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ABSTRACT 
 

THE DEVELOPMENT OF CHEMOMETRIC METHODS BASED ON 

MOLECULAR SPECTROSCOPY FOR THE STANDARDIZATION OF 

PRODUCTION PROCESSES AND PRODUCT TRACEABILITY OF 

PERSONAL CARE AND CLEANING PRODUCTS 

 
Personal care and cleaning products are the main consumer goods. Changes in our 

heath caused by all of the chemicals that we exposed to everyday if these products are not 

produced according to the regulations and determined formulations. Because of this 

reason, quality control of the product formulation quantitatively is very important. There 

are some analytical methods for the determination of anion active matter, nonionic matter 

and total active matter in the product mixture. However, these techniques are expensive 

and do not give accurate results. 

The purpose of this thesis principally based on development of rapid, accurate and 

practical infrared spectroscopic technique based on multivariate chemometrics data 

analysis methods for the standardization of production processes and product traceability 

of personal care and cleaning products. 

In this thesis, two different products are studied which are namely liquid soap and 

shower gel. Fourier Transform Infrared spectroscopy coupled with Attenuated Total 

Reflectance accessory based chemometrics multivariate calibration models were 

developed for the quantitative determination of liquid soap and shower gel compounds. 

Genetic Inverse Least Squares was used as the chemometrics method for the development 

of multivariate calibration models in the quantitative determination of liquid soap and 

shower gel compositions.  

Standard error of cross validation and standard error of prediction values for 

content of the liquid soap samples were found 0.26% and 0.21 % (w/w %), respectively. 

Standard error of cross validation and standard error of prediction values for content of 

the shower gel samples were found 0.27 % and 0.30 % (w/w %), respectively. 
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ÖZET 
 

KİŞİSEL BAKIM VE TEMİZLİK ÜRÜNLERİ ÜRETİM 

SÜREÇLERİNİN STANDARDİZASYONU VE ÜRÜN 

İZLENEBİLİRLİĞİ İÇİN MOLEKÜLER SPEKTROSKOPİYE DAYALI 

KEMOMETRİK METOTLARIN GELİŞTİRİLMESİ 

 
Kişisel bakım ve temizlik ürünleri ana tüketim maddelerindendir. Eğer bu ürünler 

regülasyonlara ve belirlenen formülasyonlara uygun üretilmezlerse her gün maruz 

kaldığımız bu kimyasallar sağlık problemlerine yol açabilir. Bu sebeple ürün 

formülasyonlarının kontrol edilebilmesi önemlidir. Ürün karışımındaki anyon aktif 

madde, katyonik aktif madde, noniyonik aktif madde ve toplam aktif madde içeriğini 

belirlemek için analitik metotlar bulunmaktadır. Ancak bu teknikler pahalıdır ve kesin 

sonuçlar verememektedir. 

Bu projenin esas amacı kişisel bakım ve temizlik ürünleri üretim süreçlerinin 

standardizasyonu ve ürün izlenebilirliği için kızılötesi spektroskopiye dayalı çok 

değişkenli kemometrik veri analizi ile hızlı, kesin ve pratik metotlar geliştirmektir.  

Bu projede, sıvı sabun ve duş jeli olarak 2 ayrı ürün çalışılmıştır. Sıvı sabun ve 

duş jeli bileşenlerinin miktarsal tayini için Fourier dönüşümlü kızılötesi spektroskopisi 

kullanılarak alınan spektral verilere kemometrik çok değişkenli kalibrasyon metotları 

uygulanarak yeni bir analitik metot geliştirilmesi hedeflenmiştir. Çok değişkenli 

kalibrasyon metotlerından biri olan genetik algoritma tabanlı ters en küçük kareler 

yöntemi kullanılarak çok değişkenli kalibrasyon modelleri oluşturulmuş ve bu modeller 

bağımsız kalibrasyon ve validasyon data seti ile test edilmiştir. Sıvı sabun bileşenine ait 

kalibrasyon ve validasyon setlerine ait hata değerleri %0,26 ve %0,21 aralığında 

tanımlanmıştır. Duş jeli bileşenine ait kalibrasyon ve validasyon setlerine ait hata 

değerleri %0,27 ve %0,30 aralığında tanımlanmıştır.  
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CHAPTER 1 

 

1. INTRODUCTION 

The cosmetic products are any substance or preparation that include mixtures from 

naturally or synthetically sourced chemical compounds (Manayi and Saeidnia 2014). The 

cosmetic products are employed to essentially or completely cleaning, perfuming, 

improving appearance, correcting odors, and protecting the human body or keeping it in 

the right conditions (European Parliament and of the Council 2009). The striking element 

in the definition of cosmetic ingredients one of such products is usually a mixture which 

includes major and minor components. Hence, when contained in these products are 

produced as mixtures containing more than one substance content components mentioned 

for the terms to be determined whether produced within the legal limits components that 

develop analytical methods for quantitative analysis of high priority and importance. 

A cosmetic product must be produced according to the formulation which are given by 

R&D Department, if the production is not done in that way the consequences are; 

consumer health might be in danger and there can have bad effects on the environment. 

Therefore, the most important thing is to control production. 

1.1. Scope of the Thesis 

The TS ISO 6842 standard defines the analytical methods to regulate anion active 

matter, nonionic active matter, and total active matter for the cosmetic product mixtures 

(TS ISO 6842 1989). However, these techniques have failed to give accurate results due 

to peak of some raw materials nearby. Accordingly, this research aims to develop a 

project that performs the rapid, accurate and practical molecular spectroscopic technique 

principals. In the methodology of this research, multivariate chemometric data analysis 

methods were used due to their advantages in analyzing and visualizing the complex and 

multi-dimensional data to extract information (Kowalik and Einax 2006). This research 

adapts multivariate chemometric data analysis methods to test the standardization of 

production processes and product traceability of personal care and cleaning products.  
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1.2. Literature Review 

In recent years, there has been an increasing interest on the studies focusing 

surfactant percentages in some cosmetic products determination. These studies applied 

different techniques for to test and analyze the cosmetic products determination, such as 

spectrophotometric and potentiometric (with the use of ion_selective electrodes) 

techniques, including flow injection analysis versions, chromatographic techniques 

(primarily, high-performance liquid chromatography) attenuated total reflection Fourier 

transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, the 

Immersion Refractometer, ion-pair potentiometric surfactant titrations, Fourier transform 

infrared spectrometry and multivariate analysis, RP-HPLC/ELSD and LC/MS. 

To determine anionic surfactants, the majority of procedures are used for the 

analysis of environmental materials. Hence, the determination of anionic surfactants 

studies is the first in different water samples. In the last years, potentiometric (with the 

use of ion-selective electrodes) and spectrophotometric techniques, including the versions 

of flow injection analysis, have been the most common methods of anionic surfactants 

determinations. Ya. R. Bazel et al. (2014) studied about investigation anionic surfactants 

determination in water samples in Ukraine (Bazel et al. 2014). In their study, 

spectrophotometric determination methods were developed to decrease the toxic extracts, 

which occurs consequences of extraction. Currently, highly selective sensors have been 

developed which oriented the studies to potentiometry. In addition to these methods, 

Carolei and Gutz (2005) applied two multivariate qualification methods to determine 

three different surfactants in liquid soap/shampoo (Carolei and Gutz 2005). These 

methods are inverse least squares (ILS) and classical least squares (CLS). In the middle 

infrared region of the spectrum (800–1600 and 1900–3000 cm−1) absorbance all data was 

collected, which belongs to the undiluted samples and of the calibration standards. 

Sodium lauryl ether sulfate (SLES) and Cocamidopropyl betaine (CAPB) are common 

for both liquid soap and shampoo, alkylpolyglucoside (APG) is the third surfactant of the 

liquid soap and cocodiethanolamide (CDEA), the corresponding ingredient of the 

shampoo were selected for the determination by the attenuated total reflection Fourier 

transform infrared (ATR-FTIR) were 5% of the components.  

