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ABSTRACT 

 
OPTIMIZATION OF SURFACE ROUGHNESS ON A MILLING 

PROCESS USING STOCHASTIC METHODS 

 

 Nowadays, milling process is one of the most widely used metal processing 

methods in many fields from space and aircraft to automotive industry. The surface 

roughness values of the workpiece in milling process vary depending on the thermal, 

chemical and abrasive loads that occur during cutting. Spindle speed, depth of cut and 

feed rate are the cutting parameters affecting the surface roughness. Hence, these 

parameters at the time of machining constitute an important issue. Accordingly, in this 

thesis optimization of surface roughness has been performed using the stochastic search 

methods. First, using experimental data obtained in the milling process, it was aimed to 

establish a regression model to determine average surface roughness equation as an 

objective function. The cutting parameters and average surface roughness value were 

considered as input and output in regression analysis, respectively. In this study, seven 

different mathematical models have been established and examined to carry out 

regression analysis. The reliability and stability of the mathematical models were 

investigated. The most appropriate mathematical model has been constructed and then 

used as an objective function for optimization. Nelder-Mead, Random-Search, Simulated 

Annealing, and Differential Evolution were the stochastic search algorithms to perform 

the optimization in the present study. In conclusion, it was found that the minimum 

average surface roughness value depends on spindle speed, depth of cut and feed 

parameters. 
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ÖZET 

 
STOKASTİK YÖNTEMLER KULLANARAK FREZELEME 

İŞLEMİNDE YÜZEY PÜRÜZLÜLÜĞÜ OPTİMİZASYONU 

 

Günümüzde metal işleme yöntemlerinden biri olan frezeleme işlemi uzay ve uçak 

sanayinden otomotiv sanayisine kadar bir çok alanda yaygın olarak kullanılmaktadır. İş 

parçasının yüzey pürüzlülük değerleri kesme anında oluşan termal, kimyasal ve aşındırıcı 

yüklere bağlı olarak değişmektedir. İş mili hızı, kesme derinliği ve ilerleme, yüzey 

pürüzlülüğünü etkileyen kesme parametreleridir. Bu nedenle, işleme anındaki bu 

parametreler önemli bir konudur. Buna göre, bu tezde yüzey pürüzlülüğü optimizasyonu 

stokastik arama yöntemleri kullanılarak yapılmıştır. İlk olarak, frezeleme işleminde elde 

edilen deneysel verileri kullanarak, ortalama yüzey pürüzlülüğü denklemini amaç 

fonksiyonu olarak belirlemek için bir regresyon modelin oluşturulması amaçlanmıştır. 

Kesme parametreleri ve ortalama yüzey pürüzlülüğü değeri, optimizasyon analizinde 

sırasıyla girdi ve çıktı olarak kabul edildi. Bu çalışmada, regresyon analizi yapmak için 

yedi farklı matematiksel model kurulmuş ve incelenmiştir. Matematiksel modellerin 

güvenilirliği ve kararlılığı araştırılmıştır. En uygun matematiksel model inşa edilmiş ve 

sonra optimizasyon için amaç fonksiyonu olarak kullanılmıştır. Nelder-Mead, Random-

Search, Simulated Annealing ve Differential Evolution bu çalışmada optimizasyonu 

gerçekleştirmek için kullanılan stokastik arama algoritmalarıdır. Sonuç olarak, minimum 

ortalama yüzey pürüzlülük değerinin iş mili hızına, kesme derinliğine ve ilerleme 

parametrelerine bağlı olduğu bulunmuştur. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Literature Survey 

Requirement of the good quality work pieces for industry, a wide variety of 

machining techniques has been developed since the accuracy and precision desired by the 

customer, have been increased related with the working condition of the work pieces. 

Over the last decades, demand of the metal-machining increased steadily [1]. 

Copying the work pieces has been based on two different methods in 1960s. The 

work pieces have been machined by turning centers and machining centers. Several tools 

have been investigated to perform the special processing operations and thus the tool 

industry has grown simultaneously. Due to the high cost investment budget, the machines 

have been heavily run in order to increase productivity. As a requirement of this, the need 

for high-speed centers has been increased [1]. 

In automotive and aerospace industry, the parts have generally hole and mounting 

profile for installation. End milling process has wide range use for complex profiles and 

geometry. The tool material is generally chosen from high-speed steel, solid carbide, or 

with coated or uncoated carbide inserts. Quality of the work piece surface depends on 

material thermal properties, machining parameters, cutting fluids and environmental 

conditions [2]. 

The Taguchi method has been studied for finding the optimal cutting parameters 

for surface roughness in turning operation. Taguchi’s robust orthogonal array has been 

used to calculate the smaller-the better signal-to-noise ratio which to obtain minimum 

surface roughness for the material AISI 1030 carbon steel [3]. A full quadratic polynomial 

has been used for modelling the process which is used for optimization of cutting 

parameters of an aluminum mold in order to get good bonding of a PDMS. In this study, 

response surface method is performed to achieve the minimum value of surface roughness 



2 

 

by finding the optimal cutting parameters [4]. Eşme and Serin have investigated the 

cutting parameters to find the optimum values such as depth of cut, feed rate and cutting 

speed. ANOVA results indicate that which parameter has more effect of the tangential, 

radial and axial forces [5]. 

The several coating and tool types and specific cutting parameter effects were 

investigated and optimized to get the minimum average roughness of the milling surfaces. 

Due to F and P-test results, a general linear regression model has been used to predict the 

process with the determination coefficient of 0.90 [6]. Neural networks have been 

investigated to predict CBN (cubic boron nitride) tool wear and average surface 

roughness in turning process. Workpiece hardness, feed rate, cutting speed and tool edge 

geometry were studied to decrease the average surface roughness by non-linear mapping 

system neural networks. A comparison between the regression and neural network 

indicate that the neural network has more fitted in flank wear and surface roughness than 

exponential regression model [7]. 

Genetic algorithms have been studied for machining process time, tool wear and 

process energy. Within three objective functions and machining constraints were 

investigated based on posteriori multi objective resource consumption. In order to model 

the process design of experiment regression equation in computer program MATLAB 

was used. For genetic algorithm implementation based on non-dominated algorithm 

MATLAB was applied [8]. 

The hybrid artificial bee colony algorithm was investigated for feed rate, cutting 

speed, and depth of cut in rough and finish turning. This study includes a comparison of 

results with different optimization techniques such as hybrid robust differential 

evaluation, differential evaluation receptor editing, hybrid robust genetic algorithm, 

scatter search, float encoding genetic algorithm and simulated annealing and Hooke-

Jeeves Pattern Search [9]. One of the multi-objective optimization approaches that is 

called neural network has been applied to maximize the life of the tool which is made 

from HSS. Neural networks is useful for fault-tolerant structure. To compute the data and 

the modelling the phenomena is simple. Radial basis neural network has been chosen due 

to the time to process the training and testing data [10]. Fuzzy synthetic evaluation and 

Back Propagation (BP) Neural Network with Bayesian regulation optimization method 

have been used together for aluminum to obtain optimum milling parameters. In some 
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complex decision-making problems, numerical methods are not sufficient due to the 

number of inputs and complexity. Fuzzy synthetic evaluation method can compensate the 

effect of different indexes at the same time. Bayesian regularization is used for increase 

the generalization of neural network with BP Neural Network. In the case of problems 

with too many outputs, the effect can be better observed [11]. 

Especially in recent studies on fine hard ceramic coatings, experimental design 

methods have been used to reduce the number of experiments. Other studies have shown 

that cutting force is a criterion that can be used in evaluation. Thus, both the use of the 

experimental design and the evaluation through the shear forces, the time and costs 

required to achieve the results and to achieve the optimization have been greatly reduced. 

There are some points that should not be forgotten when evaluating these values 

calculated with Taguchi Experiment Design. The most important of these is that the 

interactions between the experimental design and the factors (such as the interaction 

between the cutting speed and the feed rate) are ignored and the factors cannot be selected 

for an optimum value other than the levels determined at the planning stage. The design 

of such limitations should be considered at the forefront of the studies to be used [12]. 

To minimize the mean roughness depth and average roughness value on the 

surface of hardened AISI 4140 with the hardness of 51 RC, statistical methods have been 

used. Signal-to-noise ratio and variance analyses which is called ANOVA are two basic 

methods for determine the optimum cutting speed, feed rate and depth of cut. The smaller 

the better approach was applied for surface roughness value to gain maximum signal-to-

noise ratio. The mutual effects of cutting speed with depth-of-cut and feed-rate have a 

great importance. The minimum feed-rate, depth of cut and cutting speed are the optimum 

values subsequently [13]. Another study gives an insight the optimum parameters change 

for different machining conditions and materials. Cutting speed and depth of cut are major 

effects for turning of mild steel with hardness 130 BHN with coated carbide tool. Feed 

rate has the least effect [14]. 

