Domain-Specific Modeling Based Feature-
Oriented Automatic Test Generation Methodology
for Software Product Lines

A Thesis Submitted to

the Graduate School of Engineering and Science of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Sercan SENSULUN

May 2019

iZMIiR

We approve the thesis of Sercan SENSULUN

Examining Committee Members:

S

Assoc. Prof. Dr. Tugkan TUGLULAR
Department of Computer Engineering, Izmir Institute of Technology

9

Assoc. Prof. {)r. Tolga AYAV
Department of Computer Engineering, izmir Institute of Technology

Mol

soc. Prof
Assoc. Prof. Dr. Mutlu BEYAZIT
Department of Computer Engineering, Yasar University

31 May 2019

fr—

Assoc. Prof. Dr. Tugkan TUGLULAR
Supervisor, Department of Computer Engineering
Izmir Institute of Technology

)

\
Assoc. Prof. Dr. Tolga AYAV Prof. Dr. Aysun SOFUOGLU
Head of the Department of Dean of the Graduate School of

Computer Engineerin Engineering and Sciences
p g g

ACKNOWLEDGMENT

I would like to thank my advisor, who supports me not only academic studies but
also industrial practices, Assoc. Prof. Dr. Tugkan TUGLULAR. I am sure that we are
going to create novel studies in the future like this study.

I also acknowledge to company, which is called as Delta Smart Technologies Inc.,
and Tolgahan OYSAL who is project manager and founder of Delta Smart
Technologies. Thanks to him, proposed solution is proved by a case study.

The research in this thesis is supported by The Scientific and Technological
Research Council of Turkey (TUBITAK) under the grant 117E884. The research in this
thesis is accepted as a research paper titled as SPL-AT Gherkin: A Gherkin Extension
for Feature Oriented Testing of Software Product Lines to the Software Test
Automation Workshop 2019 co-located with Computer Software and Application
Conference (COMPSAC — STA 2019).

Besides, I wish to express my special thanks to my dear friends Giilce ABATAY
and Goksu Naz UGURTAS for their technical help and support.

Finally, I am grateful to my mother Veliye SENSULUN, my father Sabri
SENSULUN, my big brother Sedat SENSULUN and my grandmother Emine
YILMAZ. They always encourage me for my academic researches. I would never

complete this study without their spiritual support.

OZET

YAZILIM URETIM HATLARI ICIN ALANA OZGU MODELLEME
TEMELLI OZELLIK ODAKLI OTOMATIK TEST URETME
METODOLOJISi

Bulut platformlart yazilim iiriin hatlarma (YUH) déniismektedir. Bu déniisiimle
birlikte miisterinin sectigi 6zelliklere sahip iiriinlerin test edilmesi de biiyiik bir 6nem
kazanmaktadir. Yazilimimn kullanicinin ihtiyaglari dogrultusunda olup olmadigina karar
vermek icin kabul testleri (KT) kullanilir. Yazilim gelistirme dongiisiinde degisen
kullanict gereksinimleriyle veya miisterinin farklt segimleriyle birlikte, amacglanan
yazilim {riiniiniin kabul testlerinin gelistirme maliyeti de artmaktadir. Bu calisma
kapsaminda Ozellik bazli test yaklasimiyla birlikte SPL-AT Gherkin isimli Gherkin
sOzdizimine yeni bir uzant1 dnerilmistir. Bu Onerilen yeni sdzdizimi ile birlikte, Test
Next Generation (TestNG) catisin1 kullanan 6zgilin bir test yontemleri iireticisi de
tasarlanmistir. Onerilen bu 6zgiin ¢alismanin uygulanabilirligi, buton, metin goriiniimii
ve metin diizenleme gibi farkli kullanic1 arayiiz bilesenleri olan mobil uygulama
platformunda gelistirilen bir uygulama iizerinde denenmis ve {retilen sonuglar
ciktilartyla birlikte paylasilmistir. Onerilen bu yaklasim, kullanici arayiiziine sahip
herhangi bir uygulama iizerinde herhangi bir test ¢atistyla birlikte gelistirilmeye acik bir

sekilde tasarlanmigtir.

v

ABSTRACT

DOMAIN-SPECIFIC MODELING BASED FEATURE-ORIENTED
AUTOMATIC TEST GENERATION METHODOLOGY FOR
SOFTWARE PRODUCT LINES

Cloud platforms are transforming to software product lines (SPLs) and testing of
the customer-selected products are becoming increasingly important with this
transformation. Acceptance Test (AT) is a testing variety to check acceptability of the
software based on user requirements. While user requirements or customer’s selection
are changing during the development cycle, cost of ATs generation is also increasing. In
this study, a feature-oriented testing approach is proposed with a novel extension to
Gherkin called SPL-AT Gherkin and a novel automatic test method generation
technique that uses Test Next Generation (TestNG) framework. Applicability of the
proposed approach is demonstrated with a case study that has different user interface
(UI) components such as Page, Button, Text View and Edit Text in mobile application
platform. Moreover, results for case study is presented. The proposed approach is open
for improvement throughout any application that has Ul components such as Web,

Mobile with any testing framework.

TABLE OF CONTENTS

LIST OF FIGURES ...ttt vii
CHAPTER 1. INTRODUCTIONooviiiiriiiineineiiseise it 1
CHAPTER 2. FUNDAMENTALS ..ottt 3
2.1. Behavior Driven Development.............ccooouoieiuiiiiiinieieieeeeee s 3
2.2, GRerkin SYNtaX.........cooooiiiiiii et 3
2.3. Page Object Design Pattern.........cc.coooiuiiiiiiiiiiiieiee e 4
2.4 TESENG ... e 5
CHAPTER 3. MAPPING RULESoooirnsee it 7
3.1. Page Object Design Pattern Partccoooooioioiiiiiiecee s 8

B L1 RULE T 8
3120 RULE 2o 9
BUL30RUIE 3 11

320 TESING Pt ... 11
321 RULE 4ot 13
3220 RULE 5o 14
3230 RUIE 6. 15
3.204 RULE 7 oo 15
325 RUIE 8o 16
3.2.6. RUIC 9. 19
CHAPTER 4. IMPLEMENTATION of the MAPPING RULE SET.........cccccoeoiviiirrnne. 26
CHAPTER 5. TOOL SUPPORTccoooiiiiririiirieie e 33
S L ECIIPSE et 33
5.2 APPIUIN oottt 33
5.3. Creating Maven ProJECt ... 33
5.4. Adding Libraries to Maven Project ... 34
5.5. Adding Implementation of The Mapping Rule Set to Maven Project..................... 34
CHAPTER 6. CASE STUDY ..ot 36
CHAPTER 7. RELATED WORKScooooiiiinneeseee s 48
7.1. RODOt FTamMEWOTK ..o 48
7.2 CUCUIMDET ..ot 50
7.3 GAUZE ..o 51
CHAPTER 8. CONCLUSIONcoooiiiiiiniineieeiesies e 53
REFERENCES ..ottt 55

Vi

LIST OF FIGURES

Figure Page
Figure 2.1. Example Test Method ..ot 6
Figure 2.2. Example TestNG XML File.......c.cooooiiiiineesesss e 6
Figure 2.3. Example Test Method with PriOrity..........coccooviiininiinsee e, 6
Figure 3.1. Base PAZE ...ttt 8
Figure 3.2. Sample Scenario for Rule 1 ... 9
Figure 3.3. Child of Base Page for Rule 1 ... 9
Figure 3.4. Sample Scenario for RUle 2. 10
Figure 3.5. Child of Base Page for Rule 2 ... 10
Figure 3.6. Sample Scenario for Rule 3 ... 12
Figure 3.7. Child of Base Page for Rule 3 ... 12
Figure 3.8. Base TESIING ..ottt 12
Figure 3.9. Sample Scenario for Rule 4 ... 13
Figure 3.10. Child of Base TestNG for Rule 4 ..o 13
Figure 3.11. Sample Scenario for RUle 5. 14
Figure 3.12. Child of Base TestNG for Rule 5cccooviiiine s 14
Figure 3.13. Generated Test Method for Rule 6...........cocooiinieniees 16
Figure 3.14. Sample Scenario for RUIE 7........ccocoviiiniees s 16
Figure 3.15. Child of Base TeStNG for Rule 7 ..o 18
Figure 3.16. Generated TestNG XML File for Rule 8 ... 18
Figure 3.17. Generated Test Method for Rule 8............cccoooiiiinneeres 19
Figure 3.18. Output for RULE 8.......c..oiii et 17
Figure 3.19. Relations for Given and When Parts ... 20
Figure 3.20. Relations for Then Part............cccoooineeensee s 20
Figure 3.21. Sample Scenario for RUIe ... 22
Figure 3.22. Output UML applying Mapping Rule Set...........cccocorviririnininreeeeen 22
Figure 3.23. Generated BasePage for Rule 9 ... 23
Figure 3.24. Generated BaseTestNG for Rule 9 ... 24
Figure 3.25. Generated TestNG XML for Rule 9. 25
Figure 4.1. UML for Feature and Scenario OUtlINecocoovrerirriniirninrincseseerrenes 26
Figure 4.2. UML for Step and Example Data Table.........c..coccovvirrininninneneneres 27
Figure 4.3. UML for Step and Scenario OUINEoccooovreiinrierineinieresessesececees 27