Another method to analyze liquids is the immersion refractometer, which was 

developed to determine refractive index of solution concentrations, such as in the sugar 
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industry, pharmaceuticals, and milk (Niskanen, Hibino, and Räty 2016). Inspired by this 

information, Hoyt and Verweibe (1926) studied determination of the liquid soaps by the 

Immersion Refractometer (Hoyt and Verwiebe 1926). Mentioned liquid soap is not 

surfactant base, it contained vegetable oil, coconut oil, and distilled water. If direct 

measurement of total solid material and Immersion Refractometer measurement are 

compared, there are differences 0,3-1,8 percent for the nearly 20 % concentration of solid 

matter. In the studies conducted by Samardžić et al. (2011), potentiometric surfactant 

sensor which is based on a tetraphenylborate (TPB) antagonist and highly lipophilic 1,3-

didecyl-2-methylimidazolium cation an ion were used as the end-point detectors in ion-

pair potentiometric surfactant titrations using sodium TPB as a titrant (Samardžić, Sak-

Bosnar, and Madunić-Čačić 2011). In their study, a sensor named the end-point detector 

was used to potentiometrically titration of two-component combinations of each cationic 

surfactant and ethoxylated nonionic surfactants. On the other hand, the potentiometrically 

titration of three commercial products that contain CSs as disinfectants and nonionic 

surfactants were performed. As a result, the comparative results obtained with two-phase 

titrations for CSs and a gravimetric method for nonionic surfactants. Besides, to 

determine one nonionic and two anionic surfactants, the studies of Kargosha et al. (2008) 

based on Fourier transform infrared spectrometry and multivariate analysis were used 

(Kargosha et al. 2008). As the anionic surfactant, sodium lauryl ether sulfate (SLES) and 

linear alkylbenzene sulfonate (LABS), as nonionic surfactant, coconut diethanol amide 

(CDEA) were identified. The data combined with PLS regression shows significant 

appropriations for the determinations of three surfactants. In comparison with 

conventional methods such as classical, potentiometric, and extraction methods, the PLS 

method is better than those. In addition, Im et al. (2008) performed the shampoo and hair 

conditioner anionic, amphoteric, nonionic and cationic surfactant mixture analysis by 

reversed-phase -HPLC/evaporative light scattering detection and LC/MS (Im, Jeong, and 

Ryoo 2008). 

Overall, the studies reviewed in the literature have been done for only synthetic 

products, disregarding the effects of commercial products. Therefore, in this thesis study, 

the surfactants that reveal as the products sold to the consumer were analyzed through 

combined methodology of Fourier Transform Infrared Spectroscopy (FTIR) and 

multivariate calibration techniques. The aim this study is to standardize the production 

processes and product traceability of personal care and cleaning products. 
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CHAPTER 2 

 

2. INSTRUMENTATION 

2.1. Infrared Spectroscopy (IR) 

Spectroscopy is a scientific measurement technique which deals with 

electromagnetic radiations and matter. The light that is adsorbed, emitted, and scattered 

by materials is measured, and the technique can be used to quantify and identify those 

materials. Spectroscopic techniques are consist of two basic concepts including atomic 

spectroscopy and molecular spectroscopy.  The study of the electromagnetic radiation 

absorbed and emitted by atoms in the vapor state is atomic spectroscopy. The study of the 

electromagnetic radiation absorbed and emitted by molecules in the vapor or solid state 

is molecular spectroscopy. 

Infrared (IR) spectroscopy is the most useful tool for molecular structural 

identification and quantitative analyses of materials. The advantage of Infrared 

spectroscopy is any solid, liquid, or gas sample to be analyzed. Therefore this is widely 

used in chemical, pharmaceutical, environmental, surface sciences, and food chemistry. 

Basically, it is the absorption measurement of various IR frequencies by a sample 

positioned in the path of an IR beam. Different functional groups in a sample absorb 

different frequences of infrared radiation, and in order to determine chemical structures 

over these characteristic frequencies. 

Infrared radiation spans a section of the electromagnetic spectrum having 

wavenumbers from approximately 13,000 to 10 cm–1, or wavelengths from 0.78 to 1000 

μm. It is limited by the red end of the visible region at high frequencies and the microwave 

region at low frequencies. IR absorption positions are usually shown as not only 

wavenumber ( ) but also wavelengths ( ). Wavenumber are defined by the number of 

waves per unit length. Besides that, wavenumbers are directly proportional to frequency, 

as well as the energy of the IR absorption. Unit of the wavenumber (cm–1, reciprocal 

centimeter) is commonly used in modern IR instruments which are linear in the cm–1 

scale. The other way round, wavelengths are inversely proportional to frequencies and 
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their associated energy. At present, the recommended unit of wavelength is μm 

(micrometers), but μ (micron) is used in older literature. (Settle, 1998) 

Infrared is generally consists of three spectral regions: near, mid and far-infrared. 

The higher-energy near-IR, roughly 12800–4000 cm−1 (0.78–2.5 μm wavelength) can 

excite overtone or harmonic vibrations. The mid-infrared, roughly 4000–200 cm−1 (2.5–

50 μm) may be used to study the associated vibrational-rotational structure and 

fundamental vibrations. The far-infrared, roughly 200–10 cm−1 (50–1000 μm), nearest 

adjacent to the microwave region, has low energy and might be used for rotational 

spectroscopy. (Derrick et al. 1999) The wavelength ranges of these three infrared regions 

are shown in Table 2.1. (Skoog, Holler, and Crouch 1998) 

Table 2.1. The corresponding wavelengths and wavenumbers of the Infrared regions. 

Regions Wavelength Range (nm) Wavenumber Range (cm-1) 

Near-Infrared (NIR) 780-2500 12.800-4000 

Mid-Infrared (MIR) 2500-50.000 4000-200 

Far-Infrared (FIR) 50.000-1 x 106 200-10 

 

According to the past studies the IR region is divided into two segments by the 

chemists: The region from 4000 cm−1 to approximately 1500 cm−1 is named as ‘Peak ID 

Region’ since it is mainly used for correlating peak location with bonds. Additionally, the 

region from 1500 to 600 cm−1 is typically very engaged and is not as constructive for such 

correlation, but it remains very constructive as the molecular fingerprint. Because of this, 

the region is called as ‘Fingerprint Region’. This means that the region can still be used 

for peak-for-peak matching with a known spectrum from a library of known spectra.  

For infrared absorption measurement, commercially, there are three types of 

instruments which are dispersive instruments, multiplex instruments, and nondispersive 

instruments (Skoog, et al. 1998).  

A dispersive instrument has a monochromator with a grating element to disperse 

the radiation flowing from the source into its wavelengths where could used as a 

wavelength selecting the instrument. It is generally designed double-beam, that is, 

incoming IR radiation is separated into two beams in order to pass through the reference 

and sample materials. Therefore, the amplified signal and interferences of air during the 
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analysis are prevented. A shown figure for a dispersive instrument is shown in Figure 2.1 

(Smith 1996). 

 

Figure 2.1. A schematic representation for an FT instrument (Skoog, et al. 1998). 

Non-dispersive instruments have a filter or non-dispersive photometers which are 

designed for quantitative analysis. Mostly, they are not complicated. Moreover, they are 

user friendly and not expensive compared to the instruments discussed above (Skoog, et 

al. 1998). 

2.1.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR 

-FTIR) Spectroscopy 

Some scientists used the popular and trustable fingerprinting method which is 

Mid-Infrared spectroscopy for the characterization and the quantification of the 

substances. Although it has many disadvantages. The transmission technique of sampling 

is mostly preferred the way of obtaining mid-infrared. If samples are thicker than 20 

microns absorb too much infrared radiation, as a result it will be not probable to get a 

spectrum. Because of this, thickness problem could be counted as one of the 

disadvantages. Also, if the sample is thinner than 1 micron, its absorption will be so weak 

that it cannot be analyzed. Other disadvantage is wasting of time because of the sample 

preparation consist of the following processes as squishing, melting, or diluting 

requirements lead into transmits the appropriate amount of light. For this reason, in order 

to collect mid-infrared spectra, the reflectance techniques can be more preferred than 

transmission ones. There is no thickness problem for the reflectance techniques. 

Therefore, the thickness or the concentration of the sample is not concerned. In addition 
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to this, there is not much time-consumption for sample preparations. As it means that the 

sample preparation for reflectance samples is easier and faster than for transmittance 

samples. A final advantage of some reflectance techniques is that they are nondestructive. 

The sample is left same condition right after its spectrum is collected, where the sample 

can be analyzed for other studies (Stuart, 2004).  

The attenuated total reflectance (ATR) technique is used to obtain the spectra of 

solids, liquids, semi-solids, and thin films that is the reflectance technique used with mid-

infrared spectroscopy. 

It can be clearly seen that the ATR-FTIR specroscopy is highly performed where 

an accessory is placed into sample holder of an FTIR instrument. The accessory has a 

infrared transparent crystal material with a high refractive index that mirrors the IR 

radiation to focus on the face of the crystal. Infrared radiation passes through the crystal 

and reaches to its top surface. At this case, if the crystal has the proper refractive index 

and the light has the proper angel of incidence, the infrared radiation and reflects off the 

crystal surface rather than leaving it. This is named as total internal reflection. The 

infrared beam reflects off the crystal surface three times earlier as leaving the crystal. This 

procedure is presented in the schematic diagram of an ATR accessory in Figure 2.4. 

