)=>@Let0 > K—>F,. | —»..— F — Fy— M — 0 be an exact sequence
with each F; m-flat. Then Tor (K, R/I) = Tor,.1(M,R/I) = 0 for for every maximal left
ideal I of R by (3). So K is m-flat.

@4 ={)Let... > F,.y » ... > Ff > Fp > M — 0 be a partial left MiF-
resolution of M. Then we get an exact sequence 0 - K — F,_ | —» ... - F| - Fy —
M — 0. By (4), K is m-flat. Thus left MF-dim M < n. O

Proposition 4.5 Let R be a left strongly max-coherent ring, n a nonnegative integer and

N a right R-module. The following are equivalent.

(1) right M3-dim N < n.
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(2) Ext"™™*(R/1,N) = 0 for every maximal left ideal I of R and every k > 1.
(3) Ext"*'(R/I,N) = 0 for every maximal left ideal I of R.

4) If0 > N - E°—> E' - ... - E"!' - L — 0is exact with each E' m-injective,

then K is m-injective.

Proof The proof is analogous to that of Proposition 4.4 by Lemma 4.4(3). O

Theorem 4.3 Let R be a left strongly max-coherent ring, n a nonnegative integer. The

following are equivalent.
(1) gl right M3I-dim gt < n.
(2) gl left MF-dim NMig < n.
(3) left MF-dim M < n for every m-cotorsion right R-module M.
4) Ext"™'(R/I,N) = 0 for every maximal left ideal of R and every left R-module N.
(5) Tor,.1(M,R/I) =0 for every maximal left ideal of R and every right R-module M.
(6) Every simple left R-module has projective dimension < n.
(7) Every simple left R-module has flat dimension < n.

In this case, every m-cotorsion right R-module has injective dimension < n.

Proof (2) & (5)and (1) & (4) follows from Propositions 4.4 and 4.5, respectively.

2) = (3), (4) © (6) and (5) © (7) are obvious.

(3) = (2) Let M be any right R-module. Then, by Lemma 4.3(2), there is an exact
sequence 0 - M — N — K — 0, where N is m-cotorsion and K is m-flat. Thus we get
an induced exact sequence 0 = Tor,»(K,R/I) = Tor,..(M,R/I) — Tor,.1(N,R/I) =0
for every left ideal I of R by (3) and Proposition 4.4. So, left MF-dim M < n and (2)
follows.

(4) = (5) holds because Tor,,;(M,R/I)*
left ideal I of R and every right R-module M.

(5) = (4) holds because Ext"*'(R/I, N)*
left ideal / of R and every left R-module N.

IR

Ext"*'(R/1, M) for every maximal

Tor,.1(N*,R/I) for every maximal

IR

Next we prove the last statement. Let M be an m-cotorsion right R-module and
N any right R-module. Then, by (5), there is an exact sequence 0 — F, — P,_.; —
.. = P, - Py —» N — 0 with F,, m-flat and each P; projective and so Ext""'(N, M) =

Ext'(F,, M) = 0. Thus M has injective dimension < n. o
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Let € be a class of left R-modules and M a left R-module. Recall that a €-cover f : C —
M is said to have the unique mapping property if for any homomorphism g : D — M with
D € G, there is a unique homomorphism % : D — C such that fh = g, (Ding 1996).

Corollary 4.3 Let R be a left strongly max-coherent ring. The following are equivalent.
(1) gl right M3I-dim g < 2.
(2) gl left MF-dim Nig < 2.

(3) Every left R-module has a M3I-cover with the unique mapping property.

