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ABSTRACT 

 

OPTIMIZATION OF WELD BEAD GEOMETRIC PARAMETERS IN A 

TIG WELDING PROCESS 

Welding is a process that widely used in many areas of industry. Tungsten Inert 

Gas (TIG) welding process in several types of welding is often preferred in space and 

aircraft industry, defense industry, and automotive. The welding should be at the required 

limits and quality when working under pressure. Visual and physical welding quality 

determined by welding bead geometric parameters. Weld bead dimensions response 

variables as front height (FH), front width (FW), back height (BH), and back width (BW). 

In this thesis, Neuro-regression approach which is hybrid study of conventional 

regression analysis and artificial neural network. Third order polynomial function is used 

to design front width response itself. The differences between neuro-regression approach 

and conventional regression analysis while modeling the weld bead geometric dimensions 

are examined. Welding speed, wire feed rate, percentage of cleaning, gap, and welding 

current are taken as input variables of the system during modeling. Effects of welding 

speed, wire feed rate, percentage of cleaning, gap, and welding current on front height, 

front width, back height, and back width are expressed.  Optimization of weld bead 

geometric parameters in TIG welding process were carried out by using Differential 

Evolution, Nelder Mead, Simulated Annealing and Random Search stochastic 

optimization algorithms. Two different problems of front width are studied. Differential 

Evolution is selected as stochastic search method to have minimum value of front width 

as a result of the study. All mathematical calculations are carried in Wolfram 

Mathematica. 
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ÖZET 

 

TIG KAYNAĞI İŞLEMİNDEKİ KAYNAK DİKİŞİ GEOMETRİK 

PARAMETRELERİNİN OPTİMİZASYONU 

Kaynak endüstrinin bir çok alanında yaygın olarak kullanılan bir prosestir. Bir çok 

kaynak türünün içinde TIG kaynağı uzay ve uçak sanayi, savunma sanayi, ve otomotiv 

alanlarında sıkça tercih edilir. Kaynağın basınç altında çalışacağı durumlarda istenilen 

limitlerde ve kalitede olması gerekmektedir. Kaynak kalitesini görsel ve fiziksel olarak 

kaynak dikişi ölçüleri belirler. Kaynak dikişinin kesit geometrisi üst yükseklik (FH), üst 

genişlik (FW), alt yükseklik (BH) ve alt genişlik (BW) ölçülerinden oluşur. Bu tezde 

Nöro-regresyon yaklaşımı kullanılmıştır. Nöro-regresyon yaklaşımı, geleneksel 

regresyon analizi ve yapay sinir ağları kullanımının hibrit bir çalışmasıdır. Üst genişlik 3. 

dereceden bir polinom ile ifade edilmiştir. Nöro-regresyon ve geleneksel regresyon ile 

yapılan çalışmaşalarda üst genişliğin modellemesi esnasında karşılaşılan R2 sonuçları 

karşılaştırılmıştır. Kaynak hızı, kaynak besleme oranı, temizlik yüzdesi, boşluk ve kaynak 

akımı parametreleri bu çalışmada model girdisi olarak alınmıştır. Diferansiyel Gelişim, 

Değiştirilmiş Nelder Mead, Benzetilmiş Tavlama ve Rastgele Arama stokastik 

optimizasyon algoritmaları kulllanılarak kaynak dikişine ait ölçülerin optimizasyonları 

gerçekleştirilmiştir. Üst genişlik ile ilgili iki ayrı problem çalışılmıştır. Çalışmanın 

sonucunda Diferansiyel Gelişim metodu, stokastik optimizasyon metodu olarak 

seçilmiştir. Bütün çalışmalar Wolfram Mathematica programında gerçekleştirilmiştir. 
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CHAPTHER 1 

INTRODUCTION 

1.1. Literature Survey 

Welding is very old method, which is widely used to joint structural components. 

Heat and pressure are crucial elements for quality of weld bead in many kind of welding 

process. Submerged arc welding, submerged metal arc welding and gas metal arc welding 

are some of the mostly used welding types that defined by American Welding Society. 

Arc welding could be defined as process what melts metal and joints components by using 

electric arc. Gas tungsten arc welding is a welding process, which is using non-

consumable tungsten electrode to melt metal and creating weld bead to joint elements 

together in inert gas as a shielding factor manually or automatically.  Commonly direct 

current is preferred because of the fact that tungsten electrodes attach negative polarity. 

Alternative current is used to achieve different applications and results in some cases. 

Argon and helium are two different kind of gas what are selected in gas tungsten arc 

welding for various metals with required penetration (Singh, 2016; Choudhary et al., 

2018). 

Quality of the welding is significant characteristic of manufacturing fields that is 

subject to control in many areas of industries. One of the welding parameters what affects 

quality of the welding is geometric dimensions of weld bead. Nanda et al. (2011) 

examined geometric parameters of weld bead and stated the importance of these 

parameters as an affecting element to quality of welding. Welding process could be 

expressed and modeled with mathematical statements as lots of processes that have well 

defined inputs and outputs. Welding, which is willed the best state of itself by doing 

experiments, modeling and using optimization tools, is became a subject for great 

numbers of studies. Yang et al. (1993) has study what models submerged arc welding 

process by using nonlinear regression analysis. Relationship concerning weld bead 

height, penetration, melting ratio, fusion area, and weld pool is observed using deviation 
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between predicted data and actual data. Starling et al. (1993) designed a linear regression 

model with input variables as welding current, travel speed, gap width, mean bead height 

and arc deflection current in gas tungsten arc welding process. These variables are 

selected by implementing design of experiment study. Bead shape is defined as an 

objective of the study. Result of the application showed that magnetic arc oscillation has 

positive effect on bead shape. Koleva (2001) considered electron beam power, welding 

velocity, distance from main surface of magnetic lens of the gun to the focus of the 

electron beam, and the distance between magnetic lens and the surface of the sample are 

considered as input variables in electron beam welding process with material stainless 

steel. The aim is to have depth and width of the weld as objectives. Second order 

polynomial regression models are generated for both depth and height of the weld.  

Shao et al. (2017) investigated gas metal arc welding parameters. Welding current, 

welding voltage, and welding speed is modeled by implementing finite element method 

with the material low-carbon steel. Data is collected with design of experiments. Final 

model is designed by using polynomial regression that is optimized with multi-objective 

optimization method and compared with multi-objective particle swarm optimization. 

Vedrtnam et al. (2018) studied to optimize submerged arc welding on stainless steel 

taking inputs within welding process parameters, which are arc voltage, welding current, 

nozzle to plate distance, and welding speed. Input parameters, which are modeled 

implementing response surface methodology (RSM) is optimized for qualified weld bead. 

Choudhary et al. (2018) conducted an optimization study with inputs, which are voltage, 

wire feed rate, welding speed, flux condition, and plate thickness. Genetic algorithm, Jaya 

algorithm, and desirability approach are used in this examination of submerged arc 

welding. Bead parameters as width, reinforcement, and penetration were used the design 

by implementing multiple linear regression analysis. Dolas and Bodkhe (2018) aimed to 

raise depth of penetration in tungsten inert gas (TIG) welding process with material as 

stainless steel alloy. Linear regression model is generated with inputs that are welding 

current, welding speed, and gap. ANOVA is adapted to understand influence of inputs to 

the result. It is seen that welding current has major effect on depth of penetration. 

Response surface methodology is used to optimize linear regression model. Murugan et 

al. (2005) carried an optimization study in submerged arc welding process for surface 

applications. Arc voltage, wire feed rate rate, welding speed, and nozzle-to-plate distance 

were variables to control process. Analysis of variance is applied to understand 
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corresponding final designs. Lee et al. (2000) studied with multiple regression analysis 

back to forward and forward to back which takes welding process as an input with weld 

bead dimension output, and opposite of taking process parameters and dimensions as 

inputs and outputs.  

Tarng and Yang (1998) applied Taguchi method to gas tungsten arc welding 

process. Artificial neural network is operated to design by using front width, front height, 

back width, and back height of weld bead geometry. Dutta et al. (2007) modeled gas 

tungsten arc welding process through the method implementation of linear regression 

analysis, genetic algorithm, and neural network study. Chan et al. (1999) studied ANN in 

gas metal arc welding process to model weld geometry. The effects of independent 

variables, which are arc current, voltage and travel speed on bead width, bead height, 

penetration, bay angle, and bay length are examined to have optimum results.  Problem 

is reversed and forward model results are compared with base model in addition to study. 

Tafarroj and Kolahan (2018) studied on polynomial regression model and ANN. In this 

study, four welding parameters are selected as input variables that are welding voltage, 

welding speed, welding current and gap. The aim of the study is to define heat source 

parameters in Goldak heat source model. Destruction is reduced in measurement for 

parameters of weld pool as a result of application. Wei et al. (2016) applied Fitness 

Sharing Genetic Algorithm to optimize shielded metal arc weld process. The main 

objective in the application is to increase energy reduction and thermal efficiency. 