Hybrid optimization techniques are used to increase the search ability and to make 

the results more accurate. This new approach is based on the principle of simultaneously 

using stochastic optimization techniques such as differential evolution to bring solution 

to machining problems. The optimum machining parameters have been selected to 

minimize a machining cost by two stage Differential Evolution optimization method. 
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With this method, better results have been obtained compared to single use of Differential 

Evolution. Significant results have been obtained that hybrid robust differential evolution 

can be used to optimize machining parameters [15]. Genetic algorithm and simulated 

annealing have been studied for multi-pass milling as a hybrid approach to minimize the 

production time which is the total time to produce a completed part from preparation to 

machining. For all four time periods mathematical equations were investigated. Five 

different constraints have been chosen for the machine and apparatus limits. Genetic 

simulated annealing algorithm have better results than genetic algorithm and geometric 

programming in milling operation for different objective functions [16]. 

The Taguchi method is also used to optimize multiple parameters at the same time. 

The end milling process has been investigated L27 orthogonal array to obtain the 

minimum surface roughness, temperature and cutting force. Magnesium metal matrix 

composite by using carbide tool in end milling process have been studied. Regression 

analysis is used to build the mathematical structure. Optimization algorithms which are 

Grey Relational Analysis (GRA) and Techniques for Order Preferences by Similarity to 

Ideal Solution (TOPSIS) have been applied to multiple objective problem. These two 

techniques have almost same solutions [17]. Response surface methodology and Genetic 

Algorithm have been used to find the most suitable machining parameters for the Al 7075-

T6 material in shoulder milling. The second order equation which represents the model 

have been studied and have been tested by analysis of variance. Genetic Algorithms have 

been selected to optimize the machining parameters to obtain lower cutting force. Cutting 

forces are simply measured with tool dynamometers. The computer program MATLAB 

have been used to solve the genetic algorithm by algorithm solver [18].  

Optimization methods are commonly used in several engineering problems to 

create or design complex systems to increase the efficiency of the system in the field of 

aerospace, automotive, marine and chemical industries. Some of their applications are 

cost-friendly machining processes, high efficiency energy consumptions processes or 

lightweight product design.  Even though most engineering design problems can be 

solved using non-linear programming techniques stochastic programming techniques 

such as Differential Evaluation, Nelder-Mead, Random Search, Simulated Annealing 

which are most suitable [19]. 
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1.2 Objectives 

In this thesis, analysis and optimization of end-milling process machining 

parameters spindle speed (n), depth of cut (a), and feed (f) for minimum surface roughness 

have been performed by four different stochastic algorithms. Differential Evolution (DE), 

Simulated Annealing (SA), Random Search (RS), and Nelder Mead optimization 

algorithms have been studied.  

The objectives of this study can be considered as follows; 

➢ Defining the phenomenon and finding the coefficient of determination by 

mathematical model in the best way  

➢ The possibility of experimental parameters selected and commenting 

behavior of machine for different machine parameters 

➢ Determination of objective function 

➢ Investigating optimum average surface roughness value for three different 

machining parameters 

➢ Comparison of four different stochastic optimization algorithms 

It should be noted that defining the best mathematical model is not simple for any 

machining parameters as well as another machining process turning, drilling etc. Because, 

different disturbances dominate the system at different levels. Therefore, the 

mathematical model might be built according to other parameters such as material of 

cutting tool, cooling flowrate, workpiece material etc. However, if some of input values 

are selected to decrease the average roughness value, it would be more accurate to define 

the optimization problem.  

In this thesis, the experimental data taken from the study of… is used for analysis 

and optimization purposes. This data set have the cutting parameters, spindle speed (n), 

depth of cut (a), feed rate(f) and the corresponding average surface roughness values. 

First, the mathematical model predicting the data was investigated for average surface 

roughness by performing Regression analysis. The accuracy of the model has also been 

verified by regression test methods. Then, cutting parameters were optimized for 

minimum surface roughness utilizing optimization methods.  

 

 



6 

 

CHAPTER 2 

 

 

MILLING PROCESS 

 

 

2.1. Milling 

Machining is any of various processes in which a piece of raw material is cut into 

a desired final shape and size by a controlled material-removal process. There are so many 

types of machining such as turning, milling, drilling etc.  

Milling process has different technique from turning operation. Tools have 

multiple cutting profiles. These cutting edges move along the tool path in order to obtain 

flat or required surface profiles. The feed direction is perpendicular to the rotation of the 

axis of the tool [20]. 

The cutting tool is made of harder material than the workpiece material. Relative 

motion is necessary to machine the workpiece. The first motion is achieved with a specific 

speed as called cutting speed (v). Besides the cutting speed, the tool also moves with the 

terms of feed (f). The remaining parameter is the distance that the tool moves into the 

workpiece called depth of cut (a). These three terms are completely known as cutting 

conditions. The machine tool is a to hold the work piece, position the tool relative to the 

work, and provide power for the machining process at the speed, feed, and depth that have 

been set [20]. 

Early 1960s milling had been used for single purpose as obtaining flat surface. 

However, after machine center technology with desired accuracy and precision any 

desired tool path geometry is processed. Nowadays there are four types of milling 

operations such as face milling, shoulder milling, peripherical milling (or known as flank 

milling), and ball end milling shown in Figure 2.1 and Figure 2.2 [21]. 

In order to achieve the desired geometry, the number of types of milling operations 

have increased for more specific machining such as profile milling, square shoulder 
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milling, slot milling. In slot milling tool generates a tool path within slot by various types 

of end mill as shown in Figure 2.3 [22].   

 

Figure 2.1 Milling types (a) face milling (b) shoulder milling (Source: [21]) 

 

Figure 2.2 Milling types (a) peripheral (or flank) milling (b) ball-end milling 

                 (Source: [21]) 

With the increasing of machining technologies and processing speeds, the wear of 

the tool is increasing. Machine tools need to be renewed due to the reduced workpiece 

surface quality with the wear of the tools. This leads to increased tool costs. On the other 

hand, due to the fact that the surface roughness values are desired, the effect of the tool 

wear on the surface quality is increasing. 

(a) (b) 

(a) 
(b) 
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Figure 2.3 Groove or slot milling operation with different types of end mill  

                 (Source: [22]). 

2.2 Tool Wear 

A material removal process provides dimensional accuracy and surface quality of 

the material. The degree of surface quality is mostly related to the surface profile of the 

cutting tool. Tools wear over time because of the mechanical, thermal, chemical and 

abrasive loads and thus tool change operations makes an unproductive production due to 

cutting tool cost and set-up time which is unavailable period to produce. These 

instabilities create different work areas for tool users and machine manufacturers.   

The wool wear is based on friction of metal cutting which is affected by the cutting 

power, machining quality, tool life and machining cost. As tool wear reaches high, the 

surface quality decreases and dimension error starts appearing as shown in Figure 2.5. 

Determining the life of the cutting tool is beyond the measurements of flank or 

crater wear because the unknown inputs also play a role for tool wear in small and even 

large part. With high-speed cutting operations cutting loads on cutting tools increase in 

proportion to cutting speed. Figure 2.4 indicates that cutting speed ranges according to 

different materials [23]. 
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Figure 2.4 Cutting speeds in milling for different materials (Source: [23]) 

 

Figure 2.5 Comparison between the workpiece surfaces (a)new cutting tool and (b)worn  

                  cutting tool. 

(a) (b) 
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In end-mill cutters occurs mainly two different types of wear. One of them is flank 

wear where occurs at the cutting edges of tool. Another type is central wear where occurs 

at the center of the tool. Figure 2.6 shows the wear mechanisms where is monitored by 

SEM and types of the wear. Comparing with the ordinary flank wear of the single point 

turning tool or twist drill, these types of wear are completely different [24].  

Increased tool life reduces these repetitive processes at this stage. Therefore, 

choosing the optimal cutting parameters is a great importance for a milling process and 

also turning processes at the point of cost and quality. 