(Stuart, 2004). 

 
Figure 2.2. A schematic diagram of an ATR accessory (Stuart, 2004). 
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CHAPTER 3 

 

3. MULTIVARIATE CALIBRATION METHODS 

According to The International Chemometrics Society (ISC), chemometrics is the 

science of relating measurements made on a chemical system or process to the state of 

the system via application of mathematical or statistical methods. Design of experiments, 

optimization of experimental parameters, signal processing, calibration is employed for 

principal component analysis, pattern recognition, collecting good data are used for 

obtaining information from these data in chemometrics. 

3.1. Calibration Method 

Calibration is a generated model which is used in order to determinate the relation 

between features of samples and instrumental response. Firstly, analyte’s concentration 

levels and instrument responses are used to construct the model. Secondly, by using this 

model, the features are predicted according to the instrumental response of a sample. 

Terminally, the concentration of unknown samples is predicted by utilizing the model. 

Generally, calibration methods are examined in two parts, which are multivariate 

and univariate calibration methods. One single wavelength is used to determine the a 

single compound’s concentration of when the univariate calibration model is applied. In 

contrast to the univariate calibration, most of the wavelengths are used to determine the 

multi-component mixture’s concentration when the multivariate calibration method is 

applied. 

3.1.1. Univariate Calibration 

When univariate calibration model is used, Lambert Beer's law can be applied to 

determine the correlation between instrument response and analyte concentration. If this 

correlation is linear, two options can be listed: 

 Classical calibration 

 Inverse calibration 
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3.1.1.1. Classical Univariate Calibration 

This kind of calibration method uses a single wavelength or data point in a 

spectrum, and concentration is modeled by the absorbance. The general classical 

univariate calibration formula is: 

                              a = c. s + e                                                                         (3.1) 

a is the vector of absorbance at one wavelength for a number of samples and c is 

the vector of corresponding concentrations.  

where the c′ shown as the transpose of the concentration vector and the scalar 

coefficients can be applied according to the formula as below:  

 

                            s ≈ (c′  c)-1  c′  a                                                            (3.2) 

After s is calculated by the formula on scalars a and c with hat mention as 

predictions, the concentration of an unknown can be predicted as: 

                                              ĉ≈ a / s                                                                              (3.3) 

3.1.1.2 Inverse Univariate Calibration 

Since unknown sample concentration is predicted by using instrumental response 

and instrumental performance can cause response error, classical calibration is not always 

preferred in analytical chemistry. Mostly errors are derived from the concentration, that 

is larger than instrumental error. Figure 3.1 represents the errors, where (a) is obtained 

from the instrument, and (b) is from concentration (Brereton 2003). 

  

Figure 3.1. Difference between errors in (a) classical and (b) inverse calibration 

(Source: Brereton 2003). 
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The formula can express Inverse calibration method: 

                                               c ≈ a  b                                                                        (3.5) 

b is approximately inverse of s, which is a scalar coefficient, and can be calculated as: 

                                                 b ≈ ( a′  a)-1  a′  c                                                (3.6) 

the concentration of an unknown sample prediction is calculated by the following 

formula: 

                                                 ĉ = â . b                                                                       (3.7) 

3.1.2. Multivariate Calibration 

There is a need for improved quantitative information in science and technology. 

According to this purpose, multivariate calibration is a general selectivity and reliability 

enhancement tool. (Martens et al., 2001) This method is related to the multiple responses 

to properties of a sample process. The samples could be not only a single chemical 

component but also a mixture of chemicals components. Unlike univariate analysis, 

multivariate calibration makes possible fault-detection. 

In this study, genetic inverse least squares (GILS) method is used. Before 

explaining this method, as an introduction to the multivariate calibration method, 

comparison between classical least squares (CLS) and inverse least squares (ILS) 

methods should be examined. 

3.1.2.1 Classical Least Squares (CLS) 

Classical least squares (CLS) method is also known as Beer's Law or K-matrix 

method. According to the model, the absorbance at every single wavelength is 

concentrations of an analyte’s function. This method can be calculated by the equation 

below. 

                                              A = C x K + E                                                          (3.8) 

where A is a m x n matrix that consists absorbance values of m calibration samples 

at n wavelengths of the samples at different wavelengths, C is the m x h matrix which 

contains of concentrations of each of the h components in the m calibration samples. K 

is the matrix of absorptivity coefficients multiplied by path length, and EA is the matrix 

of residuals not fit by the model or spectral errors.   
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K matrix is evaluated by the least square with the equation. 

                                                      K = (C′  C) – 1  C′  A                                                (3.9) 

 

The prediction of the concentrations of the unknown sample is calculated by the following 

equation: 

 

                                                       ĉ = (K  K′) – 1  K′  a                                          (3.10) 

 

where a is the spectrum of unknown sample and ĉ is the vector of the predicted component 

concentrations. 

The difference between the predicted and reference concentration values is called the residual 

and can be calculated by:  

                                                      e = c – ĉ                                                                (3.11) 

Classical Least Square method can provide significant enhancement in precision 

because it is a full spectrum method. Moreover, as a consequence of supplying spectral 

baselines that are randomly fitted and analyzed pure component spectra along with the 

residuals. In spite of all benefits, this method has one disadvantages that all meddling 

chemical components must be known and their concentrations incorporated into the 

model. Concentrations of all species are not possibly known in real life samples. There 

would be a large error since the instrument response of interfering species is not put in 

the calibration model. By using Inverse Least Square (ILS) method, this error can be 

reduced. 

3.1.2.2. Inverse Least Squares (ILS) 

In practice, all concentrations can not be analyzed at all. Therefore Classical Least 

Square method is not always applicable. In this case, the Inverse Least Squares (ILS) 

method that concentrations of an analyte are modeled as a function of absorbance is used. 

This method can be explained by the following equation. 

 

                                                           C = AP + EC                                                    (3.12) 
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where C and A are the same as in CLS (C is the concentration matrix, and A is 

the absorbance matrix). EC is the m x h matrix of errors in the concentrations not fit by 

the model. P is the n x h matrix of the unknown calibration coefficients relating h 

component concentrations to the spectral intensities.  

 

As you can see the below formulation, equation 3.12 can be reduced for the 

analysis of one component at a time. This reduction is the greatest advantage of ILS. 

 

                                                       c = Ap + ec                                                             (3.13) 

 

where c is the m x 1 vector of concentrations for the analyte that is being analyzed, p is n 

x 1 vector of calibration coefficients, and ec is the m x 1 vector of concentration residuals 

not fit by the model. During the calibration step,   which is estimated p can be calculated 

with: 

                                                     = (A  A′)-1  A′  c                                                (3.14) 

 

After is calculated, the concentration of the analyte of the unknown can be predicted 

with the equation 3.15: 

                                                          ĉ = a′                                                            (3.15) 

 

where ĉ is the scalar estimated concentration and a′ is the spectrum of the unknown 

sample. 

An ILS demonstrate contains a major advantage in that it does not ought to know 

and incorporate all components within the calibration set. This implies that ILS accept 

that the power for each measured variable within the investigation all carry on perfectly 

independent. Furthermore, you're confined from utilizing all of the spectral channels in 

making the model. The number of channels of spectral data utilized cannot surpass the 

number of calibration benchmarks. Exactness will be decreased in the data that more 

channels are included than the number of independent sources of variety within the 

information. (Haaland et al.,1988)  
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3.1.2.3. Genetic Inverse Least Squares (GILS) 

Genetic inverse least squares are mostly used application of Genetic Algorithms 

(GA) which are global optimization and search methods based upon the principles of 

natural evolution and selection developed by Darwin. It is utilized for selecting 

wavelengths to construct multivariate calibration models with reduced data set. (Özdemir 

et al.,2010) 

Agreeing to Darwin's Hypothesis; variety could be a include of common 

population, and each population produces offspring. The results of this overproduction is 

that those people with the best genetic fitness for the environment. Thus the later 

generation will have a higher representation of these offspring, and the population will 

have evolved. (McClean et al.,1997) 

Genetic Algorithm has five key steps, as shown in Figure 3.2. 

 

Figure 3.2. Flow chart of genetic algorithm used in GILS 
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These steps comprise of initialization of a gene population, evaluation of the 

population, selection of the parent genes for breading, and mating, crossover and 

replacing parents with their offspring, respectively. The title of these steps starts within 

the biological feature of the genetic algorithm.  

3.1.2.3.1. Initialization 

A gene which is shown as the collection of instrumental response at the 

determined wavelength range according to the data set is a possible solution of given 

problems. The population is the gathering of individual genes in the current generation. 

