

Domain-Specific Modeling Based Feature-
Oriented Automatic Test Generation Methodology

for Software Product Lines

A Thesis Submitted to
the Graduate School of Engineering and Science of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Sercan ŞENSÜLÜN

May 2019

İZMİR

ACKNOWLEDGMENT

I would like to thank my advisor, who supports me not only academic studies but

also industrial practices, Assoc. Prof. Dr. Tuğkan TUĞLULAR. I am sure that we are

going to create novel studies in the future like this study.

I also acknowledge to company, which is called as Delta Smart Technologies Inc.,

and Tolgahan OYSAL who is project manager and founder of Delta Smart

Technologies. Thanks to him, proposed solution is proved by a case study.

The research in this thesis is supported by The Scientific and Technological

Research Council of Turkey (TUBITAK) under the grant 117E884. The research in this

thesis is accepted as a research paper titled as SPL-AT Gherkin: A Gherkin Extension

for Feature Oriented Testing of Software Product Lines to the Software Test

Automation Workshop 2019 co-located with Computer Software and Application

Conference (COMPSAC – STA 2019).

Besides, I wish to express my special thanks to my dear friends Gülce ABATAY

and Göksu Naz UĞURTAŞ for their technical help and support.

Finally, I am grateful to my mother Veliye ŞENSÜLÜN, my father Sabri

ŞENSÜLÜN, my big brother Sedat ŞENSÜLÜN and my grandmother Emine

YILMAZ. They always encourage me for my academic researches. I would never

complete this study without their spiritual support.

ÖZET

YAZILIM ÜRETİM HATLARI İÇİN ALANA ÖZGÜ MODELLEME
TEMELLİ ÖZELLİK ODAKLI OTOMATIK TEST ÜRETME

METODOLOJİSİ

Bulut platformları yazılım ürün hatlarına (YÜH) dönüşmektedir. Bu dönüşümle

birlikte müşterinin seçtiği özelliklere sahip ürünlerin test edilmesi de büyük bir önem

kazanmaktadır. Yazılımın kullanıcının ihtiyaçları doğrultusunda olup olmadığına karar

vermek için kabul testleri (KT) kullanılır. Yazılım geliştirme döngüsünde değişen

kullanıcı gereksinimleriyle veya müşterinin farklı seçimleriyle birlikte, amaçlanan

yazılım ürününün kabul testlerinin geliştirme maliyeti de artmaktadır. Bu çalışma

kapsamında özellik bazlı test yaklaşımıyla birlikte SPL-AT Gherkin isimli Gherkin

sözdizimine yeni bir uzantı önerilmiştir. Bu önerilen yeni sözdizimi ile birlikte, Test

Next Generation (TestNG) çatısını kullanan özgün bir test yöntemleri üreticisi de

tasarlanmıştır. Önerilen bu özgün çalışmanın uygulanabilirliği, buton, metin görünümü

ve metin düzenleme gibi farklı kullanıcı arayüz bileşenleri olan mobil uygulama

platformunda geliştirilen bir uygulama üzerinde denenmiş ve üretilen sonuçlar

çıktılarıyla birlikte paylaşılmıştır. Önerilen bu yaklaşım, kullanıcı arayüzüne sahip

herhangi bir uygulama üzerinde herhangi bir test çatısıyla birlikte geliştirilmeye açık bir

şekilde tasarlanmıştır.

iv

ABSTRACT

DOMAIN-SPECIFIC MODELING BASED FEATURE-ORIENTED
AUTOMATIC TEST GENERATION METHODOLOGY FOR

SOFTWARE PRODUCT LINES

Cloud platforms are transforming to software product lines (SPLs) and testing of

the customer-selected products are becoming increasingly important with this

transformation. Acceptance Test (AT) is a testing variety to check acceptability of the

software based on user requirements. While user requirements or customer’s selection

are changing during the development cycle, cost of ATs generation is also increasing. In

this study, a feature-oriented testing approach is proposed with a novel extension to

Gherkin called SPL-AT Gherkin and a novel automatic test method generation

technique that uses Test Next Generation (TestNG) framework. Applicability of the

proposed approach is demonstrated with a case study that has different user interface