 

Figure 2.6 Central wear and flank wear at the cutting edges are monitored by SEM with  

                  original magnification 100 times (Source: [24]) 

2.3 Tool Wear Measurement 

Tool wear is measured with two fundamental techniques. First technique is to 

measure he tool geometry to calculate the wear ratio. Second technique is to measure the 

workpiece surface profile to define the traces which have been formed by the tool.  

Generally, the finish surface profile scanning is preferred to avoid tool 

replacement and set-up time. A probe of measurement device touches the finish surface 

and measure the height of the surface and evaluate the differences. The measurement 
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device work on the one direction depending on the selected measuring range and speed 

as seen in Figure 2.7 [25]. 

In this study FormTalysurf120 was used to measure the surface profile as seen in 

Figure 2.8 [26]. The measurement parameters have been set to sampling length of 5mm 

and the probe speed of 0.5 mm/s. From different three regions have been measured and 

the average roughness value has been calculated for avoiding the measurement errors. 

 

Figure 2.7 The probe tip scans the surface profile with selected probe speed  

                 (Source: [25]) 

 

Figure 2.8 Surface roughness measurement instrument Form Talysurf120 (Source: [26]) 
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Even though measurements are made by touching the surface, there are new 

approaches that is based on to calculate cutting forces from tool end by a dynamometer 

or machine energy consumption indirectly. The philosophy here is to establish a 

mathematical relation with the cutting force or energy consumption that occurs during the 

machining and the cutting tool wear [27,28].  

In this study, it is aimed to establish mathematical model by using regression 

analysis to obtain optimum average surface roughness value. For this reason, the accuracy 

and the verification of the mathematical model and how well the inputs define the 

problem are so important and critical. 
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CHAPTER 3 

 

 

REGRESSION ANALYSIS 

 

 

Regression analysis is utilized to simulate the relationship between the input and 

output of the engineering systems as a mathematical function. Statistical measurements 

are increased to find the strength of relationship between dependent and independent 

variables. This mathematical function is named as regression equation. 

Regression analysis offers a mathematical equation which is named regression 

equation. Gauss and Legendre used the least-squares methods which is the basic 

mathematical tool in order to calculate the length of the arc of the meridian from Dunkirk 

to Barcelona [29]. The first progress for regression is made by Francis Galton to 

investigate the relationship the height of children and their parents. He observed that the 

height of the children of short parents tended to be short and height of the children of long 

parents tended to be long. Also, he found that the height of his children tended to approach 

the mean of the mass average. This tendency is called “regression to mediocrity” by 

Galton. This study is the first regression analysis [30]. 

3.1 Regression Models 

One of the basic elements of regression analysis is the regression model. A model 

is a mathematical function that describes the experimental system in which quantitative 

terms are studied. In general, a model is represented as; 

     y = f(x; a)     (3.1) 

Generally, the models have three basic components: mathematical relationship or 

function (f), parameters (a) and variables (x). In the most common cases, they have only 

one or two independent variables, and are simple from real-valued continuous equations. 

These include exponential, hyperbolic and logistic functions. The same functions can also 

be used to model completely irrelevant events from existing physical processes. 
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Depending on how the function is derived, the models can be classified into two 

groups. One of them is structured or mechanistic models and the another is unstructured 

or empirical models. 

Structured models can be obtained from the theoretical background of the mechanism. 

Unstructured models are chosen from empirical functions. Because they are useful in 

explaining measurements. A third group of semi-empirical models is classified between 

these two types, since they are derived from theoretical considerations and partly from 

observations [31]. 

Another component of the models is parameters. When the function determines the 

type of curve, its actual shape, position and ratio are determined by the parameter values. 

In mechanical and semi-empirical models, the parameters are fundamentally important as 

they represent proportions or diffusion coefficients. In empirical models, the parameters 

are necessary to define the curve precisely and more efficiently, but do not represent any 

fundamental feature of the system. 

Depending on the mathematical expression of the parameters within the model 

function, we can classify the models in two categories as linear and nonlinear. This 

distinction is important. Since the methodology required for the operation of 

mathematical models generated by nonlinear functions is much more complex than linear 

models. Secondly, linear models are often easy to handle and understand, although they 

can be used to model only a few phenomenon in real life. 

The functions may also be linear or non-linear according to their independent 

variables. Any combination of linearity or non-linearity is available according to variables 

and parameters. 

In the context of this thesis, due to the complexity of the problem, nonlinear regression 

models were preferred. 

3.2. Purpose of Regression Analysis 

Nonlinear regression can be used for three different purposes: 

• Testing the validity of the model (or comparing the hypothesis), 

• Characterize the model (in other words to estimate the parameters), 

• Estimating the behavior of the system (interpolation and calibration). 
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Model validation or comparison is an important application of regression analysis. 

Reaching a well-fitting curve between model and experiment data for a system is one of 

the best indicators of the success of the mathematical model. But a good fit is not always 

a proof that the model is correct. At this stage, action of the researcher is significantly 

important to build meaningful work. 

The estimation of the parameters is a direct result of regression. Regression is useful 

for predicting behavior, i.e. interpolation (or prediction) and calibration (or inverse 

prediction). Interpolation and extrapolation can be used to predict the behavior of the 

system without having to perform real experiments. 

3.3. Non-Linear Regression Analysis 

Nonlinear regression is more flexible than linear regression. Since the function does 

not need to be linear or linearizable. For this reason, it provides a wide selection of 

nonlinear regression phenomena to fit the data. The only requirement for the function “f” 

is that it differs according to its elements. This can be calculated with the least squares 

method. Nonlinear regression may be more appropriate than the use of transformations 

and linear regression where the f function can be linearized. 

For nonlinear regression, mathematical modeling processes can be carried out 

systematically by taking into consideration the important features. 

Nonlinear regression requires knowledge of the function “f” which requires a 

comprehensive understanding of the process under consideration (polynomial, 

trigonometric, exponential, etc.). The linear regression models are suitable for process 

estimations, which are roughly defined, but do not require precise clarity. 

The nonlinear regression model can be expressed as; 

yi = f(yi; x) + εi        (3.2) 

It is assumed that the ε error term can be taken independently and is normally distributed. 

Since nonlinear regression models contain the most general mathematical expressions, it 

is not possible to write their functionalized generalized form. However, a few basic types 

of the function used in the field of engineering can be expressed as below: 
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Polynomial type function; 

y = a0 + a1x + a2x2 + ⋯ + anxn (3.3) 

 

Exponential type function;  

y = a0 + a1ex + a2ex2
+ ⋯ + anexn

 (3.4) 

 

Trigonometric type function;    

y = a0 + a1sinx + a2sinx2 + ⋯ + ansinxn (3.5) 

 

Logarithmic type function;  

y = a0 + a1lnx + a2lnx2 + ⋯ + anlnxn (3.6) 

      

Rational type function;                 

y =
a0 + a1x + a2x2 + ⋯ + anxn

b0 + b1x + b2x2 + ⋯ + bnxn
 

(3.7)         

 

 

At this stage, the multivariate states of the above model types can be derived with 

similar logic with more than one input. Another important point is that, for example, 

special functions or different combinations of elementary functions can be selected as 

model structures by acquiring a broader understanding of the families of mathematical 

functions. 
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CHAPTER 4 

 

 

MATHEMATICAL MODEL 

 

 

4.1. Mathematical Models 

In this part of the thesis study, it is aimed to develop a mathematical model for 

optimum surface roughness as a function of the cutting input parameters which are spindle 

speed, depth of cut and feed-rate, presented in Table 4.1.  

Figure 4.1 shows these cutting parameters in milling process. As mentioned in the 

previous section, in this study cutting parameters effecting the surface quality have been 

investigated for the average surface roughness. The output parameter in the analysis is 

the average surface roughness (Ra).  

Table 4.1 Input and output parameters 

Variable Type Parameter Unit 

Input Spindle Speed (n) rev/min (rpm) 

Input Depth of Cut (a) mm 

Input Feed Rate (f) mm/min 

Output Average Surface Roughness (𝐑𝐚) µm 

 

In this part of study, set of experiments used to carry out regression analysis was 

taken from the literature, the study of N. Liu et al. based on the statistical principles 

presented in Table 4.2 [32].   
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Figure 4.1 Schematic illustration of a milling process 

A mathematical model of the process was developed to determine the optimum 

values of cutting parameters. Non-linear multivariate regression has been used for this 

purpose. Then, the mathematical model obtained from analysis will be used to optimize 

the process and to determine the effect of the parameters on the surface roughness. 

In this study, while the average roughness modeling was performed, the standard 

non-linear multiple regression analysis and stochastic optimization methods were used as 

hybrid. Therefore, 18 experimental data were used for regression modeling and the 

accuracy of the mathematical model was obtained. 