A gene is shown in the following formula 3.16   

                              S = [A1754 A926 A2268 A596 A1255 A3500]                           (3.16) 

where S is a gene and A is the absorbance. 

In this step, first generation genes are produced with fixed population size. Genes 

are selected randomly, then bias is minimized, and the number of possible recombination 

are maximized. The estimating time depends on the size of the number of genes. If the 

population size is small, shorted estimating time is required. Therefore, it is important to 

maintain the number of the gene pool size.  

3.1.2.3.2. Evaluate and Rank the Population 

After the first step as gene population is produced, the next step would be to 

evaluate and rank the population the genes. In arrange to assess each each gene's success 

using a fitness function. The fitness function is formulated as the inverse of the standard 

error of calibration (SEC): 

                                              Fitness = 1/SEC                                                             (3.17) 

SEC is evaluated from the equation: 

                                            

2

1

ˆ

2

m

i i
i

c c
SEC

m                                                      (3.18) 

where ci is the reference and  is the predicted values of concentration of ith 

sample and m is the number of samples. Degree of freedom is m-2 that is the parameters 

to be derived, where the slope of the actual plot vs. reference concentration plot and the 

respective intercept. 
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3.1.2.3.3. Selection of Genes for Breeding 

This step based on the fundamental principle of natural evolution. The parent 

genes are selected from the present population for breeding. The aim is to generate the 

genes, which are the best performing members of the population will survive in the long 

run. Their information will be passed to the next generation. Thus, better offspring will 

be generated with the genes which are better suited for the problems. The genes with high 

fitness values will be given higher chance to breed, and thus, several will be able to 

survive. 

3.1.2.3.4. Crossover and Mutation 

The genes are broken at points randomly. Offspring genes are formed by cross-

coupling. S1 and S2 are parent genes; S3 and S4 are their corresponding off-springs. 

Parents: 

S1= [A452 A3732 # A1237 A2890] 

S2 = [A923 A1457 A1743 # A832 A3022] 

Offspring: 

S3 = [A452 A3732 A832 A3022] 

S4 = [A923 A1457 A1743 A1237 A2890] 

 As shown above, the points where the genes are cut for mating are indicated by # 

and the place where crossover takes place. This process is called single point crossover, 

and it is commonly used in GILS. 

3.1.2.3.5. Replacing the Parent Genes with Their Offspring 

After cross over and mutation step, the offspring are evaluated by replacing with 

the parent genes. The modeled concentration of component is predicted in the validation 

step, and the success of that model is utilized using the standard error of prediction (SEP). 

standard error of prediction can be calculated with the formula: 

                                    

2

1

ˆ
m

i i
i

c c
SEP

m                                                   (3.19) 

where m is the number of independent validation samples. 
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3.1.2.3.6. Termination 

The final step is the termination of the algorithm. It is done by setting a predefined 

iteration number for the number of breeding cycles. If the lowest SEC for the calibration 

set, means lowest SEC has the highest fitness. Then the lowest SEC is selected for model 

building; the concentrations of component are estimated by using this model.  In the 

prediction of test sets, the model's success is approximated using the standard error of 

prediction (SEP). 
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CHAPTER 4 

 

4. EXPERIMENTATION 

In this study, quantitative composition determination of personal care and 

cleaning products which are produced by Dalan Kimya Endüstri A.Ş. was carried out by 

using FTIR Spectroscopy combined with a genetic algorithm based multivariate 

calibration method called Genetic Inverse Least Squares (GILS). Two different product 

categories are chosen namely liquid soap and shower gel. 

 

4.1. Sample Preparation 

In the first part of the study, quantitative composition determination of liquid 

soap which is one of the most sold products of Dalan Kimya Endüstri A.Ş, was carried 

out. Because of the confidentiality requirement, names of the components contained 

in the particular liquid soap are coded as surfactant 1, surfactant 2 etc. As shown in 

the Table 4.1 below, the liquid soap composed of 17 different components, including 

water which contributes more than 78% (w/w) of the overall product. Among the 

remaining other 16 components, some of them were found around 2% (w/w), some of 

them around 0.5 % (w/w)  but some coloring components like the dyes, are the minor 

components of the product as their concentrations even lower than 0.0001 % (w/w). Four 

different surfactants are used where two of them are found to be around 2 % where as one 

of them 11% (w/w) and the other one around 0.5 % (w/w %). In addition to these 

components, there is also 2% (w/w) salt which is added in order to modify the rheology 

of the system. Moreover, there are some other minor ingredients like chelating agent, 

preservative, perfumes and so on.  
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Table 4.1. The composition of liquid soap along with coded names of the components 
and their concentrations (w/w %). 

Name of the Component Code of the Component (w/w %) 

Water A 78.6891 

Surfactant 1 B 11.00 

Salt C 2.10 

Surfactant 2 D 2.00 

Surfactant 3 E 2.00 

Additive 1 F 2.00 

Surfactant 4 G 0.50 

Additive 2 H 0.50 

pH adjuster I 0.46 

Parfum J 0.25 

Preservative K 0.20 

Oil L 0.15 

Chelating agent M 0.10 

UV absorber N 0.05 

Dye 1 O 0.00070 

Dye 2 P 0.00017 

Dye 3 R 0.00005 

 

As the number of components which forms the product are 17, where some of 

them are the major and some of them minor components, it is not practical (If not 

possible) to determine all of these components quantitatively not only by FTIR 

spectroscopy but also with some other conventional instrumental methods such as 

chromatography. Therefore, a screening experimental design study was carried out in 

order to determine which of these factors (components) has the most significant 

importance in the number of different chemical and physical properties of the product 

stability such as pH, viscosity, density, color, odor, and texture. The screening design 

chosen here was 19-factor standard Placket Burman Design in which two dummy factors 

were not used so that only 17 components has been taken from Table 4.1 in order to 

construct design shown in Table 4.2.  
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As shown in Table 4.2., concentration of each component has been varied around 

±10% of the product formula amount except water which is amount is depend on the other 

16 component as the total amount of the each sample must add up to 100%. This may 

cause slight disturbance to Placket Burman Design where the water composition changes 

slightly from sample to sample which makes it difficult to code as ±1 in the coded design 

table. However, considering more than 78% of the total composition is formed by water 

in all samples, it is assumed that the disturbance should not have a significant effect on 

the general Placket Burman Design analysis. Table 4.3. shows the coded Placket Burman 

design table for a linear model including an intercept term. 

Table 4.3. Coded Placket Burman design table 
No bo A B C D E F G H I J K L M N O P R 
1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 
2 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 
3 1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 
4 1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 
5 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 
6 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 
7 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 
8 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 
9 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 
10 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 
11 1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 
12 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 
13 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 
14 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 
15 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 
16 1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 
17 1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 
18 1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 
19 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 
20 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

After evaluating the statistical design of experiment study with 17 factors Placket 

Burman screening design, only the 7 components (factors) which are A, C, D, E, F, J and 

L were chosen as to be varied their concentrations in multivariate calibration and G and 

K components were used as either presence and not available in the samples. The 

remaining 8 components were kept constant in product composition at the level given in 

Table 4.1. In order to better understand how the concentrations of the components were 

changed in the 50 multicomponent samples for multivariate calibration modelling, only 

the first two samples compositions are given in Table 4.4. with the coded component 

names. The concentration table of the all of the 50 samples is shown in Table 4.5. 
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Table 4.4. Components, codes and their concentrations ranges (w/w %) used in Sample 1 
and Sample 2 of ‘Liquid Soap’. 

Code Sample 1 (w/w %) Sample 2 (w/w %) Condition 

A* 77.1837 82.0530 Change 

B 0.1000 0.1000 Constant  

C* 8.6740 6.7048 Change 

D* 4.9772 3.3876 Change 

E* 2.9018 2.1392 Change 

F* 1.0922 0.9471 Change 

G 0.0000 0.0500 Presence / NA 

H 0.1500 0.1500 Constant  

I 2.0000 2.0000 Constant  

J* 0.5261 0.2263 Change 

K 0.0000 0.2000 Presence / NA 

L* 1.6440 1.2910 Change 

M 0.2500 0.2500 Constant  

N 0.5000 0.5000 Constant  

O 0.0007000 0.0007000 Constant  

P 0.0000477 0.0000477 Constant  

R 0.0001700 0.0001700 Constant  
 

*These are the components which were varied in their concentrations. 
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Table 4.5. Concentration profile of 50 liquid soap samples as mass percent (w/w %) with 
coded names of the components that are varied during multivariate calibration. 