Welding current and welding velocity are considered as input variables to have 

objectives.  Anderson et al. (1990) explained close relationship between results of 

artificial neural network and conventional control system for arc welding modeling. Dey 

at al. (2010) applied welding process to aluminum plates using electron beam. Genetic 

algorithm is used to minimize welding area dimensions in this application. Welding area 

is minimized with maximum condition of penetration. Anaca and Olabil (2008) applied 

Taguchi method to optimize tensile strength in laser welding process. Welding power, 

welding speed, and focus point position parameters are selected as independent variables 

in model design. Joby et al. (2015) conducted regression analysis with method of response 

surface. Tensile strength is examined to defined quality of weld bead. Genetic algorithm 

and simulated annealing method are applied to have ideal welding parameters. Nagaraju 

et al. (2016) carried optimization application with a method of genetic algorithm to 

demonstrate transition between welding current and penetration. Chandrasekhar et al. 
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(2017) utilized genetic algorithm to maximize the depth of penetration in hybrid laser - 

tungsten inert gas welding process. Juang and Tarng (2002) examined input variables 

which are need to be selected to optimize weld bead geometry in TIG welding process 

with material stainless steel. Arc gap, flow rate, welding current, and welding speed are 

chosen as independent process input to optimize front height, front width, back height, 

and back width. Taguchi method is used to reach optimum results. 

1.2. Aim of the Study 

In the present study, a TIG welding process is modeled by using neuro-regression 

approach (which is combination of regression modelling and ANN idea) with input 

variables as welding speed, wire feed rate, percentage of cleaning, gap, and welding 

current. Four response variables of weld bead geometry which are front height, front 

width, back height, and back width were modelled.  Optimization study is performed to 

minimize front height by using Differential Evolution (DE), Nelder Mead (NM), 

Simulated Annealing (SA), and Random Search (RS) stochastic methods in Mathematica 

software. The steps of thesis study is schematically represented in Figure 1.1. 

 

 

The main objectives of the thesis are as follows: 

 Investigating minimum front height of weld bead geometry, 

 Monitoring the effects of independent input variables on each response 

variables, 

 Comparing the result of stochastic search methods; DE, NM, SM, RS. 

 

 

Figure 1.1 Flowchart of thesis study 

Model Trails
Conventional 
Regression 
Approach

Neuro-
Regression 
Approach

Selecting Model Optimization 
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CHAPTER 2 

TIG WELDING 

2.1. TIG Welding 

Welding is to join between two or more metal pieces by using heat, pressure or 

both of them together as a general definition. It is divided in to two class as heat welding 

that uses heat to weld and pressure welding that uses pressure to weld. Heat welding is 

more commonly preferred nowadays. 

During the time before World War I, resistance welding, gas welding, and arc 

welding are developed which are basic welding process. Arc welding was applied by 

using carbon electrode shown in Figure 2.1. Afterwards metal rods were begin to use. 

However, welding area was affected by air and did not have any cover. It was decreased 

quality of welding. The coated electrode was found by The Swede Oscar Kjellberg. These 

coated electrodes have increased quality welding.  

 

 

 

New methods are developed during 1930s. Continuous wires are used to bring 

new perspective to welding process to automate the process which was applied manually 

(Weman, 2012). TIG welding as known as Heliarc Tungsten Gas Welding process was 

discovered during World War II as a result of methods of combining some of the 

magnesium and aluminum by American Aerospace Industry. At the end 1930s, tungsten 

 

Figure 2.1 Manual Metal Arc Welding  

(Source: Weman, 2012) 
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electrode and helium gas were accomplished as a first TIG welding attempting for 

magnesium welding by Russel Meredith. Heliarc welding has been phenomenon today 

by collecting details and changing names in the course of time. Argon is used as inert gas 

in TIG welding in modern day as shown in Figure 2.2 (Ericsson, 2003).  

 

 

Arc welding is extremely complex application using very high temperatures. This 

application makes the material distorted. It also makes the welding seam open to be 

cracked, linear indicated and similar kind of failures (Awang, 2002). TIG welding as now 

as Gas Tungsten Arc welding which is a kind of heat welding is mostly used and very 

important operation in many of manufacturing areas and applications like vehicles, 

engines, structures and turbines to name but a few. Heat is used to melt the metal and 

form a welding seam. To produce this heat, continues electric current is needed that 

provides an electric arc (Figure 2.3). The main reason of common TIG welding usage is 

stable arc and easy control of weld seam. Stainless steel, aluminum and magnesium 

alloys, and copper weldings are significant practice of TIG welding. All the joint types 

and all welding positions are suitable for TIG welding usage (Weman, 2012). 

 

Figure 2.2 TIG Welding Equipment  

(Source: Weman, 2012) 
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The equipment used in TIG welding process are automatic or manual redirect 

torch, power source, proper inert gas that is under pressure and stocked in containers, and 

cables. There are two fundamental kinds of torches which are manual that is using 

manpower and automatic that is machine power. The torch transports exhaustless 

tungsten electrode and different ceramic nozzles are used for steering to gas stream. 

Torches are made small-scale, lighter and effortless to use by contrivance of modern 

plastics and rubbers. It is a great advantage to use slight torch for manual TIG welding. 

Because manual TIG welding is all about manipulative skills. Nevertheless, capacity of 

torches should be first priority to select. It is necessary to use a torch that can transfer 

maximum welding current and welding area should be able to reach by electrode and 

nozzle. Ordinarily, it is suggested to weld straight down to provide maximum benefit of 

gravity force. Especially, it is valid for applications that use extra metal as weld wire 

(Muncaster, 1991). 

DC is used for TIG welding in general usage by attaching electrodes in negative 

way that helps almost all of the heat to influence. Oxide overlay can be broken nothing 

 

Figure 2.3 TIG welding process  

(Source: Norrish, 2006) 
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but positive connection of electrode is available in welding of aluminum. This is the cause 

of extreme high temperature for electrode. AC is used to avoid all the disadvantages in 

aluminum and magnesium welding (Weman, 2012).  

There are plenty of liquid gases and gas mixtures that can be used in TIG welding 

which are stocked in pressured tanks. Low temperature is the main influx to hold these 

gases in liquid form (Muncaster, 1991). These gases could be divided as four groups while 

examining the process of materials as Weman defined in 2012. However, in this study 

shielding inert gases are explained for three different metals. 

It is very important that to use root gas like argon in welding of stainless steel. 

Argon is preferred in alloyed steels and low alloyed steels too. It is also generally used in 

automatic welding. Helium or hydrogen could be added to enhance heat influx with argon. 

Hydrogen makes the weld tackles and diminishes oxide formation. The single handicap 

that hydrogen usage has that it can be only used for austenitic stainless steel. 

Argon is used as shielding inert gas in welding of aluminum and its alloys. Helium 

increases heat influx and makes to weld easier for thick metal sheets just as hydrogen. 

Because of heat increase advantage, in aluminum welding, adding helium to argon is 

largely operated. Pure helium can be also used in aluminum welding in some 

circumstances. Arc is narrowed by using helium to increase arc voltage and penetration. 

Nevertheless, arc stability is reduced and ignition of arc could be more difficult with this 

increase. Therefore, the automatic welding is mostly done with helium, besides argon is 

substituent in Manuel welding (Mathers, 2012). 

Titanium welding requires majorly high temperature and very good gas purity. 

Gas purity is expected to be 99.99% or above. Extra protective gas is often used. Because 

of high shielding performance and density, argon is used. Nevertheless, consisting of 

more heat, pure helium should be preferred.  

Current return cable is the only unbound cable used in TIG welding. This cable 

must be selected so as not to be affected by the temperature difference. Natural or 

synthetic rubber covered cable is good choice to use in this TIG welding process. PVC 

and other covered cables may not have sufficient flexibility in cold weather conditions. 

Rubber covered cable is the most resistant to heat damage. 

Due to work shoes of welders, vehicles on manufacturing area and heavy external 

factors, these cables should be kept clean and free from damage. The connectors on both 
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ends of the cable must be tight. The cable used should not operate in a loose statement 

(Muncaster, 1991). Equipment used in TIG welding are presented in Figure 2.4. 

 

 

 

2.2. Advantages and Disadvantages  

TIG welding is preferred in several area of industry. It has many advantages and 

some of disadvantages.  

 

The main advantages of the TIG welding are as follows: 

    

                      (a)                                                  (b) 

 

(c) 

 

Figure 2.4 TIG Welding Equipment (a) Torch (b) DC (c) Cable 

(Source: Muncaster, 1991; Direct Industry; Bob the Welder) 
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 Welding capability with high quality and less distortion,  

 Operating with or without welding wire, 

 Suitable with all joint types and all position, 

 Proper for thin metal sheets, 

 Proper to weld different type of materials, 

 Visible arc and welding seam. 

 

The main disadvantages of TIG welding are listed as 

 Lower speed of metal stacking comparing with other methods, 

 Expensive application for part with thicker cross section, 

 Need for shield metal gas, 

 Hard to use in outdoors, 

 Not used for tin and lead. 

 

2.3. Joint Preparation 

Joint preparation is fundamental in welding. Welding method and metal thickness 

should be considered while welding joint preparation design. Accessibility to welding 

area for welder and to provide adequate fusion during holding electrode are also important 

parameters of welding joint design. Joint preparation could be expensive process. Base 

metal involvement to work piece may be preferable to use less filler metal. During 

welding joint design, cleanliness of both base metal and filler metal is crucial. Any 

external contamination could affect welding quality and create weld defects. Base metal 

and filler metal should be purified before welding joint preparation from oil, grease, dirt, 

rust and corrosion (Weman, 2012; Singh, 2016).  Figure 2.5 shows some joint types 

example. 
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Figure 2.5. Examples of joint types  

(Source: Weman, 2012) 
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CHAPTER 3 

REGRESSION 

3.1. Introduction 

According to American Heritage Dictionary, regression is that a technique for 

predicting the value of a dependent variable as a function of one or more independent 

variables in the presence of random error. It is one of the most preferred tool in order to 

easily transfer a physical event to a mathematical model. Output can be provided with a 

single input or model can be created with more than one input. The relationship between 

these numerical inputs and output is achieved by single or multiple regression analysis. 