The regression equations in the studies in the literature solve different physical 

problems. The appropriate mathematical model should be selected for this problem. For 

this reason, in order to define the average surface roughness, a mathematical model is 

required to define the objective function in terms of feed (f), spindle speed (n) and depth 

of cut (a). For this purpose, seven different linear and non-linear structurally different 

regression models have been decided to be used as seen in Table 4.3 and the formulations 

of the models in Table 4.4.  
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Table 4.2 Experimental data used to carry out regression analysis [32] 

 Input Output 

Number of 

Experiment 

n 

(rpm) 

a 

(mm) 

f 

(mm/min) 

𝐑𝐚 

(µm) 

1 1000 1 75 0.249 

2 1000 1 100 0.302 

3 1000 2 50 0.195 

4 1000 2 100 0.248 

5 1000 3 50 0.169 

6 1000 3 75 0.219 

7 1500 1 50 0.16 

8 1500 1 100 0.222 

9 1500 2 50 0.136 

10 1500 2 75 0.194 

11 1500 3 75 0.168 

12 1500 3 100 0.203 

13 2000 1 50 0.111 

14 2000 1 75 0.153 

15 2000 2 75 0.158 

16 2000 2 100 0.19 

17 2000 3 50 0.081 

18 2000 3 100 0.171 

 

In the selected models, both elementary and rational models were selected. 

Rational models are used for boundedness and the values that make the denominator zero 

are the limits of rational models. 

Note that, in Table 4.4, x1, x2 and x3 represent spindle speed (n), depth of cut (a), 

and feed rate (f), respectively. The terms ai and bi (i=0,1,2,….,18) represent the 

coefficients to be determined using least squares. 
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Table 4.3 Different mathematical models 

Model 

Number 

Model Name 

1 Third order multiple nonlinear rational 

2 First order trigonometric linear 

3 First order trigonometric linear rational 

4 Second order multiple nonlinear 

5 Second order multiple nonlinear rational 

6 Second order logarithmic multiple nonlinear rational 

7 Third order logarithmic multiple nonlinear rational 

 

The average surface roughness values have been obtained from different 

mathematical models. In order to solve the problem, the coefficients of the equation were 

obtained with the “Findfit” command in Mathematica as;  

         Constants = FindFit[data, formula of the model, coefficient, variables]          (4.1) 

Then the coefficients were replaced by different models and the responses of the 

different input values of that model were taken.  

Findfit command finds a local optimal fit for nonlinear structures. In the linear 

case it finds a global optimal point. In this study, quasi-Newton method has been selected. 

Because quasi-Newton method is more reliable and applicable for nonlinear models. 

The predictions of average roughness values based on models 1-7 for each 

experiment are represented in Table 4.5. The percentages of the differences between the 

actual and prediction values for the 18 data are given in Table 4.6 and 4.7. In these tables, 

𝑹𝒂𝒊
 represents the predicted average surface roughness, 𝝐𝒊 is the percentage of error 

according to the experimental values 𝑹𝒂
∗  , where i  is the model number and 𝝐𝒂 is the 

average error. 
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Table 4.4 Formulations for different mathematical models 

Model 

Number 
Formulations 

1 

(a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x2x3 + a6x1x3 + a7x1
2 + a8x2

2 +

a9x3
2 + a10x1

3 + a11x2
3 + a12x3

3 + a13x1
2x2 + a14x2

2x3 + a15x3
2x1 +

a16x1
2x3 + a17x2

2x1 + a18x3
2x2)

(b0 + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x2x3 + b6x1x3 + b7x1
2 + b8x2

2 +

b9x3
2 + b10x1

3 + b11x2
3 + b12x3

3 + b13x1
2x2 + b14x2

2x3 + b15x3
2x1 +

b16x1
2x3 + b17x2

2x1 + b18x3
2x2)

 

2 a0 + a1 sin x1 + a2 sin x2 + a3 sin x3 + a4 cos x1 + a5 cos x2 + a6 cos x3 

3 
(a0 + a1 sin x1 + a2 sin x2 + a3 sin x3 + a4 cos x1 + a5 cos x2 + a6 cos x3)

(b0 + b1 sin x1 + b2 sin x2 + b3 sin x3 + b4 cos x1 + b5 cos x2 + b6 cos x3)
 

4 a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x2x3 + a6x1x3 + a7x1
2 + a8x2

2 + a9x3
2 

5 
(a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x2x3 + a6x1x3 + a7x1

2 + a8x2
2 + a9x3

2)

(b0 + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x2x3 + b6x1x3 + b7x1
2 + b8x2

2 + b9x3
2)

 

6 

(a0 + a1 log x1 + a2 log x2 + a3 log x3 + a4 log x1 log x2 + a5 log x2 log x3 +

a6 log x1 log x3 + a7 log x1
2 + a8 log x2

2 + a9 log x3
2)

(b0 + b1 log x1 + b2 log x2 + b3 log x3 + b4 log x1 log x2 + b5 log x2 log x3 +

b6 log x1 log x3 + b7 log x1
2 + b8 log x2

2 + b9 log x3
2)

 

7 

(a0 + a1 log x1 + a2 log x2 + a3 log x3 + a4 log x1 log x2 + a5 log x2 log x3 +

a6 log x1 log x3 + a7 log x1
2 + a8 log x2

2 + a9 log x3
2 + a10 log x1

2 log x2 +

a11 log x2
2 log x3 + a12 log x1

2 log x3 + a13 log x3
2 log x2 + a14 log x2

2 log x1 +

a15 log x3
2 log x1 + a16 log x1

3 + a17 log x2
3 + a18 log x3

3)
(b0 + b1 log x1 + b2 log x2 + b3 log x3 + b4 log x1 log x2 + b5 log x2 log x3 +

b6 log x1 log x3 + b7 log x1
2 + b8 log x2

2 + b9 log x3
2 + b10 log x1

2 log x2 +

b11 log x2
2 log x3 + b12 log x1

2 log x3 + b13 log x3
2 log x2 + b14 log x2

2 log x1 +

b15 log x3
2 log x1 + b16 log x1

3 + b17 log x2
3 + b18 log x3

3)
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Table 4.5 Experimental( Ra
∗  ) and Predicted (Ra ) values for models 1 to 7 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

𝐑𝐚𝟏
 

(µm) 

𝐑𝐚𝟐
 

(µm) 

𝐑𝐚𝟑
 

(µm) 

𝐑𝐚𝟒
 

(µm) 

𝐑𝐚𝟓
 

(µm) 

𝐑𝐚𝟔
 

(µm) 

𝐑𝐚𝟕
 

(µm) 

1 0.249 0.251 0.25 0.251 0.259 0.253 0.256 0.256 

2 0.302 0.281 0.283 0.299 0.283 0.284 0.284 0.283 

3 0.195 0.191 0.189 0.196 0.195 0.197 0.194 0.194 

4 0.248 0.268 0.27 0.253 0.263 0.271 0.265 0.265 

5 0.169 0.169 0.171 0.169 0.169 0.175 0.171 0.171 

6 0.219 0.219 0.219 0.217 0.214 0.221 0.215 0.216 

7 0.16 0.159 0.152 0.155 0.156 0.164 0.151 0.151 

8 0.222 0.23 0.233 0.226 0.231 0.228 0.232 0.233 

9 0.136 0.138 0.139 0.146 0.14 0.143 0.14 0.14 

10 0.194 0.185 0.188 0.18 0.188 0.185 0.188 0.188 

11 0.168 0.171 0.169 0.172 0.169 0.171 0.169 0.169 

12 0.203 0.206 0.202 0.204 0.2 0.204 0.199 0.199 

13 0.111 0.116 0.116 0.111 0.108 0.12 0.109 0.11 

14 0.153 0.163 0.164 0.162 0.16 0.162 0.163 0.164 

15 0.158 0.149 0.151 0.156 0.151 0.148 0.153 0.153 

16 0.19 0.183 0.184 0.18 0.185 0.179 0.185 0.185 

17 0.081 0.08 0.085 0.08 0.085 0.082 0.086 0.085 

18 0.171 0.172 0.165 0.173 0.174 0.168 0.168 0.168 

 

Table 4.6 Average prediction error of the models 

Model Number 
𝛜𝐚 

Average error (%) 

1 2.93 

2 3.43 

3 2.29 

4 2.98 

5 3.63 

6 3.24 

7 3.19 

 