No A C D E F J L No A C D E F J L 
1 77.18 8.67 4.98 2.90 1.09 0.53 1.64 26 80.53 8.13 2.23 3.25 0.84 0.34 1.44 
2 82.05 6.70 3.39 2.14 0.95 0.23 1.29 27 77.17 12.83 3.12 2.13 0.27 0.31 1.11 
3 76.99 10.18 2.16 3.70 1.10 0.56 2.07 28 75.79 11.65 3.80 3.05 0.49 0.34 1.63 
4 74.46 12.29 2.25 4.67 1.39 0.58 1.10 29 73.67 12.94 4.16 3.18 1.34 0.24 1.23 
5 75.37 12.19 2.23 4.19 0.38 0.54 2.11 30 81.03 7.79 2.14 2.07 1.23 0.40 2.13 
6 72.82 12.71 3.37 4.95 0.59 0.42 1.88 31 73.88 12.66 4.57 2.84 0.34 0.36 2.09 
7 79.43 6.10 3.53 4.13 1.32 0.21 2.03 32 79.03 6.37 4.87 3.07 1.47 0.53 1.61 
8 81.37 8.85 1.66 2.19 0.79 0.50 1.39 33 74.45 10.94 3.34 4.96 1.44 0.30 1.32 
9 78.10 12.04 2.63 1.83 0.88 0.22 1.04 34 72.19 11.72 4.74 4.65 0.99 0.32 2.14 
10 79.84 6.97 3.29 4.31 0.36 0.50 1.72 35 74.30 12.81 2.43 4.48 0.98 0.49 1.33 
11 79.46 7.72 2.37 3.88 1.12 0.21 2.00 36 77.63 9.26 3.82 3.72 0.85 0.38 1.09 
12 78.37 6.32 3.32 4.84 1.41 0.58 1.91 37 76.58 8.10 3.84 4.47 1.29 0.47 2.20 
13 82.05 6.23 3.69 2.17 0.59 0.50 1.52 38 76.89 11.25 2.42 3.54 0.51 0.28 1.85 
14 78.65 7.15 4.96 3.15 0.34 0.41 2.09 39 78.88 8.46 3.30 3.28 0.90 0.21 1.72 
15 80.98 7.54 1.60 3.59 1.27 0.26 1.76 40 77.90 11.43 3.29 1.65 0.91 0.51 1.12 
16 82.17 6.12 3.21 1.59 1.05 0.46 2.15 41 79.98 6.52 2.21 4.71 0.72 0.38 2.23 
17 76.99 8.00 4.90 4.22 0.26 0.48 1.91 42 79.32 7.39 4.35 2.02 1.08 0.45 2.34 
18 77.81 8.40 3.75 3.46 1.43 0.30 1.59 43 81.48 6.45 2.31 3.36 0.90 0.52 1.73 
19 78.38 9.88 3.65 2.02 1.38 0.21 1.24 44 76.57 8.51 4.25 4.13 1.00 0.43 1.86 
20 78.19 8.50 2.13 4.64 0.81 0.40 2.33 45 77.45 9.41 3.19 3.94 0.88 0.59 1.35 
21 78.34 8.60 2.39 3.67 1.17 0.32 2.27 46 78.15 9.58 3.09 2.96 0.85 0.42 1.70 
22 78.94 8.49 3.50 3.36 0.41 0.30 1.76 47 76.85 8.61 3.17 4.84 1.02 0.22 2.24 
23 74.20 12.37 4.72 1.87 1.17 0.54 1.88 48 74.03 12.90 4.11 3.68 0.52 0.38 1.13 
24 77.67 9.26 4.04 2.58 0.87 0.50 1.82 49 81.05 6.28 4.86 2.07 0.68 0.57 1.24 
25 76.24 8.98 4.85 4.45 0.49 0.21 1.57 50 79.87 7.62 3.76 2.37 1.35 0.50 1.34 

 

In order to develop multivariate calibration models based on FTIR spectra of the 

samples, the calibration and independent validation sets were perapared from the samples 

given in Table 4.5. in a ramdom manner where 34 samples were chosen as calibration set 

and the remaining 16 samples were chosen as the independent validation set. 

 

In the second phase of the multivariate calibration study, a shower gel product is 

selected in order to analyze composition. The shower gel components, codes, and their 

percentages are shown in Table 4.6. 
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Table 4.6. Components, codes and their concentrations (w/w %) used in training set of 
‘Shower Gel' 

Name of the Compound  Code of the Component (w/w %) 

Dye 1 A 0.000233 
Dye 2 B 0.000040 
Dye 3 C 0.000720 
Solubilizer D 2.0000 
Salt* E 1.2000 
Surfactant 1* F 16.000 
Oil G 0.1000 
Ph adjuster H 0.2300 
Surfactant 2* I 1.0000 
Surfactant 3* J 3.0000 
Preservative K 0.2000 
UV light stabilizer L 0.0500 
Parfum M 0.7000 
Surfactant 4* N 0.4000 
Surfactant 5* O 2.0000 
Surfactant 6* P 7.0000 
EDTA R 0.1000 
Water* S 66.019 
  Total 100 

*These are the components which were varied in their concentrations. 

 

As mentioned above, the particular shower gel composed of 18 different 

components, including water which forms 66% of the product. Among the remaining 

other 17 components, one of them is found around 16%, a number of them around 1 to 

3%  but some coloring components like the dyes, are minor component of the product as 

their concentrations even lower than 0.0001% by mass. Five different surfactants are used 

as their concentrations around 16%, 7%, 3%, 2% and 1% by mass.  In addition to them, 

1.2% salt is added in order to modify the rheology of the system. Moreover, there are 

some other ingredients like a chelating agent, preservative, perfumes and so on. A total 

of 30 different synthetic mixtures were prepared shown in Table 4.7, where the 

concentrations of 8 components were ranged around ±10% of the standard formula of the 

product.  
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Table 4.7. Concentration profile of 30 shower gel samples as mass percent (w/w %) with 
coded names of the components that are varied during multivariate calibration. 

 
 

The following percent concentration graphs are drawn in order to make the above 

table more understandable. Figure 4.1 shows the concentration changes for the water 

component of the second phase of the study. 

 

No S F P O J N I E
1 66.44 14.39 6.71 2.13 3.06 0.39 1.28 1.31
2 65.78 15.92 6.74 1.83 2.81 0.41 0.99 1.14
3 65.43 14.51 7.90 1.91 3.28 0.38 0.92 1.30
4 65.10 15.32 7.19 2.13 3.37 0.37 0.99 1.20
5 63.04 17.50 6.87 2.08 3.12 0.41 1.26 1.26
6 65.70 15.38 6.84 2.26 2.83 0.37 1.09 1.15
7 66.26 15.00 6.73 1.85 3.02 0.43 1.10 1.26
8 65.86 14.56 7.50 1.86 3.21 0.40 1.01 1.26
9 64.87 16.04 6.68 2.22 3.11 0.37 1.05 1.25

10 66.34 14.69 6.36 2.02 2.88 0.45 0.98 1.29
11 65.33 15.99 6.28 2.22 3.15 0.42 1.02 1.24
12 64.96 15.23 7.55 2.12 3.32 0.34 0.96 1.20
13 62.83 18.32 6.82 2.03 2.79 0.41 1.26 1.27
14 64.44 17.02 6.66 2.05 2.76 0.46 1.03 1.17
15 65.55 15.29 7.25 2.13 2.65 0.34 1.28 1.22
16 65.91 14.64 7.41 1.95 3.17 0.37 0.90 1.39
17 64.04 17.09 7.09 2.10 2.80 0.41 1.08 1.26
18 63.23 17.15 7.34 2.16 2.78 0.34 1.25 1.31
19 66.38 15.03 7.44 1.80 2.66 0.36 0.92 1.16
20 63.54 17.38 6.96 2.15 3.06 0.41 1.08 1.11
21 65.61 15.17 7.07 2.03 2.86 0.43 1.17 1.31
22 65.67 14.60 7.10 2.06 3.35 0.43 1.16 1.20
23 65.72 14.65 7.14 1.91 3.44 0.42 1.13 1.22
24 65.39 16.08 6.77 1.84 2.95 0.41 1.11 1.10
25 63.14 16.86 7.74 2.05 3.18 0.40 1.09 1.20
26 65.65 15.10 7.05 2.12 3.16 0.41 0.96 1.21
27 64.44 16.33 7.39 1.94 2.75 0.44 1.16 1.32
28 63.04 17.48 7.41 1.98 3.07 0.43 1.05 1.18
29 64.93 14.39 7.85 2.23 3.24 0.38 1.27 1.19
30 64.26 16.18 7.33 2.20 2.90 0.33 1.10 1.22
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Figure 4.1. Percent concentration of the water contents (w/w %) of the samples in the 
second phase of the study. 