Figure Page

Figure 4.4. UML for Example Data Table and ROWccccoovininiiiinrinecnees 28
Figure 4.5. UML for All Gherkin KeYyWOrdscccovriiirniinriireneneis s 28
Figure 4.6. UML with Gherkin Parser ..o 29
Figure 4.7. UML with Tag FINAETocooviiiiiiiese et 30
Figure 4.8. UML With GENETALOTScovuiuuriiercieeieiieieneie it sseseessees 31
Figure 4.9. UML for Implementation of The Mapping Rule Set.............cccoooorvriinininninnn 32
Figure 5.1. Complete Project StruCture............cooooieieiiiiiiiieieeee s 35
Figure 6.1. SPL Feature Diagram for KidsBus@............ccocoooiiniiniinniniene 37
Figure 6.2. SPL Product Diagram for Gold KidsBusa...........c..cccooovervniniinninnninsene 37
Figure 6.3. Screen for Page Getting SMS Code..........cocoooiiiiiiiniiniiieieee s 38
Figure 6.4. Scenario for Getting SMS Code..........oovinirneiierseee e 38
Figure 6. 5. Scenario for Getting SMS Code Title ..o 39
Figure 6.6. Screen for Verify SMS Code ... 40
Figure 6.7. Scenario for Verify SMS Code..........cccoviiniininereseseis s 40
Figure 6.8. Scenario for Count Down Timer TeXt.........cccccovvrirrirrireiniinenerseseerenees 41
Figure 6.9. Scenario for Send Again TeXt..........cocvirrinirireneeeeee e 39
Figure 6.10. Scenario fOr Title TeXt. ..o 41
Figure 6.11. Screen for Create New Password ... 42
Figure 6.12. Scenario for Create New Password ... 42
Figure 6.13. Scenario for Create New Password Title ... 43
Figure 6.14. Main SCTEEMcvuiiiiriiiecieeee ettt 43
Figure 6.15. Scenario for Main Title ... 44
Figure 6.16. LOZIN SCTEEN ...ttt 44
Figure 6.17. Scenario for Credential INtegritycocooviiiiiiriiniieiiieee e 45
Figure 6.18. Scenario for Forgot Password Title ... 45
Figure 6.19. Scenario for Welcome Title ..o 45
Figure 6.20. Test RESUILSc..oiiiiiic et 46
Figure 6.21. Scenarios’ Generation Time in Milliseconds...........c.coovvuvvrrrinrirnrnrinrinireins 47
Figure 7.1. Robot File with Empty SKeleton............cccoocoioiiiirinioiiieeeeee e 49
Figure 7.2. Sample Robot With APPIUM.........ccooriiiriirineree e 49
Figure 7.3. Sample SPL-AT GRerkin ... 50
Figure 7.4. Sample Scenario in Gherkin for Cucumber...........c..coovvriviinrininnineneres 51

Figure Page

Figure 7.5. Generated Test Method by CUCUMDETcooviiiriiriniinieeeseeis 51
Figure 7.6. Sample Scenario in Gauge SYNTAXcc.cooviuriririiriirieieieieeee e 52
Figure 7.7. Implementation File for Gaugecccoovrnirrineisesesesessenies 52

iX

CHAPTER 1

INTRODUCTION

Nowadays, product customization is becoming more significant with cloud
platforms. These platforms serve not only server side but also web or mobile
environment solutions. Thanks to these platforms, customers could create unique
products for themselves with the selected features. In other words, cloud platforms are
new trend of software product lines. While software product lines (SPLs) bring huge
advantages in terms of product customization, they also provide some difficulties about
reliability of the delivered product. Therefore, quality of the customized product has to
be assured before delivering.

Acceptance tests (ATs) are used to ensure that production is ready or not upon to
customer requirements. And also, these requirements are changed through the selected
features in SPLs. While customer’s selection or requirements are changing during the
development cycle, cost of ATs generation is also increasing. In this study, we propose
a feature-oriented testing approach based on Gherkin but with a novel extension called
Software Product Line (SPL) — Acceptance Test (AT) Gherkin. The proposed approach
also includes an automatic test method generation technique from SPL-AT Gherkin to
concrete acceptance test cases.

The proposed test method generation technique could be changed with any test
frameworks. In other words, it is open to change against different environments. The
only task is changing implementation of the mapping rules, that is going to be focused
in Chapter 3, with intended framework. Addition to them, acceptance test driven
development can be followed with the proposed approach.

In SPLs, while some features are defined as default such as demonstrating list of
items or current status of logged user for each application, other features could be added
based on customer’s requirements such as tracking status of items or adding item to
stock. In other words, different variation of the applications could be generated easily in
SPLs based on customers’ selected features. With this variety, each application, which

is generated in the SPL, should be tested before delivering to the customer. One of the

motivations behind the proposed test method generation technique is handling this
challenge. Therefore, this method could be applied for any SPL which generates
application that has User Interface (UI) components. To prove this idea, KidsBusO
system, which was not designed as SPL but suitable to apply this approach, is used in
Case Study part.

The study is organized generally as follows. After explaining fundamentals in
Chapter 2, proposed approach is focused in detail under Chapter 3. Then
implementation of proposed approach is explained with Unified Modeling Language
(UML) in Chapter 4. After explaining proposed approach and implementation clearly,
development environment preparation is demonstrated step by step in Chapter 5 that is
called as Tool Support. Then, the approach is applied to an application, which called as
KidsBusa School Security, in Chapter 6. After that, in Chapter 7, related works are
handled with similarities and dissimilarities to proposed approach. In Conclusion

Chapter, the study is handled in broad perspective.

CHAPTER 2

FUNDAMENTALS

2.1. Behavior Driven Development

In agile development technique, information gap between stakeholders and
developers is tried to be reduced. User stories are used to reduce this gap. Each scenario,
that is written in natural language by stakeholders, should correspond to a piece of code.
Acceptance tests are used to ensure this match. Test Driven Development (TDD) offers
that writing Acceptance Tests (ATs) first then writing the code, which is evaluated by
the tests. When the code tested by all ATs, software could be assumed as complete with
respect to acceptance criteria. While applying TDD, Dan North encountered some
misunderstanding between analysts, developers and business people. To reduce this
mismatch, he proposed Behavior Driven Development. In BDD [1], the scenarios are
written in spoken language, e.g. English, Turkish. Thanks to these scenarios, acceptance
criteria are more understandable by all team members, e.g. Product Owners, Testers,
UX Designer, Programmers. There are various structures to write a scenario, e.g. Given
When Then [2]. In other words, they are structured documentation waiting to be
processed in different purposes, e.g. generating ATs. Martin Fowler also establishes
connection between Given When Then and Gerard Meszaros’ three phases of Four-
Phase Test [3] which are Setup, Exercise and Verify respectively [2]. In Chapter 3, this
is going to be focused in deeper in terms of acceptance test generation for applications
which have User Interface (UI) components such as buttons, text views or editable

ViEWS.

2.2. Gherkin Syntax

Gherkin [5] is a domain specific language to create project documentation and
automated tests. It provides the behavior definitions of the intended software not only to
product owners and business analysts but also to developers and testers. In other words,

it is a well-known language, which is understandable by any teams with +70 spoken

languages support. Gherkin is a line-oriented language in terms of structure and each
line has to be divided by the Gherkin keyword except feature and scenario descriptions.
Some of the Gherkin keywords, which are Scenario Outline, Given, When, And, Then,
Examples, are going to be handled in describing Software Product Line-Acceptance
Test (SPL-AT) Gherkin.

Scenario Outline is one of the keywords in Gherkin. Thanks to its structure,
different scenarios could be executed in same scenario skeleton. In Scenario Outline,
parameters, that are different for each scenario, are defined with in < > characters, i.e.
<parameter>. Furthermore, they should be included Examples data table [5]. In
Examples, the first row must include all described parameters in to the Scenario Outline.
Variation of the parameters are defined in the following rows respect to order of the first

Trow.

2.3. Page Object Design Pattern

PageObject design pattern was introduced for web pages to hide User Interface
details from client. It is a basic encapsulation mechanism because it finds to Ul
components such as Header or Paragraph tags in HTML page and manipulates it
without any technical details, i.e., Web Driver. While writing test against any web page,
it is suitable to manipulate Ul components. Despite Martin Fowler explains this pattern
for web pages, he claims that it could be applied to any User Interface technology [4].
According to his opinion, this pattern is going to be evolved to the Mobile Application
Testing domain in the following parts. For instance, you have a mobile application that
includes one page which is called as Login Page. It contains one editable field which is
called as EditText in Android or UlTextField in iOS and one button to validate written
text in the editable component. While writing test cases to this page, one of the test
frameworks should use to manipulate it, i.e., Appium. Accessor methods, e.g.,
getText(), setText(...) could developed for editable field, and also button could
represented by action oriented methods, e.g., clickButton(). Appium API (Application
Programming Interface) methods as technical details are hidden behind these methods.
Thanks to this encapsulation, test methods, which are generated by test cases, could be
improved with accessor and action-oriented methods without knowledge of Appium

APL

2.4. TestNG

TestNG (Test Next Generation) is a testing framework, that is inspired by JUnit,
for Java developers [6]. It is suitable to write unit, functional, end-to-end, integration
etc. tests. It also suitable for test automation frameworks, e.g. Selenium, Appium. It
could be plugged some integrated development environment such as Eclipse, Intellij
IDEA in to use. It supports some strong features such as data-driven testing,
parametrized testing and flexible test configuration. Test methods could take one or
more parameters. With this feature, different parameters could be passed to same test
method in different scenarios. Parameters could set two different ways, with testing.xml
or programmatically. During the research, testing.xml is going to be used. Imagine that,
you have a java method that multiples given integer parameter with 2 and returns the
result. To test a method with three different parameters which are -1, 0, +1, testing.xml
should generated as Figure 2.2. When the test method executed in Figure 2.1, these three
test cases are going to be executed with only one test method. Another important feature
for the research is priority. If order of the test cases execution is critical, priority should
use with @7Test tag. Priority is represented by integers and lower value is executed first.

In Figure 2.3, test method_first always executes before the test method second.

(@Parameters({"param"})
@Test
public void Test Method (String param)

{

//send param to the multiplier here.
}
Figure 2.1. Example Test Method

<suite name="Suite"™
<test name="multiplewithminusone'>
<parameter
name="param" value="-1"></parameter>
</test>
<test name=" multiplewithzero">
<parameter
name="param" value="0"></parameter>
</test>
<test name=" multiplewithplusone'>
<parameter
name="param" value="+1"></parameter>
</classes>
</test>
<.>

Figure 2.2. Example TestNG XML File

//rest of the test class...

(@Test(priority = 0)
public void test method _first()

{
b

(@Test(priority = 1)
public void test method second()

{
}

//rest of the test class...

/lexecute firstly.

//execute secondly.

Figure 2.3. Example Test Method with Priority

CHAPTER 3

MAPPING RULES

Gherkin is efficient language to write User Scenarios. However, it is not
sufficient to generate Acceptance Tests for Mobile Applications. Main purpose of
Mapping Rules is transition between User Scenarios and automatically generated
Acceptance Test Project. If User Interfaces and their behavior are defined in User
Scenarios, transition would be easy and tag structures are generated to achieve this
convenience.

There are two different tag structures, which are address sign (@) and dollars
($). They are added on Gherkin to write convertible scenarios for executable
Acceptance Tests. While @ tag is used to define User Interface Components such as
Edit Text, Button, Text View etc., § tag is used to define their behaviors. Thanks to
usage of them, user scenario writers could refer application components. @ tag has four
different sub-tags which are @PAGE, @EDIT TEXT, @BUTTON, @TEXT VIEW and
to define their action $ENTERED, $CLICKED, $SHOWN, SENABLED, $DISABLED,
SOPENED tags are generated. After usage of the @ tag, identifier of the Ul component
should be indicated. The identifier should be found in the Mobile Application project.
Relation between @ and § are going to be considered in the following sections. While
explaining mapping rules in the following parts, Page Object Design Pattern and some
of TestNG framework are going to be focused.

