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ABSTRACT

OPTICAL CHARACTERIZATION OF NANOSCALE DIELECTRIC
FILMS ON CURVED SURFACES USING NEAR FIELD DIFFRACTION

METHOD

Demand on the high-quality optical thin films has increased because of the impor-

tance in the optical sensor technologies. The thicknesses of such films are usually shorter

than the wavelength of visible light. Therefore, the optical characterization of these films

is not a routine procedure especially on curved surfaces such as optical fiber. Besides,

the methods in the literature and commercially available systems are either expensive, de-

structive or non-real time. In this thesis, it is aimed to propose a simple, inexpensive and

non-destructive optical characterization method of nano-scale dielectric films on curved

surfaces. The methodology of that approach can be described as the near field wave-

front tracing diffraction by using structured light. In this way, it has been shown that

sub-wavelength film thicknesses can be estimated.

The proposed diffraction method is organized in four main stages. These are the

coating of optical fibers, generation of structured light, determination of wave propagation

via the near field Huygens-Fresnel wave-front tracing and sensing and processing of signal

from the sensor array. Layer by layer assembly technique is used in coating process to

keep under control the thickness of transparent film. Selection of various source types

is about to changing of point spread function of applied field and observe the effects

on intensity pattern. Using near field diffraction technique, sub-wavelength thickness of

thin films can be predicted by taking the higher order components of diffraction pattern

by recording at very close proximity to object. In this way, determination of thickness

beyond the diffraction limits can be realized. Furthermore, the resolution of sensor array

in sensing part is important since pixel size of the sensor array determines your detection

limits to catch all variations on diffraction pattern. The whole process has a mathematical

model with numerical analysis methods.

This dissertation is about the proposing a mathematical estimation model for the

optical properties of nano-scale dielectric films coated on curved surfaces. The experi-

mental results show that near field Huygens-Fresnel wave-front tracing method by using

structured light is a powerful technique.
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ÖZET

YAKIN ALAN DİFRAKSİYON YÖNTEMİ KULLANILARAK EĞİMLİ
YÜZEYLERDEKİ NANO BOYUTLU YALITKAN FİLMLERİN OPTİK

KARAKTERİZASYONU

Yüksek kalitedeki ince optik filmlere olan talep optik sensör teknolojilerindeki

önemi sebebiyle artmaktadır. Bu tür filmlerin kalınlıkları genellikle görünür ışığın dalga

boyundan daha kısadır. Bu nedenle, bu filmlerin optik karakterizasyonu özellikle fiber

optik gibi eğri yüzeylerde sıradan bir prosedür değildir. Ayrıca, literatürdeki yöntemler

ve ticari olarak temin edilebilir sistemler pahalı, tahrip edici veya gerçek zamanlı değildir.

Bu tez çalışmasında eğri yüzeylerde nano ölçekli dielektrik filmlerin basit, ucuz ve tahri-

batsız optik karakterizasyonu yönteminin önerilmesi amaçlanmıştır. Önerilen yöntem

metodolojisi, yapılandırılmış ışık kullanılarak yakın alan Huygens Fresnel kırınımı dalga

yüzü izleme olarak tanımlanabilir. Bu şekilde, dalga boyu altı film kalınlıklarının tahmin-

lenebilir olduğu gösterilmeye çalışılmıştır.

Önerilen kırınım yöntemi dört ana aşamadan oluşmaktadır. Bunlar fiber optiğin

kaplanması, yapılan-dırılmış ışığın oluşturulması, yakın alan Huygens-Fresnel dalga yüzü

izlenerek dalga yayılımının belirlenmesi, duyucu diziliminden gelen sinyallerin algılanma-

sı ve işlenmesi. Saydam filmin kalınlığını ayarlayabilmek için kaplama işleminde katman

katman birleştirme tekniği kullanılmştır. Farklı kaynak tiplerinin seçimi dalganın nokta

yayılma fonksiyonunun değiştirilmesi ve bu değişimin yoğunluk deseninde gözlemlenme-

siyle alakalıdır. Yakın alan kırınım tekniğini kullanarak, ince filmlerin alt dalga boyu

kalınlığı, nesneye çok yakın bir noktada kayıt yaparak dalganın yüksek uzaysal frekans

bileşenlerini alarak tahmin edilebilir. Bu şekilde, kırınım sınırlarının ötesindeki kalınlığın

belirlenmesi gerçekleştirilebilir. Ayrıca, algılayıcı diziliminin piksel boyutu tespit sınırları-

nızı belirlediğinden, algılama bölümünde algılayıcı diziliminin seçimi önemlidir. Tüm

süreç nümerik analiz yöntemlerini içeren matematiksel bir modele sahiptir

Bu tez, eğri yüzeylerde kaplanmış nano ölçekli dielektrik filmlerin optik özellikleri

için bir matematiksel tahmin modeli önermekle ilgilidir. Deneysel sonuçlar, yapılandırıl-

mış ışık kullanılarak yakın alan Huygens-Fresnel dalga-ön izleme yönteminin, güçlü bir

teknik olduğunu göstermektedir.
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CHAPTER 1

INTRODUCTION

Optical phenomena can be mainly described as the interaction between electro-

magnetic radiation and matter. If this interaction takes place at the sub-wavelength scale,

its become an interest area of nano-optics. Since Maxwell equations are adequate to de-

scribe optical radiation in nano-optics, wave approach is mostly used to describe optical

radiation in nano-scales.

Optical resolution can be defined as a measure the ability of how closely point-

like objects can be distinguished. It is limited by the wavelength of of the light which

is called diffraction limit. Diffraction limit definition can be versatile depending on us-

ing of dipole sources instead of point sources or orientation of dipoles. According to the

diffraction limits, it was not seem possible to express the interaction on nano-scales that

are less than roughly half of the wavelength. Nevertheless, some techniques (Vangin-

dertael et al., 2018) such as photon tunneling microscopy, near field scanning optical

microscopy, confocal microscopy etc. have overcome the diffraction limit in last decades.

This advancements offer an insight into super-resolution microscopy.

Optical characterization has an important role sensor in technologies ,such as SPR

sensors, since the components of system has to be monitored and verified. However, it

must reach to resolution less than the dimensions of the structures since the properties and

behaviour of structures such as thin films should be obtained accurately. Therefore, there

are needed methods beyond diffraction limits.

1.1. Optical Characterization Techniques

Optical characterization can be defined as the determination of material character-

istics, geometry and roughness using the variation of properties of light such as intensity,

coherence phase, polarization, direction etc. These properties change after light-material

interaction and carry valuable information since optical properties strongly affected by

material structural, electronic and physical properties (Sardela, 2014). Besides, when op-

tical characterization is compared with other techniques, it takes an advantages because

of being non-invasive, non contact, real time and simple.
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The first glance into the characterization was realized by the discovery of optical

microscope. Despite the fact that microscope was used for only magnification and obser-

vation of detailed images at the beginning, it has rapid progress in historical record. After

solving problems and contradictions about propagation of light and diffraction limit by

using Fresnel principle and Abbe theorem in 1800’s, a myriad of new methods were de-

veloped. Spectrophotometry, ellipsometry, optical profilometry and Raman spectroscopy

are some of these methods. They can be categorized according to using of properties of

light such that ellipsometry uses the polarization property of light whereas Raman spec-

troscopy uses scattering property.

The developments on thin film coating technology are increasing day by day. They

have large usage area and their quality are determined via some parameters which is called

as thin film assessment. Optical characterization techniques can be used in this process.

It contributes to determination of thickness, refractive index distribution, surface profiling

and uniformity of the thin film.

The coating or buffer of fiber optics protects the optical fiber from the chemical

and mechanical damages (Wojcik et al., 2006) since reliability and expected lifetime are

essential parameters for optical fibers (Severin et al., 2007). It also contributes to modu-

lating the light wave when exposed to a certain measure. By using this opinion, thin film

coated optical fibers started to used as a sensor (Renoirt et al., 2013). When the measur-

and is changed, the sensitivity type of sensor changes (Ekici, 2016). In this way, it can be

used as temperature sensor, humidity sensor, acoustic sensor etc. In order to obtain better

sensitivity beyond the diffraction limits, the physical properties of optical fiber must be

known and the thickness is one of them.

Optical characterization methods usually depend on the interferometric techniques.

Although they are effective methods for thin film assessment, they have some difficulties

on curved surfaces because of using reflected waves for determination. Therefore, new

methods such as diffraction techniques proposed to used on curved surfaces (Ekici and

Dinleyici, 2017).