 

As seen from the Figure 4.1, the concentration of water was changed from 63% 

to 67% (w/w %). Figure 4.2 shows the concentration changes for the O, N, I and E 

components of the shower gel in the second phase of the study. 

 

Figure 4.2. Percent concentration of the O, N, I and E contents (w/w %) of the samples in the 
second phase of the study. 

 

As seen from the Figure 4.2, the concentration of O was changed from 1.8 % to 

2.2% (w/w %), N from 0.3 % to 0.5 % (w/w %), I from 0.9 to 1.3 % and E from 1.1 % to 

1.4 %. Figure 4.3 shows the concentration changes for the F, P, and stock solution 

components of the second phase of the study. 
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Figure 4.3. Percent concentration of the F, P, and stock solution contents (w/w %) of the 
samples in the second phase of the study. 

 

As seen from the Figure 4.3, the concentration of F was changed from 14.4 % to 

18.3 % (w/w %), P from 6.3 % to 7.9 % (w/w %) and stock solution around 3.8 % (w/w 

%). As shown in Figure 4.1 above, the amount of water in the samples varies between 63 

- 67.5% whereas the F component changes in the range of 13-17% and the P component 

is changed in the range of approximately 4.5-5.5%. On the other hand, the other 

components of the mixture O, N, I and E varied in the concentration range ±10% in the 

product. Finally, the amount of the rest of the components (A + B + C + D + G + H + K 

+ L + M + R) are kept constant at 3.8% by mass.  

 

4.2. Instrumentation and Data Processing 

4.2.1. Data Collection 

In this study, FTIR spectral data were collected by Perkin Elmer Spectrum 100 

spectrometer equipment with universal three reflection ATR accessory between 4000 –

650 cm–1. In order to generate multivariate calibration models for each component, FTIR 

spectra are recorded as log (1/R) against to not only air but also water background. The 

spectra are saved as ASCII file format and then transferred to another PC after collected 

on the FTIR instrument.  
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4.2.2. Data Processing 

Calibration and validation sets are prepared as text files with the aid of Microsoft 

Excel (MS Office 2010, Microsoft Corporation) program. After the text files are 

organized by using MS Excel, they are used to build chemometrics multivariate 

calibration models with GILS method which is implemented by MATLAB R2013a 

(MathWorks Inc., Natick, MA). These models were used to predict the compositions of 

liquid soap and shower gel samples whose concentrations were unknown with the models 

generated in liquid soap study an shower gel study, respectively.  

  



 

28 

CHAPTER 5 

 

5. RESULTS AND DISCUSSION 

As mentioned in previous chapters, in this study, FTIR spectroscopy coupled with 

three reflection diamond attenuated total reflectance (ATR) accessory was used to collect 

spectral data which have been used to develop multivariate calibration models for two 

personal care and cleaning products namely liquid soap and shower gel. The following 

section gives the results obtained from these studies starting with the results of liquid 

soap. 

 

5.1. Results of Liquid Soap 

5.1.1. Placket Burman Statistical Experimental Design Results  

 As mentioned in Chapter 4, Placket Burman design has been carried out in order 

to determine which of the chemical components (factors) have significant importance in 

the number of different chemical and physical properties of the product stability such as 

pH, viscosity, density, color, odor, and texture. For this, a 19 factors standard Placket 

Burman screening design given in Table 4.2 and 4.3 has been prepared where 2 of the 

factors was assigned as dummy factor and not included in the tables. Therefore, a total of 

17 chemical components which forms the standard formula composition of the liquid soap 

are included in the design table. After generating the design table composed of 20 

independent experiments, 2 kg of liquid soap samples had been produced for the each 

formulation given in Table 4.2 and viscosity, pH, density and foam tests had been 

performed on each sample. Additionally, foam tests had been done at five different 

periods of time. Results of these analyses are shown in Table 5.1. Regression analysis of 

Placket Burman screening design had been carried out with a linear model equation 

containing 17 terms given in Table 4.3 along with an intercept term based on coded data 

for each response variables given in Table 5.1. The regression coefficients and p-values 

from analysis of variance (ANOVA) and regression analysis are shown in Table 5.2. 
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Table 5.1. Viscosity, density, pH and foam test results of Liquid Soap samples given in 
Table 4.2. 

 

  Foam Test (cm) 

No 
Viscosity 

(cP) pH 
Density 
(g/cm3) 

0 
minute 

5 
minute 

10 
minute 

15 
minute 

20 
minute 

1 2660 6.07 1.022 1090 1080 1060 1050 1040 
2 4480 5.27 1.037 1180 1160 1140 1130 1130 
3 9750 6.11 1.039 1160 1140 1130 1120 1100 
4 5580 5.07 1.040 1180 1170 1150 1130 1120 
5 9850 6.20 1.038 1180 1160 1140 1130 1120 
6 2000 6.54 1.020 1170 1160 1140 1120 1100 
7 9870 5.32 1.039 1170 1160 1140 1130 1100 
8 4860 5.63 1.038 1080 1060 1060 1040 1020 
9 1100 5.57 1.020 1100 1040 1040 1040 1020 
10 8720 5.37 1.036 1120 1120 1100 1080 1080 
11 8460 6.95 1.039 1120 1100 1100 1080 1080 
12 3490 6.16 1.031 1080 1080 1070 1060 1050 
13 3610 6.77 1.032 1150 1140 1120 1100 1080 
14 5190 6.05 1.035 1150 1120 1100 1100 1080 
15 5090 6.07 1.034 1160 1150 1140 1120 1100 
16 8680 5.90 1.037 1090 1080 1070 1060 1060 
17 6490 5.62 1.035 1170 1160 1150 1120 1100 
18 6900 6.53 1.035 1150 1140 1120 1100 1100 
19 10350 5.81 1.039 1100 1080 1070 1060 1040 
20 4500 5.89 1.032 1130 1120 1100 1100 1080 
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As seen from Table 5.2., many terms in the linear model equation are not 

significant at 95% confidence level for most of the responses except for pH and foam test 

at 5, 10 and 15 minutes. Those terms, which are significant at given confidence level, are 

highlighted with bold red font where 14 terms including intercept were significant for pH. 

For the foam test, there were 13 terms that are significant for 10 minute whereas for 5 and 

15 minutes the number of significant terms were around 12. Actual versus predicted plots 

of Placket Burman design analysis are given in Figure 5.1 for the response variables given 

in Table 5.1. 

 

 

  

Figure 5.1. Actual vs. predicted plots of viscosity, pH, density and foam test (0, 5, 10, 

15 and 20 min.) results from Placket Burman design. (cont. on next page) 
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Figure 5.1. Actual vs. predicted plots of viscosity, pH, density and foam test (0, 5, 10, 

15 and 20 min.) results from Placket Burman design. (cont. on next page) 
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Figure 5.1. Actual vs. predicted plots of viscosity, pH, density and foam test (0, 5, 10, 

10, 15 and 20 min.) results from Placket Burman design (cont.). 

 

As can be seen from Figure 5.1, the highest regression coefficients are found in 

viscosity, pH and foam test parameters at 5, 10 and 15 minutes whereas somewhat lower 

R2 values are observed for viscosity and foam test at 20 minutes. Figure 5.2 shows the 

residual plots of these response variables. 

 

  

Figure 5.2. Residual plots of the response variables (cont. on next page). 
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Figure 5.2. Residual plots of the response variables (cont.) 
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A close examination of the residual plots given in Figure 5.2. indicates that the 

residuals resulting from Placket Burman design analysis for all of the response variables 

are demonstrating normal distribution and no significant indication of any trend in the 

residual plots.   

As a result of this Placket Burman screening experimental design study, it was 

decided to investigate the possibilities of measuring the component composition of the 

liquid soap product by using Fourier transform infrared spectroscopy (FTIR) combined 

with multivariate calibration. Among the 17 components studied, 7 components (factors) 

which are A, C, D, E, F, J and L were chosen as important components that are aimed to 

be modelled with multivariate calibration based on FTIR spectral data. In addition, the 

components G and K were used as either included as the standard formula amount or not 

presence in the samples. The remaining 8 components were kept constant in product 

composition at the level given in Table 4.1. 

 

5.1.2. FTIR-ATR Results 

The ATR – FTIR spectra of 11 components of the Liquid Soap studied here are 

shown in Figure 5.3. against water background in order to demonstrate the spectral 

differences and/or similarities among these major components. As can be seen in the 

collected FTIR spectra of the liquid soap samples, certain similarities are possible and 

clearly seen in these spectra of eleven components of ‘liquid soap’. However, remarkable 

differences are also observed in the wavelength range of 1800-600 cm-1 which is called 

fingerprint region. The names of the components shown in Figure 5.3. are surfactant 1, 

surfactant 2, surfactant 3, additive 1, surfactant 4, additive 2, pH adjuster, perfume, 

preservative, oil and UV absorber.  
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Figure 5.3. The spectra of 11 different compounds that are B, D, E, F, G, H, I, J, K, L and 

N collected by using an FTIR spectrometer coupled with ATR accessory 

against water background. 