There are eleven rules to generate automatically Acceptance Test Project from
feature files which are written in SPL-AT Gherkin. The rules are divided in two groups.
In the first group, there are three rules, which are related with Page Object design
pattern that is briefly mentioned above. And, second group has eight rules that are going
to be processed with TestNG framework. After explaining them one by one, case study,
which is a commercial mobile application developed by Delta Smart Technologies Inc.,

is going to explained in the following chapter.

3.1. Page Object Design Pattern Part

Before explaining each rule, some assumptions should be mentioned. In our
proposed solution, there is a Base Page class, Figure 3.1, and it manages Appium API
methods. It also has five methods which are called as click(), setText() and getText(),
isEnabled() and isShown(). click() method is responsible to clickable Ul components,
i.e. button. Addition to this, setText() is about editable Ul components, i.e., EditText or
Text Area. And also, getText() helps us to get text which are represented on the UI
components such as TextView. isEnabled() and isShown() with Boolean return type
help us to be ensure about visibility of any Ul components. All of them take identifier
(String) parameter to ensure which Ul component is going to be referred on application
under test. In the future, if another test automation framework is considered,
implementation of these methods is going to be changed with chosen framework API. In
other words, the solution is open to change with other frameworks. Finally, before
introducing to the rules, each future file which is written in SPL-AT Gherkin has to

include only one Scenario Outline that was mentioned in previous chapters.

BasePage

- driver: AndroidDriver

- wait: WebDriverWait

click(String identifier): void
setText(String identifier, String text): void
getText(String identifier): String

isEnabled(String identifier): boolean

isShown(String identifier): boolean

Figure 3.1. Base Page

3.1.1. Rule 1

The first rule is related with child classes of the Base Page class. Scenario
Outline, which is in the feature file, has to includes only one @PAGE tag with same
identifier in Given and When parts. If only one page on mobile application is going to be

tested, @PAGE sub-tag with another identifier only could be existed into 7hen part of

the SPL-AT Gherkin. If @PAGE tag is detected with identifier, child of the Base Page
should be created into Acceptance Test Project with identifierPage name. For instance,
in Figure 3.2, there is one @PAGE tag with this is _identifier identifier. According to
the rule, ThisIsldentifierPage class that is the child of the Base Page class, in Figure 3.3,

should be created into the Project.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given @WPAGE this_is_identifier is opened

When ...

Then ...

Figure 3.2. Sample Scenario for Rule 1

BasePage

- driver: AndroidDriver

- wait: WebDriverWait

click(String identifier): void
setText(String identifier, String text): void
getText(String identifier): String

isEnabled(String identifier): boolean

isShown(String identifier): boolean

Extends

ThislsldentifierPage

/This is attribute field

/This is method field

Figure 3.3. Child of Base Page for Rule 1

3.1.2. Rule 2

In second rule, inside of child class that is mentioned in Rule 1 is going to be
processed. @EDIT TEXT tag could be existed in Given and When parts in Scenario
Outline. Addition to this, delimited parameter in Gherkin [5] has to be within the same
part. When it is detected with delimited parameter, there should be a method into the

child class to set any text to mentioned UI component via @EDIT TEXT tag. Moreover,

9

method of the Base Page, which is setText(String identifier, String text), should exist
inside of the generated method with the given identifier from SPL-AT Gherkin. For
instance, in Figure 3.4, @EDIT TEXT tag exists in When part with
this_is_edit text identifier identifier. There is also delimited parameter, that is shown
with <> special characters, in When part and value of the parameter is defined on
Example data table [5]. When the rule is applied, UML is going to be changed as Figure
3.5. The point is that UML design is generated automatically so that the rule could be

applied for any Scenario Outline.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given @WPAGE this_is_identifier is opened
When
is entered on
@EDIT TEXT this_is_edit text identifier
Then ...

Examples:
| delimited parameter |
| "this_is value for edit text" |

Figure 3.4. Sample Scenario for Rule 2

BasePage

- driver: AndroidDriver

- wait: WebDriverWait

click(String identifier): void
setText(String identifier, String text): void
getText(String identifier): String

isEnabled(String identifier): boolean

isShown(String identifier): boolean

Extends

ThislsidentifierPage

/This is attribute field

+ setThisIsEditTextidentifier(String delimetedParameter)

Figure 3.5. Child of Base Page for Rule 2

10

3.1.3. Rule 3

@BUTTON tag is going to be focused in Rule 3. This tag has to be in Given and
When parts for the Rule 3. In fact, pattern of this rule resembles to Rule 2. Because, it is
going to generate a filled method to inside of the child class, which is generated in Rule
1, for the clickable Ul component, i.e., Button. When the tag is detected with the
identifier, action-oriented method has to be created inside of the child class. Then,
click(String identfier) method, that was implemented into the Base Page super class,
should be put into this method. For instance, in Figure 3.6, the sub-tag is found in When
part with this_is button_identifier identifier. As a result, UML design, shown in Figure

3.7, is generated automatically.

3.2. TestNG Part

In the second group, eight rules that are related with the TestNG framework are
going to be analyzed. Test classes that collaborate with the Page classes, are going to be
generated based on the feature file that was written in SPL-AT Gherkin. During the
generation, parameterized test (@Parameters) and test prioritization (@Priority) topics
are going to be used in TestNG framework. Before explaining these rules, Base TestNG
class has to be focused. Like Base Page class, mentioned in section 3.1, it should also be
included for each test project. So that, it has to be generated before applying these eight
rules. In this class, there are two methods which are called as setup() and tearDown().
First method, setup(), is tagged with @BeforeClass TestNG annotation. It runs before
the first test method that takes part in the same test class. According to this feature, all
Appium driver configurations are set in this method. For instance, Unique Device
Identifier (UDID) [7] of the mobile device under test or package name of the application
under test have to set in it. When any configuration values are changed, this part of the
Base TestNG class is going to be handled. Moreover, the second method, tearDown(),
has @AfterClass TestNG annotation. Unlike setup() method, it runs after all test
methods that takes part in the same test class. So that, some rollback operations such as
closing Appium driver are managed in this method. In the following rule parts, this class

is going to be extended by the other test classes.

11

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given @WPAGE this_is_identifier is opened
When

<delimited parameter> is entered on

@EDIT TEXT this_is_edit text identifier

And @BUTTON this_is_button_identifier is
pressed Then ...

Examples:

| delimited parameter |
| "this_is value for edit text" |

Figure 3.6. Sample Scenario for Rule 3

BasePage

- driver: AndroidDriver

- wait: WebDriverWait

click(String identifier): void

setText(String identifier, String text): void
getText(String identifier): String

isEnabled(String identifier): boolean

isShown(String identifier): boolean

Extends

ThislsldentifierPage

/This is attribute field

+ setThisIsEditTextidentifier(String delimetedParameter) : void
+ clickThisisButtonldentifier() : void

Figure 3.7. Child of Base Page for Rule 3

BaseTestNG

+ driver: AndroidDriver

+ setup(): void

+ teardown(): void

Figure 3.8. Base TestNG

12

3.2.1. Rule 4

At the end of the Part 3.1, “each feature file, which is written in SPL-AT
Gherkin has to include only one Scenario Outline” assumption is mentioned. So that,
number of the feature files equals to number of the scenarios. Moreover, scenario could
be detected easily when feature file is detected. Definition of the rule is that every
scenario, in other words, every Scenario Outline is a sub-class of the BaseTestNG. For
instance, in Figure 3.9, title of the Scenario Outline which, called as This is the title of
the Scenario Outline, is going to be converted to name of the class. When the definition

is applied, Figure 3.10 is going to be generated.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given ...
When ...
Then ...
Examples:
| ...]
| ...]

Figure 3.9. Sample Scenario for Rule 4

BaseTestNG

+ driver: AndroidDriver

+ setup(): void

+ teardown(): void

Extends

ThislsTheTitleOfTheScenarioOutline

/This is attribute field

/This is method field

Figure 3.10. Child of Base TestNG for Rule 4

13

3.2.2. Rule 5

When any Scenario Outline is analyzed, three base keywords, which are Given,

When, Then are noticed. Moreover, each keyword describes itself with one sentence.

Rule 5 claims that each keyword is going to be converted to a TestNG test method with

@Test annotation into the child of the BaseTestNG class that was described in Rule 4.
So that, number of the test methods are going to be equal to number of the keywords
that exist into these three base keywords. When the rule is applied on Figure 3.11,

Figure 3.12 is going to be generated.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given this is the Given sentence
When this is the When sentence
Then this is the Then sentence
Examples:
| ...]
| ...]

Figure 3.11. Sample Scenario for Rule 5

BaseTestNG

+ driver: AndroidDriver

+ setup(): void

+ teardown(): void

Extends

ThislsTheTitleOfTheScenarioOutlineTest

//This is attribute field

<<Test>>
+ thisisTheGivenSentenceTest(): void

<<Test>>
+ thisisTheWhenSentenceTest(): void

<<Test>>
+ thislsTheThenSentenceTest(): void

Figure 3.12. Child of Base TestNG for Rule 5

14

3.2.3. Rule 6

There is a hierarchy between Given, When and Then keywords in terms of the
execution order. Given keyword is described as initialization part of the scenario such as
opening the application page. Addition to this, When keyword has some event based
operations, e.g. click button, set username in to text field. And, in Then keyword, some
assertion operations are found, e.g. page is opened or button is disabled. In summary,
test methods, which were generated in Rule 5 based on Given-When-Then template,
have to be executed in a sequence. So that, sorting of the methods has to be Given,
When, Then in respect to execution order. @priority TestNG, shown in Figure 3.13,

annotation is going to be used to implement this order.

3.2.4. Rule 7

Parameterized tests are important topic in automation testing. Different test cases
could be handled clearly with it. Moreover, same test method could be executed with
different test inputs. When Rule 6 considered, there are three test methods which are
thisIsTheGivenSentence, thislsTheWhenSentenceTest, thislsTheThenSentenceTest in
ThislsTheTitleOfTheScenarioOutlineTest class. And, one of the aimed solution is that
execute many test cases with these methods. To achieve this, Examples Table, which is
defined in feature file, is going to be converted to @Parameters TestNG annotation. In
Examples Table, header row should be represented into Scenario Outline. And, other
rows represent value of each cell of header row. For instance, in Figure 3.14, there are
two different delimited parameters which are delimited parameter I and
delimited parameter 2 in Scenario Outline. And also, value of these parameters
appears in second and third row of Examples tables, i.e. this_is value for param I,
this_is value for param_ 2 etc. The rule argues that when any delimited parameter
detected on Scenario Outline, it is going to be converted to parameter of the test
method. For instance, delimited parameter 1 is going to be defined as parameter to

thisIsTheGivenSentenceTest test method.