1.2. Review of the Thesis

This thesis is aimed at the sub-wavelength thickness estimation of dielectric nano-

scale films on curved surfaces by using near field diffraction method beyond the diffrac-

tion limits. Various light sources have been achieved to improve resolution up to one tenth

of wavelength. Furthermore, the higher order components of diffracted waves can be used
2



by studying at very close proximity to the sensor array. In this way, not only the sharp

and rapid changes in the diffraction pattern have been obtained but also all k-components

can be found on diffraction pattern.

The chapters of thesis are:

• Chapter 2 starts with discussion about scalar diffraction theory. The classical and

near field Kirchoff diffraction formula were revisited. Then, diffraction limits were

evaluated around the Point Spread Function (PSF) perspective since the assertion

of thesis is that sub-wavelength thicknesses can be estimated by exploiting these

techniques. The purpose is to prove that diffraction limit criteria such as Abbe,

Rayleigh etc. can be stretched. The final part of this chapter is about the modal

analysis of optical fiber because of the fact that structured light has a key role to

exceed the diffraction limits. The theory and mathematical preliminaries were given

for the next sections.

• Chapter 3 introduce a mathematical model based on the near field diffraction method

for cylindrical phase objects by using various structured lights.

• Chapter 4 begins with the assembly procedure. Then, the generation of structured

light and sensing process are explained. The results were obtained for various struc-

tured lights and coatings. Also, the comparisons with SEM results can be found in

this chapter.

• Chapter 5 is about the conclusion and future works. The interpretations were made

for different sources types and conventional methods. The effect of structured light

defined with reasons and comparisons. Since the thickness of thin films has impor-

tance for sensor technologies especially Surface Plasmon Resonance (SPR) sensors,

the route of the future works were plotted.
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CHAPTER 2

THEORY AND MATHEMATICAL PRELIMINARIES

In this chapter, scalar diffraction theory, limits of diffraction and modal analysis

of optical fibers are examined. The aim of this chapter is preparation to obtaining diffrac-

tion model of cylindrical phase objects by evaluation around diffraction limits with some

conclusions.

2.1. Diffraction

Diffraction can be described as the propagation of light through the objects or

apertures. It should be examined into two perspectives: vectorial and scalar. Scalar ap-

proach means that the polarization of wave is ignored and is generally used because of

simplicity. There are two conditions must be satisfied about the transition to scalar the-

ory:(1) Diffraction field must be calculated larger than sub-wavelength distance from the

aperture (Kowarz, 1995) and (2) The aperture must be larger than wavelength (Goodman,

1996). However, the classical scalar diffraction theory is not suitable to find the field

generated by sub-wavelength object, it can account for propagation of field for distances

away from the object (Makris and Psaltis, 2011). Therefore, there is needed to describe

diffraction in sub-wavelength propagation distances. It can be possible with that dipoles

are placed on wave-front, on the contrary to conventional Huygens’ Fresnel principle. In

this way, the exact solution obtained by that non-paraxial regime behaviour (Andrews,

1951), backward parts of waves by using dipoles (Miller, 1991) and evanescent waves

can take into account.

2.1.1. Kirchoff Diffraction Theory

The beginning of diffraction theory dates back to Huygens’ principle. According

to Huygens’ idea, every point of wave-front serves as source of secondary disturbance and

new wave-front is the summation of these disturbances (Huygens, 1912). The missing

part about this theory is that there is no information about frequency or wavelength of
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the wave. Therefore, the formula developed by Fresnel at a later time by adding that

secondary wavelets which has information about being same frequency. In this way the

Huygens’-Fresnel principle obtained by combination of two ideas.

Let a point source make radiation at point P0 and produced spherical monochro-

matic wave-front with radius r0 represented by S. The contribution to the light disturbance

dU(P ) because of the element dS at Q by omitting time factor exp(−iwt) can be defined

as (Born and Wolf, 1999)

dU(P ) = K(χ)
A exp(ikr0)

r0

exp(iks)

s
dS (2.1)

where A and K(χ) are amplitude and inclination factor. The inclination factor includes

the diffraction angle between the normal at point Q and QP line and describes the ampli-

tude variation with respect to the direction.

Figure 2.1. Fresnel Zones

Because of shortcomings of Huygens’ Fresnel principle especially about the deter-

mination of inclination factor, Gustav Kirchoff derived a more rigorous integral theorem

which depends on the solution of the homogeneous differential wave equation. The solu-

tion of wave equation is implemented with the help of Green’s theorem.

Let U and G be any two complex-valued position functions, S be closed surface

and V be a volume inside closed surface S. If U, G, and their first and second partial

derivatives are single-valued and continuous within and on S, then we have∫ ∫ ∫
V

(U∇2G−G∇2U)dV =

∫ ∫
S

(
U
∂G

∂n
−G∂U

∂n

)
(2.2)

where ∂/∂n denotes partial derivative in the outward direction normal to S.
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It is seen that U is a solution of Helmholtz equation. Then, a reduction can be done

in Equation 2.2 by choosing auxiliary function G which satisfies the Helmholtz equation:

(∇2 + k2)

(
U

G

)
= 0 (2.3)

∫ ∫
S

(
U
∂G

∂n
−G∂U

∂n

)
= 0 (2.4)

The auxiliary function G contributes to examine the disturbance at point P. There-

fore, it can be defined as a probe. Suppose that G was chosen exp(iks/s) where s denotes

the distance from P to the arbitrary point (x,y,z) and it can be seen that singularity at

s=0. In Equation (2.4), it was stated that both U and G satisfies homogeneous Helmholtz

Equation. Therefore, it can not be any source inside closed surface S and also P must be

excluded from the domain of integration with the help of small spherical surface Sε, of

radius ε, inserted about the point P. At the end the integral formula of Kirchoff-Helmholtz

can be obtained as

U(P ) =
1

4π

∫ ∫
S

{
∂U

∂n

(
exp(iks)

s

)
− U ∂

∂n

(
exp(iks)

s

)}
dS (2.5)

This equation has key role in the development of scalar diffraction theory. The field at

any point can be expressed in terms of the boundary values thanks to this integral formula.

Besides, the formula derived for the strictly monochromatic wave.

Figure 2.2. Surface of integration

Now, let’s examine the diffraction problem by a planar screen by using Kirchoff

integral theorem. Consider a point source at P0 makes radiation through the planar aper-

ture and the disturbance point P is investigated. If the Kirchoff integral is used to find

disturbance, the integration can be divided 3 parts:(1) the opening part(A) (2) the closed
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or non illuminated part B and (3) the closed surface C which has a a centre at P with large

sphere of radius R. Then, the Kirchoff integral can be expressed as:

U(P ) =
1

4π

{∫ ∫
A

+

∫ ∫
B

+

∫ ∫
C

}{
∂U

∂n

(
exp(iks)

s

)
− U ∂

∂n

(
exp(iks)

s

)}
dS

(2.6)

Kirchoff set the boundary conditions by making two assumptions: (1) the field

distribution U and its derivative ∂U/∂n are equal to each other on the boundary A where

U and ∂U/∂n represent incident field and diffracted field respectively. (2) the field distri-

bution U and its derivative ∂U/∂n are zero on the region B. Hence, the Kirchoff boundary

conditions can be written as (see Figure 2.3(a)):

U = U (i),
∂U

∂n
=
∂U (i)

∂n
on A (2.7)

U = 0,
∂U

∂n
= 0 on B (2.8)

where

U (i) =
A exp(ikr)

r
,

∂U (i)

∂n
=
A exp(ikr)

r

[
ik − 1

r

]
cos(n, r) (2.9)

where U (i),cos(n, r), A are incident field, angle (see Figure 2.3(b)) and constant individ-

ually.

Figure 2.3. Illustration of integration surface(a) and boundary conditions

The contributions to the field U by the portion A and B were explained. Now, the

contribution of portion C will be examined. It can be seen that the integral of C will be

zero, if the radius of closed surface R be sufficiently large. However, there is a contra-

diction between the definition of monochromatic wave and vanishing of contribution of C
7



because monochromatic wave is found all times and space from its definition. This claim

can be avoided by thinking that it is physically impossible to produce monochromatic

wave. Therefore, substituting into Equation (2.11) and neglecting the terms 1/r and 1/s

by comparing to k, the field becomes:

U(P ) = − i

2λ

∫ ∫
A

exp(ik(r + s))

rs
[cos(n, r)− cos(n, s)]dS (2.10)

This formula is called as Fresnel-Kirchhoff diffraction formula. The minus sign represents

the partial derivative ∂/∂n in the inward normal direction. However, the sign variation

does not affect the measurable quantity intensity since it is equal to square of field.

The propagation of wave-front might be expressed by choosing new boundaries.