Proof (1) & (2) holds by Theorem 4.3. (3) = (1) by ( (Xiang, 2010), Theorem 4.6)
(1) = (3) Let M be a left R-module. Then M has a MI-cover f : F — M by (
(Xiang, 2010), Remark 2.10). It is enough to show that, for any m-injective left R-module
N and any homomorphism g : N — F such that fg = 0, we have g = 0. In fact, there
exists B : F/Im(g) such that S = f since Im(g) C ker(f), where 7 : F — F/Im(g) is the
natural map. Consider the exact sequence 0 — ker(g) - G — F — F/Im(g) — 0. Note
that F/Im(g) is m-injective by (1) and Proposition 4.5. Thus there exists @ : F/Im(g) —» F
such that 8 = fa, and so far = fr = f. Hence ar is an isomorphism since f is a cover.
Therefore 7 is monic, and so g = 0. O
A ring R will be called left max-hereditary if every maximal left ideal is projective.
Recall that a ring R is said to be left PP if every principal left ideal of R is projective. Then
any left PP-ring with every maximal left ideal principal is left max-hereditary. Now we

have the following characterizations of left max-hereditary rings.

Proposition 4.6 Let R be a ring. The following are equivalent.
(1) R is a left max-hereditary.
(2) Every quotient of an m-injective left R-module is m-injective.

(3) Every m-projective left R-module has projective dimension at most 1.
Proof (1) = (2) Let M be an m-injective left R-module and N a submodule of M. We
shall show that M/N is m-injective. To this end, let / be a maximal left ideal of R and
i : I — R the inclusion and 7 : M — M/N the canonical map. For any f : I — M/N,
then there exists g : I — M such that g = f since I is projective by (1). Hence there is
h : R — M such that hi = g since M is m-injective. It follows that (7h)i = f, and so M/N

1S m-injective.
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(2) = (3) Let M be an m-projective left R-module and N a left R-module, then
there is a short exact sequence 0 - N — E — L — 0 with E injective. Note that L is
m-injective by (2), and so we have the exact sequence 0 = Exty(M, L) — Exta(M,N) —
E xt,%(M, E) = 0. Thus Ext,ze(M, N) = 0 and hence M has projective dimension at most 1.

(3) = (1) holds since every simple left R-module is m-projective. O

A left R-module M is said to be MI-injective (Xiang, 2010) if Ext}e(N, M) = 0 for
any m-injective left R-module N. Next we characterize left max-hereditary rings over a

left max-coherent ring.

Theorem 4.4 Let R be a left max-coherent ring. The following are equivalent.
(1) R is a left max-hereditary.
(2) Every MlI-injective left R-module is injective.
(3) R is a left strongly max-coherent ring and gl right MI-dim g < 1.
(4) R is a left strongly max-coherent ring and gl left MF-dim g < 1.

(5) R is aleft strongly max-coherent ring and left Wi§-dim M < 1 for every m-cotorsion
right R-module M.

(6) Every submodule of an m-flat right R-module is m-flat.
(7) Every left R-module has a monic m-injective cover.

(8) (WP, M) is hereditary and every m-projective left R-module has a monic m-injective

cover.

Proof

3) © (4) & (5) follows from Theorem 4.3. (1) = (3) is clear by Proposition 4.6.

(1) = (2) is clear by ( (Xiang, 2010), Proposition 3.4).

(2) = (1) Let N be a quotient of an m-injective left R-module M. Suppose f :
F — N is a m-injective cover of N by ( (Xiang, 2010), Remark 2.10(1)). Then there
exists a homomorphism 4 : M — F such that fh = n, where 7 : M — N. Hence f is
an epimorphism. By ( (Xiang, 2010), Remark 3.2(1)), ker(f) is MI-injective, and so it is
injective by (2). So, N is m-injective.

(3) = (1) Let M be any m-injective left R-module and N a submodule of M. By
(3), there is a right MI-resolution 0 - N — K — L — 0. Consider the following

pushout diagram:
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0 N M M/N——-0

0—=K——=H—~M/N—=0

Since M and L are m-injective, H is m-injective by Lemma 4.2(1). So M/N is m-injective
by Lemma 4.4(1), as desired.

(6) = (1) Let N be a quotient of an m-injective left R-module M. Then the exact
sequence 0 - K - M — N — 0 induces the exactness of 0 - N* - M* —» K* — 0.
Since M™* is m-flat, N* is m-flat by (6). Hence N is m-injective.

(1) = (6) Let A be a submodule of an m-flat right R-module B. Then the exactness
of 0 > A - B — B/A — 0 induces the exact sequence 0 — B/A* — B* — A" — 0.
Note that B* is m-injective, so A* is m-injective by (1), and hence A is m-flat.