15

public class ThisIsTheTitleOfTheScenarioOutlineTest extends
BaseTestNG{

//This is attribute field

@Test(priority = 0)

public void thisIsTheGivenSentenceTest () {
//firstly executed

}

(@Test(priority = 1)

public void thislsTheWhenSentenceTest () {
//secondly executed

}

(@Test(priority = 2)

public void thisIsTheThenSentenceTest (){
//thirdly executed

}

}
Figure 3.13. Generated Test Method for Rule 6

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given this is the Given sentence
When this is the When sentence
Then this is the Then sentence
Examples:
| delimited parameter 1 | delimited parameter 2 |
|"this_is_value for param 1"|"this is value for param 2"
|"this_is_a value for param 1"|"this is a value for param 2

"|

Figure 3.14. Sample Scenario for Rule 7

3.2.5. Rule 8

After setting parameter annotations in the test class, which was called as
ThislsTheTitleOfTheScenarioOutlineTest in previous rule parts, values of these

parameters should be passed to the test methods, i.e. thislsTheGivenSentenceTest,

16

thisIsTheThenSentenceTest. Passing parameters values through testng.xml! is one of the
passing manner in TestNG framework [8]. Testng.xml file is a configuration file to
manage test suite and its parameters in any test project. There are many different xml
tags such as <test>, <parameters> etc. in testng.xml configuration file. In Rule 8,
<test>, <parameters>, <classes> and <class> are going to be focused. When number
of rows are detected, as the first step, on Examples Tables, <test> tag is going to be
generated for each of them with name attribute. This name attribute should be unique to
identify test case, that’s why it was considered as GUID [9] string. Then, as the second
step, <parameter> tags with name and value attributes will be generated for each
parameter, that was considered in Rule 7, into the <tesr> tag. After that, as the third
step, <class> tag with name attribute will also be generated in to the <fest> tag. These
three steps are run for every rows of Examples Table except the header row. For
instance, in Figure 3.14, there are two rows that are in Rule 8 scope. When the first and
second steps are applied, two <fest> tags with different name attributes will be
generated with two <parameter> tags into the festng.xml file. Then, according to the
third step, one <class> tag will be generated in to the each <test> tag. The key point in
Rule 8, each <test> tag should be assigned with different names and also same <class>
name. As a result, Figure 3.17, that describes testng.xml file, will be generated with the
Rule 8 In Figure 3.18, test «class, that was called as
ThislsTheTitleOfTheScenarioOutlineTest, was changed with some line of codes to be
more understandable about Rule 8. When the test class is run with the festng.xml file,
test outputs will be generated as Figure 3.15. Thanks to Rule 8, many different test cases

with the different parameter values could run with only these three test methods.

[RemoteTestNG] detected TestNG version 6.14.3
thisIsTheGivenSentence param is this_is_value_for_param_1
thisIsTheWhenSentence

thisIsTheThenSentence param is this_is_value_for_param_2
thisIsTheGivenSentence param is this_is_a_value_for_param_1
thisIsTheWhenSentence

thisIsTheThenSentence param is this_is_a_value_for_param_2

Figure 3.15. Output for Rule 8

17

BaseTestNG

+ driver: AndroidDriver

+ setup(): void

+ teardown(): void

Extends

ThisisTheTitleOfTheScenarioOutlineTest

/This is attribute field

<<Parameters>>
<<Test>>
+ thisisTheGivenSentenceTest(): void

<<Test>>
+ thisisTheWhenSentenceTest(): void

<<Parameters>>
<<Test>>
+ thisisTheThenSentenceTest(): void

Figure 3.16. Child of Base TestNG for Rule

<suite name="Suite"™
<test name="74129e81-7ce2-458b-8683-
0a235978dc98"> <parameter
name="delimited _parameter 1"
value="this_is _value for param 1">
</parameter>
<parameter
name="delimited _parameter 2"
value="this_is _value for param 2">
</parameter>
<classes>
<class name="Tests. ThisIsTheTitleOfTheScenarioOutline"
</class>
</classes>
</test>
<test name="7f935cad-8d28-4dc4-8fc0-725286b83187">
<parameter
name="delimited _parameter 1"
value ="this_is_a value for param_1">
</parameter>
<parameter
name="delimited _parameter 2"
value="this is _a_value for param 2">
</parameter>

Figure 3.17. Generated TestNG XML File for Rule 8

18

public class ThisIsTheTitleOfTheScenarioOutline extends
BaseTestNG{

//This is attribute field

(@Parameters({"delimited parameter 1"})
(@Test(priority = 0)
public void thisIsTheGivenSentence(String
param){ //firstly executed
System.out.println(
"thisIsTheGivenSentence " +
" param is " + param);

}

(@Test(priority = 1)

public void thisIsTheWhenSentence() {
//secondly executed
System.out.println("thislsTheWhenSentence");

}

(@Parameters({"delimited parameter 2"})

(@Test(priority = 2)

public void thisIsTheThenSentence(String param){
//thirdly executed
System.out.println(
"thisIsTheThenSentence " + " param is " + param);

Figure 3.18. Generated Test Method for Rule 8

3.2.6. Rule 9

Up to this rule, PageObject design pattern and TestNG parts are covered.
However, these two main concepts are not connected to each other. In other words,
inside of the test methods generated by Rule 5 are not filled with the proper line of
codes. Not only content of the test methods but also another tag structure, which was
called as dollars ($), and relation between dollars ($) and address sign (@) will be
covered in this section.

When the rule set, except Rule 8, is review, somehow the PageObject design
pattern methods, which were covered in Rule 2 and Rule 3, and the test methods, which

were focused on Rule 5, should work with together. To achieve this goal, § tag structure

19

and its relation with @ are thought. It has different adjective keywords such as
SENTERED, $OPENED, SCLICKED, S8ENABLED, $DISABLED. In relation
perspective, these § tags should be used with @ in Given, When and Then parts, which
are covered in SPL-AT Gherkin. In Given and When parts, while @PAGE should be
used only with SOPENED, $CLIKED should take part with @BUTTON. And also,
SENTERED ought to be used with @EDIT TEXT. In Figure 3.19, these correlations are
represented clearly with their identifier. In Then part, @PAGE should be use with
@MOVED, and also, @EDIT TEXT and @BUTTON ought to take part with
SENABLED or 8DISABLED, see also Figure 3.20. Briefly, these correlations should be
existed in Scenario Outline to fill inside of the test methods with the correct lines of

codes.

Relations for Given and When Parts

Identifier @ Tags $ Tags
C1 @PAGE $OPENED
c2 @BUTTON SCLICKED
Cc3 @EDIT_TEXT $ENTERED

Figure 3.19. Relations for Given and When Parts

Relations for Then Part

Identifier @ Tags § Tags
C4 @PAGE SOPENED
C5 @BUTTON SENABLED, $DISABLED

Cé @EDIT_TEXT SENABLED, $DISABLED

c7 @TEXT_VIEW $SHOWN

Figure 3.20. Relations for Then Part

Until this part of the Rule 9, correlations between @ and $ were mentioned
with their identifier. And now, converting these relations to lines of codes, which are
going to be set to inside of the test methods, will be focused. While focusing on any

correlation, it will be demonstrated as C identifier. For instance, C will be used to

20

refers relation between @PAGE and SOPENED in Given and Then parts. If C3 is
detected on Scenario Outline, then the PageObject design pattern method, that was
generated on Rule 2, will be written inside of the Given or When test method. And also,
if C2 is noticed, then the test method will be implemented with the method which was
generated on Rule 3. While code generation is understandable easily for Given and
When parts, on the other hand, it is not quite understandable for Then part.

In Then part, SOPENED, $ENABLED, $DISABLED and $SHOWN tags are
available for @PAGE, @BUTTON, @EDIT TEXT and @TEXT VIEW. If C4 is
detected with the <delimited> parameter in Then part, it is converted to
assertEquals(String actual, String expected) line of code into the Then test method,
which was focused on Rule 5. The critical part for this line of code is actual and
expected values, because it will be assertion part for the test scenario. In other words, it
will decide that the test is fail or not. To determine actual part, Appium driver method,
which is as called currentActivity() [10], will be used. In other words, actual part will be
assigned to returned value of this method. On the other hand, expected value could be
assigned easily with the value of the delimited parameter, which was occurred in
Examples Table in SPL-AT Gherkin, see also Rule 7. If one of the correlations, C5 or
C6 or C7, is detected on Then part, assertTrue(boolean condition) methods will take
part into the Then test method. The task for C5, C6 and C7, that should be considered, is
how we decide value of the condition parameter for assertTrue(Boolean condition)
method. To implement this task, isEnabled() [11] Appium driver method will be used. It
determines that element, which could be edit text or button for our domain, is currently
enabled or not. In other words, value of this method will be assigned to condition
variable, which is passed as parameter to assertTrue(...) method.

To sum up, implementation of the three test methods, which were focused on
Rule 5, was studied in Rule 9. Figure 3.21 is written to be more understandable for not
only this rule but also previous rules. If the rule set that is occurred from Rule 1 to Rule
9 is applied to Scenario Outline in Figure 3.21, UML diagram, in Figure 3.22, and
implementation of the classes, in Figure 3.23 and Figure 3.24, and also festng.xml file,
in Figure 3.25, is generated automatically. In other words, Scenario Outline that was
written with SPL-AT Gherkin is converted to implemented Mobile Application Test

Project.