In this way, the explicit formula can be derived for the inclination factor K(χ). Let us

assume that W is a portion of incident wave-front and filled the aperture approximately at

boundary. On W , ro and n are in the reverse direction so cos(n, r0) = −1 and diffraction

angle is χ = (r0, s). Then, the field U becomes:

U(P ) = − i

2λ

A exp(ikr0)

r0

∫ ∫
W

exp(iks)

s
(1 + cos(χ))dS (2.11)

If the contribution of dW is written:

i

2λ

A exp(ikr0)

r0

exp(iks)

s
(1 + cos(χ))dS (2.12)

and compared with Equation (2.1), the explicit formula for inclination factor is derived:

K(χ) = − i

2λ
(1 + cos(χ)) (2.13)

Figure 2.4. Illustration of new boundaries
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The classical Huygens-Fresnel diffraction formula was derived up to now. How-

ever, it does not include near field terms, backward parts of the wave and it is not suitable

non paraxial regimes or sub-wavelength distances. Therefore, there is needed to correc-

tion on classical formula. It can be realized by exact solution. Now, we derive general

form for the Kirchoff theorem which includes both monochromatic and non monochro-

matic waves.

Let V be a solution of time dependent wave equation and its Fourier integrals can be

expressed as

V (x, y, z, t) =
1√
2π

∫ ∞
−∞

U(x, y, z) exp(−iwt)dw (2.14)

U(x, y, z, t) =
1√
2π

∫ ∞
−∞

V (x, y, z, t) exp(−iwt)dt (2.15)

If V(x,y,z,t) satisfies the regularity conditions inside and on a closed surface S, Kirchoff

theorem can be applicable to both V(x,y,z,t) and its Fourier components U(x,y,z). There-

fore, it can be written as:

U(P ) =
1

4π

∫ ∫
S

{
∂U

∂n

(
exp(iks)

s

)
− U ∂

∂n

(
exp(iks)

s

)}
dS (2.16)

When Equation (2.8) is written in Equation (2.6) by changing integration order and writ-

ing k = w/c, the equation becomes

V (P, t) =
1

4π

∫ ∫
S

dS
1√
2π

∫ ∞
−∞

{
U
∂

∂n

(
exp(−iw(t− s/c)

s
)

)
−

exp(−iw(t− s/c)
s

∂U

∂n

}
dw

=
1

4π

∫ ∫
S

dS
1√
2π

∫ ∞
−∞

{
U

{
∂

∂n

(
1

s

)
+
iw

sc

∂s

∂n

}
−

exp(−iw(t− s/c)
s

∂U

∂n

}
dw

(2.17)

or

V (P, t) =
1

4π

∫ ∫
S

{
[V ]

∂

∂n

(
1

s

)
− 1

cs

∂s

∂n

[
∂V

∂t

]
− 1

s

[
∂V

∂n

]}
dS (2.18)

where [] denotes retarded values.

The general solution was given in Equation (2.18). This is also called near field

or modified Huygens-Fresnel formula because of the fact that it includes near field terms.

The integrand can be written as:

[V ]

4πs

{
ik(1 + cos θ) +

cos θ

s
)

}
(2.19)
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where ∂s
∂n

= − cos θ. In classical Huygens-Fresnel diffraction formula, the third term

is omitted since s >> λ. However, the third term has importance in near field regime.

Therefore, it called as near field term. This is the exact solution and valid for all distances.

Besides, this formula corresponds of using dipoles instead of point sources on the contrary

to conventional formula.

Consequently, the exact Huygens-Fresnel equation might be taken into consider-

ation when it is desired to determine the field distribution of the spherical wave front at

any point. Since it can be used to tracing of wave-front, it can be suitable for diffraction

problem from phase objects.

2.2. Diffraction Limit

Spatial resolution is a measure the ability of how closely point-like objects can

be distinguished. However, this ability has strong relation with the wavelength of light.

The wavelength of light limits the resolution. This situation called as diffraction limit or

barrier. Before the development on near field optics, the diffraction limit was defined λ/2

as a strict criteria .

The point spread function (PSF) is the measurement ability of resolving power.

PSF definition depends on scalar theory and paraxial approximation. A classical image

formation system (Enderlain, 2000) is given in Figure 2.5.

Figure 2.5. A system used for the calculation of PSF (Novotny and Hecht, 2012)

An electric dipole is located at the objective lens with focal length f . The first lens

collimates the rays which comes from the dipole whereas second lens with focal length

f ′ focuses them. Besides, there some assumptions that distance between dipole and lens

is greater than the wavelength of the emitted light, evanescent waves can not taken into

account and the dipole aligned with x-axis (µ = µxnx) surrounded by homogeneous
10



medium with refractive index n. The electric field at a point r created by an electric

dipole at r0 with electric dipole moment µ which represents the object can be defined as

E(r) =
ω2

ε0c2
←→
G (r, r0) · µ (2.20)

where
←→
G (r, r0) is dyadic Green function.

The far field
←→
G in source free medium can be written in spherical coordinates

←→
Gf (r, 0) =

exp(ikr)

4πr
×

1− cos2 φ sin2 θ − sinφ cosφsin2θ − cosφ sin θ cos θ

− sinφ cosφsin2θ 1− sin2 φ sin2 θ − sinφ sin θ cos θ

− cosφ sin θ cos θ − sinφ sin θ cos θ sin2 θ

 · µ (2.21)

After two refractions from the lenses, the field becomes

Ex
f (θ, φ) = −ω

2µx
ε0c2

exp(ikf)

8πf
×

(1 + cos θ cos θ′)− (1− cos θ cos θ′ cos 2φ)

−(1− cos θ cos θ′ cos 2φ)

2 cos θ sin θ′ cosφ


√
n cos θ

n cos θ′
(2.22)

where sin θ′ = ( f
f ′

sin θ) and cos θ′ = g(θ) =
√

1− (f/f ′)2 sin2 θ. This is the x com-

ponent of the electric field. The superposition can be applied with other components and

total field becomes

Ef (θ, φ) = Ex
f + Ey

f + Ez
f (2.23)

As a result the final electric field can be written as (see Appendix D and section 3.5. in

(Novotny and Hecht, 2012)):

E(ρ, ϕ, z) =
ω2

ε0c2
←→
G PSF (ρ, ϕ, z) · µ (2.24)

where the dyadic point-spread function is given by

←→
G PSF =

k′

8πi

f

f ′
exp(i(kf − k′f ′))

(I∼00 + I∼02 cos 2ϕ) I∼01 sin 2ϕ −2iI∼01 cosϕ

I∼02 sin 2ϕ (I∼00 − I∼02 cos 2ϕ) −2iI∼01 cosϕ

0 0 0

 (2.25)

and the integrals are

I∼00(ρ, z) =

∫ θmax

0

√
cos θ sin θ(1 + cos θ)J0(k

′ρ sin(θ)f/f ′)×

exp(ik′z[1− 1/2(f/f ′)2 sin2 θ])dθ (2.26)
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I∼01(ρ, z) =

∫ θmax

0

√
cos θ sin2 θJ1(k

′ρ sin(θ)f/f ′)×

exp(ik′z[1− 1/2(f/f ′)2 sin2 θ])dθ (2.27)

I∼02(ρ, z) =

∫ θmax

0

√
cos θ sin θ(1− cos θ)J0(k

′ρ sin(θ)f/f ′)×

exp(ik′z[1− 1/2(f/f ′)2 sin2 θ])dθ (2.28)

Since optical detectors can measure the intensity of field, PSF represented by |E2|.
If assumptions are made that the lenses have low numerical aperture and θmax is suffi-

ciently small, the approximations become cos θ ≈ 1 and sin θ ≈ θ. Furthermore, at z = 0

and ϑ = π/2, the exponential terms equal to 1 and Bessel second kind J2 goes to zero.

Therefore, I∼02 can be ignored. Then I∼00 is left and integrated analytically∫
xJ0(x)dx = xJ1(x) (2.29)

Consequently, the paraxial PSF can be found for a dipole along the x-axis becomes

lim
θmax<<π/2

|E(x, y, z = 0)|2 =
π4

ε20nn
′
µ2
x

λ6
NA

M2

[
2
J1(2πρ̃)

2̃πρ

]2
, ρ̃ =

NAρ

Mλ
(2.30)

Besides, the PSF along and perpendicular to the optical axis can be found as:

lim
θmax<<π/2

|E(x = 0, y = 0, z)|2 =
π4

ε20nn
′
µ2
x

λ6
NA

M2

[
2

sin(πz̃)

πz̃

]2
, z̃ =

NA2z

2n′M2λ
(2.31)

lim
θmax<<π/2

|E(x, y, z = 0)|2 =
π4

ε20nn
′
µ2
x

λ6
NA

M2

[
2
J1(2πρ̃)

2̃πρ

]2
, ρ̃ =

NAρ

Mλ
(2.32)

where NA is numerical aperture and M is magnification. It can be seen that the orientation

of dipoles affect the PSF. Also, the total PSF of system can be defined as the product of

the PSF of excitation and PSF of detection.