 

In these spectra, significant spectral differences are apparent among the 11 

components of the liquid soap selected for this study. As can be seen in the collected 

spectra, there are negative peaks for almost all components from 3600 to 2800 cm-1 region 

since these components are already contains some amount of water in their stock 

solutions. Through the multivariate calibration, it is expected that these differences could 

provide sufficient differentiating power for the successful models at least some of the 

major components if not all of them selected for quantitative determination. In Figure 5.4, 

a total of 50 FTIR spectra collected against pure water background are shown for the 

samples given in Table 4.5. The reason for water back ground is that water accounts 

approximately 80% of liquid soap used in this study. Also, FTIR spectra of the same 

samples collected against air back ground are illustrated in Figure 5.4. As can be seen 

here, the spectra have very broad water peaks leading into other components' peaks 

making them almost invisible. Therefore, multivariate calibration models are generated 

with the spectra against water back ground. 
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Figure 5.4. The spectra of 50 different liquid soap sample collected by using FTIR 

spectrometer coupled with ATR accessory by taking water as the 

background. 

 

 

Figure 5.5. The spectra of 50 different liquid soap sample collected by using FTIR 

spectrometer coupled with ATR accessory by taking air as the background. 
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5.1.3. Multivariate Calibration Results of Liquid Soap with Genetic 

Inverse Least Squares (GILS) 

 

GILS method is based on an iterative algorithm which allows to select the best 

combination of the wavelengths or wavenumbers which correlates most for the selected 

component in model building step of multivariate calibration using ILS approach. Due to 

the iterative nature of the algorithm, it is possible that the model can easily be over-fitted 

for the samples in the calibration set but fails for the predictions of the samples in the 

independent validation set. In order to avoid such over fitting problems, the algorithm is 

set to run with a leave one out cross validation method for calibration set. The fact that 

the variable selection is done in a complete random manner in GILS, the algorithm 

produces a different solution in each run, so the algorithm is set to run with a predefined 

number of gene which is 30 in this study and with 100 iteration number in each run. In 

order to enhance the averaging effect of the algorithm the program was also set to run 250 

times with above settings and the average of the best solutions are used to evaluate the 

success of the model for calibration set and independent validation set. These settings for 

GILS were kept same for all the models generated in this thesis study not only for the 

liquid soap but also for the shower gel study. 

The performance of the models was determined based on the standard error of 

cross validation (SECV) and standard error of prediction (SEP) for the calibration and 

independent validation sets, respectively. However, it is also good practice to examine 

the regression coefficients for models obtained from actual vs predicted plots of the 

selected mixture components. As mentioned in experimental section, among the 50 

synthetic liquid soap samples, 34 randomly selected samples were used as calibration set 

and the remaining 16 samples were reserved for independent validation set. Figure 5.6. 

shows the actual vs predicted plots of the liquid soap components as A, C, D, E, F, J and 

L obtained from averaged GILS models. 
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Figure 5.6. Actual versus predicted plots of A, C, D, E, F, J and L contents of liquid            

soap resulting from GILS models in the first phase of the study. 

(cont. on next page) 
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Figure 5.6. Actual versus predicted plots of A, C, D, E, F, J and L contents of liquid soap 

resulting from GILS models in the first phase of the study (cont.). 

 

As can be seen in Figure 5.6., the highest regression coefficients (R2) are obtained 

for the components A and C for both calibration sets and independent validation sets 

implying that the predictive performance for these components are more successful than 

the others. Moreover, relatively good model performances were also obtained for 
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components D and E in which their concentrations ranged approximately from 1.5% to 

5.0% (w/w %) resulting in 3.5% dynamic range. On the other hand, the models for the 

components F and G look like somewhat over-fitted as the prediction results of the 

independent validation set are much more scattered when compared to the calibration set 

even though cross validation is used in modelling step. Finally, the model for the 

component L was the weakest one not only for calibration set but also for the independent 

validation set. However, it must be noted that the concentrations of these components 

were quite low compared to other four components. Due to these low concentrations of 

the components F, J and L modelling performances are relatively worse compare to other 

components.   

Among the calibration plots that are shown in Figure 5.6., the regression 

coefficients in descending order are: C, A, J, E, D, F and L. On Table 5.3, standard errors 

of cross validation (SECV) and standard error of prediction (SEP) values along with 

minimum and maximum ranges of components are shown. While evaluating the 

magnitude of the SECV and SEP values of the models for each component, the width of 

the dynamic range of the calibration set and the magnitude of the concentration values 

must be compared. 

 

Table 5.3. Standard error of cross validation (SECV), standard error of prediction (SEP), 

maximum and minimum values of the components (Max and Min) and 

regression coefficient (R2) of GILS models for liquid soap study. 

 SECV (w/w %) SEP (w/w %) Min (w/w %) Max (w/w %) R2 

A 0.278 0.211 72.187 82.171 0.991 
C 0.128 0.188 6.102 12.939 0.997 
D 0.118 0.246 1.597 4.977 0.987 
E 0.123 0.189 1.585 4.965 0.988 
F 0.084 0.143 0.256 1.467 0.956 
J 0.005 0.058 0.206 0.586 0.988 
L 0.111 0.314 1.041 2.343 0.936 
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As can be seen from Table 5.3., agreement between SECV and SEP values of the 

models A, C, D and E were quite good but for the component J, the SEP value is almost 

4 times larger than SECV. On the other hand, the R2 values for the calibration sets were 

all around 0.99 except the component F and L where R2 for F was 0.96 and it was 0.94 

for L. As mentioned in experimental section, there were seven components whose 

concentration values were changed and the two of them (G and K) were either present or 

absent in the 50 multicomponent liquid soap samples. Therefore no model were built for 

these two components as it is impossible to generate a model from just two concentration 

values in which one of them already zero (absent).    

The major success of those variations basically come from the ingredient of the 

product components. In this context, FTIR spectral data can be easily integrated into 

product components. On the other hand, the components that have a less weight of 

average on product cannot succeed enough on validation prediction even they have a 

limited calibration achievement. These results indicate that water, salt, surfactant 2 and 

surfactant 3 models are slightly better than additive 1 and parfum models. 

 

5.1.4. Multivariate Calibration Results of Commercial Liquid Soap with 

Genetic Inverse Least Squares (GILS) 

 

The models generated for water (A), salt (C), surfactant 2 (D), surfactant 3 (E), 

additive 2 (E) and parfum (J) were also tested which consist of 15 commercial liquid soap 

samples. The predicted concentrations for 15 different brands of liquid soap are given in 

Table 5.4. The fact that the model performance was the worst for component L, no results 

for this component were given here for the commercial liquid soap samples.  
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Table 5.4. Code of brands and their predicted concentrations (w/w %) according to the 

liquid soap model 

 

Code of 
Brands A C D E J Total 

Brand 1 78.69 11.00 2.00 2.00 0.46 94.15 

Brand 2 85.11 8.58 1.18 1.40 0.35 96.62 

Brand 3 83.44 9.37 2.31 1.10 0.34 96.56 

Brand 4 84.68 9.47 0.78 1.19 0.28 96.41 

Brand 5 86.26 7.38 1.29 1.18 0.28 96.40 

Brand 6 92.20 3.88 -0.08 -0.22 0.27 96.04 

Brand 7 91.56 3.96 0.01 -0.32 0.26 95.47 

Brand 8 90.94 4.77 -0.09 0.35 0.21 96.18 

Brand 9 91.88 4.85 -0.45 0.31 0.23 96.81 

Brand 10 89.67 7.10 -0.28 0.08 0.25 96.82 

Brand 11 81.30 10.27 4.49 0.26 0.61 96.92 

Brand 12 82.46 9.35 5.83 -0.90 0.71 97.45 

Brand 13 87.65 7.09 1.54 0.21 0.36 96.84 

Brand 14 86.13 7.66 1.73 1.19 0.33 97.04 

Brand 15 86.07 7.74 1.76 1.12 0.29 96.99 

 

As it can be seen from the Table 5.4., A total of 15 different commercial liquid 

soap samples sol on the market have been tested with the models generated in this study. 