In table 4.6, the biggest average error in Model 5 with the average error 3.63 % 

among the seven models and the smallest error in Model 3 with average error 2.29 % . 
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Table 4.7 Prediction errors (%) of the models 

Number of 

Experiment 
𝛜𝟏 𝛜𝟐 𝛜𝟑 𝛜𝟒 𝛜𝟓 𝛜𝟔 𝛜𝟕 

1 0.8 0.44 0.92 3.98 1.70 2.86 2.64 

2 7.06 6.42 1.09 6.32 6.11 6.00 6.18 

3 2.15 2.93 0.30 0.25 0.84 0.63 0.71 

4 7.41 8.13 1.92 5.71 8.47 6.31 6.39 

5 0.06 1.14 0.27 0.20 3.27 1.01 1.33 

6 0.13 0.05 0.89 2.47 1.09 1.80 1.46 

7 0.92 4.93 3.38 2.68 2.34 5.51 5.54 

8 3.34 4.63 1.74 3.78 2.62 4.47 4.56 

9 1.74 2.47 6.71 2.52 4.82 3.03 2.62 

10 4.42 3.29 7.08 3.26 4.51 2.92 2.99 

11 1.59 0.76 2.11 0.80 1.47 0.62 0.67 

12 1.42 0.60 0.61 1.48 0.73 2.09 1.97 

13 4.37 3.99 0.27 2.29 7.47 1.54 0.90 

14 5.99 6.58 5.78 4.30 5.51 6.20 6.57 

15 5.78 4.36 1.18 4.31 6.54 2.89 3.12 

16 3.83 3.36 5.18 2.59 5.55 2.70 2.74 

17 1.30 4.27 0.80 4.85 0.78 5.90 5.08 

18 0.37 3.35 1.02 1.87 1.54 1.89 1.96 

 

4.2. Coefficient of Determination 

The coefficient of determination (R2) is simply the proportion of observed y 

variation which is observed by the simple linear regression model. R2 is a ratio and the 

higher this ratio indicates that the regression model explains the variability for the 

observed values better. If the value of R2 is so small, then another model is established to 

explain the variation. Usually this model is selected as a non-linear or multiple regression 

model containing multiple independent variables. Although this value is not a fixed value 

in the literature, it is expected to be above 0.90.  

The calculation of the R2 is given below [33]. 

R2 = 1 −
SSE

SST
 

  (4.2) 

 

where SSE is the sum of squares due to error and SST is the total sum of squares. 
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The sum of squares due to regression (SSR) is calculated by using the formula 

given in Equation 4.3. Sum of squares due to error (SSE) is calculated by Equation 4.4. 

The Total Sum of Squares (SST) is sum of SSR and SSE in Equation 4.5. In this notation 

the population mean is  𝑦̅, prediction mean is  𝑦̂ and 𝑦 is the observation value. 

                                               SSR =  ∑ ( 𝑦̂  − 𝑦̅ )        (4.3) 

SSE =  ∑ ( 𝑦 −  𝑦̂ )2        (4.4) 

SST = SSR + SSE = ∑ ( 𝑦 - 𝑦̅)    (4.5) 

SSR is the measure of explained variation, SSE (sum of the squared errors) is the 

measure of unexplained variation and SST (total sum of squares) is the measure of total 

variation in y [34]. 

Table 4.8 shows the regression estimates which gives R² values with various 

functions. This table is an indicator of how each function behaves to fit the regression 

model.  

In this study, the third mathematical model (first order trigonometric linear 

rational) provides the best R² values and therefore it is best for this model to comply with 

the required regression equation.  

Table 4.8 R2 values for mathematical models 

Model 

Number 

SSE 

(Sum of squares due to 

error) 

SST 

(The total sum of 

squares) 

R2 

(Coefficient of 

determination) 

1 0.0013 0.0466 0.9725 

2 0.0014 0.0466 0.9699 

3 0.0006 0.0466 0.9876 

4 0.0010 0.0466 0.9778 

5 0.0015 0.0466 0.9679 

6 0.0011 0.0466 0.9759 

7 0.0010 0.0466 0.9753 
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4.3. Adjusted Coefficient of Determination 

R2 value shows only how well data points fit a curve. Adjusted coefficient of 

determination (Radj
2 ) also indicates how well terms fit a curve but adjusts for the number 

of terms in a model. If more meaningless variables are added to the model, Radj
2  value 

decreases and it increases if more meaningful variables are added. Radj
2  is calculated using 

the expression given as; 

Radj
2 = 1 −

(1 − R2)(n − 1)

n − k − 1
 

(4.6) 

where n indicates that the number of points in the data sample, k is the number of 

independent regressors which is the number of variables in the model, excluding the 

constant. Radj
2  is always smaller than R2 values. By adding much more independent 

variables to model, Radj
2  value does not increase. This value especially gives an 

understanding for the adequacy of mathematical model. But these two values are not 

enough to prove that the mathematical model is at usable level [34].  

Radj
2  values have been calculated according to the different types of model in the 

Table 4.9. 

Table 4.9 Radj
2  values for 7 models 

Model 

Number 
R2 𝐑𝐚𝐝𝐣

𝟐  
Difference between R2 and  

𝐑𝐚𝐝𝐣
𝟐  (%) 

1 0.9725 0.9665 0.6170 

2 0.9699 0.9635 0.6599 

3 0.9876 0.9849 0.2734 

4 0.9778 0.9730 0.4909 

5 0.9679 0.9611 0.7026 

6 0.9759 0.9707 0.5328 

7 0.9753 0.9700 0.5434 
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4.4. Training and Testing 

The mathematical model should be trained with training data set. The purpose of 

training is to investigate the model for testing. Splitting a dataset into training and testing 

datasets is important for better prediction the phenomena. By comparing the predictions 

to the actual response variable in the test data, it will be able to evaluate model’s accuracy. 

The gold standard for evaluating the ability of mathematical model to predict the 

phenomena is to use independent test set. The model has a probability to fit the data for 

selected training data set. However, model performance determined by testing the model 

with an external test data which is chosen from data set [35]. 

The training study is done with approximately 80% of randomly selected 

experimental data. In this thesis, four randomly selected data have been removed from 

the data set. 3, 8,11 and 15th lines have been removed from data set and this corresponds 

approximately 78% of data. The training set is listed in Table 4.10.  

Table 4.10 Training data set 

 Input Output 

Number of 

Experiment 

n 

(rpm) 

a 

(mm) 

f 

(mm/min) 

𝐑𝐚 

(µm) 

1 1000 1 75 0.249 

2 1000 1 100 0.302 

4 1000 2 100 0.248 

5 1000 3 50 0.169 

6 1000 3 75 0.219 

7 1500 1 50 0.16 

9 1500 2 50 0.136 

10 1500 2 75 0.194 

12 1500 3 100 0.203 

13 2000 1 50 0.111 

14 2000 1 75 0.153 

16 2000 2 100 0.19 

17 2000 3 50 0.081 

18 2000 3 100 0.171 
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The coefficient of determination and adjusted coefficient determination value for 

training data are Rtraining
2  and Rtrainingadj

2  respectively. 

 Rtraining
2  and Rtrainingadj

2  values being close indicates that the number of lines in 

the data set is sufficient for training study. For all mathematical models, the data set is 

sufficient at this stage and the results are listed in Table 4.11. 

Table 4.11 Rtraining
2  and Rtrainingadj

2 values for 7 models 

Model 

Number 
R2 𝐑𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠

𝟐  𝐑𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠𝐚𝐝𝐣

𝟐  
% Difference between 

𝐑𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠
𝟐 and 𝐑𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠𝐚𝐝𝐣

𝟐  

1 0.9725 0.9584 0.9459 1.3043 

2 0.9699 0.9790 0.9727 0.6435 

3 0.9876 0.9903 0.9875 0.2827 

4 0.9778 0.9868 0.9828 0.4054 

5 0.9679 0.9582 0.9457 1.3045 

6 0.9759 0.9793 0.9731 0.6331 

7 0.9753 0.9790 0.9728 0.6333 

 

The testing procedure is based on testing the model obtained by training on the 

available data. The purpose of the testing procedure is to test whether the all data is in a 

mathematical relationship. Because the model is being established with training data set 

again. However, the training model is established with the same data. The purpose of a 

random data test is to see how much the model has changed. 