The PSF gives information about how the point source spreads. It can easily

concluded that the narrower PSF implies a point and so better resolution. A point defined

by Dirac delta function (δ) in space and has infinite spectrum in k-domain. Since the point

source is theoretical and the images in nature have finite bandwidth, the whole information

about image can not be obtained.

If two point sources get closer to each other, their point spread functions start to

overlap at a point. It means that two point sources become indistinguishable. Let us

assumed that two point-like object, in a noise free medium, separated from each other

with distance:

∆r = (∆x2 + ∆y2)1/2 (2.33)
12



and the bandwidth of spatial frequencies

∆k = (∆k2x + ∆k2y)
1/2 (2.34)

According to the consequence Fourier transform relationship, called uncertainty relations,

between
−→
E (−→r , z = 0) and

−→
E (
−→
k , z = 0) (Carminati, Carminati)

∆k∆r ≥ 1 (2.35)

It can be concluded that if ∆k is infinitely large, there is no diffraction limit. If the

evanescent waves are not included, the upper bound of ∆k can be found by the transverse

wavenumber k = (w/c)n = (2π/λ)n. Therefore, using the uncertainty relation

K∆rmin =
λ

2πn
(2.36)

or

∆rmin =
λ

2πNA
(2.37)

where n is the refractive index of medium and NA is numerical aperture.

Figure 2.6. Illustration of diffraction limits of two point sources separated from each
other ∆r

In 1874, Abbe described diffraction limit over two dipole. The minimum dis-

tance between point spread functions of two dipoles K∆r defined as the intersection of

maximum of one point-spread function with first minimum of the second point-spread

function. According to the Abbe’s diffraction limit formula:

∆rmin =
λ

2NA
(2.38)
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If Equation (2.37) is compared with Equation (2.38), there is difference in denu-

merator. The reason is about the definition of diffraction limit. Abbe implemented this

formula according to paraxial approximation and parallel dipoles which are perpendicu-

lar to optical axis and have equal strength. Besides, Rayleigh modified Abbe’s formula.

The Rayleigh criteria definition is made over Airy disc. Therefore, it is the measure of

distinguishable of two Airy discs and the minimum distance defined as:

∆rmin = 0.61
λ

NA
(2.39)

2.3. Structured Lightwave Generation

The propagation of light inside an optical fiber can be analysed with the Maxwell

equations (Harrington, 2001). In zero conductivity situation, the vectorial relationships

can be represented in terms of electric field E, magnetic field H, electric flux density D and

magnetic flux density B. In a source free medium, the Maxwell equations and constitutive

relations are:

∇× E = −∂B
∂t

(2.40)

∇×H = −∂D
∂t

(2.41)

∇× D = 0 (2.42)

∇× B = 0 (2.43)

D = εE (2.44)

B = µH (2.45)

where∇, ε and µ are vector operator, dielectric permittivity and magnetic permeability of

the medium respectively. Substituting for D and B, taking the curl of Equation (2.40) and

(2.41) and using mathematical identities, the wave equation is obtained both E and H:

∇2E = εµ
∂2E
∂t2

(2.46)

∇2H = εµ
∂2H
∂t2

(2.47)

If the wave equation is solved with appropriate boundary conditions, the propa-

gation of light inside an optical fiber can be examined. Besides, the analysis is made in
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cylindrical coordinate system since optical fibers have cylindrical structures. Then, the

wave equation becomes for E:

∂2E
∂r2

+
1

r

∂E
∂r

+
1

r2
∂2E
∂φ2

+
∂2E
∂z2

= εµ
∂2E
∂t2

(2.48)

Figure 2.7. Cylindrical geometry cross section (Balanis, 2012)

There are six field components for E and B and these components are not indepen-

dent from each other. Therefore, two components are chosen and the others are expressed

in terms of them. In the optical fibers, the longitudinal components Ez and Hz are taken

base components and the wave equation is solved for these two components. Then trans-

verse field components are expressed in terms of these two components by substitution of

the longitudinal components in the Maxwell’s equations. The transverse field components

are:

Er = − i

q2

{
β
∂Ez
∂r

+
µω

r

∂Hz

∂φ

}
(2.49)

Eφ = − i

q2

{
β

r

∂Ez
∂φ
− µω∂Hz

∂r

}
(2.50)

Hr = − i

q2

{
β
∂Hz

∂r
− εω

r

∂Hz

∂φ

}
(2.51)

Hφ = − i

q2

{
β

r

∂Hz

∂φ
+ εω

∂Hz

∂r

}
(2.52)

where β is the propagation constant and q2 = ω2µε − β2. Each components of E and B

are scalar quantities. Therefore, the wave equation is solved for scalar function ψ where

ψ is Ez or Hz. In this way, the wave equation can be written as:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂φ2
+
∂2ψ

∂z2
= εµ

∂2ψ

∂t2
(2.53)

15



The solution of Equation (2.53) can be obtained by using separation of variables

method. Hence, the scalar function ψ is written as:

ψ = R(r)Φ(φ)Z(z)T (t) (2.54)

Now let’s examine four variable:

• If the fields are time harmonic field, then

ψ ∼ exp(iwt)⇒ T (t) = exp(iwt)

∂

∂t
= iw,

∂2

∂t2
= −w2

• If the wave travels along the fiber axis which is +z-direction, then

ψ ∼ exp(−iβz)⇒ Z(z) = exp(−iβz)

∂2

∂z2
= −β2

• If wave motion is only azimuthal direction φ, the scalar function ψ is periodic in 2π

ψ ∼ exp(iνφ)⇒ Φ(φ) = exp(−iνφ)

∂2

∂z2
= −β2

where ν is an integer. Substituting these there variables into Equation (2.53), the wave

equation becomes

d2R

dr2
+

1

r

dR

dr
+

{
− ν2

r2
− β2 + w2µε

}
R = 0 (2.55)

or
d2R

dr2
+

1

r

dR

dr
+

{
q2 − ν2

r2

}
R = 0 (2.56)

This equation is called as Bessel equation and so the solutions of wave equation is Bessel

functions.

The solution of Bessel equation depends on two variables q and ν. ν is integer

and positive whereas q can be real, imaginary and complex. However, the choice of q has

limitation by physical understanding.
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Figure 2.8. Bessel first kind and second kind functions

Figure 2.9. Modified Bessel first kind and second kind functions

If q is real, the solutions are Bessel first kind Jν(qr) and Bessel second kind (Neu-

mann) Yν(qr) functions. The parameters ν and qr define the order and argument of func-

tion respectively. If q is imaginary, the solutions are modified Bessel first kind Iν(qr/i)

and Bessel second kind Kν(qr/i) functions. If q is complex the solutions are Hankel

first kind Hν(qr) and Hankel second kind Hν(qr) functions. Hankel functions are used

in examining lossy medium. However, the light propagation inside an optical fiber, the

assumption is that the medium is lossless.

Now let us examine the Bessel first kind and Neumann functions for core and

cladding. For the core, r = 0 corresponds to axis of fiber and the field strength has
17



finite value. Therefore, if Neumann function is chosen as a solution inside the core, it

becomes inconsistent because of physical conditions. Hence, first kind Bessel functions

is appropriate solution to describe the modal fields inside the core. For the cladding, the

wave has decaying behaviour. It means that q must be imaginary and modified Bessel

functions has to be used. For modified Bessel’s functions of first kind, field increases

with r →∞ . However, it is not possible situation since field can not be shown increasing

behaviour. Therefore, the correct solution for the cladding is modified Bessel function of

second kind.

Consequently, the field distribution for the core and cladding can be defined as:

Ez1 = AJν(ur) exp(iνφ− iβz + iwt), r < a (2.57)

Hz1 = BJν(ur) exp(iνφ− iβz + iwt), r < a (2.58)

Ez2 = CKν(wr) exp(iνφ− iβz + iwt), r > a (2.59)

Hz2 = DJν(wr) exp(iνφ− iβz + iwt), r > a (2.60)

where A,B,C,D are constants according to boundary conditions, β and β1is the wave

number free space and core, a is the radius of core and u2 = β2
1 − β2.