(Mishra, 2018). 

Coefficient of determination, which is known as r-square R2, is widely used 

statistic in regression analysis. R2 is defined as variation ratio of the output data Y which 

is generated by the regression model. Calculation of R2 is done by using the following 

formula: 

 

R2 = SSM/SST = 1 – SSE/SST                                                                        (3.1) 

 

where 

Sum of Squares Total:    SST = Ʃ (Y - Ῡ)2, where Ῡ is the overall average. 

Sum of Squares Model:  SSM = Ʃ (Ŷ - Ῡ)2, where Ŷ is predicted value. 

Sum of Squares Error:   SSE= Ʃ (Y - Ŷ)2 

 

The adjusted R-squared is a modified version of R-squared that has been adjusted 

for the number of predictors in the model. When the new term of the equation enhances 

the model more than expected by incidentally, the adjusted R-squared increases. If the 
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new term makes model worse than expected, the adjusted R-squared decreases. The 

adjusted R-squared formula is given as 

 

R2
adj = 1 – [(1 – R2)(N – 1) / (N – k – 1)]                                                         (3.2) 

 

where N is total sample size, k is number of predictors. 

 

The least square is a mathematical procedure for finding the best-fitting curve to 

a given set of points by minimizing the sum of the squares of the offsets of the points 

from the curve. Best fitting is a possible value, which represented fitted function. The 

sum of the squares of the offsets is used instead of the offset absolute values because this 

allows the residuals to be treated as a continuous differentiable quantity. However, 

because squares of the offsets are used, outlying points can have a disproportionate effect 

on the fit, a property which may or may not be desirable depending on the problem at 

hand. 

The linear least squares fitting technique is the simplest and most commonly 

applied form of linear regression and provides a solution to the problem of finding the 

best fitting straight line through a set of points. Standard forms for exponential, 

logarithmic, and power laws are often explicitly computed. The formulas for linear least 

squares fitting were independently derived by Gauss and Legendre. 

For nonlinear least squares, fitting to a number of unknown parameters, linear 

least squares fitting may be applied iteratively to a linearized form of the function until 

convergence is achieved. However, it is often also possible to linearize a nonlinear 

function at the outset and still use linear methods for determining fit parameters without 

resorting to iterative procedures. This approach does commonly violate the implicit 

assumption that the distribution of errors is normal, but often still gives acceptable results 

using normal equations, a pseudoinverse, etc. Depending on the type of fit and initial 

parameters chosen, the nonlinear fit may have good or poor convergence properties. If 

uncertainties (in the most general case, error ellipses) are given for the points, points can 

be weighted differently in order to give the high-quality points more weight. (Weisstein, 

2019) 
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3.2. Simple Linear Regression 

Simple linear regression is used for the function what obtained using a single input 

variable, x. Simple linear regression defines an equation that has response variable, Y   as 

output and input variable as given below 

  

Y = β0 +  β1 x                                                                                                     ( 3.3) 

 

where β0 is the constant term and β1 gives the slope of the graph shown in Figure 3.1. 

Coefficients are estimated by regression analysis minimizing the Sum of Square Error, 

SSE as follow: 

 

SSE = Ʃ (Y – (β0 +  β1 x))2                                                                                 (3.4) 

 

Here β0 +  β1 x is the estimated Y which is denoted by Ŷ. Aim of the regression is to 

approximate actual data Y and predicted data Ŷ. 

 

 

 

Figure 3.1 Slope and Constant term for Line graph  

(Source: Pinder, 2017) 
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3.3. Multiple Linear Regression 

More than one input affect result in process that should be taken under control. 

As a mathematical explanation, Variation in the Y data is explained with more than one 

x variables. Multiple regression is defined as regression has several x variables. General 

multiple linear regression equation below as: 

 Y =  𝑎଴ +  𝑎ଵ 𝑥ଵ +  𝑎ଶ 𝑥ଶ … + 𝑎𝑛𝑥𝑛                                                                (3.5) 

 

3.4. Simple Nonlinear Regression 

Nonlinear regression model cannot be defined by nonlinear equation that cannot 

be linearized and does not obey the superposition and scaling rules. (Kissell, 2017; Aster, 

2019). Simple nonlinear regression for a function that has only one input variable can be 

expressed as: 

 Y =  𝑎଴ +  𝑎ଵ 𝑥ଶ                                                                                                            (3.6) 

 

3.5. Multiple Nonlinear Regression 

Multiple linear regression models are nonlinear equations that have more than one 
input. Equation 3.5 shows polynomial nonlinear regression model expression. 

 Y =  𝑎଴ +  𝑎ଵ 𝑥ଵ +  𝑎ଶ 𝑥ଶଶ … + 𝑎𝑛 𝑥𝑛𝑛                                                                 (3.7) 

 
Multiple nonlinear regression models could be trigonometric functions, 

logarithms, exponentials, rational polynomial etc. Some examples of multiple nonlinear 
regression models are as: 

 Y =  𝑎଴ + 𝑎ଵ sin 𝑥ଵ + 𝑎ଶ sin 𝑥ଶ + 𝑎ଷ cos 𝑥ଵ + 𝑎ସ cos 𝑥ଶ                                (3.8) Y =  𝑎଴ + 𝑎ଵ ln 𝑥ଵ + 𝑎ଶ ln 𝑥ଶ                                                                           (3.9)  

 

where 𝑎𝑖 terms are constant and 𝑥𝑖 terms are input variables. 
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3.6 Mathematica Implementation 

A nonlinear least-squares model is an extension of the linear model where the 

model need to be linear combination of basis function. The errors are still assumed to be 

independent and normally distributed. Models of this type can be fitted using the 

NonlinearModelFit function in Wolfram Mathematica. Nonlinear models have the form 

y = f(x1…xi, B1…Bi) where y is the fitted or predicted value, the B are parameters to be 

fitted, and the x are predictor variables. As with any nonlinear optimization problem, a 

good choice of starting values for the parameters may be necessary. Starting values can 

be given using the same parameter specifications as for FindFit. Options for model fitting 

and for model analysis are shown in Table 3.1.  

 

General numeric options such as AccuracyGoal, Method, and WorkingPrecision 

are the same as for FindFit. The Weight option specifies weight values for weighted 

nonlinear regression. The optimal fit is for a weighted sum of squared errors. All other 

options can be relevant to computation of results after the initial fitting. They can be set 

within NonlinearModelFit for use in the fitting and to specify the default settings for 

results obtained from the FittedModel object. These options can also be set within an 

already constructed FittedModel object to override the option values originally given to 

NonlinearModelFit. 

 

Table 3.1 Options for model fitting 

Option Name Default Value Option Explanation 

AccuracyGoal Automatic The accuracy sought 

ConfidenceLevel 95/100 Confidence level to use for parameters and predictions 

EvalutionMonitor None Expression to evaluate whenever expr is evaluated 

MaxIterations Automatic Maximum number of iterations to use 

Method Automatic Method to use 

PrecisionGoal Automatic The precision sought 

StepMonitor None The expression to evaluate whenever a step is taken 

VarianceEstimatorFunction Automatic Function for estimating the error variance 

Weights Automatic Weights for data elements 

WorkingPrecision Automatic Precision used in internal computations 
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CHAPTER 4 

OPTIMIZATION 

4.1. Introduction 

The main issue is to generate most profit with least cost and time in every area of 

industry. Optimization is to find minimum or maximum value of function that is modeled 

mathematically which has well defined inputs and output in affecting boundary 

constrains. The prime target of engineering is to optimize parameters like weight, 

strength, time, etc. by using optimization methods. It is impossible to solve the entire 

optimization problem that engineering has with a single solution method. Several 

optimization methods are developed to examine different kinds of optimization problems 

for mathematically modeled function (Rao, 2009). 

Studies of Newton, Lagrange, and Cauchy were found of the optimization during 

historical development. Important steps were taken about unconstrained optimization 

after studies of Newton, Lagrange, and Cauchy in United Kingdom in the 1960s. 

Nontraditional optimization methods became popular to solve complex engineering 

problems in modern times. Stochastic algorithm is a nontraditional and non-deterministic 

algorithm, which relies on probabilistic operations. Stochastic methods, which are 

constantly preferred, are as 

Differential Evolution Algorithm (DE), 

Partial Swarm (PS), 

Simulated Annealing Algorithm (SA) 

Random Search Algorithm (RS) 

Genetic Algorithm (GA)  

In this study, regression models of the weld bead geometric parameters are 

designed and optimization of these parameters are achieved by using DE, NM, SA, and 

RS stochastic methods. Stochastic methods are preferred because it is not possible to 

solve optimization problem that included discrete-continuous mixed domain and/or 
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integer, nonlinear constraint, nonlinear objective function with conventional optimization 

methods.  

 

4.2. Defining an Optimization Problem 

The design factor (x), objective function f(x), and constraints as gj(x) and lj(x) 

are determined elements of optimization problems. Not every optimization problem 

should have constraints. A basic constrained optimization problem is stated below. 