As a result; the model established with data for both training and testing should 

be able to define the problem as a whole. If the lines for training and testing create a 

different mathematical model, it can be concluded that the main model cannot identify 

the problem precisely. The greater coefficient of determination value for testing data 

(Rtesting
2 ) means that the main model predicts phenomena better than others. Rtesting

2  

values are shown in Table 4.12. After the testing, sixth mathematical model has a good 

predictive power compared to another models.  
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Table 4.12 Rtesting
2  values for the selected models 

Model 

Number 
R2 𝐑𝐭𝐞𝐬𝐭𝐢𝐧𝐠

𝟐  

1 0.9725 0.7116 

2 0.9699 0.5338 

3 0.9876 0.2803 

4 0.9778 0.2472 

5 0.9679 0.7274 

6 0.9759 0.8711 

7 0.9753 0.8645 

 

4.5. Stability Analysis of Mathematical Models 

Statistical stability has been considered to have a challenge for the mathematical 

laws and probability theory. The minimum and maximum limits of a function determine 

the behavior of the function. At the smallest incremental values of the input, the output is 

expected to give meaningful results. At the same time, there should be no values that 

cannot actually be realized [36]. 

Model 3 seems the most appropriate for the regression equation for considering 

R2 values in Table 4.8.  However, this analysis is only made for selected data. The values 

at different points should be examined. Therefore, stability analysis is applied to the 

mathematical models. It is observed that the result changes by decreasing and increasing 

the input values. 

The important point here is to analyze the values considering experimentally. It 

should also be observed that the mathematical model results in different input values. 

Because in some mathematical models the coefficients are so large that even if different 

input values are entered, the result is not changed. These are undesirable situations in the 

mathematical model.  

To avoid undesirable solutions, the output values of each mathematical model, 

which corresponds to the modified input values (A, B, C, D), are listed in Tables 4.13-

19. In these tables, 𝐑𝐚
∗  is the experimental average roughness value, A is the average 

roughness value according to 20% reduced of input variables, B is the average roughness 
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value according to 10% reduced of input variables, C is the average roughness value 

according to 10% increased of input variables, and D is the average roughness value 

according to 20% increased of input variables. 

 

Table 4.13 Stability analysis for Model 1. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.247 0.247 0.247 0.247 

2 0.302 0.281 0.281 0.281 0.281 

4 0.248 0.268 0.268 0.268 0.268 

5 0.169 0.156 0.156 0.156 0.156 

6 0.219 0.217 0.217 0.216 0.216 

7 0.160 0.145 0.145 0.145 0.145 

9 0.136 0.130 0.130 0.130 0.130 

10 0.194 0.187 0.187 0.187 0.187 

12 0.203 0.216 0.215 0.215 0.215 

13 0.111 0.113 0.113 0.112 0.112 

14 0.153 0.164 0.164 0.164 0.164 

16 0.190 0.193 0.193 0.193 0.193 

17 0.081 0.089 0.089 0.089 0.089 

18 0.171 0.183 0.183 0.183 0.183 

 

 

Figure 4.2 Stability analysis for Model 1. 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

1 2 4 5 6 7 9 10 12 13 14 16 17 18

R
a

 (
µ

m
)

Number of Experiment

Ra

A

B

C

D



30 

 

When the stability analysis is examined, it is observed that the outputs of the first 

model do not change as seen in Figure 4.2. Although the mathematical model predicts 

with 2.93% error for 18 inputs, it does not respond to different input values.  

Table 4.14 Stability analysis for Model 2. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 -0.698 0.116 -0.425 -0.993 

2 0.302 0.040 -108356 -0.736 -0.275 

4 0.248 0.023 -110347 -0.760 -0.300 

5 0.169 -117528 -0.672 0.192 -0.590 

6 0.219 -0.731 0.081 -0.456 -101949 

7 0.160 -0.999 -0.567 0.080 -0.748 

9 0.136 -101651 -0.586 0.056 -0.773 

10 0.194 -0.573 0.167 -0.593 -12024 

12 0.203 0.150 -104708 -0.912 -0.487 

13 0.111 -113784 -0.725 0.195 -0.564 

14 0.153 -0.694 0.028 -0.453 -0.993 

16 0.190 0.027 -119116 -0.789 -0.300 

17 0.081 -117085 -0.760 0.164 -0.590 

18 0.171 0.011 -120581 -0.796 -0.302 

 

 

Figure 4.3 Stability analysis for Model 2. 
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When the second model is examined, values that cannot be obtained 

experimentally are observed as seen in Figure 4.3. Due to the terms in the trigonometric 

function, it is observed that this model cannot define the phenomenon. 

Table 4.15 Stability analysis for Model 3. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.132 0.143 0.127 0.130 

2 0.302 0.140 0.128 0.133 0.129 

4 0.248 0.139 0.127 0.133 0.128 

5 0.169 0.127 0.123 0.149 0.134 

6 0.219 0.131 0.142 0.126 0.129 

7 0.160 0.130 0.127 0.141 0.131 

9 0.136 0.130 0.127 0.140 0.131 

10 0.194 0.135 0.147 0.119 0.125 

12 0.203 0.147 0.129 0.130 0.113 

13 0.111 0.128 0.120 0.148 0.135 

14 0.153 0.132 0.138 0.126 0.130 

16 0.190 0.140 0.126 0.133 0.128 

17 0.081 0.127 0.119 0.147 0.134 

18 0.171 0.139 0.125 0.132 0.127 

 

 

Figure 4.4 Stability analysis for Model 3. 
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The reason for the fact that the output values in the third model are gathered 

around a single line is described to due to the coefficients in the rational trigonometric 

function as seen in Figure 4.4. For only 18 selected data, the coefficients are correct, 

which represents the error is low. However, the rest of continuous values is not valid.  

Table 4.16 Stability analysis for Model 4. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.248 0.251 0.256 0.258 

2 0.302 0.284 0.289 0.296 0.297 

4 0.248 0.255 0.257 0.258 0.256 

5 0.169 0.171 0.171 0.173 0.175 

6 0.219 0.206 0.208 0.211 0.213 

7 0.160 0.170 0.165 0.153 0.146 

9 0.136 0.151 0.145 0.132 0.126 

10 0.194 0.193 0.190 0.184 0.179 

12 0.203 0.211 0.210 0.206 0.203 

13 0.111 0.129 0.117 0.090 0.076 

14 0.153 0.179 0.172 0.155 0.145 

16 0.190 0.196 0.191 0.177 0.168 

17 0.081 0.103 0.093 0.074 0.065 

18 0.171 0.181 0.176 0.164 0.157 

 

 

Figure 4.5 Stability analysis for Model 4. 
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As seen in Figure 4.5, in the fourth model, the result does not change for some 

points. For the majority, the model may show variability when inputs change. However, 

this is undesirable solution. 

Table 4.17 Stability analysis for Model 5. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.247 0.247 0.247 0.247 

2 0.302 0.280 0.280 0.280 0.280 

4 0.248 0.268 0.268 0.268 0.268 

5 0.169 0.158 0.158 0.158 0.158 

6 0.219 0.218 0.218 0.218 0.218 

7 0.160 0.144 0.144 0.144 0.144 

9 0.136 0.131 0.131 0.130 0.130 

10 0.194 0.187 0.187 0.187 0.187 

12 0.203 0.216 0.216 0.216 0.216 

13 0.111 0.112 0.112 0.112 0.112 

14 0.153 0.163 0.163 0.163 0.163 

16 0.190 0.193 0.193 0.192 0.192 

17 0.081 0.089 0.089 0.089 0.089 

18 0.171 0.184 0.184 0.184 0.184 

 

 

Figure 4.6 Stability analysis for Model 5. 
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In fifth model, it is observed that the outputs of the model do not change (see 

Figure 4.6). Although the mathematical model predicts with 3.63% error for selected data, 

it does not respond to different input values. 

Table 4.18 Stability analysis for Model 6. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.270 0.264 0.255 0.250 

2 0.302 0.301 0.294 0.283 0.278 

4 0.248 0.278 0.270 0.256 0.251 

5 0.169 0.182 0.176 0.165 0.161 

6 0.219 0.230 0.222 0.209 0.204 

7 0.160 0.153 0.152 0.150 0.149 

9 0.136 0.143 0.139 0.134 0.131 

10 0.194 0.196 0.191 0.183 0.179 

12 0.203 0.212 0.206 0.195 0.191 

13 0.111 0.106 0.108 0.109 0.110 

14 0.153 0.169 0.168 0.165 0.164 

16 0.190 0.194 0.189 0.181 0.178 

17 0.081 0.090 0.088 0.084 0.082 

18 0.171 0.179 0.174 0.166 0.162 

 

 

Figure 4.7 Stability analysis for Model 6. 
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Table 4.19 Stability analysis for Model 7. 