If the boundary conditions are applied, the characteristic equation of the modes

can be obtained. The boundary conditions at r = a can be given as:

Eφ1 = Eφ2, Hφ1 = Hφ2,

Ez1 = Ez2, Hz1 = Hz2,

The characteristic equation(or eigen value equation) of mode inside an optical

fiber is(Ghatak):{
J ′ν(ua)

uJν(ua)
+

K ′ν(ua)

uKν(ua)

}{
β2
1

J ′ν(ua)

uJν(ua)
+ β2

2

K ′ν(ua)

uKν(ua)

}
=
β2ν

a

{
1

u2
+

1

w2

}
(2.61)

where u2 = w2µε1 − β2, w2 = β2 − w2µε2 and β is the modal propagation constant. For

ν = 0 the Equation 2.48 becomes{
J ′ν(ua)

uJν(ua)
+

K ′ν(ua)

uKν(ua)

}{
β2
1

J ′ν(ua)

uJν(ua)
+ β2

2

K ′ν(ua)

uKν(ua)

}
= 0 (2.62)

If the first bracket is zero, we can find transverse electric modes.However, if the

second bracket is zero, we can find transverse magnetic modes.
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2.3.1. Modal Structured Lightwaves

In optical fibers, the cladding refractive index(n2) is slightly smaller than the core

refractive index(n1). This difference can be defined with normalized index parameter(∆)

∆ =
n2
1 − n2

2

2n1

≈ n1 − n2

n1

(2.63)

Since ∆ << 1, an approximation can be used in the modal analysis of optical

fiber. This approximation is called as weakly guiding approximation (Gloge, 1971). In

weakly guiding fiber, all modes which have same V-number would degenerate. It means

that these modes propagate with same phase variation. Therefore, the field distribution is

the combination of these modes. These fields are called as linearly polarized (LP) modes

and their orientation is not change through the cross-section plane. Their electric and

magnetic fields occur in single cartesian directions in the transverse plane(linear polar-

ization). Therefore, the LP modes are analysed by the assumption that field solutions are

linearly polarized in the fiber transverse plane.

Let electric field has x-polarization and magnetic field y-polarization. The optical

fiber behaviour under weak guidance is nearly plane wave where E and H are orthogonal

and have very small longitudinal component (Buck, 2004)

E = Ex0(r, φ)exp(−iβz)âx (2.64)

H = Ey0(r, φ)exp(−iβz)ây (2.65)

Since wave equation can be separated into x,y and z components, we have

∇2
tEx1 + (n2

1k
2
0 − β2)Ex1 = 0, r ≤ a (2.66)

∇2
tEx2 + (n2

2k
2
0 − β2)Ex2 = 0, r ≥ a (2.67)

where n2
1k

2
0 − β2 = βt1 and n2

2k
2
0 − β2 = βt2. If we assume that transverse variation

occurs in r and φ, wave equation becomes

∂2Ex
∂r2

+
1

r

∂Ex
∂r

+
1

r2
∂2Ex
∂φ2

+ β2
tEx = 0 (2.68)

and Ex can be expressed as discrete series of modes:

Ex =
∑
i

Ri(r)Φi(φ) exp(−iβiz) (2.69)

where each mode of Ex must be satisfy Equation (2.68). If Ex is expressed as a single

mode RΦ exp(−iβiz) and substitute into Equation (2.68)

r2

R

d2R

dr2
+
r

R

dR

dr
+ r2β2 = − 1

Φ

d2Φ

dφ2
(2.70)
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Both side of Equation (2.70) depends on only one variable r or φ. Since r or φ are

independent, each side of Equation (2.70) must be equal to constant. Let the constant is

defined by l2. Then, Equation (2.70) can be divided into two equations:

dΦ

dφ2
+ l2Φ = 0 (2.71)

d2R

dr2
+

1

r

dR

dr
+

[
β2
t −

l2

r2

]
(2.72)

where β2
t − l2

r2
= β2

r and l/r = βφ.

The solution of Equation (2.71) yields

Φ(φ) =

cos(lφ+ α)

sin(lφ+ α)
(2.73)

where α is a constant phase shift and l is an integer which is called as angular mode

number of LP modes.

The solution of Equation (2.72) yields

R(r) =

AJl(βtr) + A′Nl(βtr), βt real

CKl(|βt|r) + C ′Il(|βt|r), βt imaginary
(2.74)

where A′ = 0 and C ′ = 0 because of reasons which are defined in section 2.3.

Now, normalized transverse phase and attenuation constants can be defined as,

respectively:

u = βt1a = a(n2
1k

2
0 − β2)1/2 (2.75)

w = |βt2|a = a(β2 − n2
2k

2
0)1/2 (2.76)

The complete solution for Ex and Hx is obtained by using cos(lφ) in Equation

(2.73) and assuming α = 0;

Ex =

AJl(ur/a) cos(lφ) exp(−iβz), r ≤ a

CKl(wr/a) cos(lφ) exp(−iβz), r ≥ a
(2.77)

Hx =

BJl(ur/a) cos(lφ) exp(−iβz), r ≤ a

DKl(wr/a) cos(lφ) exp(−iβz), r ≥ a
(2.78)

To find the coefficient, there is needed to apply boundary conditions at r = a.

Eφ1 = Eφ2 (2.79)

Hφ1 = Hφ2 (2.80)
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n2
1Er1 = n2

2Er2 (2.81)

µ1Hr1 = µ2Hr2 (2.82)

Since µ1 = µ2 = µ0 radial components of H are continuous. Furthermore, we assume

n1 = n2 because of weakly guiding approximation. It means that Er1 ≈ Er2. Using

continuity of E and H,

Ex1 ≈ Ex2 (2.83)

Hy1 ≈ Ey2 (2.84)

Also setting A = E0 and using boundary conditions

Ex =

E0Jl(ur/a) cos(lφ) exp(−iβz), r ≤ a

E0[Jl(u)/Kl(w)]Kl(wr/a) cos(lφ) exp(−iβz), r ≥ a
(2.85)

which is called as general electric field for LP modes.
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CHAPTER 3

MATHEMATICAL MODEL

In this chapter, near field Huygens-Fresnel diffraction theory analysed for cylin-

drical phase objects with causes and effects. The mathematical models obtained not only

different ray tracing methods but also different illumination sources.

3.1. Diffraction from Cylindrical Objects

The amplitude and phase of the wave are two parameters to observe the diffraction

effects. Since the variations of phase is more sensitive than amplitude, Fresnel diffraction

becomes applicable. The phase change can be created by two ways depending on the

object. If you have transparent object, the phase of wave can be changed by the sharp

variation of thickness or refractive index of the object. These variations strongly affect

the optical path length of wave and so the phase shows quick changes (Tavassoly et al.,

2001). In this way, this feature can be exploited to measure refractive index, optical path

length, thickness as an optical sensor.

While the diffraction effects are analyzing, the intensity pattern is affected by

not only variations of refractive index and thickness but also the by illuminating source

of phase object (Saxena, Eluru, and Gorthi, Saxena et al.). The using of various types

sources means that the PSF of system is changed. Since the major changes on intensity

pattern occurred by the contribution of sharp variations, the illumination of these variation

regions with narrower PSF source provides the measurements of small refractive index

or nano-scale thickness changes. Therefore, structured light modes can be chosen for

sensitive measurements.

The Huygens-Fresnel principle can be modelled by wave-front tracing (Volpe

et al., 2018). The wave-front is considered as an array of dipoles. The emitting wavelets

from wave-front interfere with each other and the diffraction pattern occurs. Since every

dipole can be represented by a ray, it can be called as ray-trace diffraction (Mahan et al.,

2018).

The diffraction limit, was mentioned in section 2.2, is not a strict criteria. It can be

stretched by using near field terms such as evanescent waves, dealing with an elementary
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source as electric dipole or changing illumination source. Optical characterization can be

made beyond diffraction limits thanks to them. In this way, the coated materials whose

thicknesses are smaller than the half of wavelength can be measured. In our mathematical

model, the diffraction limit examined by using electric dipoles on the wave-front, using

near field or taking higher order terms by studying at very short distances and structured

light sources to change the total PSF.

3.1.1. Plane Wave

In this part, the cylindrical phase object (fiber optic) is examined by the illumi-

nation of plane wave. Wave-front is discretized and every dipole over the wave-front

represented by a ray. During the propagation, every ray is traced. After the finding of

phase variations, near field Huygens-Fresnel principle is used to find disturbance on the

screen. The ray tracing method is examined both paraxial and exact.

3.1.1.1. Paraxial Ray Tracing

The generated plane wave is sent to the coated fiber optic. In the figure, a is the

radius of core, b is the radius cladding and the c is the coating diameter. The rays are

traced up to x′ plane and find the phase variations. After obtaining wave-front at x′, scalar

diffraction integral is evaluated and the intensity pattern on the screen can be obtained.