(1) & (7) holds by ( (Garcia Rozas and Torrecillas, 1994), Proposition 4) since
the class of m-injective left R-modules is closed under direct sums by Lemma 4.1(4).

(1) = (8) is clear by the equivalence of (1) and (7).

(8) = (1) Let M be any m-injective left R-module and N any submodule of M.
We have to prove that M/N is m-injective. In fact, there exists an exact sequence 0 —
N - E -5 L - 0with E is m-injective and L is m-projective by Lemma 4.3(3). Since
L has a monic m-injective cover ¢ : F' — L by (8), there is @ : E — F such that 7 = ¢a.
Thus ¢ is epic and hence it is an isomorphism. So L is m-injective. For any simple left
R-module S, we have the exact sequence 0 = Exip(S,L) — Extx(S,N) — Exti(S, E).
Note that Extﬁ(S , E) = 0 by ( (Enochs, Jenda and Lopez-Ramos, 2004), Proposition 1.2)
since (NP, INJI) is hereditary, and hence Exti(S,N) = 0. On the other hand, the short
exact sequence 0 - N — M — M/N — 0 induces the exactness of the sequence
0 = Exty(S, M) — Exti(S,M/N) — Extx(S,N) = 0. Therefore Exti(S, M/N) = 0, as
desired. O

Finally, we give some new characterizations of left SF-rings. Recall that a ring R
is called a left SF-ring (Ramamurthi, 1975) if each simple right R-module is flat. This is

equivalent to saying that every right R-module is m-flat.
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Corollary 4.4 Let R be a left max-coherent ring. The following are equivalent.
(1) R is left SF-ring.
(2) gl right M3I-dim gt = 0.
(3) Every m-projective left R-module is projective.
(4) Every cotorsion left R-module is m-injective.
(5) Every cotorsion right R-module is m-flat.
(6) R is left strongly max-coherent ring and every m-cotorsion right R-module is m-flat.

(7) R is left strongly max-coherent ring and every m-projective left R-module is m-
injective.
Proof (2) = (4)is trivial and (2) © (6) comes from Theorem 4.3 and Lemma 4.4.

(2) = (3) Let M be any m-projective left R-module. Since every left R-module is
m-injective by (2), Exty(M, N) = 0 for any left R-module N. Hence M is projective.

(3) = (2) Let M be a left R-module. There exists an exact sequence 0 —» M —
E — P — 0 with E m-injective and P m-projective by Lemma 4.3(3). By (3), P is
projective and so M is m-injective.

(1) = (5) is clear since over a left SF-ring, every right R-module is m-flat.

(2) = (7) is clear by Lemma 4.4, since R is left max-coherent ring.

(7) = (2) Let M be any left R-module. By Lemma 4.3(3), there is a short exact
sequence 0 - K —» F — M — 0 with F m-projective and K m-injective. Then F is
m-injective by (7) and hence M is m-injective since R is left strongly max-coherent ring.

(4) = (1) Let M be any right R-module. Since M™ is pure-injective and hence
cotorsion, M* is m-injective by (4). So M is m-flat.

(5) = (2) Let M be any left R-module. Then M* is m-flat by (5). Thus M** is
m-injective. Note that M is a pure submodule of M**, so M is m-injective by Lemma
4.1(4).

4.3. SP-flat Modules

In (Biiyiikagik and Durgun, 2015), the authors introduced that a left R-module N

is s-pure injective (in short sp-injective), (in ( Hamid, 2019) is called coneat injective)

53



if it is injective with respect to s-pure short exact sequences. Clearly, every SP-injective
module is pure-injective. Motivated by this, we first introduce the concept of SP-flat

modules.

Definition 4.2 Let R be a ring. A right R-module M is called SP-flat if for every s-pure
exact sequence 0 - A — B — C — 0 of left R-modules, the sequence 0 - M @ A —
M®B—- M®C — 0is exact.