21

@tag

Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario

Outline Given @PAGE this_is_identifier is SOPENED

When <parameter for edit text>is SENTERED on
@EDIT TEXT this_is_edit text identifier
And @BUTTON this_is_button_identifier is
$CLICKED Then Application is

$OPENED @PAGE <parameter for page>

Examples:

| parameter for edit text | parameter for page |
| "this_is value 1 for edit text" |"this is value 1 for page"||

"this_is_value 2 for edit text" | "this is value 2 for page

Figure 3.21. Sample Scenario for Rule 9

BasePage
- driver: AndroidDriver

- wait: WebDriverWait

click(String identifier): void
setText(String identifier, String text): void
getText(String identifier): String

Extends

ThisisidentifierPage

/Thiis is attribute field

+ setT
+clickThisisButtonidentifier() : void

BaseTestNG

+ driver: AndroidDriver

+ setup(): void

+ teardown(): void

/This s attribute field

<<Parameters>>
<<Test>>
+ thisisTheGivenSentenceTest(): void

<<Test>>
+ thisisTheWhenSentenceTes!(): void

<<Parameters>>
<<Test>
+ thislsTheThenSentenceTest(): void

Figure 3.22. Output UML applying Mapping Rule Set

"’

22

public class ThisIsIdentifierPage extends BasePage {
public ThisIsIdentifierPage(AndroidDriver driver,
WebDriverWait wait)

{

super(driver, wait);
/...
}

/*

* This method is Auto-generated by the rule 2.
& */

public void setThisIsEditTextldentifier(String
delimetedParameter){

super.setText(
"thisIsEditTextldentifier", delimetedParameter);

}

/*

* This method is Auto-generated by the rule 3.
& */

public void clickThisIsButtonldentifier() {
super.click("thisIsButtonldentifier");
}

Figure 3.23. Generated BasePage for Rule 9

23

public class ThisIsTheTitleOfTheScenarioOutline extends
BaseTestNG{

//This is attribute field
ThisIsldentifierPage page = new ThislsldentifierPage(driver,
wait);

(@Test(priority = 0)
public void
Given PAGE this is_identifier is OPENED(String param){
//firstly executed
//start appium here.

}

(@Parameters({"parameter for edit text"})
(@Test(priority = 1)
public void
When_parameter for edit text is ENTERED on EDIT TEXT this is
_edit_text identifier(String param){
//secondly executed
page.setThisIsEditTextldentifier(param);

}

(@Test(priority = 2)
public void
And BUTTON this_is_button identifier is PRESSED(){
//thirdly executed
page.clickThisIsButtonldentifier();

}

(@Parameters({"parameter for page"})
(@Test(priority = 3)
public void
Then_Application. MOVED PAGE parameter for page(String param){
//fourthly executed
assertEquals(param, ((AndroidDriver<MobileElement>)
driver).currentActivity());

}

}
Figure 3.24. Generated BaseTestNG for Rule 9

24

<suite name="Suite"™
<test name="74129e81-7ce2-458b-8683-
0a235978dc98"> <parameter
name="parameter_for edit text" value
="this is value 1 for page'> </parameter>
<parameter name="parameter _for page"
value="this is value I for page'>
</parameter>
<classes>
<class name="Tests. ThisIsTheTitleOfTheScenarioOutline">
</class>
</classes>
</test>
<test name="7f935cad-8d28-4dc4-8fc0-
725286b83f87"> <parameter
name="parameter_for edit text" value
="this _is value 2 for page'> </parameter>
<parameter name="parameter _for page"
value="this _is value 2 for page'>
</parameter>
<classes>
<class name="Tests. ThisIsTheTitleOfTheScenarioOutline">
</class>
</classes>
</test>
</suite>

Figure 3.25. Generated TestNG XML for Rule 9

25

CHAPTER 4

IMPLEMENTATION of the MAPPING RULE SET

In previous chapter, mapping rule set, that converts feature files, which are
written in SPL-AT Gherkin, to Mobile Application Test Project, which has two different
concepts as PageObject design pattern and TestNG parts, are explained step by step.
Object Oriented Programming (OOP) paradigm will be used to implement these rules to
Java language. Moreover, in design part, Unified Modeling Language (UML) will assist
to understand concepts of implementation part.

Firstly, all Gherkin keywords, which are Scenario Outline, Given, When, Then,
And, Example, Feature are translated to objects. In terms of OOP, when any feature file
is analyzed, the opinion that every Feature could has one or many Scenario Outlines is
realized. However, in this study, it should only one Scenario Outline. With these ideas,
Feature class is designed to have many Scenario QOutline objects to support future

works, in Figure 4.1.

Feature

+ scenarios: Scenariof]

K]

ScenarioOutline

Figure 4.1. UML for Feature and Scenario Outline

After designing Feature object, Scenario Outline was needed to extend Gherkin
keywords design part. In Gherkin, A Scenario Outline has not only many Steps, which
are Given, When, Then, And but also one Examples table [5]. According to this

argument, two different classes, which are Step and Example Data Table, are designed

26

as list attribute into the Scenario Outline class to support future works as previous. And
also, in Figure 4.2, name and id attributes are considered to identify Scenario Outline. In
the following part of the implementation, these identifiers will be used as test methods

and classes name.

+ scenarios: Scenariof]

ScenarioOutline

-id: String
—————@p| - steps : Step])

examples : ExampleDataTablel] €@

- name : String

Step ExampleDataTable

Figure 4.2. UML for Step and Example Data Table

Every line that is divided by Given, When, Then or And in Scenario Outline is a
Step in Gherkin [5]. To identify each Step, name, keyword and line attributes are put as
string, string, integer types respectively into Step class. While keyword is identifier for
Step, e.g. Given, name has whole sentence after the keyword. And also, line refers to
line number of the Step. Name attribute will be used as the test method name that was

focused on Rule 5.

ScenarioOutline

-id - Sting
@ - steps Stepl)

examples : ExampleDataTable()

‘ g

Figure 4.3. UML for Step and Scenario Outline

27

Apart from the first row, every row in Examples data table is executed on
Scenario Outline as test scenario [5]. So that, ExampleDataTable class, which was
introduced before, consists of list of Row class, that has list of cells as String, see also

Figure 4.4.

ExampleDataTable

- keyword : String

- rows : Row(]

1

Row

- id : String

- cells : String[]

Figure 4.4. UML for Example Data Table and Row

According to Gherkin keyword specifications [5], some of the keywords, which
are Scenario Outline, Given, When, Then, And, Example, Feature are converted to Java
classes, in Figure 4.5, to use following sections. Addition to them, these classes will be

called as Gherkin Plain Old Java Object (POJO) in the following parts.

+ scenarios: Scenario|
1
ScenarioOutline
1 -id : String
- steps : Step[] 1
- examples : ExampleDataTable[]
- name : String
Step ExampleDataTable
- line :int - keyword : String
- name : String - rows : Row([]
- keyword : String

Row
-id : String
- cells : String[]

Figure 4.5. UML for All Gherkin Keywords

28

One of the preliminary tasks to implement the Rule set is writing a parser to
parse Feature keyword to corresponding Gherkin POJO classes, that are shown in
Figure 4.6. A basic class, that is named as GherkinParser, is designed with the method,
called as gherkingToPOJO(..). It takes only one parameter, that is physical path of the
feature file written in SPL-AT Gherkin and returns parsed Feature class. So that, it has

one dependency to the Feature class.

RN G e A F G ey \

+ scenarios: Scenario[]
1

ScenarioOutline

1 - id : String
mmmm— steps : Step[]
- examples : ExampleDataTable[] L g

- name : String
Step ExampleDataTable

- line :int - keyword : String

- name : String - rows : Row[]

- keyword : String

Row

-id : String :
- cells : String| Use

GherkinParser
+ gherkinToPOJO(String filePath): Feature | T

Figure 4.6. UML with Gherkin Parser

Another task is finding the proposed tag structures, which are address sign (@)
and dollar sign ($), in Chapter 3. Considering consequences of different
implementation, an interface named as /7agFinder is designed with two methods, which
are findAddressSignTag(...) and findDollarSignTag(...). Both of them take two
parameters as list of Step and keyword as String. In other words, these methods find the

given keyword, such as PAGE, and returns the identifier of it.

29

<<Interface>>
ITagFinder

+ findAddressSignTag(Step]] steps, String keyword): String m I
+ findDolarSignTag(Step(] steps, String keyword): String H

FaY

& H 1

H | ScenarioOutline
} TagFinder ’ -id : String
@ .steps : Step[]
‘ - examples : ExampleData’ -

- name : String

\/
Step ExampleDataTable

| | U;u
-line : int - keyword : String !
- hame : String - rows : Row([]

- keyword : String

Row

-id : String
- cells : String[]

| GherkinParser |

|¢ gherkinToPOJO(String filePath): Feature T

Figure 4.7. UML with Tag Finder

The most complex part is Generator concept, in Figure 4.8, since all business
logics that related with rule set are handled in this concept. As first step, FileGenerator
abstract class is designed to handle common operations such as writing a content to any
file respect to file path or writing content of the file to console. And also, as child of the
FileGenerator class, two different file generators, which are ClassFileGenerator and
XMLFileGenerator abstract classes, are designed. In ClassFileGenerator class, there are
helper methods to create java methods or inject some line of codes to content of the
given method. And also, it has a method to inject some annotations [12] to content of
given method content as parameter. It also has two children classes which are
BasePageClassGenerator —and TestNGClassGenerator. In a few words,
BasePageClassGenerator and TestNGClassGenerator are responsible for first part of
the rule set, which is from Rule 1 to Rule 3, and second part of the rule set, which is

from Rule 3 to Rule 9, respectively. On the other hand, XMLFileGenerator is less

30

complex than ClassFileGenerator. Because it has only one child class, which is named
as TestNGXMLFileGenerator. The child class is only responsible for testng.xml file,

which is focused on Rule 8.

<<abstract>>
FileGenerator

getAbsolutePath(): String
isFileExist(String fileName): boolean
writeToFile(String fileName, String content): boolean

writeContentToConsole(String fileName)
m‘“
<<abstract>>
XMLFileGenerator
<<abstract>>
ClassFileGenerator # injectTag (String parentTag, String childTag): String
injectMethod(String classContent, String methodContent): String

injectAnnotation(String methodContent, String annotationContent): String /
createMethod(String methodName, String methodContent, String methodParameter): String ‘

(abstract)
createCl String String Extends
Extends.
TestNGXMLFileGenerator
{override}
+ getAbsolutePath(): String
+ createXMLFile(Scenario scenario): S
BasePag TestNG
- ITagFinder: tagFinder {override)
+ getAbsolutePath(): String
{override}
+ getAbsolutePath(): String {override)
createC: (String String
{override}
createCl (String String + createClass(Scenario scenario) : String
< dC tText(String edit ifier): String Vith on(Stri String methodParameter, String annotationContent)
- createMethodContentForButton(String buttonidentifier): String
+ createClass(Step]] steps) : String

Figure 4.8. UML with Generators

Java Console Application, in Figure 4.9, with Main class is generated to execute
these concepts on console application, for now. However, these concepts could be

improved with web page or any Graphical User Interface framework as future work.