The applied field at X plane can be defined as

U(x, 0, z) = A(x) exp(ikz) (3.1)

In order to express the field point by point at x′ plane, optical path lengths for

every rays have to be defined. Therefore phase variations can be defined as (Sabatyan and

Tavassoly, 2007):

φ1 = 2k[na(c−
√
c2 − x′2) + ns(

√
c2 − x′2 −

√
b2 − x′2)+

ncl(
√
b2 − x′2 −

√
a2 − x′2) + nco

√
a2 − x′2)], |x′| < a

(3.2)

φ2 = 2k[na(c−
√
c2 − x′2) + ns(

√
c2 − x′2 −

√
b2 − x′2)+

+ ncl
√
b2 − x′2)], b < |x′| < a

(3.3)
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φ3 = 2k[na(c−
√
c2 − x′2) + ns

√
b2 − x′2)], b < |x′| < c (3.4)

φ4 = 2knac, |x′| > c (3.5)

where na, ns, ncl, nco, and k are the refractive indices of the air, the coating, the cladding,

the core and the wave number, respectively.

Figure 3.1. (a) Plane wave passing through cylindrical object, (b) Diffraction from
cylindrical object

Denoting

φa = 2knac (3.6)

φs = 2k(ns − na)
√
c2 − x′2 (3.7)

φcl = 2k(ncl − ns)
√
b2 − x′2 (3.8)

φco = 2k(nco − ncl)
√
a2 − x′2 (3.9)

The field at x′ plane U ′(x′) for different regions becomes:

U ′1(P ) = A(x)exp(ikz)exp(−iφa), x′ > c (3.10)

U ′2(P ) = A(x)exp(ikz)exp(−i[φa + φs]), b < x′ < c (3.11)
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Figure 3.2. Optical path lengths for different regions

U ′3(P ) = A(x)exp(ikz)exp(−i[φa + φs + φcl]), a < x′ < b (3.12)

U ′4(P ) = A(x)exp(ikz)exp(−i[φa + φs + φcl + φco]), −a < x′ < a (3.13)

U ′5(P ) = A(x)exp(ikz)exp(−i[φa + φs + φcl]), −b < x′ < −a (3.14)

U ′6(P ) = A(x)exp(ikz)exp(−i[φa + φs]), −c < x′ < −b (3.15)

U ′7(P ) = A(x)exp(ikz)exp(−iφa), x′ < −c (3.16)

The field at a point (P) on the observation plane can be found by near field

Huygens-Fresnel diffraction integral:

U ′′(P ) = − 1

4π

∞∑
x=−∞

(
ik(1 + cosθ)− cosθ

r

)
exp(ikr)

r
U ′(x′) (3.17)

where the obliquity factor cosθ = x−x′
z

and the intensity obtained on the screen for three

layer phase object is

I = (U ′′(P ))(U ′′(P ))∗ (3.18)
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where * represents the complex conjugate.

3.1.1.2. Exact Ray Tracing

The same procedure is followed as we have done in previous part except that the

rays are traced exactly in phase and amplitude. The exact points on x′ plane where the

rays propagate after multi-refractions are found and near field Huygens-Fresnel diffrac-

tion integral evaluated. Since the refractive index difference between core and cladding

∆n << 1, nco ≈ ccl is taken and the calculations are made in two layer geometry.

The applied field at X plane can be defined as

U(x, 0, z) = A(x) exp(ikz) (3.19)

In the Figure 3.3, b is the radius cladding and the c is the radius of coating. The

optical path for a ray ∆d is

∆d = na(AB + EF ) + ns(BC +DE) + nclCD (3.20)

Figure 3.3. The optical path for a ray

The Snell’s law is used in every refraction. In the first refraction at point B

na sin θ1 = ns sin θ2 (3.21)

θ2 = sin−1(
na sin θ1
ns

) (3.22)
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AB = c− c cos θ1 (3.23)

using cosine theorem to find BC

b2 = BC
2 − 2cBC cos θ2 + c2 (3.24)

BC = c cos θ2 −
√
c2 cos2 α1 − (c2 − b2) (3.25)

the incidence angle at point C

θ3 = 180◦ − cos−1(
b2 +BC

2 − c2

2bBC
) (3.26)

using Snell’s law to find refraction angle

ns sin θ3 = ncl sin θ4 (3.27)

θ4 = sin−1(
ns sin θ3
ncl

) (3.28)

CD = 2b cos θ4 (3.29)

the Snell’s law at point D

ncl sin θ4 = ns sin θ3 (3.30)

θ3 = sin−1(
ncl sin θ4

ns
) (3.31)

Also G using similarity theorem on BGC and EGD triangles to find DE

DE = BC (3.32)

the Snell’s law at point E

ns sin θ2 = na sin θ1 (3.33)

θ1 = sin−1(
ns sin θ2
na

) (3.34)

EQ ≈ AB (3.35)

the last path length EF can be expressed as

EF = c
cos(2(θ4 − θ3 + θ2)− θ1)− 1

cos(2(θ4 − θ3 + θ2 − θ1))
(3.36)

to express x′=OF

x′ = c sin θ1(1 + tan(2(θ1 − θ2))−
sin θ1

cos(2(θ1 − θ2))
) (3.37)
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to obtain the exact amplitude at x′ for each ray

A(x′) = t1t2t3t4A(x) (3.38)

where t1 t2 t3 and t4 are amplitude transmission coefficients and is A(x) the amplitude at

point B.

The field at x′ plane U ′(x′) for different regions becomes:

U ′(x′) = A(x′) exp(ikz) exp(−ik∆d) (3.39)

The field at a point (P) on the observation plane can be found by near field

Huygens-Fresnel diffraction integral:

U ′′(P ) = − 1

4π

∞∑
x=−∞

(
ik(1 + cosθ)− cosθ

r

)
exp(ikr)

r
U ′(x′) (3.40)

where the obliquity factor cosθ = x−x′
r

. The intensity obtained on the screen for three

layer phase object is

I = (U ′′(P ))(U ′′(P ))∗ (3.41)

where * represents the complex conjugate.

In paraxial approach, the deflections of the rays are omitted. However, it can be

deduced that paraxial ray tracing gives us nearly same diffraction pattern with exact ray

tracing. The comparison of two methods is given in figure 3.4.

Figure 3.4. Simulations of the normalized intensity distributions 100 nm coated optical
fiber diffraction pattern in air where the distance is 5cm with the observa-
tion plane, exact tracing(red) and paraxial tracing(blue)
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3.1.2. Structured Light Modes

In this part, the cylindrical phase object is examined with paraxial approximation

and guided modes. The source is obtained by using step-index optical fiber. The far-

field radiation mode from the fiber end obtained by Fraunhofer approximation. After

the wavefront obtained at the beginning of the coated optical fiber, the same paraxial ray

tracing procedure in the previous part is used.

The propagating field mode in optical fiber defined in mathematical preliminaries

section as:

ψi(ρ, φ0) = AJυ(κρ)cos(υφ0) ρ < a (3.42)

ψi(ρ, φ0) = A
Jυ(U)

Kυ(W )
Kυ(iγρ)(κρ)cos(υφ0) ρ > a (3.43)

where U = κa, W = γa and a is the radius of optical fiber core and

b = 1− U2

W 2
=

(β2/k2)− n2
cl

n2
co − n2

cl

(3.44)

where β is the propagation constant, k is the wavenumber in free space, nco is the refrac-

tive index of core and ncl is the refractive index of cladding. Also

κ =
√
n2
cok

2 − β2 (3.45)

γ =
√
β2 − n2

clk
2 (3.46)

The far field radiation can be defined as (Boncek and Rode, 1991)

Figure 3.5. Optical fiber geometry for far field calculations (Gambling et al., 1976)

ψ(ρ, θ, φ) =
i exp(−ikr)

λr

{∫ 2π

0

∫ a

0

Jυ(κρ)cos(υφ0) exp(ikρ sin θ cos(φ− φ0)ρdρdφ)

+

∫ 2π

0

∫ ∞
a

Jυ(U)

Kυ(W )
Kυ(iγρ)(κρ)cos(υφ0) exp(ikρ sin θ cos(φ− φ0)ρdρdφ)

}
(3.47)
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where υ = 0 and υ = 1 represents LP01 and LP11 modes respectively.

The obtained field can be defined as a source for the cylindrical phace object. The

field at X plane is ψ(x) in Figure 3.6.