 

Minimize: f(x1, x2, …, xn) 

 

Constraint: hj(x) = 0,   j = 1, 2, …  

                     gj(x) < 0,   j = 1, 2, … 

 

Design vector x is an input of process that willing to model. The design vector is 

defined by design variables. Commonly, there are more than one design variables in an 

engineering system. Every design variables comes with physical constraints in a real life 

process. Characterization and limitation of the system are represented by constraints. 

 

4.3. Stochastic Search Algorithms 

In this thesis, following algorithms are used for minimization of one of the weld 

bead geometric dimensions, which is front width. Information about algorithm parameters 

for each method in Wolfram Mathematica software is shown in Table 4.1. In the 

following subsections, brief information about these algorithms are given. 
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4.3.1. Differential Evolution Algorithm (DE) 

Differential Evolution algorithm, which is vectorial metaheuristic algorithm that 

has several variables, is used in different kinds of area because of its converging 

characteristic. It is advanced in 1996 and 1997 studies that are owned by R. Storn and K. 

Price. DE is an algorithm that uses real numbers and has resemblances with pattern search 

and genetic algorithm in areas as crossbreeding and mutation. DE takes action in every 

dimension of solution. It uses difference vector of randomized two populations in order 

to have different another vector (Yang, 2014). Flowchart of Differential Evolution is 

shown in Figure 4.1. 

In Mathematica implementation of MDE algorithm, it considers a population of r 

points, { x1, x2,…, xj,…, xr}. It is crucial that r should be much higher than the number of 

design variables. At the iteration proses, firstly, the algorithm generates a new population 

that is produced by selecting random points. By introducing the real scaling factor as “rsf” 

and defining xrsf = xw+rsf (xu- xv), ith iteration points can be obtained from the previous 

Table 4.1 Options for NM, DE, SA, and RS in Wolfram Mathematica 

Option Name NM DE SA RS Option Explanation 

"ContractRatio" 0.5  - - ratio used for contraction 

"ExpandRatio" 2.0  - - ratio used for expansion 

"InitialPoints" Auto Auto Auto Auto set of initial points 

"PenaltyFunction" Auto Auto Auto Auto 
function applied to constraints 

to penalize invalid points 

"PostProcess" Auto Auto Auto Auto whether to post-process using 
local search methods 

"RandomSeed" 0 0 0 0 starting value for the random 
number generator 

"ReflectRatio" 1.0  - - ratio used for reflection 

"ShrinkRatio" 0.5  - - ratio used for shrinking 

"Tolerance" 0.001 0.001 0.001 0.001 tolerance for accepting  
constraint violations 

"CrossProbability" - 0.5 - - probability that a gene is taken from xi 

"ScalingFactor" - 0.6 - - scale applied to the difference 
vector in creating a mate 

"SearchPoints" - Auto Auto Auto size of the population used for evolution 

"LevelIterations" - - 50 - maximum number of iterations 
to stay at a given point 

"PerturbationScale" - - 1.0 - scale for the random jump 
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population. Secondly, a new point xnew is established by selecting jth coordinate from θrsf 

with probability P. In Mathematica software, P can be adjusted by the option 

"CrossProbability". In that step, if the constraint f(xnew)<f(xi) is valid then xi is taken 

instead of xnew in the population. Stopping criteria for this process is that  if the difference 

between the optimum output values at the new and old populations, the difference 

between two (the new and old) points the new best points are less than the tolerances 

provided by the parameters which specifies how many effective digits of accuracy and 

precision should be sought in the final result. 

 

 

4.3.2. Nelder Mead Algorithm (NM) 

Nelder Mead algorithm, which is known as simplex method, arranges itself local 

for reaching final minimum. Due to local minimum adaptation, Nelder Mead algorithm 

is not a useful method for optimization problems have several local points. It is developed 

by J. A. Nelder and R. Mead in 1965 with a guidance study of Spendly et al. (1962). It is 

used to minimize simplex with n variables. In standard Nelder Mead, it was not created 

for problems that have constraint. Nelder Mead is an iterative algorithm and has four 

 

Figure 4.1 Differential Evolution Algorithm Flowchart 

(Source: Cortes-Antonio, 2014) 
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control parameters. Control parameters of Nelder Mead algorithm are reflection factor, 

expansion factor, construction factor, and shrinkage factor (Xu et al., 2019). Steps of 

Nelder Mead algorithm is in below. 

 

 

One of the simple direct search method is  Nelder Mead optimization algorithm. 

Therefore, it does not require any derivative information and  starts with a simplex for 

minimization of the function. The iteration maintain up to the simplex becomes flat. It 

means that the resulting value of the function is almost the same at all the vertices. The 

iteration steps of  Nelder Mead algorithm are Ordering: Centroid, Transformation. In the 

present version of the algorithm, a penalty function is added to the flow in order to solve 

prescribed constrained minimization problem. Construction of   the initial working 

simplex S is a first step. Second, minimizing the function moves the search course away 

from the peak, which is the worst function value. This is achieved by yielding a reflected 

and improved point. In the present paper, a modified version of the NM algorithm which 

can solve the optimization problems containing non-linear constraints, mixed integer and 

continuous design variables has been used. 

 

 

Initialization 
 

Reflection 
 

Expansion 
 

Contraction 
 

Shrinkage 

 

Figure 4.2 Nelder Mead Algorithm Flowchart  

(Source: Wang et al., 2011) 
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4.3.3. Simulated Annealing Algorithm (SA) 

Simulated Annealing is an algorithm that developed for optimization problems 

have global optima which is inspired by annealing process of metals that explains slow 

cooling down. This algorithm is an ideal method to analyze complex and difficult 

problems that cannot be solved with other methods. Metal should be permitted to cool 

down by itself to reduce the system its minimum energy. This method is used to find 

global optima of nonlinear functions. Mathematica implementation of Modified 

Simulated Annealing (MSA) can be briefly explained as follows:  

Firstly, an initial guess is introduced as xin. Secondly, a new point, xnew, is 

produced in the neighborhood of the current point, x at each iteration so far, xbest, is also 

tracked. The main idea is here that the radius of the neighborhood reduces with the 

iteration. If  f(xnew) <= f(xbest), xnew replaces xbest and x. Otherwise, xnew replaces x with a 

probability. The distance between the current and new points can be calculated by 

Boltzmann’s probability distribution function𝑒𝐵 ሺ𝑖,𝛥𝑓,𝑓0ሻ. 
In this distribution “B” is the function characterized by Boltzmann Exponent, “i” 

is the current iteration, “Δf” is the change in the fitness function value, and “f0” represents 

the value of the objective function from the (i-1)th iteration. B is 
−𝜟ࢌ𝒍𝒐ࢍ ሺ𝒊+૚ሻ૚૙  if it is not 

introduced by the user. Instead of only one initial guess the Mathematica command 

“Simulated Annealing” uses two or more starting points. The option Search Points give 

the number of initial points, and it is calculated as min (2r, 50). In this expression, the 

number of variables is denoted by the term r. According to the variation of the initial 

points, the process sustains successively up to the iteration number limits. “Level 

Iterations” option gives the number of iterations to converges to a point, or the technique 

stays at the same point given before.  

The flowchart of a Simulated Annealing algorithm is presented in Figure 4.3, so 

as to follow the procedure of the algorithm readily. 
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4.3.4. Random Search Algorithm (RS) 

RS method (also known as a Monte-Carlo method) is a stochastic algorithm and 

different from the most deterministic maximum search methods, such as Branch and 

Bound, Interval Analysis, and Tunneling methods. The solution procedure of the 

algorithm provides some ad- vantages; for example: since small step methods can, find 

only the top of a local peak, it should be combined with some sort of true search procedure 

when a search for the absolute maximum of a multimodal function is required. In the 

random process, there are a number of standard techniques and programs based on a 

pseudo-random number generator. The resulting values have to be scaled and transformed 

in order to produce an approximation to any desired distribution. The main advantage 

which provides to appropriate usage of RS algorithms is that it is possible to reach the 

 

Figure 4.3 Simulated Annealing Algorithm Flowchart  

(Source: Pham and Karaboga, 2012) 
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global optimum for non-convex, non- differentiable objective functions including 

continuous, discrete do- mains, or mix of them for large-scale problems. Another 

advantage of RS method is that they are relatively easy to implement on complex 

problems. Generally, it is known that RS algorithms perform well and are “robust” in the 

sense that they give useful information quickly for ill-structured global optimization 

problems. The algorithm used in the present study follows the procedure given in Figure 

4.4. Detail discussion of random search method can also be found in Karnopp (1963), 

Zabinsky (2009). 

 

 

  

 

Figure 4.4 Random Search Algorithm Flowchart  

(Source: Zabinsky, 2009) 
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CHAPTER 5 

RESULT AND DISCUSSION 

5.1. Problem Statement and Modelling 

Welding process, comprised by various fields like aircraft engines, internal and 

external parts of vehicles, bridges, towers, heat exchangers, and valves is a complex 

application. Expectation for qualified welding is met with physical and micro-structural 

requirements in minimum material condition by decreasing cost.  