31

il
E
i:

g%g}
i
i

7

[43

-
§ <<aDSTACt>>
mathoaContent, annotatonContent): St AMLFieGenerator
mm-{’nﬂnmm
(sbsrch # injectTag (String parentTag, String childTag): Sking
createClassShelaton(String
L)
T
BasePageClassGenerator TestNGCiassGenerator | TestNGXMLFileGenerator
. (avorioe)
'+ getAbioiutePath(). Sting
’m-n + creawClassiSconario sconave : String
L | | R S esmteones
+ createClassiStegi] steps : String
| GherkinParser]
Lo ghaninToPOUOSIrag tePa: Fosture |

Figure 4.9. UML for Implementation of The Mapping Rule Set

CHAPTER 5

TOOL SUPPORT

Some setups are needed to run implementation of the proposed test method
generation technique. In this chapter, these tools and libraries are going to be explained
step by step. End of the chapter, anyone who is interested in proposed technique can

understand usage of the technique on any local computer.

5.1. Eclipse

Eclipse (https://www.eclipse.org) is one of the popular Integrated Development
Environment (IDE) for Java developers. During the study, Eclipse IDE for Java
Developers Neon 3 Release 4.6.3 is used and anyone can download it from

https://www.eclipse.org/downloads address.

5.2. Appium

Appium’s (http://appium.io) desktop application is needed to execute Java client
project on any real device or emulators. During the study, Appium desktop application
for Mac Version 1.12.1 is used. It also supports Linux and Windows operating systems.

Everyone can download it from http://appium.io/downloads.html address under Appium

Desktop Apps title.

5.3. Creating Maven Project

Apache Maven (https://www.maven.apache.org) is tool to build and manage

Java projects. After downloading Eclipse IDE, an empty maven project could be created

under File > New > Project path (Figure 5.3).

33

5.4. Adding Libraries to Maven Project

If maven project is created successfully, Project Object Model (POM) xml file is
created under root directory of the project. In pom.xml file, any library could be added
easily with dependency tag as child of the dependencies tag. Six libraries have to be
added on the project which are, testng, appium-java-client, cucumber-core, cucumber-

java, cucumber-testng and gson.

5.5. Adding Implementation of The Mapping Rule Set to Maven

Project

After adding required libraries, implementation of the mapping rule set, which is
explained in Chapter 4 with UMLs, could be added as hardcoded class by class to the
maven project. The implementation is developed in Java language with twenty-three
classes. All classes are going to be available in GitHub repository. Final skeleton of the
project is shown in Figure 5.1. In File package, java and xml file generators, which are
explained in Figure 4.8, are located. In GherkinReader.GherkinPOJO package, each
concrete component, which are described in Figure 4.5, in Gherkin is implemented. And
also, in Utils package, some configuration classes with static variables such as
describing @PAGE, $CLICKED string values in TagConfiguration.java or connection
strings for mobile device under test in MobileConfiguration.java are developed.
Additionally, Feature directory also should be created in the project because Scenario
Outlines, which are written in SPL-AT Gherkin, is going to be stored in that location.
Also, MobileConfiguration.java class should be changed based on application and
mobile device, which are going to be tested. When MainProgram.java class is executed,
children of the BasePage and BaseTestNG classes are going to be generated
automatically in Pages and Tests directories respectively. Please do not forget refreshing

the project after executing MainProgram.java class.

34

¥ &fy > sre
v i File
» |J) BasePageClassGenerator.java
2 1’}3 ClassFileGenerator.java
» [Jf FileGenerator.java
> Q} TestNGClassGenerator.java
» |/} TestNGXMLFileGenerator.java
» [} XMLFileGenerator.java
¥ 1% > GherkinParser
» I > GherkinParser.java
¥ 1§ > GherkinParser.Finder
» [BITagFinder.java
» |J) TagFinder.java
¥ 13 GherkinReader.GherkinPOJO
» |1} Element.java
» 4} Example.java
» 11} Main java
» [J] Row.java
> |1} Step.java
¥ 4 > Pages
» ./} BasePage.java
» {3 Runner
¥ 3 > Tests
» |J) BaseTestNG.java
v i1 > utils
» [} > BasePageClassConfiguration.java
> [J} GherkinStepConfiguration.java
» [J) MobileConfiguration.java
» [J] StringUtils.java
» |4} TagConfiguration.java
» 1} TestNGClassConfiguration.java
> B\ JRE System Library [JavaSE-1.8]
> B Maven Dependencies
P B, TestNG
Yy Feature
@CreateNewPassword.feature

Figure 5.1. Complete Project Structure

CHAPTER 6

CASE STUDY

KidsBusO system has five different mobile applications which are KidsBusO
School Manager, KidsBusO School Security, KidsBusO Hostess, KidsBusO School
Staff and KidsBusO Parent. And also, these mobile applications have different features
in terms of their assignments. For instance, while any user from KidsBusO Hostess is
responsible for students, who are using his or her bus, users from KidsBusO School
Security could only deliver students, who will be picked up by trusted parent.

Figure diagrams [13] are tool to represent the feature options in SPLs for user
selection. Figure 6.1 is given as an example for feature diagrams. It is a SPL for
KidsBus 4, that is chosen as case study in proposed study. KidsBusa is a platform that is

developing by Delta Smart Technologies Inc. (www.deltasmart.tech). It provides

different types of mobile applications, which are Parent, School Admin, School
Security, Hostess and Bus Company, to manage school bus transportation effectively.
The root of feature diagram represents the SPL and the nodes are features, which can be
mandatory or optional, represented by filled circle and empty circle respectively.
Product diagrams, similar to feature diagrams, are user-centric representations of
product feature configurations, where all feature selections are made for the product. In
Figure 6.1, an example product diagram shows selected features of the product, that is
called Gold KidsBusa. Filled and empty circles are removed because the feature
selections are completed.

The proposed feature-oriented testing approach with SPL-AT Gherkin provides
automatically acceptance tests generation with respect to selected feature combination in
product diagram. Analysts and testers could write scenario for customized product in
SPL-AT Gherkin, which has a tag structure to refers concrete objects, to generate test
methods. The proposed approach follows agile practices for developing software
product lines proposed by de Souza and Vilain [14].

Implementation of the mapping rules, which was explained in Chapter 4, will be

applied on a mobile application, which is called as KidsBusO School Security. School

36

securities, in KidsBusO environment, can display the list of students whom will be
taken from the school by an adult. While running the implementation of the mapping
rules on the mobile application, five different pages, which are getting SMS code,

verifying the SMS code, creating new password, main and login pages will be tested.

Student get on/off info
o Studentdrop by
parent info
Student pick-up by
parent Info
Get absence report

Get notifications

Change requests
Get notifications

Bus Company

KidsBus SPL C| schoal Security

School Admin.

Figure 6.1. SPL Feature Diagram for KidsBusa

Manage bus route
Track students wrt bus

Student get on/off info

Bus Company
School Securly Student pick-up by
parent info
Get notlitications
Change requests

Get notifications

Gold KidgsBus
Product

School Admin.

Figure 6.2. SPL Product Diagram for Gold KidsBusa

In the first page, getting SMS code shown in Figure 6.3, there are two different
user interface components which are button and edit text. Users can enter their
cellphones on edit text and can send the cellphone to KidsBusO system with the button.
If the cellphone number exists in KidsBusO system as school security role, SMS which
has verification code will be send the cellphone. Otherwise, the application remains the
same page with an error message. Two different test scenarios will be executed on this

page. In the first scenario, cellphone number, which belongs to any school security role,

37

will be executed and then assert that the page is changed or not. On the other hand, in
the second scenario, cellphone number, does not belong to any school security role and
expected that current page will not be changed. When the scenario outline, shown in
Figure 6.4, is executed with the implementation of the mapping rules, mobile
application test codes will be generated automatically and run on the mobile application,
which is installed on any mobile device. Addition to them, the page also has a TextView
component shown as “KidsBus School Security” in Figure 6.3. Another test scenario,

which is shown in Figure 6.5, will be written to be ensure that the Title is shown or not.

¥ 8:00
KidsBus.SchoolSecurity

KidsBus School Security

RECEIVE ACCESS CODE

A
O
0

Figure 6.3. Screen for Page Getting SMS Code

Feature: Getting SMS Code

Scenario Outline: Getting SMS code scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
When <username> is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
Then @PAGE is SOPENED <page>.

Examples:

username	page
“5454339401”	“.Activity.CommitVerificationCodeActivity”
“5359144691”	“.Activity.ReceiveVerificationCodeActivity”

Figure 6.4. Scenario for Getting SMS Code

38

Feature: SMS Code Title

Scenario Outline: SMS Code Title scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
Then @TEXT VIEW receive access activity app label

is SSHOWN

Figure 6.5. Scenario for Getting SMS Code Title

The second page or verifying the SMS code page, shown in Figure 6.7, has five
different user interface components which are button, edit text and three different text
views, like getting SMS code page. Users, who has school security role in KidsBusO
system, should enter the verification code, which is send via SMS to the cellphone, to
create user password in the third page, which is called as creating new password page.
To test this feature, KidsBusO system generates same verification code for all test users.
So that, mobile application test project does not need to read content of the SMS. In
other words, mobile application test project assumes that verification code is 112233, if
the cellphone is verified by KidsBusO system as school security role. Two different test
scenarios, in Figure 6.8, will be executed as valid and invalid verification code. These
scenarios could be extended with different verification code combinations as included
character etc. because the code should be formed with numbers. Addition to these two
scenarios, three different scenarios for text views, which are title of the page, send again
and timer for passcode, will be generated to ensure visibility of them in Figures 6.6, 6.9

and 6.10.