(UI) components such as Page, Button, Text View and Edit Text in mobile application

platform. Moreover, results for case study is presented. The proposed approach is open

for improvement throughout any application that has UI components such as Web,

Mobile with any testing framework.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. FUNDAMENTALS ... 3

2.1. Behavior Driven Development .. 3

2.2. Gherkin Syntax ... 3
2.3. Page Object Design Pattern .. 4
2.4. TestNG .. 5

CHAPTER 3. MAPPING RULES .. 7

3.1. Page Object Design Pattern Part ... 8

3.1.1. Rule 1 .. 8
3.1.2. Rule 2 .. 9
3.1.3. Rule 3 .. 11

3.2. TestNG Part ... 11
3.2.1. Rule 4 .. 13
3.2.2. Rule 5 .. 14
3.2.3. Rule 6 .. 15
3.2.4. Rule 7 .. 15

3.2.5. Rule 8 .. 16
3.2.6. Rule 9 .. 19

CHAPTER 4. IMPLEMENTATION of the MAPPING RULE SET 26

CHAPTER 5. TOOL SUPPORT ... 33

5.1. Eclipse ... 33

5.2. Appium ... 33
5.3. Creating Maven Project ... 33
5.4. Adding Libraries to Maven Project .. 34

5.5. Adding Implementation of The Mapping Rule Set to Maven Project 34

CHAPTER 6. CASE STUDY ... 36

CHAPTER 7. RELATED WORKS .. 48

7.1. Robot Framework .. 48
7.2. Cucumber ... 50
7.3. Gauge .. 51

CHAPTER 8. CONCLUSION ... 53

REFERENCES .. 55

vi

LIST OF FIGURES

Figure Page

Figure 2.1. Example Test Method ... 6

Figure 2.2. Example TestNG XML File .. 6

Figure 2.3. Example Test Method with Priority .. 6

Figure 3.1. Base Page .. 8

Figure 3.2. Sample Scenario for Rule 1 ... 9

Figure 3.3. Child of Base Page for Rule 1 .. 9

Figure 3.4. Sample Scenario for Rule 2 ... 10

Figure 3.5. Child of Base Page for Rule 2 .. 10

Figure 3.6. Sample Scenario for Rule 3 ... 12

Figure 3.7. Child of Base Page for Rule 3 .. 12

Figure 3.8. Base TestNG .. 12

Figure 3.9. Sample Scenario for Rule 4 ... 13

Figure 3.10. Child of Base TestNG for Rule 4 .. 13

Figure 3.11. Sample Scenario for Rule 5 ... 14

Figure 3.12. Child of Base TestNG for Rule 5 .. 14

Figure 3.13. Generated Test Method for Rule 6 .. 16

Figure 3.14. Sample Scenario for Rule 7 ... 16

Figure 3.15. Child of Base TestNG for Rule 7 .. 18

Figure 3.16. Generated TestNG XML File for Rule 8 .. 18

Figure 3.17. Generated Test Method for Rule 8 .. 19

Figure 3.18. Output for Rule 8 .. 17

Figure 3.19. Relations for Given and When Parts .. 20

Figure 3.20. Relations for Then Part ... 20

Figure 3.21. Sample Scenario for Rule 9 ... 22

Figure 3.22. Output UML applying Mapping Rule Set .. 22

Figure 3.23. Generated BasePage for Rule 9 ... 23

Figure 3.24. Generated BaseTestNG for Rule 9 ... 24

Figure 3.25. Generated TestNG XML for Rule 9 ... 25

Figure 4.1. UML for Feature and Scenario Outline ... 26

Figure 4.2. UML for Step and Example Data Table .. 27

Figure 4.3. UML for Step and Scenario Outline ... 27

vii

Figure Page

Figure 4.4. UML for Example Data Table and Row ... 28

Figure 4.5. UML for All Gherkin Keywords ... 28

Figure 4.6. UML with Gherkin Parser ... 29

Figure 4.7. UML with Tag Finder ... 30

Figure 4.8. UML with Generators ... 31

Figure 4.9. UML for Implementation of The Mapping Rule Set ... 32

Figure 5.1. Complete Project Structure .. 35

Figure 6.1. SPL Feature Diagram for KidsBusä ... 37

Figure 6.2. SPL Product Diagram for Gold KidsBusä .. 37

Figure 6.3. Screen for Page Getting SMS Code .. 38

Figure 6.4. Scenario for Getting SMS Code ... 38

Figure 6. 5. Scenario for Getting SMS Code Title ... 39

Figure 6.6. Screen for Verify SMS Code .. 40

Figure 6.7. Scenario for Verify SMS Code ... 40

Figure 6.8. Scenario for Count Down Timer Text .. 41

Figure 6.9. Scenario for Send Again Text ... 39

Figure 6.10. Scenario for Title Text .. 41

Figure 6.11. Screen for Create New Password .. 42