Remark 4.2 (1) By the definition, any simple right R-module is SP-flat.
(2) Flat right R-modules are clearly SP-flat. But the converse is not true in gen-
eral. For example, Z, is an SP-flat Z-module for a prime integer p since Z, is a simple

Z-module. But it is not a flat Z-module.

Lemma 4.5 Let R be a ring. Then
(1) A right R-module M is SP-flat if and only if M* is SP-injective.

(2) The class of SP-flat right R-modules is closed under pure submodules and pure

quotient modules.

Proof (1)Let0 - A — B — C — 0 be an s-pure exact sequence of left R-modules
and M aright R-module. Then the sequence 0 - M®A - M®B - M ®C — 01s exact
if and only if the sequence 0 » (M ® C)* - (M ® B)* - (M ® A)* — 0 is exact if and
only if 0 - Hom(C, M*) — Hom(B, M*) — Hom(A, M*) — 0 is exact. So M is SP-flat
if and only if M™ is SP-injective.

(2) Let0 - A - B — C — 0 be a pure exact sequence of right R-modules with
B SP-flat. Then we get the split exact sequence 0 - C* — B"™ — A" — 0. Since B" is
SP-injective by (1), A* and C* are SP-injective. So A and C are SP-flat. O

Remark 4.3 (1) Every R-module is embedded as an s-pure submodule of an SP-injective
module by ( ( Hamid, 2019), Corollary 2.4).

(2) Every right R-module has an SP-flat cover by Lemma 4.5 and ( (Holm and
Jorgensen, 2008), Theorem 2.5).

(3) If R is a left max-coherent ring, then every SP-injective right R-module has
an injective cover. In fact let M be an SP-injective left R-module. By ( (Biiyiikasik and
Durgun, 2015), Proposition 5.1), M has an absolutely s-pure cover f : A — M. Hence
by ( (Biiyiikasik and Durgun, 2015), Proposition 5.2), A is injective.

Corollary 4.5 Let R be a ring. The following are equivalent.
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(1) Every right R-module is SP-flat.
(2) Every s-pure exact sequence 0 > A — B — C — 0 of left R-modules is pure.

(3) Every pure-injective left R-module is SP-injective.
Proof (1) = (2)isclear. (2) & (3) by ( ( Hamid, 2019), Proposition 3.15).
(3) = (1) Let M be a right R-module. Then M* is pure-injective and so SP-
injective by (3). Thus M is SP-flat by Lemma 4.5(1). O

Now we give further characterizations of s-pure exact sequences.

Lemma 4.6 The following are equivalent for an exact sequence 0 > A - B — C — 0

of left R-modules.
(1) 0 > A — B— C — 0is s-pure.

(2) The sequence 0 - Hom(C,N) — Hom(B,N) — Hom(A,N) — 0 is exact for any
SP-injective left R-module N.

(3) Every simple right R-module is projective relative to the exact sequence 0 — C* —

B* > A* > 0.

(4) The sequence 0 - F®A — F® B —> F ® C — 0 is exact for any SP-flat right
R-module F.
Proof (1) = (2) and (1) = (4) are clear by the definition.

(4) = (1) is clear since every simple right R-module is SP-flat.

(2) = (1) Let S be a simple right R-module. Then S* is SP-injective. Thus
by (2), 0 - Hom(C,S*) —» Hom(B,S*) — Hom(A,S*) — 0 is exact. Hence 0 —
S$C) > (S®B)*" - (S ®A)" — 0is exact. So we get the exact sequence 0 —
S®A > S®B - §S®C — 0and (1) follows. (1) & (3) Let S be a simple right
R-module. Then the exact sequence 0 - S ® A - S ®B — § ® C — 0 1s exact
if and only if 0 - (S ® C)" - (S ®B)" — (S ® A)* — 0 is exact if and only if
0 —- Hom(S,C*) - Hom(S,B") —» Hom(S,C") — 0is exact. So (1) & (3) holds. O

Proposition 4.7 The following are equivalent for a left R-module M.
(1) M is absolutely s-pure.
(2) Every exact sequence 0 > M — B — C — 0 is s-pure.