Number of 

Experiment 

𝐑𝐚
∗  

(µm) 

A 

(µm) 

B 

(µm) 

C 

(µm) 

D 

(µm) 

1 0.249 0.269 0.264 0.254 0.250 

2 0.302 0.300 0.294 0.283 0.278 

4 0.248 0.278 0.270 0.257 0.251 

5 0.169 0.183 0.176 0.166 0.161 

6 0.219 0.230 0.222 0.209 0.204 

7 0.160 0.152 0.152 0.150 0.149 

9 0.136 0.142 0.139 0.133 0.131 

10 0.194 0.196 0.191 0.182 0.179 

12 0.203 0.212 0.206 0.195 0.190 

13 0.111 0.107 0.108 0.110 0.110 

14 0.153 0.170 0.169 0.166 0.164 

16 0.190 0.193 0.189 0.181 0.178 

17 0.081 0.090 0.088 0.084 0.082 

18 0.171 0.179 0.174 0.165 0.162 

 

 

Figure 4.8 Stability analysis for Model 7. 

In the sixth and seventh mathematical models, the stability graphics, Figure 4.7 

and Figure 4.8, are similar. For this reason, testing of coefficient of determination values 

should be examined. The analysis results are presented in Table 4.12. At this point, it has 
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been observed that the sixth model testing value is higher than the seventh model. As a 

result of the regression analysis, the sixth mathematical model is the most suitable among 

the seven models for optimization. In the next step, the regression model should be 

optimized and different stochastic optimization methods should be applied for the desired 

average surface roughness value in terms of spindle speed, depth of cut and feed rate. 
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CHAPTER 5 

 

 

OPTIMIZATION 

 

 

Optimization is a procedure in which the best possible values of design variables 

are obtained under a set of constraints and in accordance with a selected optimization 

target function. The most common optimization procedure in the field of engineering is 

to minimize the total cost or maximize the potential reliability and quality. Design 

problems in engineering include many situations that require the optimization approach 

to be implemented. For this reason, using an effective optimization algorithm to find the 

best solution on a systematic basis is considered as a success criterion for an engineer. 

Many optimization algorithms are available to solve design problems. They can 

be classified as traditional and non-traditional methods. Traditional methods are mostly 

gradient based (they require derivative information of functions) and formulate the 

problem with a deterministic approach. For this reason, they are not preferred for 

problems with more complex and long mathematical structures that include nonlinear 

functions. Methods such as restricted variation and Lagrange multipliers are analytical 

and can be given as examples of traditional methods [37]. Non-traditional methods which 

use stochastic processes and intuition-based search techniques conclude and produce an 

approximate solution. They are preferred in recent engineering optimization problem 

analysis due to their advantages such as the need for derivative information, the ease of 

adapting to integer programming, the ability to conclude both discrete and continuous 

solution sets. Because the cutting process includes nonlinear terms as physical processes, 

conventional optimization methods fail to solve. Under these conditions, Genetic 

Algorithm (GA), Differential Evolution (DE), Nelder-Mead (NM), Ant Colony 

Optimization (ACO), Memetic Algorithms (MA), Particle Swarm Optimization (PSO) 

and Simulated Annealing (SA) methods such as stochastic optimization methods are 

suitable. 
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In this study, the optimization process of surface roughness value was carried out 

using Random Search (RS), Differential Evolution (DE), Nelder-Mead (NM) and 

Simulated Annealing (SA) methods. 

5.1 Single-Objective Optimization 

Single-objective optimization is applied to single objective functions to minimize 

or maximize. This optimization approach includes the limits of design variables, 

constraints and the limits of constraints. The problems solved by the single-purpose 

optimization approach are expressed as follows. 

The minimization  f(x1, x2, … , xn),  

Such that; 

h1(x1, x2, … , xn) ≥ 0                                   i = 1,2, … , r 

g1(x1, x2, … , xn) = 0                                   j = 1,2, … , m 

xL ≤ (x1, x2, … , xn) ≤ xu                                                   

where f is the objective function, x1, x2, x3 etc. design variables, h and g are constraints. 

5.2 Multi-Objective Optimization 

A multi-objective optimization problem is expressed as; 

The minimization  f1(x1, x2, … , xn), f2(x1, x2, … , xn), … , ft(x1, x2, … , xn) 

Such that; 

h1(x1, x2, … , xn) ≥ 0                                   i = 1,2, … , r 

g1(x1, x2, … , xn) = 0                                   j = 1,2, … , m 

xL ≤ (x1, x2, … , xn) ≤ xu                                                   

where f1, f2, …, ft functions are functions to be minimized or maximized. 

5.3 Stochastic Optimization Algorithms 

In this study DE, NM, RS and SA methods have been used for the optimum 

minimum surface roughness value and the steps of the algorithms are briefly explained 

in the following subsections. 
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The problem was solved in the software program Wolfram Mathematica. 

NMinimize code has been used at default settings with 1000 iterations.  

5.3.1 Nelder-Mead Method 

The Nelder-Mead algorithm is a traditional local search method. It was designed 

primarily by Nelder and Mead (1965) for an unconstrained optimization problem. Nelder-

Mead method has not been designed for constrained problems. However, in this study, a 

modified version of the Nelder-Mead algorithm which solves the optimization problems 

containing non-linear constraints, mixed integer and continuous design variables has been 

used. Although Nelder-Mead is not a global optimization algorithm, it is very good for 

problems that do not have too much local minimum in practical use. The flowchart of the 

Nelder-Mead algorithm is shown in Figure 5.1 [38]. 

5.3.2 Random Search Method 

The Random Search method, also known as the Monte-Carlo method, is a 

stochastic-based algorithm that is quite different from the deterministic methods of 

Branch and Bound, Interval Analysis and Tunneling. In the stochastic process, there are 

a number of standard techniques and programs based on the random number generator. 

The values obtained should be scaled and transformed to provide proximity to any desired 

distribution. The most important advantage of the Random Search algorithm is its ability 

to reach the general optimum for non-convex, differentiable purpose functions including 

continuous and discrete areas. Another advantage of the RS method is that it is relatively 

easy to implement in complex problems. Generally, RS algorithms are known to be 

"strong" and perform well because of the rapid results for poorly structured global 

optimization problems. The flowchart of the Random Search algorithm is shown in Figure 

5.2 [38]. 

5.3.3 Simulated Annealing Method 

One of the most popular random search methods is Simulated Annealing (SA). 

This method is based on the physical process of the annealing of a metal, which is heated 

to high temperature and allowed to cool slowly. The melting process ensures that the 

atomic structure of the material moves to a lower energy state and thus becomes a hard 

material.  
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Figure 5.1 The flowchart of Nelder-Mead optimization algorithm [38] 

In terms of optimization, the SA algorithm allows the transaction structure to 

move away from a local minimum and to discover and locate a better global optimal 

point. The biggest advantage of SA is that it makes it possible to solve various 

optimization problems such as continuous, discrete or mixed integers. The flowchart of 

the Simulated Annealing algorithm is shown in Figure 5.3. 

5.3.4 Differential Evolution Method 

The Differential Evolution (DE) algorithm is a branch of evolutionary 

programming performed by Price and Storn [39].  
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Figure 5.2 The flowchart of Random Search optimization algorithm [38] 

The value of each variable in DE is represented by the actual number. The 

advantages of DE are simple structure, easy to use, fast and robust. DE is one of the best 

genetic type algorithms to solve problems with real-valued variables. DE has been used 

in a variety of science and engineering applications to provide solutions to almost all 

problems that cannot be solved without resorting to expert knowledge or complex design 

algorithms. DE uses the conversion as a search mechanism and redirects the search to 

possible regions in the applicable area. The flowchart of the Differential Evolution 

algorithm is shown in Figure 5.4. 
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Figure 5.3 The flowchart of Simulated Annealing optimization algorithm [38] 

 

Figure 5.4 The flowchart of Differential Evolution optimization algorithm [38] 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

6.1 Problem Statement 

Minimization of surface roughness is critical for some manufacturing process in 

industry because some applications require a better surface roughness to avoid premature 

failure from surface. Accordingly, the aim of the thesis is to obtain the optimum average 

surface roughness value for three different machining parameters which are spindle 

speed, feed rate and depth of cut. Surface roughness optimization based on the regression 

models developed to correlate the machine parameters were determined by four different 

search methods.  