Juang et al. (1998) studied with five input variables of TIG welding which are 

welding speed, wire feed rate, cleaning percentage, gap, and welding current. Dutta and 

Pratihar studied with Juang’s experiment data. However, full factorial DOE is applied to 

select 36 data from 72 data. In this thesis, set of data of Dutta and Pratihar’s is used. In 

their study, they selected wire feed rate as 2. In this thesis, TIG welding process has been 

modeled by using regression analysis. Then, the response equation (model equation for 

front width) as a function of input variables were minimized by using optimization 

algorithms.  Welding speed, wire feed rate, % cleaning, gap and welding current are taken 

as input variables. Response variables are front height, front width, back height, and back 

width. Figure 5.1 shows a schematic diagram for the weld bead geometric parameters in 

TIG welding process.  
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Input and output variables of TIG welding process is presented in Figure 5.2. The 

ranges of the input parameters based upon experimental data taken from Dutta and 

Pratihar (2006) studies for the analysis are given in Table 5.1.  

 

 

Experimental data set is shown in Table 5.2. Within this context, four response 

variables of weld bead geometry that are front height, front width, back height, and back 

width are designed by regression analysis with using elementary function models. First 

order versions of these functions are shown in Table 5.3. In this thesis, elementary 

functions are used to model physical events which are front height, front width, back 

height and back width with multiple input variables. Rational version of elementary 

functions is also implemented. The reason of rational model trail is boundedness control 

of rational models. It prevented that result could go to infinity. The limit of rational model 

usage is the values that makes denominator zero. 

 

Figure 5.1 Geometric dimensions of weld bead  

(Source: Dutta and Prahitar, 2006) 

Figure 5.2 TIG Welding Process Variables  

(Source: Dutta and Prahitar, 2006) 

Welding Speed (A) Front Height (FH)

Wire Feed Rate (B) Front Width (FW)

% Cleaning (C) Back Height (BH)

Gap (D) Back Width (BW)

Welding Current (E)

TIG Welding 

Process
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Table 5.1 Input parameters  

(Source: Dutta and Pratihar, 2006) 

Input Parameters Units Notation 
Minimum 

Value 
Maximum 

Value 
Welding Speed cm/min A 24 46 

Wire Feed Rate cm/min B 1.5 2.5 
% Cleaning  C 30 70 

Gap mm D 2.4 3.2 
Welding Current A E 80 110 

 

Table 5.3 Forms of different models considered 

Model Name Formula 

First Order 
Logarithmic  

Y= a0 + a1 lnx1 + a2 lnx2 + a3 lnx3 + a4 lnx4 + a5 lnx5 

First Order 
Logarithmic Rational 

Y= 
a0 + a1 lnx1 + a2 lnx2 + a3 lnx3 + a4 lnx4 + a5 lnx5 
b0 + b1 lnx1 + b2 lnx2 + b3 lnx3 + b4 lnx4 + b5 lnx5 

First Order 
Polynomial  

Y= a0 + a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 

First Order 
Polynomial Rational 

Y= 
a0 + a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 
b0 + b1 x1 + b2 x2 + b3 x3 + b4 x4 + b5 x5 

First Order 
Trigonometric 

Y= a0 + a1 Sin(x1) + a2 Sin(x2) + a3 Sin(x3) + a4 Sin(x4) + a5 Sin(x5)  
+ a6 Cos(x1) + a7 Cos(x2) + a8 Cos(x3) + a9 Cos(x4) + a10 Cos(x5) 

First Order 
Trigonometric 
Rational 

Y= 

a0 + a1 Sin(x1) + a2 Sin(x2) + a3 Sin(x3) + a4 Sin(x4) + a5 Sin(x5) +  
a6 Cos(x1) + a7 Cos(x2) + a8 Cos(x3) + a9 Cos(x4) + a10 Cos(x5) 

a0 + a1 Sin(x1) + a2 Sin(x2) + a3 Sin(x3) + a4 Sin(x4) + a5 Sin(x5) + 
 a6 Cos(x1) + a7 Cos(x2) + a8 Cos(x3) + a9 Cos(x4) + a10 Cos(x5) 
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Table 5.2 Experimental data used to carry out regression analysis 

(Source: Dutta and Pratihar, 2006) 

Inputs     Outputs    

A B C D E FH FW BH BW 

24 2 30 2.4 80 -0.066 6.123 0.801 5.541 
24 2 30 3.2 80 0.114 5.979 0.682 4.633 

24 2 70 2.4 80 -0.213 7.424 0.806 7.026 

24 2 70 3.2 80 0.034 7.516 0.557 7.480 

24 2 30 2.4 95 -0.167 8.481 0.713 8.340 
24 2 30 3.2 95 -0.296 8.928 0.807 8.640 

24 2 70 2.4 95 -0.219 9.677 0.688 9.717 

24 2 70 3.2 95 -0.448 10.523 1.005 11.088 
24 2 30 2.4 110 -0.281 10.871 0.713 11.142 

24 2 30 3.2 110 -0.452 10.830 0.803 11.370 
24 2 70 2.4 110 -0.651 13.986 1.090 14.146 

24 2 70 3.2 110 -0.74 12.273 1.148 12.712 

35 2 30 2.4 80 0.144 5.474 0.425 5.057 

35 2 30 3.2 80 0.224 5.449 0.379 3.884 

35 2 70 2.4 80 0.023 5.758 0.515 4.970 

35 2 70 3.2 80 0.041 5.758 0.540 4.768 

35 2 30 2.4 95 -0.094 6.665 0.613 6.304 

35 2 30 3.2 95 -0.154 7.402 0.564 7.440 

35 2 70 2.4 95 -0.179 7.614 0.610 7.557 

35 2 70 3.2 95 -0.005 7.506 0.457 7.310 

35 2 30 2.4 110 -0.433 8.011 0.868 8.047 

35 2 30 3.2 110 -0.449 8.473 0.780 8.466 

35 2 70 2.4 110 -0.396 9.652 0.782 10.277 

35 2 70 3.2 110 -0.553 9.773 0.847 10.427 
46 2 30 2.4 80 0.454 5.581 0.315 3.046 
46 2 30 3.2 80 0.193 4.645 0.332 2.810 

46 2 70 2.4 80 0.023 5.646 0.584 4.034 

46 2 70 3.2 80 0.219 5.538 0.363 2.857 
46 2 30 2.4 95 0.057 5.600 0.495 4.836 
46 2 30 3.2 95 0.155 6.002 0.351 4.922 

46 2 70 2.4 95 -0.189 5.859 0.729 5.201 

46 2 70 3.2 95 -0.182 6.124 0.569 5.299 

46 2 30 2.4 110 -0.386 6.927 0.748 6.775 
46 2 30 3.2 110 -0.154 6.877 0.539 6.335 
46 2 70 2.4 110 -0.350 7.630 0.650 7.869 

46 2 70 3.2 110 -0.225 7.553 0.557 7.707 
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5.2. Selecting Model and Effects of Independent Input Variables 

Example of Wolfram Mathematica code to find conventional R2, R2 adjusted, R2 

training, and R2 testing, which is constructed with inputs given in Table 5.1 and 

mathematical models in Table 5.2, is shown in Appendix A. 

Coefficient of determination R2 and R2 adjusted values are listed in Appendix B. 

These values are generated using traditional regression analysis and models depicted in 

Table 5.2. Models that are generated with standard regression approach are not effective 

to state physical problem enough by comparing R2 and R2 adjusted values. It is seen that 

sixth order logarithmic and polynomial models could represent exactly physical 

phenomena for front height. Although fourth order trigonometric model could represent 

the same physical phenomena for front height, logarithmic and polynomial models 

requires increase in order. Fourth order rational trigonometric, sixth order logarithmic and 

polynomial, and fourth order trigonometric models are represented front width with a 

giving R2 equals to 1 that means theoretically predicted response values and actual 

response values gave the same result. Trigonometric models gave the value of 1 for 

coefficient of determination in fourth, fifth, and sixth order. Fifth and sixth order rational 

trigonometric models gives result just around 0.23. It because model showed oscillation 

behavior more than that the event needs. Sixth order polynomial, rational polynomial, 

logarithmic, and rational logarithmic models represented physical event for both back 

height and back width with one hundred percent agreement. Trigonometric and rational 

trigonometric models gave the value of 1 for coefficient of determination with fourth 

order. However, fifth and sixth order trigonometric rational models did not match with 

the physical events sufficiently. 

Neuro-regression, which is hybrid application of regression analysis and artificial 

neural network, is performed. Four output variables are modeled by using neuro-

regression analysis. Four input variables are taken minimum to see effect of the other one 

among the five inputs. Subsequently, experimental data set divided randomly into two 

sets of data, 80 percent and 20 percent of data. Regression analysis without using 20 

percent of data is studied, and it coefficients of determination are found. 20 percent of  

data is substituted to models and new testing coefficients of determination are found. 

Comparison between training and testing coefficients R2 shows reliability of the models. 
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Appendix C indicates values of R2 training and R2 testing thereafter hybrid study. R2 

training should be near to one and R2 training and R2 testing should be converge each 

other while selecting optimal model. Models are selected for all four output variables by 

examining and comparing result of R2 training and R2 testing, as given in Appendix C. 