(3) There exists an s-pure exact sequence 0 - M — E — N — 0 with E absolutely

s-pure.

55



(4) For every SP-injective left R-module N, every homomorphism f : M — N factors
through an injective left R-module.

Proof (1) & (2) & (3) by ( (Biiyiikasik and Durgun, 2015), Lemma 3.3).
(2) = (4) is easy since M can be embedded in an injective left R-module.
4 = 2)Let0 > M LN B — C — 0 be an exact sequence. For any SP-injective
left module N and any homomorphism f : M — N, there are an injective left module
E,g: M — Eand h : E — N such that f = hg by (4). Since E is injective, there is
a : B — E such that @i = g. Thus f = hai. So the sequence 0 > M - B —- C — O is

s-pure by Lemma 4.6. O

The following Proposition gives some interesting characterizations of m-flat modules in

terms of s-purity.

Proposition 4.8 The following are equivalent for a right R-module N.
(1) N is m-flat.
(2) Every exact sequence 0 - K — L — N — 0 is s-pure.
(3) Ext'(N, M) = 0 for any SP-injective right R-module M.

(4) There exists an s-pure exact sequence 0 - M — E — N — 0 with E m-flat.

Proof (1) = (2)Let0 - K — L — N — 0 be an exact sequence. Since N is m-
flat, for any maximal left ideal I of R, we have the exact sequence 0 = Tor|(N,R/I) —
K®R/l - L®R/I - N®R/I — 0. So the exact sequence 0 - K - L - N — O1is
s-pure.

(2) = (3) There is an s-pure exact sequence 0 - K —- P - N — 0 with P
projective by (2). Thus, by Lemma 4.6, Hom(P, M) — Hom(K, M) — 0 is exact for
any SP-injective left R-module M. Consider the induced exact sequence: Hom(P, M) —
Hom(K, M) — Ext'(N,M) — Ext'(P,M) = 0. So Ext'(N, M) = 0.

B3) = 4 Let0 - K - F - N — 0 be an exact sequence with F (m-
)flat. For any SP-injective right R-module M, by (3), we have the exact sequence 0 —
Hom(N,M) — Hom(F,M) — Hom(K,M) — Ext'(N,M) = 0. Thus,0 - K - F —
N — 0 is s-pure by Lemma 4.6.

4) = (1)Let0 > M - F - N — 0 be an s-pure exact sequence with F
m-flat. For any maximal left ideal I of R, we have the exact sequence 0 = Tor(F,R/I]) —
Tori(N,R/I) - M®R/I - F®RJ/I. Since by (4), M ® R/l — F ® R/I is monic,
Tor(N,R/I) = 0. Hence, N is m-flat. O
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The following corollary clarifies the relationship between SP-injective (resp. SP-flat)

modules and injective (resp. flat) modules.

Corollary 4.6 The following are true for any ring R:
(1) Any absolutely s-pure SP-injective left R-module is injective.

(2) If R is a left max-coherent ring, any neat flat SP-flat right R-module is flat.

Proof (1) Let M be any absolutely s-pure SP-injective left R-module. By Proposition
4.7, there exists an s-pure exact sequence 0 - M — E — N — 0 with E injective. So
the exact sequence is splits and hence M is injective.

(2) Let M be any neat flat SP-flat right R-module. Then M~ is absolutely s-pure
by ( (Biiytlikasik and Durgun, 2015), Proposition 4.3) and SP-injective by Lemma 4.5, so
is injective by (1). Thus M is flat. O

Theorem 4.5 The following are equivalent for a ring R and integer n > (.
(1) gl left MF-dim Mg < n
(2) Every m-cotorsion right R-module has injective dimension < n.
(3) Every SP-injective right R-module has injective dimension < n.

(4) Every SP-flat left R-module has flat dimension < n.

Proof (1) = (2) Let M be an m-cotorsion right R-module and N any right R-module.
Since left MF-dim N < n, there is an exact sequence 0 —» K, —» K,.; — ... » K| —
Ko — N — 0 with each K; m-flat. So Ext"*'(N, M) = Ext'(K,,, M) = 0. It follows that M
has injective dimension < n.