Figure 3.6. (a) Linearly polarized field passing through cylindrical object, (b) Diffrac-
tion from cylindrical object

The phase variations for different rays were defined in paraxial ray tracing part

from Equation (3.6) to (3.9). Using these phase variations, the field at x′ plane can be

defined as

U ′1(P ) = ψ(x)exp(ikz)exp(−iφa), x′ > c (3.48)

U ′2(P ) = ψ(x)exp(ikz)exp(−i[φa + φs]), b < x′ < c (3.49)

U ′3(P ) = ψ(x)exp(ikz)exp(−i[φa + φs + φcl]), a < x′ < b (3.50)

U ′4(P ) = ψ(x)exp(ikz)exp(−i[φa + φs + φcl + φco]), −a < x′ < a (3.51)

U ′5(P ) = ψ(x)exp(ikz)exp(−i[φa + φs + φcl]), −b < x′ < −a (3.52)
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U ′6(P ) = ψ(x)exp(ikz)exp(−i[φa + φs]), −c < x′ < −b (3.53)

U ′7(P ) = ψ(x)exp(ikz)exp(−iφa), x′ < −c (3.54)

The field at a point (P) on the observation plane can be found by near field

Huygens-Fresnel diffraction integral:

U ′′(P ) = − 1

4π

∞∑
x=−∞

(
ik(1 + cosθ)− cosθ

r

)
exp(ikr)

r
U ′(x′)

)
(3.55)

The intensity obtained on the screen for three layer phase object is

I = (U ′′(P ))(U ′′(P ))∗ (3.56)
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CHAPTER 4

EXPERIMENTAL SETUP, MEASUREMENTS AND

RESULTS

4.1. Experimental Setup

In this chapter, measurement of nanoscale dielectric films on curved surfaces is

shown experimentally by using near field Huygens Fresnel diffraction method. The mea-

surements contain three different light sources which are plane wave and optical fiber

modes. The experimental procedure can be divided into two parts: coating of fiber optic

and measurements.

In coating of fiber optic process, Layer by Layer assembly technology (Richard-

son et al., 2015) was chosen because of the fact that there is needed to obtain nanoscale

coatings and this technology shows that film thickness can be obtained up to 3 nanometer.

The LBL technology divided into 5 major techniques: dip (immersive) coating, spin coat-

ing, spray coating, electromagnetic coating and fluid coating. At this point, dip coating

was decided to use because of easy implementation.

After choosing of coating technique next decision is about the coating materials.

We need transparent materials at the wavelength of interest. The combination of Poly

arcylic acid (PAA) and Polyethylenimine (PEI) is useful to obtain transparent coating.

PEI represents the cationic polymer whereas PAA anionic polymer.

The coating process starts with the cleaning of optical fiber with Isopropyl Alco-

hol. Then, optical fiber was first dipped into cationic solution (PEI) for 5 min, followed

by rinsing distilled water for 30 s and drying. This process creates the first positively

charged layer of fiber. The same cycle was applied to obtain first negatively charged layer

by using PAA. The obtaining of first bilayer which is created by positively and negatively

charged layers is called one deposition. Starting from the second deposition cycle, the

dipping times reduced to 3 min. This process is repeated to obtain desired film thickness.

The film thickness is shown an alteration according to ph (Yang et al., 2011),

deposition time (Zang et al., 2012) and drying (Yang et al., 2010). The ph of PAA and

PEI was chosen to obtain thicker films. Besides, the drying cycle was used to reduce
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roughness of surface of film. The deposition process of dip coating LBL is given in

Figure 4.1.

Figure 4.1. Schematic of the layer-by-layer deposition process (Yang et al., 2011)

The next part is the measurement of coating thickness after LBL assembly. A

schematic of the measurement setup are sketched for plane wave and LP modes in Figure

4.2 and 4.4 respectively. Therefore, we examine the experimental setup into two category.

• Plane wave: The setup starts with the generation and sending of plane wave to

the polymer coated optical fiber. Then, the sensor array (Sony IMX219) record

the diffraction pattern. The sensor array has 1.12µm × 1.12µm pixel size. The

small differences in diffraction pattern can be observed by the contribution of small

pixel size. The distance between the sensor array and coated optical fiber is ap-

proximately 600 µm. At the end normalized intensity of diffraction pattern and

mathematical model are fitted.

Figure 4.2. Experimental setup for estimation of thickness by using plane wave
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• LP Modes: The setup starts with the conversion of the output of 632.8 nm He-Ne

laser light beam to LP modes by using step index optical fiber. The obtained LP

modes are LP01 and LP11. The distances from first fiber end to coated fiber are 4

mm and 1.3 mm for LP01 and LP11 respectively. The expected fields which reach

the coated optical fiber are given in Figure 4.3. The diffraction patterns are recorded

by sensor array. The distances between the sensor array and coated optical fiber are

approximately 600 µm and 200 µm for LP01 and LP11, respectively. At the end

normalized intensity of diffraction pattern and mathematical model are fitted.

Figure 4.3. Intensity distributions of LP01 and LP11 at the beginning of coated fiber

Figure 4.4. Experimental setup for estimation of thickness by using structured light

The intensity and diffraction pattern profiles are given in Figure 4.5. It can be eas-

ily concluded that diffraction patterns shows differences according to the applied sources.
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Figure 4.5. Applied source intensity patterns: (a) LP01 mode (b) LP11 mode

4.2. Measurement Results

This section includes three subsection according to the selection of source types.

Besides, the measurements were done for different coating thicknesses. There are many

techniques for the characterization in the literature such as ellipsometry, profilometry,

SEM etc. which were mentioned in Chapter 1. The most powerful is SEM since the

others are not suitable for curved surface. Therefore, the results were compared with

the Scanning Electron Microscope (SEM) results in order to verify our characterization

technique.

The critical point is that SEM is very expensive device and it uses destructive

method so optical fiber which is analysed can not be used again. Besides, dielectric

materials raise difficulties to it. Therefore, there is needed some preparation before the

measurements such as coating with gold plate to the optical fiber. To overcome these

negative aspects of SEM and other techniques, we propose simple, non-destructive, real

time and cheap method for the optical characterization of curved surfaces.

Determination of distance between optical fiber and sensor array is important since

optical fiber behaves as a ball lens. The light is focused by the core and cladding of fiber

at different points. The focal points of core and cladding can be seen in Figure 4.6 where

f1 ≈ 38µm and f2 ≈ 534µm. If the sensor array is placed near the focal point of

cladding, deviations on diffraction pattern can not be observable. The phase contributions

of rays which have long optical path length in transparent film makes the difference. In
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this way, the thickness variation becomes measurable for sub-wavelength thicknesses.

However, if all rays focus to narrower region around the focal point, phase contributions

of film are lost. Therefore, the effective distance between optical fiber and sensor array

has to be determined before the measurements.

Figure 4.6. Focal points of core and cladding

Figure 4.7. Deviation between non-coated and 70 nm coated fiber for different dis-
tances between optical fiber and sensor array (LP11 illumination)
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4.2.1. Plane Wave Results

• Non-coated optical fiber measurements where the distances between optical fiber

and sensor array is 600 µm. The mathematical model and experimental result fitting

is given in Figure 4.8. The diffraction pattern on sensor array and SEM results are

given below.

Figure 4.8. Non-coated optical fiber-1: The experimental intensity fitted at non-
coating of optical fiber

Figure 4.9. (a) Diffraction pattern recorded by sensor array (b) SEM result of non-
coated optical fiber
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• 183.5 nm coated optical fiber measurements where the distances between optical

fiber and sensor array is 600 µm. The mathematical model and experimental result

fitting is given in Figure 4.10. The diffraction pattern on sensor array and SEM

results are given below.

Figure 4.10. Polymer coated optical fiber-2: The experimental intensity fitted at 180 nm
coated optical fiber

Figure 4.11. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 183.5 nm
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• 67 nm coated optical fiber measurements where the distances between optical fiber

and sensor array is 600 µm. The mathematical model and experimental result fitting

is given in Figure 4.12. The diffraction pattern on sensor array and SEM results are

given below.

Figure 4.12. Polymer coated optical fiber-3: The experimental intensity fitted at 79 nm
coated optical fiber

Figure 4.13. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 67 nm
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• The experimental data comparisons are given in Figure 4.14 and 4.15. The diffrac-

tion pattern shows observable differences in thicker coatings. When the thickness

is getting smaller, the prediction is getting worse and become unstable for different

recorded photos since the difference between non-coated and coated fibers becomes

unobservable.

Figure 4.14. Plane wave experimental results of non-coated and 180 nm coated optical
fibers

Figure 4.15. Plane wave experimental results of non-coated and 79 nm coated optical
fibers
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4.2.2. LP01 Mode Results

• Non-coated optical fiber measurements where the distances between optical fiber

and sensor array is 600 µm. Also, the distance between source optical fiber end

and coated optical fiber is 4 mm The mathematical model and experimental result

fitting is given in Figure 4.16. The diffraction pattern on sensor array and SEM

results are given below.