First order multiple linear model for front height, third order multiple polynomial model 

for front width, first order multiple trigonometric nonlinear model for back height, and 

first order multiple linear model for back width are chosen. Logarithmic models made R2 

training results increase with increasing order from first to sixth.  R2 testing results are 

decreased by order for front height. R2 training value is rising with order from first to 

sixth in rational logarithmic model; nevertheless, R2 testing did not converge with R2 

training. R2 training and R2 testing results converged to both the value of 1 and each other 

for the first order polynomial model. The remaining orders for polynomial models did not 

represent phenomena as the first order model did. R2 training results for third or higher 

order trigonometric and rational trigonometric models gave value of 1. However, none of 

the R2 testing values could demonstrate the event in the way of the first order linear model 

did. First to sixth order logarithmic and rational logarithmic models showed above 99 % 

match for R2 training in front width, although R2 testing could not perform over 85 %. 

Third order polynomial model represented the phenomena well by converging to value 

of 1 and each other around 0.89. All six model types and six orders for back height 

demonstrated 97 % and above similarity for predicted and actual outputs. Values of R2 

testing gave results around 0.77 for first order logarithmic model; but with increasing 

order, R2 training decreased. Negative value of results could be seen for R2 testing values 

for all model in back height, because of values deviation and nature of process. R2 training 

indicated increasing behavior for logarithmic, polynomial and trigonometric models of 

back width. R2 testing values of back width decreased with increasing order by the 

opposite way of R2 training. Independent results for R2 testing could be investigate from 

order in all rational models. R2 testing took negative values after second order for model 

that is rational trigonometric.   

Effects of input variables, which are welding speed, wire feed rate, % cleaning, 

gap, and welding current on four response variables, which are front height, front width, 

back height, and back width are investigated separately and presented in Figures 5.3- 5.6. 

In all these figures, while investigating the effect of each parameter on response function, 
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the other parameters are kept constant as welding speed of 24 cm/min, wire feed rate of 

2 cm/min, % cleaning of 30, gap of 2.4 mm, and welding current of 80. 

 

5.2.1. Effects of Independent Input Variables on Front Height 

It can be seen from the Figure 5.3 (a) that front height is increased by changing 

welding speed minimum to maximum while the other parameters are kept constant with 

wire feed rate of 2 cm/min, % cleaning of 30, gap of 2.4 mm, and welding current of 80 

A. Wire feed rate raise changed front height between -0.1 and 0.2 and by this change, it 

could be seen under zero values for front height as a relationship between wire feed rate 

and front height that is shown in Figure 5.3. Low values of front height is achieved by 

getting higher value of percentage cleaning on the contrary of weld speed and wire feed 

rate. The deviation is occurred between -0.06 and 0.06. Front height increased with higher 

the gap between components that desired to weld, as shown in Figure 5.3. Increasing 

welding current made front height minimum similarly with percentage cleaning as 

demonstrated in Figure 5.3. Welding current affected front height aggressively unlike the 

effects of other four inputs. It developed 0.5 error by giving study range between -0.4 and 

0.1. 

 

5.2.2. Effects of Independent Input Variables on Front Width 

Front width could not show linear response in study with weld speed between 24 

and 46 cm/min. Front width, which decreased in a certain range with increasing weld 

speed and then took minimum value with maximum weld speed is indicated in Figure 

5.4. Wire feed rate gave minimum front width with minimum value of itself by drawing 

concave curve. It studied in range of 0.8 by moving from 4.8 to 5.6 approximately as 

shown in Figure 5.4. This shows increasing in front width with increasing percentage 

cleaning. Increasing gap between work pieces increased front width as demonstrated in 

Figure 5.4. Welding current effect gave more aggressive result for front width similar 

with front height. However, welding current, which decreased front height at maximum 

value of itself, made front width minimum with minimum state of it. 
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5.2.3. Effects of Independent Input Variables on Back Height 

Deviation of weld speed creates sinus curve with corners on back height. As it is 

seen from Figure 5.5., back height took minimum values around 28, 46, and between 35 

and 39 cm/min. Increasing wire feed rate made back height higher. Figure 5.5 showed 

that wire feed rate changed back height in 0.2 range. Percentage Cleaning, which moved 

between % 30 and 70, affected back height with sinus curve with corners in the same way 

with weld speed as indicated in Figure 5.5. Raising gap between materials reduced back 

height with nonlinear curve. This decrease occurred proportionally in range of 0.15 

(Figure 5.5). Low welding current looks like that it reduced back height. It is seen that 

back height decreased around 100 A with large sinus curve in Figure 5.5. 

 

5.2.4. Effects of Independent Input Variables on Back Width 

Increasing welding speed decreased back width in an opposite way of front height. 

The welding speed affected back width aggressively with a variation as demonstrated in 

Figure 5.6. Wire feed rate also decreased back width with an increasing change. However, 

the decrease in back width showed low deviation and the wire feed rate was not effective 

as weld speed (Figure 5.6). Percentage cleaning affected back width with linear increase 

from 6 cm to 8 cm approximately as shown in Figure 5.6. Gap created linear effect as the 

same way percentage cleaning did. Welding current increased back width from 6 cm to 

12 cm by increasing welding current itself from 80 A to 110 A. It can be seen that welding 

current is more effective than other input variables by comparing graph values of back 

width with 6 cm deviation approximately. 
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Figure 5.3 Effects of independent input variables on Front Height   
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Figure 5.4 Effects of Independent Input Variables on Front Width 
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Figure 5.5 Effects of Independent Input Variables on Back Height 
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Figure 5.6 Effects of Independent Input Variables on Back Width 
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5.3. Optimization 

The main reason to use hybrid study of regression analysis and ANN instead of 

conventional regression analysis is to express that conventional regression analysis 

cannot correspond response variable completely. Based on this comparing, models are 

selected separately for four response variables by examining R2 and R2 testing obtained 

from hybrid application of regression analysis and ANN. Optimization studies are 

operated by choosing front width from weld bead geometric dimensions. 

Front width needs to be shortest when compared with other three weld bead 

dimensions. Material absorbs heat as much as width of weld bead. This heat absorption 

results in distortion. Concurrently, heat absorption and distortion cause weld cracks. TIG 

welding process is expensive process that it should be considered while selecting 

objective.   

Generated regression model for front width is given in Appendix D. Front width 

equation in Appendix D is selected by comparing R2 and R2 testing. R2 and R2 testing 

should be close to 1.000 and also close to each other. Optimization problems are solved 

by using selected model which expresses physical problem correctly that is Front width 

equation in Appendix A. Two different problem with different constraints are examined 

for front width in this study. These two problems are detailed in Table 5.4. Problem 1 is 

single objective, nonlinear constraint problem in continuous domain. Problem 2 is also 

single objective with nonlinear constraint in mixed integer continuous domain. They 

could not be solved with standard Nelder-Mead or classical optimization approach. 

Because of the complexity of problems, stochastic optimization methods are used.  
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NMinimize tool in Wolfram Mathematica is used to minimize Front Width for 

problems considered. In the first problem,  input parameters welding speed, wire feed 

rate, percentage of cleaning, gap, welding current, and the response variables front height, 

back height, and back width are considered as constraints in continuous domain. Front 

width is also given as constraint which is  bigger than zero. Front height could be less 

than zero physically, which means line of work pieces are considered as zero point. Gap 

under this line is considered as minus state. Back height could also be less than zero 

physically. Nevertheless, minimum back height point is taken as zero which means in this 

thesis. Differential evolution is used as optimization method for this problem because of 

the characteristic of equation. However, it is impossible to use these input values with 

Table 5.4 Optimization problems, constraints, input variables, used optimization 
algorithms 

Pro. 
No 

Problem Constraint Input Variable 
Optimization 

Algorithm 

1 
Front Width 

(FW)  
Minimization 

FW > 0 
-1 < FH < 1 
0 < BH < 1 
1 < BW < 13 
24 < Welding Speed < 46 
1.5 < Wire Feed Rate < 2.5 
30 < % Cleaning < 70 
2.4 < Gap < 3.2 
80 < Welding Current < 110 

Welding Speed 
(A) 

Wire Feed Rate 
(B) 

% Cleaning (C) 
Gap (D) 

Welding Current 
(E) 

Differential 
Evolution (DE) 

2 
Front Width 

(FW)  
Minimization  

FW > 0 
-1 < FH < 1 
0 < BH < 1 
1 < BW < 13 
24 < Welding Speed < 46 
1.5 < Wire Feed Rate < 2.5 
30 < % Cleaning < 70 
80 < Welding Current < 110 
{2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 
3.0, 3.1, 3.2} ∈ Gap  
Welding Speed ∈ Integer  
% Cleaning ∈ Integer 
Welding Current ∈ Integer 

Welding Speed 
(A) 

Wire Feed Rate 
(B) 

% Cleaning (C) 
Gap (D) 

Welding Current 
(E) 

Differential 
Evolution (DE) 

Nelder Mead (NM) 
Simulated 

Annealing(SA) 
Random Search 

(RS) 

N 
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precise fractions in fields of industry when problem constraints are selected continuous. 

Therefore, with the addition to constraints in the first problem, welding speed, % cleaning, 

and welding current are assumed to be integer for the second problem. Gap between work 

pieces is constrained as having integer series starting 2.4 mm to 3.2 mm with 0.1 mm 

increment. Results of Problem 1 indicates better results than the results of Problem 2, 

although application of constraints for Problem 1 in field is very hard to manufacture.  

After adding industry constraints which are in-field application limits and using front 

width model in Appendix D, the optimum results for FW obtained by four different 

stochastic optimization methods DE, NM, SA, and RS are given in Table 5.5. Comparing 

the results, it can be concluded that Differential Evolution method should be selected to 

have minimum front width. 