Feature: Verify SMS Code Send Again Text
Scenario Outline: Verify SMS Code Send Again Text scenario Given
@PAGE ReceiveVerificationCodeActivity is SOPENED When
is SENTERED on @EDIT TEXT usernamelnput And
@BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED
Then @TEXT VIEW send again is SSHOWN Examples:

| username |
| "5454339401" |

Figure 6.6. Scenario for Send Again Text

39

¥iso00
KidsBus.SchoolSecurity

Please enter the verification code that sent to
your personal phone via SMS

end Again
VERIFY

d @)]

Figure 6.7. Screen for Verify SMS Code

Feature: Verify SMS Code

Scenario Outline: Verify SMS Code scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
When <username> is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
Then @PAGE CommitVerificationCodeActivity is SOPENED And
<passcode> is SENTERED on @EDIT TEXT activation_code
And @BUTTON loginButton is SCLICKED again
And @PAGE is SOPENED <second page>

Examples:
| username | passcode | second page |
| "5454339401" | "111111" |
" Activity.CommitVerificationCodeActivity
| "5454339401" | "112233" | ". Activity.CreateNewPasswordActivity"|

"l

Figure 6.8. Scenario for Verify SMS Code

40

Feature: Verify SMS Code Count Down Timer Text

Scenario Outline: Verify SMS Code Count Down Timer Text scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
When is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED

Then @TEXT VIEW countdown_timer is $SSHOWN

Examples:

| username |
| "5454339401" |

Figure 6.9. Scenario for Count Down Timer Text

Feature: Verify SMS Code Title

Scenario Outline: Verify SMS Code Title scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
When is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED
Then @TEXT VIEW entry approvement info textis SSHOWN
Examples:

| username |
| "5454339401" |

Figure 6.10. Scenario for Title Text

In the third page or creating new password page, shown in Figure 6.11, users,

who are in school security role in in KidsBusO system, could create new password with

two different edit text and one button user interface components. The critic requirement

for this page is that user should enter same password into the these edit text components.

Because, KidsBusO system should be ensured that given password is

confirmed by the user. The test scenario outline, shown in Figure 6.12, is created to test

this feature with two different test scenarios as password confirmed and not. Another

test scenario could be added as content of the passwords such as strong, weak or non-

digit password. And also, the page has an information text view, which staring with

“KidsBus School Security is an application...” sentence in Figure 6.11. An

additional scenario also could be developed for this Ul component shown in Figure

41

¥hs00
KidsBus.SchoolSecurity
ol appl for you
rd v nter
atio

Figure 6.11. Screen for Create New Password

Feature: Create New Password

Scenario Outline: Create new password scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
And <username> is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED
And <passcode> is SENTERED on @EDIT TEXT
activation_code And @BUTTON loginButton is SCLICKED again
And @PAGE CreateNewPasswordActivity is SOPENED
When <new password> is SENTERED on @EDIT TEXT
new_password
And <new password confirm>is SENTERED on
@EDIT TEXT confirm_new_password
And @BUTTON button_save new_password is SCLICKED
Then @PAGE is SOPENED <result page>

Examples:

| username | passcode | new_password | new password confirm |
result page |
| "5454339401" | "112233" | "555666" | "555555"
| ".Activity.CreateNewPasswordActivity" |

Figure 6.12. Scenario for Create New Password

42

Feature: Create New Password Title
Scenario Outline: Create New Password Title scenario

Given @PAGE ReceiveVerificationCodeActivity is SOPENED
And <username> is SENTERED on @EDIT TEXT
usernamelnput And @BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED
And <passcode> is SENTERED on @EDIT TEXT
activation_code And @BUTTON loginButton is SCLICKED again
And @PAGE CreateNewPasswordActivity is SOPENED
Then @TEXT VIEW titleTextView is SSHOWN
Examples:

| username | passcode |

| "5454339401" | "112233" |

Figure 6.13. Scenario for Create New Password Title

After user, who has School Security role, is introduce himself or herself to the
application, main page, which indicates list of students whom will be taken from the
school by an adult, is opened shown in Figure 6.14. The page includes one text view on
top of itself to show user’s name and surname. A scenario could be written to test this

text view is shown or not, see also Figure 6.15.

AAEE Y@ Xil 14% <21 15:51

The Students Who Are Not Going to
Use School Bus

Security Name

Today May 13,2019

D 0

(n]

Figure 6.14. Main Screen

43

Feature: Main User Info Title

Scenario Outline: Main User Info Title scenario
Given @PAGE MainActivity is SOPENED
Then @TEXT VIEW main_activity user info label is SSHOWN

Figure 6.15. Scenario for Main Title

Any user, who is identified by KidsBusO, can log out from the application.
Afterwards, in any time, user can log in to the application with credentials which are
defined on create new password page. Login page totally includes five different Ul
components which are welcome text view, username edit text, password edit text, login
button and forgot password text view, see also Figure 6.16. One scenario with two
different cases could be written to test integrity of the credentials as valid and invalid,
see also Figure 6.17. Addition to this test scenario, two different scenarios which are
related with visibility of the text views also could be generated, see also Figure 6.18 and

Figure 6.19.

¥is00
KidsBus.SchoolSecurity

Welcome

F
E F) °©

Forgot password / Sign Up

Figure 6.16. Login Screen

44

Feature: Login

Scenario Outline: Login scenario
Given @PAGE MainActivity is SOPENED
And @BUTTON logout is SCLICKED
And @PAGE LoginActivity is SOPENED
When is SENTERED on @EDIT TEXT
usernamelnput And is SENTERED on @EDIT TEXT
passwordInput And @BUTTON loginButton is SCLICKED
Then @PAGE is SOPENED .

Examples:

username	password	second page
"5454339401"	"123456"	". Activity.MainActivity"
"5454339401"	"111111"	".Activity.LoginActivity"

Figure 6.17. Scenario for Credential Integrity

Feature: Login Forgot Password Title

Scenario Outline: Login Forgot Password Title scenario
Given @PAGE MainActivity is SOPENED
And @BUTTON logout is SCLICKED
And @PAGE LoginActivity is SOPENED
Then @TEXT VIEW forgottenPassword is SSHOWN

Figure 6.18. Scenario for Forgot Password Title

Feature: Login Welcome Title
Scenario Outline: Login Welcome Title scenario
Given @PAGE MainActivity is SOPENED
And @BUTTON logout is SCLICKED
And @PAGE LoginActivity is SOPENED
Then @TEXT VIEW welcome is SSHOWN

Figure 6.19. Scenario for Welcome Title

In Chapter 6, five different pages in KidsBusO School Security mobile
application, which are getting SMS code, verifying the SMS code, creating new
password, main and login, are tested with the twelve different feature files, that is
written in SPL-AT Gherkin. While five different children of the BasePage (see also
Chapter 3.1) classes are created with the mapping rules, and also, twelve different
children of the BaseTestNG (see also Chapter 3.2,) classes are generated. Fifteen
different test case scenarios are also covered with generated mobile application test

project.

45

Test reports of these scenarios are represented step by step as fail or passed by
eclipse console for TestNG framework, see also Figure 6.20. In other words, any
particular study for Test Reporting is not covered in scope of the thesis. Custom test
report generation also is easy to handle with Listeners and Reporters, which implement
org.testng.ITestListener and org.testng.IReporter interfaces respectively, in TestNG
framework. Addition to them, while the report could be generated as PDF format which
is observed end of test scenarios execution, it also monitored as real-time with Graphical
User Interface (GUI) supports such as progress bar etc. [18].

Test scenarios also could be extended with different combination of the
Examples data table in case study. While the scenarios are increasing, automatic code
generation time is also increasing. Generation time in milliseconds for each scenario are
demonstrated in Figure 6.2. These values are calculated with System.currentTimeMillis()
method which returns the current time in milliseconds from January 1, 1970 Universal
Time Coordinated (UTC) to current time. Total generation time for implementation of
the twelve test scenarios, which are written in SPL-AT Gherkin, is three hundred and
thirty-seven milliseconds. In other words, acceptance test project, which covers twelve
different test scenarios, for KidsBusO School Security mobile application is generated

in three hundred and thirty-seven milliseconds without any test framework knowledge.

0 @) i i i &
. Problems @ Javadoc [1,) Declaration B Console q‘ Results of running suite £3 5
% 00 QRE-B v @
Search @ passed:0 @ falled: 27 skpp..: 117 [NANRMNG
s AIlLT Fai ac
= ‘ests | [c]= Failed Tests | Summary B
¥ fii]Suite (0/27/117/0) (1.346 5) Failure Exception g0 T

V. [l c38d6el0-8f67-470c-0837:626abl7ce7 1L 7y org.openqa.selenium.WebDriverException: Connec’

s . .
£it] Tests.LoginscenaricTest Build info: version: '3.141.69), revision: 'e82be7d358'

MC 493286“'[)9“'484?-8186-4660%20”41 System info: host: 'Delta-MacBook-Pro.local', ip: 'fe80 g

M- Tests.LoglnscenartoTest Driver info: driver.version: AndroidDriver E]
Bl sglup (0.019 s)_ s at io.appium.java_client.remote.AppiumCommandE

i Glven PAGEMalnActivity_Is_OPENED at java.util.Optional.orElseGet(Optional.java:267) g

And_BUTTON_logout_is__CLICKED (0
And_PAGE_LoginActivity_is_ OPENED
When_username__is_ ENTERED_on__El

at io.appium.java_client.remote.AppiumCommandE Ox
at org.openga.selenium.remote.RemoteWebDriver.
" at io.appium.java_client.DefaultGenericMobileDrive
And_password__is_ ENTERED_on__EDI z i - 5 2
2 7 at io.appium.java_client.AppiumDriver.execute(Apg
.|And_BUTTON_loginButton_is__CLICKEI i R i . iy
- at ig,appium.java_client.android.AndroidDriver.exet
1.1 Then_PAGE_is__MOVED__second_page__ (0 s)) i
. == s Urg.openga.selenium.remote.RemoteWebDriver.
. |teardown (0 s) 3 A
. g _ at org.openga.selenium.remote.RemoteWebDriver.
> gt Tests VerifySMSCodeCountDownTimerTe»

at io.appium.java_client.DefaultGenericMobileDrive
» p:f3ad6de6-ce82-48dd-9a96-bda8f269b1b7 A R ! 3 g 2 .
e S s S S G at io.appium.java_client. AppiumDriver.<init> (Appiu

A0 100 100 100000 1

Figure 6.20. Test Results

46

Execution Order Scenario Name Generation Time in Ms
1 Login Scenario 229
2 Verify SMS Code Count Down Timer Text 13
3 Create New Password Title 14
4 Verify SMS Code 12
5 Forgot Password 1"
6 Verify SMS Code Title 10
7 Login Welcome Title 7
8 Main User Info Title 7
9 Create New Password 15
10 Getting SMS Code 8
1 SMS Code Title 4
12 Send SMS Code Again 7
- - 337

Figure 6.21. Scenarios’ Generation Time in Milliseconds

47

CHAPTER 7

RELATED WORKS

7.1. Robot Framework

Robot framework which is open source automation framework hosted on GitHub
for acceptance testing, acceptance test driven development, and robotic process
automation [16]. It is also released under Apache License 2.0 and anyone can download
it from official web page which is robotframework.org. Firstly, it was developed by
Nokia Networks (networks.nokia.com). In these days, it is supported by its own
foundation which is called as Robot Framework Foundation
(robotframework.org/foundation/). Also, it uses keyword-driven testing approach, which
is called as table-driven testing or action word-based testing.