(2) = (3) is trivial by Proposition 4.8.

(3) = (4) For any SP-flat left R-module M, M~ is SP-injective. By (3), for every
left R-module N, we have Tor,, (N, M)* = Ext"*'\(N,M*) = 0. So, Tor,.;(M,N) = 0,
and hence M has flat dimension < n.

4 =>{DLet... » F,.y - ... > F - Fp > M — 0 be a partial left
IF-resolution of M. Then we get an exact sequence 0 - K — F,.; —» ... = F| —
Fy - M — 0. Since every simple left R-module is SP-flat, by (4), Tor(K,R/I) =
Tor,,1(M,R/I) = 0 for any maximal left ideal I of R. Hence K is m-flat. O
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As a consequences of Theorem 4.5 and ( ( Hamid, 2019), Theorem 3.16), we

obtain new characterization of left SF-rings.
Corollary 4.7 Let R be a ring. Then the following are equivalent.

(1) R is left SF-ring.

(2) gl left MF-dim Nz = 0.

(3) Every m-cotorsion right R-module is injective.

(4) Every SP-injective right R-module is injective.

(5) Every SP-injective right R-module is absolutely s-pure.

(6) Every SP-flat left R-module is flat.

(7) All exact sequences of right R-modules is s-pure.

(8) All right R-modules are absolutely s-pure.

Remark 4.4 The class of SP-injective modules need not be closed under extensions. Note
that for each simple right R-module S, S™ is an SP-injective left R-module by the standard
adjoint isomorphism. Consider the short exact sequence 0 — Z, — Z4 — Z, — 0. The

simple Z-modules Z,, are SP-injective, but Z, is not SP-injective.

Proposition 4.9 Let R be a ring. Then the following are equivalent.

(1) The class of SP-injective left R-module is closed under extensions.

(2) Every m-cotorsion left R-module is SP-injective.

In this case, the class of SP-flat right R-modules is closed under extensions.

Proof (1) = (2) Let M be an m-cotorsion left R-module. By Remark 4.3(1), we have
an s-pure exact sequence 0 - M — N — L — 0 with N is SP-injective. By (1)
and ( (Xu, 1996), Lemma 2.1.2) Ext!(L,C) = 0 for every SP-injective left R-module C,
so L is m-flat by Proposition 4.8. Therefore Ext'(L, M) = 0 and hence the sequence
0—- M — N — L — 0is split. Thus M is isomorphic to a direct summand of N and so
1s SP-injective.

(2) = (1) is obvious since m-cotorsion modules closed under extensions.

In this case, if 0 - M — N — L — 0 is an exact sequence of right R-modules
with M and L SP-flat, then we get the exact sequence 0 - L* —» N* - M* — 0. By
Lemma 4.5(1), L* and M™ are SP-injective. Thus N is SP-injective and hence N is SP-
flat by Lemma 4.5(1). O
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Recall by Lemma 4.3(1) that all R-modules have m-flat covers and all R-modules
have m-cotorsion envelopes for an arbitrary ring R. In (Rothmaler, 2002), Rothmaler
considered when the cotorsion envelope of every flat R-module is pure-injective. Moti-
vated by this idea, we next study when the m-cotorsion envelope of every m-flat R-module

is SP-injective.
Theorem 4.6 Let R be a ring. Then the following are equivalent.
(1) Every m-flat m-cotorsion left R-module is SP-injective.

2) If0 = A - B - C — 0 is an exact sequence of left R-modules, where A is
SP-injective and C is an SP-injective envelope of an m-flat left R-module, then B is

SP-injective.
(3) The m-flat cover of every m-cotorsion left R-module is SP-injective.
(4) The m-flat cover of every SP-injective left R-module is SP-injective.
(5) The SP-injective envelope of every m-flat left R-module is m-flat.

(6) The m-cotorsion envelope of every m-flat left R-module is SP-injective.

Proof (1) = (3) Let f : X — M be an m-flat cover of a m-cotorsion module M.
Since m-flat modules are closed under extensions, ker(f) is m-cotorsion by ( (Xu, 1996),
Lemma 2.1.1). Hence, X is m-cotorsion implies that X is SP-injective by (1).