Figure 4.16. Non-coated optical fiber-1: The experimental intensity fitted at non-
coating of optical fiber

Figure 4.17. (a) Diffraction pattern recorded by sensor array (b) SEM result of non-
coated optical fiber
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• 183.5 nm coated optical fiber measurements where the distances between optical

fiber and sensor array is 600 µm. Also, the distance between source optical fiber

end and coated optical fiber is 4 mm The mathematical model and experimental

result fitting is given in figure 4.18. The diffraction pattern on sensor array and

SEM results are given below.

Figure 4.18. Polymer coated optical fiber-2: The experimental intensity fitted at 179 nm
coated optical fiber

Figure 4.19. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 183.5 nm
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• 67 nm coated optical fiber measurements where the distances between optical fiber

and sensor array is 600 µm. Also, the distance between source optical fiber end

and coated optical fiber is 4 mm The mathematical model and experimental result

fitting is given in figure 4.20. The diffraction pattern on sensor array and SEM

results are given below.

Figure 4.20. Polymer coated optical fiber-3: The experimental intensity fitted at 77 nm
coated optical fiber

Figure 4.21. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 67 nm
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• The experimental data comparisons are given in Figure 4.22 and 4.23. The diffrac-

tion pattern shows observable differences in thicker coatings. When the thickness

is getting smaller, the prediction is getting worse and become unstable for different

recorded photos since the difference between non-coated and coated fibers becomes

unobservable.

Figure 4.22. LP01 mode experimental results of non-coated and 179 nm coated optical
fibers

Figure 4.23. LP01 mode experimental results of non-coated and 77 nm coated optical
fibers
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4.2.3. LP11 Mode Results

• Non-coated optical fiber measurements where the distances between optical fiber

and sensor array is approximately 200 µm. Also, the distance between source op-

tical fiber end and coated optical fiber is approximately 1.3 mm The mathematical

model and experimental result fitting is given in Figure 4.24. The diffraction pattern

on sensor array and SEM results are given below.

Figure 4.24. Non-coated optical fiber-1: The experimental intensity fitted at non-
coating of optical fiber

Figure 4.25. (a) Diffraction pattern recorded by sensor array (b) SEM result of non-
coated optical fiber
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Figure 4.26. Error-Thickness variation for non-coated optical fiber

• 183.5 nm coated optical fiber measurements where the distances between optical

fiber and sensor array is approximately 200 µm. Also, the distance between source

optical fiber end and coated optical fiber is approximately 1.3 mm The mathemat-

ical model and experimental result fitting is given in Figure 4.27. The diffraction

pattern on sensor array and SEM results are given below.

Figure 4.27. Polymer coated optical fiber-2: The experimental intensity fitted at 187 nm
coated optical fiber
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Figure 4.28. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 183.5 nm

Figure 4.29. Error-Thickness variation for 187 nm coated optical fiber

• 67 nm coated optical fiber measurements where the distances between optical fiber

and sensor array is approximately 200 µm. Also, the distance between source op-

tical fiber end and coated optical fiber is approximately 1.3 mm The mathematical

model and experimental result fitting is given in Figure 4.30. The diffraction pattern

on sensor array and SEM results are given below.
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Figure 4.30. Polymer coated optical fiber-3: The experimental intensity fitted at 70 nm
coated optical fiber

Figure 4.31. (a) Diffraction pattern recorded by sensor array (b) SEM result of coated
optical fiber about 67 nm
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Figure 4.32. Error-Thickness variation for 70 nm coated optical fiber

• The theoretical and experimental data comparisons are given from Figure 4.33 to

4.37.

Figure 4.33. LP11 mode theoretical results of non-coated and 187 nm coated optical
fibers

49



Figure 4.34. LP11 mode experimental results of non-coated and 187 nm coated optical
fibers

Figure 4.35. LP11 mode theoretical results of non-coated and 70 nm coated optical
fibers
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Figure 4.36. LP11 mode experimental results of non-coated and 70 nm coated optical
fibers

4.2.4. Comparisons of Results

Figure 4.37. Simulation results of diffraction patterns for various sources
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Figure 4.38. Experimental results of diffraction patterns for various sources

Figure 4.39. Non-coated optical fiber simulation and experimental results for plane
wave, LP01 and LP11
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Figure 4.40. 67 nm coated optical fiber simulation and experimental results for plane
wave, LP01 and LP11

Figure 4.41. 183.5 nm coated optical fiber simulation and experimental results for plane
wave, LP01 and LP11

4.3. Discussion

The results show that it is not possible to measure thickness below 50 nm. The

reason is that not all near field terms are included in the diffraction formula. The dis-

tance between coated optical fiber and sensor array, represented by r in Equation 3.17,

is 200 µm in the LP11 mode measurements and 600 µm in plane wave and LP01 mode
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measurements. However, r must be smaller than 100 nm that evanescent terms become

comparable with other terms or to dominate the formula.

k =
2π

λ
=

2π

632.8nm
= 6.929× 107(1/m) (4.1)

if cos θ is taken 1

r ≈ cos θ

k
≈ 100nm (4.2)

However, the minimum distance between coated optical and sensor array can be 3

µm according to the measurements. Therefore, the measurements can not be done at 100

nm.

The spatial frequency bandwidth can be calculated in order to observe the coating

thickness below 50 nm. According to the uncertainty relation:

∆k∆r ≥ 1 (4.3)

Since ∆r represents the thickness of film, the bandwidth of spatial frequencies ∆k can be

found as:

∆k ≥ 2× 107(1/m) (4.4)
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

The primary objective of this thesis is to exploit the near field diffraction tech-

nique that use structured light to estimate the sub-wavelength thickness of dielectric films

on curved surfaces. For this purpose, various illumination sources and the near field mea-

surement techniques were used in addition to the standard techniques.

The LBL assembly technique is used for the coating process because of the fact

that the thickness of dielectric film has to be in sub-wavelength scale. The thickness

of film can be increased in nanometer scale by choosing material via ph degree. Every

coating cycle changes the thickness about 3 nanometers up to 40 nanometers. Thus, the

process is optimized for fiber optic coating.

The total PSF of an optical system can be described as the multiplication of PSFs

of the source and film. It means that if the PSF of source is modified, the total system PSF

can be altered. To examine the effects of various light sources on the diffraction pattern,

the structured lights generated by optical fiber modes were used. In this way, it is aimed

to increase the phase contribution of dielectric film on the resultant diffraction pattern.

To observe the sharp and well defined transitions on the diffraction patterns, there

is needed to use high order components. However, the high order components are lost at

the far field observations since they are inversely proportional with distance. Studying at

very close proximity to the film is a key parameter to detect the small variations. There-

fore, the diffraction pattern were recorded at as close as possible to the sensor array in the

proposed system.

In the near field measurements, pixel size determines the detection limits since

quick and sharp variations occurs on the diffraction pattern. For this reason, the sensor

selection has critical role in the measurements. In the measurement part of this thesis, the

sensor array which has 1.12µm×1.12µmwas used. Although measurements showed that

transitions between discrete points on the diffraction patterns are bigger than 1.12µm, the

sensor array has capability to detect variations up to 1.12µm.

The results have shown that the profile of illumination source has a key role for

resolution since narrower PSF provides better resolution. The difference on diffraction

patterns for the film of one-tenth of the wavelength thickness can not be observable for

plane wave and LP01 mode sources. However, the thickness becomes detectable with
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LP11 mode. The reason is that the PSF of LP11 is narrower when it compares with

other sources. The intensity of LP11 mode has two lobes and they increase the phase

contribution of dielectric film on the diffraction pattern. Besides, the sharp deviations can

be seen by taking the high frequency components in the near field region. As a result,

the divergence on the diffraction patterns becomes observable and measurable up to 67

nanometer according to the simulation and experimental results. Also simulation results

show that it is not feasible to measure the coating thickness below 50 nm.

Figure 5.1. LP11 mode simulation results of non-coated and 45 nm coated optical fibers

For the future works, the characterization of thickness is important for especially

Surface Plasmon Resonance Sensors (SPR) (Prawobo et al., 2018). Since sensitivity of

sensor has correlation with the thickness of dielectric material, the thickness has to be

measured precisely (Rani, 2014). Therefore, this technique can be useful for SPR sensors.

Furthermore, different modes (ex:LP02) and quantum dots can be used as an excitation

source or NA of system can be increased to obtain better resolution. In this way, the

thickness below 50 nm might be observed.

In conclusion, the near field diffraction by using structured light may be practical

and alternative method for the characterization of nano-scale dielectric films on curved

surfaces.
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