In the solution of optimization problems, sometimes it may be difficult to find the 

optimum point for a problem, even without restrictions, and therefore the methods used 

may fail. It is often useful to optimize the function several times under different initial 

conditions and obtain the best of results.  

The mathematical representation of the optimization problem for this study can 

be stated as; 

Minimize: Average surface roughness, 𝐑𝐚=𝐑𝐚(x1, x2, x3) 

Subjected to Constraints:  1000 ≤ n ≤ 2000,  

1 ≤ a ≤ 3,  

50 ≤ f ≤ 100 

{n,a,f} ϵ integers 

where 𝐑𝐚 is the objective function, x1, x2, x3 being design variables representing 

n, a, and f, respectively. 
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6.2 Evaluation of Regression and Optimization Results  

 Three inputs have different restrictions and there are some limitations of the 

machine. For this reason, it is necessary to determine the values that the machine cannot 

realize as a constraint.  

All three input values should be considered as an integer, as an optimization 

constraint. In addition, lower and upper limits are one of the major constraints of 

optimization. In this way, the mathematical model which has been developed for 

optimization will help in predicting the surface roughness parameters and adjusting the 

process parameters at optimum values to achieve the desired surface quality with high 

reproducibility and decreasing surface roughness.  

As mentioned previously in chapter 3, first the coefficient of determination of all 

seven mathematical models have been performed. In order to examine whether the 

number of data is sufficient, the numerical value of the adjusted coefficient of 

determination has been investigated.  It has been observed that the coefficient of 

determination and adjusted coefficient of determination values were acceptable. This 

indicates that the data are sufficient. 

Testing of mathematical models have been performed by training and testing 

technique of regression analysis by dividing eighteen data for training and testing. 

Stability analysis was performed as another method of testing the regression equation. 

Mathematical models have been evaluated how they react in reduced and increased input 

values within twenty percent range. 

 Graphics have been used to evaluate stability. The worst graphics are second and 

third mathematical models. In the second mathematical model, it is observed that at least 

one of the trigonometric terms goes towards infinity in trigonometric function. In second 

mathematical model. Because the third model has been rational, it has been observed that 

the model did not respond to different points due to the coefficients of terms. Although 

the input values changed in the first, fourth and fifth mathematical models, it has been 

observed that the output have not been changed. This indicates that the mathematical 

models cannot respond to different input values. The high value of coefficient of 

determination of the model represent that the coefficients of terms are well-arranged for 

only eighteen data. As a result, the sixth model was found to be the most suitable model. 
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 According to the sixth model, the effects of three different inputs on the surface 

roughness values have been shown in the Figure 6.1-6.3. 

 

Figure 6.1 The effect of spindle speed (n) and feed-rate (f) for 3 mm depth of cut 

 

Figure 6.2 The effect of depth of cut (a) and feed-rate (f) for 2000 rev/min spindle speed 

 

Figure 6.3 The effect of spindle speed (n) and depth of cut (a)  for 50 mm/min feed-rate 

 Single objective optimization has been selected with number of constraints; 

spindle speed of milling machine has been asked to be higher or equal than 1000 

revolution per minute and lower or equal than 2000 revolution per minute, depth of cut 
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has been asked to be chosen integers and range between 1 and 3 millimeters, feed has 

been asked to be chosen integers and range between 50 and 100 millimeters per minute. 

Consequently, if not to interfere with the machine and the environment, the optimum 

values for cutting parameters spindle speed, depth of cut and feed rate are obtained as 

2000 rev/min, 3 mm and 50 mm/min, respectively. The optimum average surface 

roughness value with these input values have been acquired as 0.086 micrometers. In 

optimization, four different algorithms have been run 50 times and the identical results 

have been achieved for optimum average surface roughness value. This outcome indicates 

that each method used in this study is reliable with Model 6 to have optimum solution.  

The effect of three different inputs on the average surface roughness is shown in 

the Figure 6.4. As shown in the figure, the effect of spindle speed and feed on surface 

roughness is greater than the depth of cut. This result, increase in average surface 

roughness, can be seen with the change from green to orange. 

 

Figure 6.4 The effect of 3 different inputs on average surface roughness 

After first set of experiment, the second set of experiment has been made for the 

validation of the study. When the experimental results were compared, it was estimated 

that the Model 6 has an average prediction error of 3.29 %, whereas the values in the N. 

Liu study were estimated at 4.11% as seen in Table 6.1. In this table, Raexp
 represents the 

experimental average surface roughness values, Rapredicted

∗  represents the predicted Ra 

values of N. Liu study and ϵ∗ represents the prediction error of N. Liu study, Ra6
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represents the predicted Ra values of Model 6 and ϵ6 represents the prediction error of 

Model 6 [32].  

Table 6.1 Comparison of experimental and predicted results of Model 6 [32] 

Number of 

Experiment 

n 

(rpm) 

a 

(mm) 

f 

(mm/min) 

𝐑𝐚𝐞𝐱𝐩
 

(µm) 

𝐑𝐚𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝
∗  

(µm) 

𝛜∗ 𝐑𝐚𝟔
 

 (µm) 

𝛜𝟔 

1 2000 1 50 0.111 0.115 3.478 0.109 1.802 

2 2000 1 75 0.153 0.171 10.526 0.163 6.135 

3 2000 1 100 0.197 0.207 4.831 0.196 0.508 

4 2000 2 50 0.095 0.105 9.524 0.103 7.767 

5 2000 2 75 0.158 0.155 1.899 0.153 3.165 

6 2000 2 100 0.19 0.184 3.158 0.185 2.632 

7 2000 3 50 0.081 0.083 2.410 0.086 5.814 

8 2000 3 75 0.136 0.136 0.000 0.136 0.000 

9 2000 3 100 0.171 0.173 1.156 0.168 1.754 

Average  4.11  3.29 

 

Table 6.2 S/N ratio effects as constraint [32] 

S/N Ratio (η*) n 

(rpm) 

a 

(mm) 

f 

(mm/min) 

𝐑𝐚 

(µm) 

η* < 20 2000 3 50 0.086 

η* < 19 1767 3 50 0.101 

η* < 18 1534 3 50 0.118 

η* < 17 1987 3 79 0.143 

η* < 16 1748 3 81 0.160 

η* < 15 1868 3 100 0.175 

 

Another observation in milling process is investigation of the effect of Signal to 

Noise ratio (S/N) for average surface roughness Ra. Signal-to-noise ratio is the ratio of 

the power of a signal or meaningful information to the power of background noise or 

unwanted signal. The signal-to-noise values (η*) were examined to evaluate the 



48 

 

behaviour of the milling operation. The results showed that the noise increases in the 

direction of ascending in spindle speed between 1500-2000 rev/min as seen in Table 6.2. 

In other words, the increase in spindle speed has a positive effect on the system. 
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CHAPTER 7 

 

 

CONCLUSION 

 

 

This thesis has presented a study of the minimization of surface roughness on a 

milling process using stochastic methods. The surface of workpiece in milling process is 

subjected to multiple forces and effects. These cause to begin wear on the insert surface. 

With the developing technology, the precision of the assembled parts increases and 

therefore requires a narrow machining tolerance. In slot milling process, the tolerances in 

the surface profiles of the end-mill meet the tolerances of the workpiece. In order to 

reduce the wear of the surface profile of the insert tip over time and thus to maintain the 

geometric tolerances, it is required to optimize the cutting parameters.  

 In this study, analysis and optimum cutting parameters of slot milling process have 

been performed considering machine constraints. Totally seven mathematical models 

have been investigated for average surface roughness by using regression analysis. Five 

of the developed mathematical models were selected as rational. Another two 

mathematical models have been considered as nonrational. The coefficients of seven 

mathematical equations were determined using Wolfram Mathematica Commercial 

Software program. After investigating the reliability of the model, it is decided to use 

Model 6 for average surface roughness as an objective function in optimization. Spindle 

speed, depth of cut and feed have been considered as design variables Four different 

stochastic search algorithms which are Random Search, Simulated Annealing, Nelder-

Mead and Differential Evolution have been used in optimization process.  

According to the results obtained, it can be concluded that minimum feed (50 

mm/min), maximum spindle speed(2000 rev/min) and maximum depth of cut(3 mm) are 

the optimum values to minimize the average surface roughness(0.086 µm) for slot milling 

process with end-mill machining the material Al-7075. 
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As a future study, the machine capability and the environmental effects such as 

coolant system can be studied. This gives a meaningful information if a different material 

or cutting tool is used.  
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