(3) = (4) and (6) = (1) are trivial.

(4) = (5) Let M be an m-flat left R-module, f : M — N the SP-injective envelope,
and g : F — N the m-flat cover of N. Then there exists 4 : M — F such that gh = f. On
the other hand, since F is SP-injective by (4), there exists 8 : N — F such that 8f = h.
Thus (gB)f = gh = f, and so gf is an isomorphism since f is an envelope. It follows that
N is m-flat.

(5) = (1) Let M be a m-flat m-cotorsion left R-module. By Remark 4.3(1),
we have an exact sequence 0 — M S N > L - Owherei : M — N is a SP-
injective envelope of M, and the sequence is s-pure. By (5), N is m-flat, so L is m-flat
by Proposition 4.8. Therefore Ext'(L, M) = 0 and hence the sequence 0 — M N>
L — 0 is split. Thus M is SP-injective.

(1) = (6) Let f : M — X be an m-cotorsion envelope of an m-flat module
M. Since m-cotorsion modules are closed under extensions, coker(f) is m-flat by ( (Xu,

1996), Lemma 2.1.2). Hence, X is m-flat implies that X is SP-injective by (1).
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(2) = (5) Let N be the SP-injective envelope of an m-flat left R-module M and
A: M — N be the inclusion map. We will first show that Ext'(N/M, K) = 0 for any SP-
injective left R-module K. In fact, let 0 - K — B — N/M — 0 be any exact sequence.

Then we have the following pullback diagram:

0 0

M=M

) A
0—=K—>H—" -N 0

” , ;
0—=K—">B—L N/M—>0

0 0

By (2), H is SP-injective. So there exists y : N — H such that 6 = yA. Note that 1 =
76 = myA, thus 7y is an isomorphism since A is an envelope. So (ry)~'A = A. It follows
that py(ry)"{(M) = py(ny)'A(M) = pyA(M) = p6(M) = 0. Thus we get an induced
map ¢ : N/M — B such that y¢ = py(ry)~'. Hence Byg = Boy(ny)™ = gry(my) e
So By = 1 since ¢ is epic. Thus the sequence 0 - K — B — N/M — 0 is split, so
Ext'(N/M,K) = 0. By Proposition 4.8, N/M is m-flat. Hence N is m-flat by Lemma
4.2(3).

B)=>2)If0 - A — B — C — 0is an exact sequence of left R-modules, where
A is SP-injective and C is an SP-injective envelope of a m-flat left R-module, then C is

m-flat by (5). So the sequence 0 - A — B — C — 0 is split. Thus B is SP-injective. O

Next we characterize SP-injective and SP-flat modules in terms of s-pure exact

sequences.

Proposition 4.10 Let R be a ring. The following are equivalent for a left R-module M.
(1) M is an SP-injective left R-module.
(2) Every s-pure exact sequence 0 > M — N — L — 0 of left R-modules is split.

(3) M is injective relative to every s-pure exact sequence ) - A — B — C — 0 of left

R-modules with B pure-projective.

Proof (1) = (2)and (1) = (3) are obvious.
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(2) = (1) By ( ( Hamid, 2019), Corollary 2.4), there is an s-pure exact sequence
0—> M — N — L — 0with N SP-injective. So M is SP-injective by (2).

3) = (1)Let0 - A - B - C — 0 be an s-pure exact sequence of left
R-modules. By ( (Enochs and Jenda, 2000), Example 8.3.2), there is an (s-)pure exact

sequence 0 - X — P — B — 0 with P pure-projective. Then we have the following

pullback diagram:
T T
X=X
k j
0 A ——=P—"5>C 0
b
0——=A—1>B—"~C—->0

Thus, j = ik and 7 = a@f. Since a and B are s-pure epimorphisms, 7 = @f is an s-pure
epimorphism. Hence, 0 - A" - P — C — 0is s-pure. Let f : A — M be any
homomorphism. By (3), there exists g : P — M such that gi = fy. Since gik = fyk =0,
we have ker(8) = Im(j) = Im(ik) C ker(g). So there exists an induced map h : B - M
such that 8 = g. Thus, fy = hBi = hdy, and so f = hA since v is epic. Hence M is

SP-injective. O

Corollary 4.8 Let R be a ring. The following are equivalent for a right R-module N.
(1) N is an SP-flat right R-module.