When Robot framework and proposed feature-oriented testing approach with
SPL-AT Gherkin are compared, not only similarities but also differences are found.
And, they are going to be focused in the following paragraphs.

The framework syntax has different special keywords, which are Settings,
Variables, Keywords and Test Cases to used different purposes, see also Figure 7.1. So
that, everyone who is interested in Robot framework has to learn its own syntax firstly.
On the other hand, in proposed approach, everyone, who has experience about Gherkin,
can adopt SPL-AT Gherkin in a short time with cost of learning tags which are
addressing (@) and dollars ($) signs. While test data and identifier of any user interface
component such as Button could be written in **Variable** section as weak practice in
robot framework, this differentiation is already handled in SPL-AT Gherkin with
addressing sign (@) and Examples data table Figure 7.2 and Figure 7.3 compare robot
framework with SPL-AT Gherkin.

There are also similarities between Robot Framework and proposed feature-
oriented testing approach with SPL-AT Gherkin. Major similarity is that both of them
are working on acceptance testing and acceptance test driven development and generate
the test project automatically based on their syntax rules. And also, they hide technical

details with spoken language keywords such as **Test Cases**, Click Element,

48

@EDIT TEXT and SENTERED to be clear for project team that includes not only

technical but also non-technical members.

*kE Settings ***
Settings here.

*** Variables ***
Variables here.

% Test Cases *
Test Cases here.

% Keywords *
Keywords here.

Figure 7.1. Robot File with Empty Skeleton

*H%k Settings ***
Library AppiumLibrary

#% Variables ***

${BTN ID} = id=this_is_button_identifier
${EDITTEXT ID} =id=this is edit text identifier
${CONTENT} = this_is_content

*#%% Test Cases ***

Add Content And Submit Button Is Clicked
Add Content $ {CONTENT}
Submit Button

Rk Keywords ***
Submit Button
Click Element ${BTN ID}

Add Content

[Arguments] ${content}
Input Text $ {EDITTEXT ID} ${content}

Figure 7.2. Sample Robot with Appium

49

Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline

Given ...
When is SENTERED
on @EDIT TEXT this_is_edit text identifier
And @BUTTON this_is_button_identifier is SCLICKED
Then ...

Examples:

| delimited parameter |
| "this_is content" |

Figure 7.3. Sample SPL-AT Gherkin

7.2. Cucumber

Cucumber is a tool that scans executable specifications, which are written in
plain text, and validates the software which is responsible for those specifications [17].
It is also based on Behavior Driven Development, that is briefly explained in Chapter 2,
to write acceptance tests. Cucumber indicates that the software is success or failure
based on each scenario. It has also MIT License and everyone can follow and download
it from its official GitHub page (https://github.com/cucumber). Each scenario in
Cucumber is written in Gherkin, that is also explained in Chapter 2, therefore, everyone,
who wants to use Cucumber tool, should learn Gherkin syntax rules.

The main similarity between Cucumber tool and proposed feature-oriented
testing approach with SPL-AT Gherkin is language of the acceptance scenarios. In other
words, anyone, who worked before with Cucumber, can adapt SPL-AT Gherkin in a
short time. Another similarity is that both of them generate acceptance test methods and
classes automatically based on their domain specific languages.

While proposed feature-oriented testing approach with SPL-AT Gherkin is
automatically implement the generated acceptance test methods and classes, Cucumber
only generates skeleton without any implementation. For instance, when sample
scenario in Figure 7.4, which is written in Gherkin, is run, Figure 7.5 is generated

automatically by Cucumber.

50

Feature: Is it Friday yet?
Everybody wants to know when it's Friday

Scenario: Sunday isn't Friday

Given today is Sunday
When I ask whether it's Friday yet
Then I should be told "Nope"

Figure 7.4. Sample Scenario in Gherkin for Cucumber

@Given(""today is Sunday$")
public void today is Sunday() {
//' Write code here that turns the phrase above into //concrete
actions throw new PendingException();
}

@When(""I ask whether it's Friday yet$")
public void i_ask whether it s Friday yet() {
// ' Write code here that turns the phrase above into //concrete
actions throw new PendingException();
}

@Then(""I should be told \"(["\"]*)\"$")
public void i_should be told(String argl) {
//' Write code here that turns the phrase above into //concrete
actions throw new PendingException();
}

Figure 7.5. Generated Test Method by Cucumber

7.3. Gauge

Gauge is open source framework for test automation especially acceptance tests
(https://gauge.org/). It is also released under GNU Public License version 3.0
(http://www.gnu.org/licenses/gpl-3.0.txt) and available its official GitHub page
(https://github.com/getgauge/gauge). It has own syntax that is not Given-When-Then
style, however it is understandable for everyone like Gherkin. It works with different
languages such as JavaScript, C#, Java, Python, Ruby.

The common purpose for Gauge and proposed solution is generating acceptance
test cases against software which has User Interface components. Gauge works with

Taiko (https://github.com/getgauge/taiko), which is a free and open source browser

51

automation tool, to generate test cases. Taiko works on Linux, MacOS and Windows,
however, it supports Chrome web browser because it uses the Chrome DevTools API
(https://chromedevtools.github.io/devtools-protocol/tot/Browser). As an example, the
specification file shown in Figure 7.6, which is written in Gauge syntax, generates the

step implementation file shown in Figure 7.7, that uses Taiko automation tool.

Search Google

* Goto Google's search page
* Search for "github Taiko"
* Page contains "getgauge/taiko"

Figure 7.6. Sample Scenario in Gauge Syntax

/* globals gauge*/

"use strict";

const { openBrowser,write, closeBrowser, goto, press,text, contains } =
require('taiko');

const assert = require("assert");

const headless = process.env.headless chrome.toLowerCase() === 'true';

beforeSuite(async () => {
await openBrowser({ headless: headless })

1

afterSuite(async () => {
await closeBrowser();

1

step("Goto Google's search page", async () =>
{ await goto('http://google.com");

1

step(""Search for <query>", async (query) => {
await write(query);
await press('Enter’);

1

step(""Page contains <content>", async (content) =>
{ assert.ok(await text(contains(content)).exists());

1

Figure 7.7. Implementation File for Gauge

52

CHAPTER 8

CONCLUSION

In this study, a feature-oriented testing approach is proposed for platform-based
SPLs through a novel extension to Gherkin called SPL-AT Gherkin and a novel
automatic test method technique based on TestNG framework.

KidsBusO system, which is platform that manages the school bus transportation
process, is selected as a case study. Five different pages in KidsBusO School Security,
which are getting SMS code, verifying the SMS code, creating new password, main and
login are tested with twelve different feature files written in SPL-AT Gherkin. These
feature files generate five and twelve different children of the BasePage and
BaseTestNG classes respectively. And also, fifteen different test cases are covered
without any technical implementation such as writing test suite or method in TestNG
framework with these classes. The test cases could be increased with additional feature
files that have different combination of test data on Examples data table. In terms of test
case generation, future task is increasing test cases using reusable feature files. Thanks
to more test cases, coverage percentage could be rising. In other words, generating more
test cases using less feature file is one of the objectives.

While generating test cases during case study, importance of execution order for
complete test scenarios such as Getting SMS code scenario (Figure 6.4) and Main User
Info Title scenario (Figure 6.15) was observed. Because, the user should be
authenticated by the KidsBusO API to reach main page in KidsBusO School Security.
In other words, some test scenarios have to be run before the others. To solve this
challenge, a test case management tool for acceptance tests that are generated by feature
files written in SPL-AT Gherkin is going to be developed as another future work. The
tool could be an extension for SPL-AT Gherkin such as another tag structure like
address sign (@) or dollar sign ($) or a platform that has some Ul components to be
more understandable and administrable by project management team. While developing
automatic test method technique that is explained in Chapter 4 Implementation of The
Mapping Rule Set, the solution is designed based on SOLID principles of object-

oriented programming [19], which was introduced by Robert C. Martin, as much as

53

possible. Addition to it, connection the proposed approach with input contract testing
based on Event Sequence Graphs [15] is planned, so that coverage-based test generation

can be achieved for platform-based SPLs.

54

[1]

2]

[3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Introducing BDD. (2017, February 09). Retrieved April 15, 2019, from
https://dannorth.net/introducing-bdd/#translations

Bliki: GivenWhenThen. (n.d.). Retrieved April 15, 2019, from
https://www.martinfowler.com/bliki/GivenWhenThen.html

Four-Phase Test. (n.d.). Retrieved April 15, 2019, from http://xunitpatterns.com/Four
Phase Test.html

Bliki: PageObject. (n.d.). Retrieved April 15, 2019, from
https://martinfowler.com/bliki/PageObject.html

Gherkin Reference. (n.d.). Retrieved April 15, 2019, from
https://docs.cucumber.io/gherkin/reference/

Welcome. (n.d.). Retrieved April 15, 2019, from https://testng.org/doc/index.html

UDID. (2019, February 01). Retrieved April 15, 2019, from
https://en.wikipedia.org/wiki/UDID

(n.d.). Retrieved April 15, 2019,
from https://testng.org/doc/documentation-main.html

Universally unique identifier. (2019, April 15). Retrieved April 15, 2019, from
https://en.wikipedia.org/wiki/Universally unique identifier

Edit this Doc Get Current Activity. (n.d.). Retrieved April 15, 2019, from
http://appium.io/docs/en/commands/device/activity/current-activity/

Edit this Doc Is Element Enabled. (n.d.). Retrieved April 15, 2019, from
http://appium.io/docs/en/commands/element/attributes/enabled/

Annotations Basics. (n.d.). Retrieved April 15, 2019, from
https://docs.oracle.com/javase/tutorial/java/annotations/basics.html

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst, 1990.

D. S. de Souza, P. Vilain. “Selecting Agile Practices for Developing Software Product
Lines”, International Conference on Software Engineering & Knowledge Engineering
(SEKE 2013), 220-225, 2013.

T. Tuglular, F. Belli, and M. Linschulte. Input contract testing of graphical user
interfaces. International Journal of Software Engineering and Knowledge Engineering,
26(02), pp.183-215, 2016.

55

[16]
[17]

[18]

[19]

Robot Framework. (n.d.). Retrieved May 3, 2019, from https://robotframework.org/

Cucumber. (n.d.). Retrieved May 13, 2019, from https://cucumber.io/

(n.d.). Retrieved June 10, 2019, from
https://testng.org/doc/documentation-main.html#logging

Martin, R. C. (2000). Design principles and design patterns.
Object Mentor, 1(34), 597.

56