 

 

 

 

 

 

 

 

 

  

Table 5.5 Minimized Front Width Values by the methods used in this thesis 

Method 
Minimized  
FW (cm) 

A  
(cm/min) 

B  
(cm/min) 

C (%) D (mm) E (A) Reliability 

Problem 1  
      

DE 3.17041 46 1.5 61.5118 3.2 80 100% 

Problem 2        

DE 3.33987 45 1.5 31 2.4 81 100% 

NM 3.39013 45 1.5 31 3.2 81 100% 

SA 3.44934 45 1.5001 33 2.5 81 100% 
RS 3.55867 45 1.5 40 3.2 82 100% 
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CHAPTER 6 

CONCLUSION 

In this thesis, geometric dimensions of weld bead in a tungsten inert gas (TIG) 

welding process is minimized by using stochastic optimization methods which are 

Differential Evolutions, Nelder Mead, Simulated Annealing, and Random Search. 

Welding is a complex process that could be affected by several variables. Geometric 

dimensions of weld bead are important elements for quality of TIG welding process. 

Quality of welding meets with other requirements in industrial fields like profile of 

material, positioning, and flatness in TIG welding process.  It is also a critical item to 

have heat, what makes the material distorted and creates weld crack. Distortion of 

material and crack formation could be decreased having minimum heat affected zone. 

Weld bead dimensions should be reduced to have minimum heat affected zone. In order 

to have minimum distortion, optimization of weld bead geometric parameters becomes 

fundamental. 

Weld speed, weld feed rate, gap, cleaning percentage, and welding current are 

considered as input variables in TIG welding process to take under control. These 

parameters are indicated as system constraints. Six different mathematical models which 

are polynomial, polynomial rational, logarithmic, logarithmic rational, trigonometric, 

trigonometric rational for each four response variables (front height, front width, back 

height, and back width of weld bead) were examined. TIG welding process modelling is 

generated with neuro-regression approach in Mathematica software with NMinimize tool. 

Differential Evolution, Nelder Mead, Simulated Annealing, and Random Search 

algorithms were used to minimize geometric dimensions of weld bead. 

Conventional regression analysis is operated to find coefficient of determination, 

and coefficient of determination adjusted. Regression analysis and ANN are performed 

to have substantial model by comparing training and testing coefficients of determination. 

The aim of this progress is to understand deviation between conventional regression 

analysis, and neuro-regression analysis. As a result of progress, it is seen that 

conventional regression analysis could not give reliable result. Third order polynomial 

model is selected as an objective function to minimize front width by using regression 
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analysis and ANN.  Model itself is given as constraint that was bigger than zero to have 

reasonable result. Welding speed is required to be between 24 and 46 cm/min, wire feed 

rate is required to be between 1.5 and 2.5 cm/min. Cleaning percentage is asked to be 

equal or higher than 30 and equal or lower than 70. Gap should be between 2.4 and 3.2 

mm and welding current is asked to be between 80 and 110 A.  

According to results, it can be concluded that maximum welding speed (45 

cm/min), minimum wire feed rate(1.5 cm/min), minimum cleaning percentage (31 %),  

minimum gap (2.4 mm), and minimum current (81 A),  give minimum front width 

(3.33987 cm), value of weld bead in TIG welding process. 

As a future work, heat affected zone (HAZ) optimization can be studied. HAZ is 

the area around weld bead, which is non-melted area that has changes in its microstructure 

by heat. Heat affected zone should be minimum in work pieces due to absorb minimum 

heat. Heat makes work pieces distorted after welding application.  
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APPENDIX A 

WOLFRAM MATHEMATICA CODE EXAMPLE FOR R-

SQUARED CONVENTIONAL, R-SQUARED ADJUSTED, 

R-SQUARED TRAINING AND R-SQUARED TESTING 

 

DATA= 

Table[{A%80[[i]],B%80[[i]],C%80[[i]],D%80[[i]],E%80[[i]],FH%80[[i]]},{i
,1,Length[FW%80]}]; 

MODEL= 

Expand[(1+Log[0.1 A]+Log[B]+Log[0.1 C]+Log[D]+Log[0.1 E])^1]; 

CC=Table[a[i],{i,1,Length[MODEL]}]; 

DD=Table[b[i],{i,1,Length[MODEL]}]; 

YY=Table[(CC[[i]] MODEL[[i]]),{i,1,Length[MODEL]}]//Total; 

ZZ=Table[(DD[[i]]modelnn[[i]]),{i,1,Length[MODEL]}]//Total; 

coef={CC,DD}//Flatten; 

TT=YY; 

constFW= 

NonlinearModelFit[DATA,TT,coef,{A,B,C,D,E},MaxIterations400]; 

modelFW=constFW//Normal; 

constFW[{"RSquared","AdjustedRSquared"}]; 

constFW[{"PredictedResponse","Response"}]//Transpose//TableForm; 

TESTDATA= 

Table[{A%20[[i]],B%20[[i]],C%20[[i]],D%20[[i]],E%20[[i]]},{i,1,Length[A
%20]}]; 

modelFW/.x1A%20[[1]]/.x2B%20[[1]]/.x3C%20[[1]]/.x4D%20[[1]]/.x5
E%20[[1]]; 
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(cont.) 

FW%20predicted= 

Table[modelFW/.x1A%20[[i]]/.x2B%20[[i]]/.x3C%20[[i]]/.x4
D%20[[i]]/.x5E%20[[i]],{i,1,Length[A%20]}]; 

 

Table[{FW%20[[i]],FW%20predicted[[i]]},{i,1,Length[A%20]}]//TableForm 

 

SSE = Ʃ (FW%20 – FW%20predicted)2; 

 

FWbar = Mean[FH%20]; 

 

SST = Ʃ (FW%20 – FWbar)2 

 

R2
testing=1 - SSE/SST 
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APPENDIX B 

R-SQUARED AND R-SQUARED ADJUSTED VALUES 

FOR OUTPUT VARIABLES WITH SELECTED MODELS 

 

 

Output Order 
Logarithmic Log. Rational Polynomial 

R² R² adj R² R² adj R² R² adj 

FH 

1th 0.8947 0.84205 0.899186 0.848779 0.891411 0.837116 

2nd 0.904595 2 0.964844 1.21094 0.904917 1.5705 

3rd 0.956384 1.02066 0.965914 1.01615 0.956166 1.02076 

4th 0.980588 1.00324 0.958304 1.00695 0.98002 1.00333 

5th 0.98972 1.00079 0.959147 1.00314 0.989869 1.00078 

6th 1 1 0.96104 1.00158 1 1 

FW 

1th 0.99145 0.987175 0.99802 0.99703 0.990996 0.986494 

2nd 0.998343 1.00994 0.999399 1.0036 0.998245 1.01053 

3rd 0.999484 1.00024 0.99963 1.00018 0.999505 1.00023 

4th 0.999727 1.00005 0.998739 1.00021 0.999719 1.00005 

5th 0.999962 1 0.998925 1.00008 0.999953 1 

6th 1 1 0.998933 1.00004 1 1 

BH 

1th 0.976433 0.96465 0.980424 0.970636 0.975797 0.963695 

2nd 0.980574 1.11656 0.995284 1.0283 0.980544 1.11674 

3rd 0.991654 1.00395 0.996278 1.00176 0.991347 1.0041 

4th 0.996795 1.00053 0.99045 1.00159 0.996664 1.00056 

5th 0.999131 1.00007 0.991199 1.00068 0.998986 1.00008 

6th 1 1 0.991234 1.00036 1 1 

BW 

1th 0.992668 0.989002 0.996088 0.994132 0.99264 0.98896 

2nd 0.997143 1.01714 0.998957 1.00626 0.996985 1.01809 

3rd 0.998574 1.00068 0.998223 1.00084 0.998544 1.00069 

4th 0.999569 1.00007 0.997828 1.00036 0.9996 1.00007 

5th 0.999698 1.00002 0.998523 1.00011 0.99967 1.00003 

6th 1 1 0.998251 1.00007 1 1 
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(cont.) 