(2) For every s-pure exact sequence 0 > A — B — C — 0 of left R-modules with B
pure-projective, the sequence )0 > N A - N® B—- NQ® C — 0 is exact.

Proof (1) = (2)is clear.

2y = (1) Let0 > A - B — C — 0 be any s-pure exact sequence of left R-
modules with B pure-projective. By (2), we get the exact sequence 0 - N®A —- N®B —
N ® C — 0, which induces the exact sequence 0 — Hom(C,N*) — Hom(B,N*) —
Hom(A,N*) — 0. So N™* is SP-injective by Proposition 4.10. Thus N is SP-flat by
Lemma 4.5(1). |
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In (Crivei, 2014), a submodule N of a right R-module M is called coneat in M if
Hom(M, S) — Hom(N, S) is epic for every simple right R-module S. In ( (Durgun 2015),
Definition 3.1), a right R-module M is called coneat-injective if it is injective with respect
to the coneat monomorphisms. If R is commutative, then s-pure short exact sequences

coincide with coneat short exact sequences, ( (Fuchs, 2012), Proposition 3.1).

Proposition 4.11 Let R be a commutative ring. The following are equivalent for an R-
module M.

(1) M is an SP-injective R-module.
(2) M is coneat-injective R-module.

(3) Hom(F, M) is an SP-injective R-module for any flat R-module F.
Proof (1) & (2)isclear. (3) = (1) is clear by letting F = R.

(1) > B)Let0 - A - B —- C — 0 be an s-pure exact sequence of left
R-modules. For any simple R-module S, we get the exact sequence 0 — S ® A —
S®B— S ®C — 0. It follows that, for any flat R-module F, we get the exact sequence
0-FRS®A->F®S®B— F®S ®C — 0. Hence the sequence 0 —» S @ (F®A) —
SF ®B) - S ®(F ®C) — 0is exact. So the exact sequence 0 —» F®A —
F®B — F®C — 0is s-pure. Since M is SP-injective, we obtain 0 - Hom(F ®C, M) —
Hom(F @ B,M) — Hom(F @ A,M) — 0 which gives the exactness of the sequence
0 - Hom(C,Hom(F,M)) - Hom(B, Hom(F,M)) — Hom(A, Hom(F,M)) — 0. Thus,
Hom(F, M) is an SP-injective R-module. O

Proposition 4.12 Let R be a commutative ring. The following are equivalent for an R-
module N.

(1) M is an SP-flat R-module.
(2) Hom(N, E) is an SP-injective R-module for any injective R-module E.

(3) NQ® F is an SP-flat R-module for any flat R-module F.

Proof (1) = (2) Let E be an injective R-module. Then there is a split exact se-
quence 0 - E — [[R*. So, we get the split exact sequence 0 — Hom(N,E) —
Hom(N,[|R") = [[(Hom(N,R")) = [[ N*. By (1), N* is SP-injective, so [ N* is SP-
injective. Thus, Hom(N, E) is SP-injective.

(2) = (3) Let F be any flat module. Then F™ is injective. So, (N ® F)*
Hom(N, F*) is SP-injective by (2). Thus, N ® F is SP-flat.

(3) = (1) is clear by letting F = R. ]

IR
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CHAPTER 5

CONCLUSION

In this thesis, motivated by the recent works on R-projective modules, we intro-
duce the max-projective modules. The aim of this study is to investigate the almost-QF
and max-QF rings and the homological objects related with max-projective modules.
We characterized the almost-QF and max-QF rings over right hereditary right Noethe-
rian rings and over the commutative Noetherian rings. Connections between some ho-
mological objects related with max-projective modules such as m-injective, m-flat and

m-cotorsion modules are given.
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