Predicted concantrations of water (A), salt (C) and parfum (J) showed that  all the 

commercial liquid soap samples had these components with different amounts but the 

model generated with GILS was unable to detect surfactant 2 (D) in brands 6, 8, 9 and 

10. In addition, the surfactant 3 (E) is not observed in brands 6, 7 brand 12. 
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5.2. Shower Gel Results 

5.2.1. FTIR - ATR Results 

The FTIR spectra recorded by 3 reflection diamond ATR are given in Figure 5.7. 

The spectra are recorder with air background for the 17 components except the water 

which is the last component of the 18 components that form the formulation of the shower 

gel product in Table 4.7.  

 

 

Figure 5.7. The FTIR spectra of 17 different compounds that are A, B, C, D, E, F, G, H, 

I, J, K, L, M, N, O, P and R collected by using three reflection diamond ATR 

accessory against air background. 

 

As can be seen in the collected FTIR spectra of the shower gel samples, certain 

similarities are possible and clearly seen in these spectra of seventeen components of 

shower gel. As it is observed for liquid soap, remarkable differences are seen in the 

wavelength range of 1800-600 cm-1 which is called fingerprint region. The names of the 

components shown in Figure 5.7. are surfactant 1, surfactant 2, surfactant 3, surfactant 4, 

surfactant 5, surfactant 6, pH adjuster, perfume, preservative, oil, EDTA, dye 1, dye 2, 
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dye 3, solubilizer, salt and UV absorber. In order to give a better view of the spectral 

features, Figure 5.8. shows the FTIR spectra of the components E, F, I, J, N, O and P 

which are used in multivariate calibration modelling.  

 

 

Figure 5.8. The spectra of 7 different compounds that are E, F, I, J, N, O and P collected by 

using three reflection diamond ATR accessory against air background. 

 

The component labelled as E is the salt therefore the orange color line has almost 

no spectral feature as from Figure 5.8. However, the other components are all have strong 

peaks both in fingerprint region and 3500 – 2800 cm-1 region as most of the other 

components are used as their water solutions. To be able to better interpret fingerprint 

region of the FTIR spectra, Figure 5.9. shows an enlarged view of the spectra from 1800 

– 600 cm-1 region. On the other hand, Figure 5.10. shows the FTIR spectrum of 

component E as in its pure form against air background. 
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Figure 5.9. Fingerprint region of FTIR spectra between 1800 and 600 cm-1 wavenumber 

range of 7 different compounds that are E, F, I, J, N, O and P collected by using 

three reflection diamond ATR accessory against air background. 

 

 

Figure 5.10. The FTIR spectra of component E (salt) collected by using three reflection 

diamond ATR accessory against air background. 
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As it is explained in detail in Chapter 2, FTIR spectroscopy has been used to 

characterize functional groups, bonding types and nature of compounds. Despite having 

a complex chemical structure for shower gel, it is obvious that all components have 

somewhat similar peaks around 3600-2800 cm-1 region except the component N. The 

reason behind this is the water contents of the ingredients which have various amount of 

water whereas the component N has the least amount of water. When the fingerprint area 

is considered, it is clear that there are some distinguishing features of the components.  

Shower gel includes approximately 65 % water, therefore in Figure 5.11 shows 

the FTIR spectra collected against pure water background for the 30 samples given in 

Table 4.7. In addition, the same 30 samples FTIR spectra collected against air background 

are given in Figure 5.12. As it is known from experience in liquid soap analysis, the 

spectra have very broad water peaks and other components are nearly invisible. Because 

of this, multivariate calibration models are generated with the spectra that were collected 

against water background. 

 

 

Figure 5.11. The FTIR spectra of 30 samples collected by using three reflection diamond       

ATR accessory against water background. 
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Figure 5.12. The FTIR spectra of 30 samples collected by using three reflection diamond 

ATR accessory against air background 

. 

 

5.2.2. Multivariate Calibration Results of Shower Gel with Genetic 

Inverse Least Squares (GILS) 

As mentioned in Multivariate Calibration Results of Liquid Soap with Genetic 

Inverse Least Squares section, GILS method is used in order to generate models for the 

selected shower gel compounds. The regression coefficients for models which are 

obtained from actual vs predicted plots of the shower gel components is considered in 

order to determine the performance of the models. Moreover, based on the standard error 

of cross validation (SECV) and standard error of prediction (SEP) for the calibration and 

validation sets, the performance of the models was concluded. As given in experimental 

section, among the 30 synthetic shower gel samples, 23 randomly selected samples were 

used as calibration set and the remaining 7 samples were reserved for independent 

validation set. Figure 5.13. shows the actual vs predicted plots of the shower gel 

components as E, F, I, J, N, O, P and S obtained from averaged GILS models. 
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Figure 5.13. Actual versus predicted plot of E, F ,I, J, N, O, P and S contents resulting 

from GILS in the second phase of the study. 

(cont. on next page) 
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Figure 5.13. Actual versus predicted plot of E, F ,I, J, N, O, P and S contents resulting   

from GILS in the second phase of the study (cont.) 

 

Among the calibration plots that are shown in Figure 5.13., the correlation 

coefficients in descending order are: E, F, I, J, N, O, P and S. In order to interpret 

calibration models, the SECV, SEP and R2 values along with their operating ranges of 

each model are shown in Table 5.5. 

y = 0.7888x + 0.0838
R² = 0.9673

0.3

0.35

0.4

0.45

0.5

0.3 0.35 0.4 0.45 0.5

Pr
ed

ic
te

d 
N

(w
/w

 %
)

Actual N (w/w %)

Calibration
Validation

y = 0.9173x + 0.1696
R² = 0.978

1.7

1.9

2.1

2.3

1.7 1.9 2.1 2.3

Pr
ed

ic
te

d 
O

(w
/w

 %
)

Actual O (w/w %)

Calibration
Validation

y = 0.9635x + 0.2607
R² = 0.9928

6

6.5

7

7.5

8

6 6.5 7 7.5 8

Pr
ed

ic
te

d 
P

(w
/w

 %
)

Actual P (w/w %)

Calibration
Validation

y = 0.9406x + 3.8521
R² = 0.9701

62

63

64

65

66

67

68

62 63 64 65 66 67 68

Pr
ed

ic
te

d 
S

(w
/w

 %
)

Actual S (w/w %)

Calibration
Validation



 

51 

 

Table 5.5. Standard error of cross validation (SECV), standard error of prediction (SEP), 

maximum and minimum values of the components (Min and Max) and 

correlation coefficient (R2) of GILS models belong to the second phase of the 

study. 

 

  SECV (w/w %) SEP (w/w %) Min (w/w %) Max (w/w %) R2 
E 0.009 0.010 1.100 1.340 0.985 
F 0.147 0.213 14.200 18.500 0.987 
I 0.015 0.062 0.900 1.300 0.989 
J 0.019 0.097 2.600 3.500 0.995 
N 0.004 0.011 0.330 0.450 0.995 
O 0.016 0.025 1.800 2.300 0.989 
P 0.031 0.150 6.300 8.000 0.996 
S 0.154 0.112 63.000 66.500 0.984 

 

As can be seen from Table 5.5., all the models for the 8 components were 

considered to be quite good regardless of the dynamic ranges of each ingredient. The R2 

values were all around 0.99 for calibration sets. In addition, the agreement between SECV 

and SEP values were also good for the components E, F and O. In fact for the water 

content (S), the ratio of SEP over SECV was even lower than 1.0 indicating no overfitting 

problem despite the relatively low number of calibration samples. On the other hand, 

models for the components I, J, N and P were resulted in slightly higher SEP values when 

compared to SECV of the models.   
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CHAPTER 6 

 
CONCLUSION 

In this thesis, calibration models were developed for 2 main products these are 

liquid soap and shower gel by the combination of FTIR-ATR spectroscopy and 

multivariate calibration methods. Samples were gathered and analyzed in mid- infrared 

region by the method of FTIR-ATR spectroscopy. A genetic algorithm based calibration 

method (GILS) was applied to each component of both liquid soap and shower gel data 

sets. 

 Quite good results were determined for both liquid soap study and shower gel 

study by using GILS. Reliability of the calibration models were calculated by SECV and 

SEP values as well as with the R2 values from the reference vs. predicted content plots. 

For liquid soap study, A (water) and C (surfactant 1) is the best modelled compounds 

where coefficients are higher. Moreover, a successful modelling study was also carried 

out in the analysis of liquid soap benchmark products. On the other hand, the R2 values 

for the calibration sets were around 0.99 for the components as J (surfactant 3), N 

(surfactant 4) and P (surfactant 6) which are quite good modelled in shower gel 

formulation. 

In conclusion, within the scope of this thesis, a rapid and simple molecular 

spectroscopy based analytical method was developed for the determination of the 

compounds in the liquid soap and shower gel formulations by the use of chemometrics 

multivariate calibration methods. 
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