 

 

Output Order Pol. Rational Trigonometric Tri. Rational

  R² R² adj R² R² adj R² R² adj 

FH 

1th 0.900818 0.851228 0.895455 0.731171 0.567023 -0.11337 

2nd 0.95379 1.27726 0.920826 1.02969 0.969778 1.01133 

3rd 0.964819 1.01666 0.982819 1.00115 0.996712 1.00022 

4th 0.941945 1.00968 1 1 1 1 

5th 0.943566 1.00434 1 1 1 1 

6th 0.952907 1.00191 1 1 1 1 

FW 

1th 0.998257 0.997386 0.99187 0.979095 0.950009 0.871451 

2nd 0.999363 1.00382 0.999062 1.00035 0.998618 1.00052 

3rd 0.999432 1.00027 0.999783 1.00001 0.999605 1.00003 

4th 0.998582 1.00024 1 1 0.999996 1 

5th 0.9987 1.0001 1 1 0.252416 1.00451 

6th 0.998806 1.00005 1 1 0.237712 1.00172 

BH 

1th 0.980101 0.970152 0.977491 0.942121 0.973365 0.931511 

2nd 0.977105 1.13737 0.98426 1.0059 0.990641 1.00351 

3rd 0.98014 1.00941 0.998302 1.00011 0.999999 1 

4th 0.988789 1.00187 1 1 1 1 

5th 0.990191 1.00075 1 1 0.681441 1.00192 

6th 0.991097 1.00036 1 1 0.649548 1.00079 

BW 

1th 0.996601 0.994902 0.992797 0.981479 0.940466 0.846912 

2nd 0.997305 1.01617 0.998206 1.00067 0.995401 1.00172 

3rd 0.997783 1.00105 0.999107 1.00006 0.59714 1.02706 

4th 0.997087 1.00049 1 1 1 1 

5th 0.996953 1.00023 1 1 0.669474 1.00199 

6th 0.997236 1.00011 1 1 0.225343 1.00175 
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APPENDIX C 

R-SQUARED TRAINING AND R-SQUARED TESTING 

FOR OUTPUT VARIABLES WITH SELECTED MODELS 

 

Output Order 
Logarithmic Log. Rational Polynomial 

R² R² test R² R² test R² R² test 

FH 

1st 0.877253 0.847894 0.897219 0.725835 0.879363 0.858166 

2nd 0.925005 0.680165 0.990344 -0.176411 0.923898 0.708782 

3rd 0.971589 0.51228 0.987217 0.284667 0.970802 0.48898 

4th 1 -0.065012 0.973244 0.575431 1 -0.418427 

5th 1 -0.0204018 0.974824 0.569497 1 -0.296202 

6th 1 0.0205316 0.976919 0.467487 1 -0.195185 

FW 

1st 0.992565 0.850227 0.998866 0.586021 0.992038 0.845461 

2nd 0.99925 0.852513 0.999733 0.638972 0.999154 0.843342 

3rd 0.999823 0.887981 0.999873 0.776223 0.999817 0.893814 

4th 1 0.620821 0.999349 0.617283 1 0.791983 

5th 1 0.679303 0.999545 0.631521 1 0.829917 

6th 1 0.726016 0.999537 0.710238 1 0.856988 

BH 

1st 0.97582 0.766135 0.984356 -37.5549 0.975162 0.761649 

2nd 0.985547 0.259986 0.996637 -2.69596 0.985305 0.350216 

3rd 0.995368 -0.518445 0.997399 0.164532 0.995196 -0.809078 

4th 1 -0.833585 0.99576 -0.548533 1 -0.792721 

5th 1 -0.705818 0.995966 -0.369399 1 -0.723772 

6th 1 -0.611025 0.99606 -0.598466 1 -0.671118 

BW 

1st 0.992327 0.956798 0.996814 0.763449 0.992247 0.957525 

2nd 0.99738 0.894231 0.997962 0.696911 0.997644 0.885322 

3rd 0.999607 0.920849 0.998797 0.715577 0.999573 0.923685 

4th 1 0.561736 0.998257 0.708259 1 0.650419 

5th 1 0.618192 0.998613 0.775196 1 0.699383 

6th 1 0.663795 0.99871 0.738756 1 0.735914 
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(cont.) 

 

 

 

Output Order Pol. Rational Trigonometric Tri. Rational 

  R² R² test R² R² test R² R² test 

FH 

1st 0.900158 0.737413 0.880375 0.848579 0.902199 0.744121 

2nd 0.971561 -13.1967 0.961813 0.54476 0.998113 -8.40019 

3rd 0.984621 -54.5618 1 0.296255 1 0.099373 

4th 0.96718 -3.77035 1 0.638312 1 0.321565 

5th 0.972776 -1.25472 1 0.643954 1 0.773405 

6th 0.974074 -3.4743 1 0.593425 1 0.638154 

FW 

1st 0.999056 0.682254 0.992828 0.861457 0.999166 0.707001 

2nd 0.999514 0.745395 0.999761 0.871216 0.999917 -0.746051 

3rd 0.999706 0.780684 1 0.893519 0.998609 -218.623 

4th 0.999443 0.6826 1 0.765666 0.999159 -15.8174 

5th 0.999512 0.690136 1 0.578588 0.724865 -13.9773 

6th 0.999551 0.708321 1 0.377448 0.787355 -11.7098 

BH 

1st 0.983975 -16.7888 0.976076 0.785766 0.98194 -3983.05 

2nd 0.977283 0.752807 0.990012 -0.12792 0.998532 0.222698 

3rd 0.97829 0.774019 1 0.00500573 0.999999 -35.2269 

4th 0.993415 -1.10966 1 0.625901 1 -263.313 

5th 0.99398 -4.79706 1 0.562069 1 -3.85913 

6th 0.993947 -1.74982 1 0.409722 1 -0.91696 

BW 

1st 0.997298 0.797323 0.992492 0.95577 0.998193 0.631543 

2nd 0.997861 0.559927 0.999093 0.936805 0.99928 0.78918 

3rd 0.99818 0.55255 1 0.802684 0.78549 -5.16891 

4th 0.997597 0.687815 1 0.819147 0.999452 -626.84 

5th 0.9978 0.425155 1 0.736966 0.764177 -5.69487 

6th 0.997965 0.489424 1 0.631493 0.99072 -7.94175 
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APPENDIX D 

MODELS FOR FRONT HEIGHT, FRONT WIDTH, BACK 

HEIGHT, AND BACK WIDTH 

 

 

𝐅𝐑𝐎𝐍𝐓𝐇𝐄𝐈𝐆𝐇𝐓 = 0.568524101629537  + 0.00971854565928604𝐀 +0.28426205081476735𝐁 − 0.0030044984281893663𝐂 + 0.03350880331253237𝐃 −0.01639362439199862𝐄;  𝐅𝐑𝐎𝐍𝐓𝐖𝐈𝐃𝐓𝐇 = −6.361624897213393 + 0.39356692192362347𝐀 +0.004420394016303833𝐀ଶ − 0.00029169434635837173𝐀ଷ − 3.1808124486072673𝐁 +0.19678346096190014𝐀𝐁 + 0.00221019700815087𝐀𝟐𝐁 − 1.5904062243036705𝐁𝟐 +0.09839173048089371𝐀𝐁𝟐 − 0.7952031121519639𝐁𝟑 − 0.006436711715044893𝐂 +0.0007811167929886863𝐀𝐂 + 0.00010382598234901175𝐀𝟐𝐂 −0.0032183558575522146𝐁𝐂 + 0.00039055839649413835𝐀𝐁𝐂 −0.0016091779287672465𝐁𝟐𝐂 + 0.0008611815046496747𝐂𝟐 −0.00004128364123490749𝐀𝐂𝟐 + 0.0004305907523248826𝐁𝐂𝟐 +0.000018641477159669774𝐂𝟑 − 1.316325687111202𝐃 − 0.008551412859786101𝐀𝐃 +0.001869937207345093𝐀𝟐𝐃 − 0.6581628435555597𝐁𝐃 − 0.004275706429892794𝐀𝐁𝐃 −0.3290814217777845𝐁𝟐𝐃 + 0.00935551932978515𝐂𝐃 − 0.0007722065630192928𝐀𝐂𝐃 +0.004677759664892573𝐁𝐂𝐃 + 0.00042852282617298547𝐂𝟐𝐃 − 0.14654394780458987𝐃𝟐 −0.048774800909383284𝐀𝐃𝟐 − 0.07327197390229494𝐁𝐃𝟐 + 0.006876836086975487𝐂𝐃𝟐 +0.03832252844444908𝐃𝟑 + 0.13215108851236587𝐄 − 0.014364160271117987𝐀𝐄 +0.00016059340137669054𝐀𝟐𝐄 + 0.06607554425618294𝐁𝐄 − 0.007182080135558993𝐀𝐁𝐄 +0.03303777212809147𝐁𝟐𝐄 − 0.0011877721082901053𝐂𝐄 −0.00004121995411029513𝐀𝐂𝐄 − 0.0005938860541450527𝐁𝐂𝐄 −0.00004879662379406077𝐂𝟐𝐄 + 0.04760878000890453𝐃𝐄 +0.0018987479230951662𝐀𝐃𝐄 + 0.023804390004452267𝐁𝐃𝐄 −0.0008345086306933741𝐂𝐃𝐄 + 0.016187091515234155𝐃𝟐𝐄 + 0.001096808669089611𝐄𝟐 +0.000039693277421732845𝐀𝐄𝟐 + 0.0005484043345448055𝐁𝐄𝟐 +0.00006296147374528817𝐂𝐄𝟐 − 0.001088080939947886𝐃𝐄𝟐 −0.00001132856989220023𝐄𝟑;  𝐁𝐀𝐂𝐊𝐇𝐄𝐈𝐆𝐇𝐓 = 0.12968678075332998  + 0.09500624332313756Cos[𝐀] −0.31163706981258893Cos[𝐁] + 0.22488483665678763Cos[𝐂] −0.15208658410885711Cos[𝐃] − 0.1322623876221588Cos[𝐄] −0.10334728042952393Sin[𝐀] + 0.1426230592184351Sin[𝐁] −0.01918842077475885Sin[𝐂] + 0.11799472705967291Sin[𝐃] +0.14038093336277016Sin[𝐄];  𝐁𝐀𝐂𝐊𝐖𝐈𝐃𝐓𝐇 = −1.1889712127077077 − 0.20140903545851221𝐀 −0.5944856063538464𝐁 + 0.034565009032046186𝐂 − 0.2864699361891838𝐃 +0.16435728272259495𝐄;  
 