Figure 6.12. Scenario for Create New Password .. 42

Figure 6.13. Scenario for Create New Password Title .. 43

Figure 6.14. Main Screen ... 43

Figure 6.15. Scenario for Main Title .. 44

Figure 6.16. Login Screen .. 44

Figure 6.17. Scenario for Credential Integrity ... 45

Figure 6.18. Scenario for Forgot Password Title .. 45

Figure 6.19. Scenario for Welcome Title .. 45

Figure 6.20. Test Results .. 46

Figure 6.21. Scenarios’ Generation Time in Milliseconds ... 47

Figure 7.1. Robot File with Empty Skeleton .. 49

Figure 7.2. Sample Robot with Appium .. 49

Figure 7.3. Sample SPL-AT Gherkin ... 50

Figure 7.4. Sample Scenario in Gherkin for Cucumber .. 51

viii

Figure Page

Figure 7.5. Generated Test Method by Cucumber ... 51

Figure 7.6. Sample Scenario in Gauge Syntax .. 52

Figure 7.7. Implementation File for Gauge .. 52

ix

CHAPTER 1

INTRODUCTION

Nowadays, product customization is becoming more significant with cloud

platforms. These platforms serve not only server side but also web or mobile

environment solutions. Thanks to these platforms, customers could create unique

products for themselves with the selected features. In other words, cloud platforms are

new trend of software product lines. While software product lines (SPLs) bring huge

advantages in terms of product customization, they also provide some difficulties about

reliability of the delivered product. Therefore, quality of the customized product has to

be assured before delivering.

Acceptance tests (ATs) are used to ensure that production is ready or not upon to

customer requirements. And also, these requirements are changed through the selected

features in SPLs. While customer’s selection or requirements are changing during the

development cycle, cost of ATs generation is also increasing. In this study, we propose

a feature-oriented testing approach based on Gherkin but with a novel extension called

Software Product Line (SPL) – Acceptance Test (AT) Gherkin. The proposed approach

also includes an automatic test method generation technique from SPL-AT Gherkin to

concrete acceptance test cases.

The proposed test method generation technique could be changed with any test

frameworks. In other words, it is open to change against different environments. The

only task is changing implementation of the mapping rules, that is going to be focused

in Chapter 3, with intended framework. Addition to them, acceptance test driven

development can be followed with the proposed approach.

In SPLs, while some features are defined as default such as demonstrating list of

items or current status of logged user for each application, other features could be added

based on customer’s requirements such as tracking status of items or adding item to

stock. In other words, different variation of the applications could be generated easily in

SPLs based on customers’ selected features. With this variety, each application, which

is generated in the SPL, should be tested before delivering to the customer. One of the

1

motivations behind the proposed test method generation technique is handling this

challenge. Therefore, this method could be applied for any SPL which generates

application that has User Interface (UI) components. To prove this idea, KidsBusÒ

system, which was not designed as SPL but suitable to apply this approach, is used in

Case Study part.

The study is organized generally as follows. After explaining fundamentals in

Chapter 2, proposed approach is focused in detail under Chapter 3. Then

implementation of proposed approach is explained with Unified Modeling Language

(UML) in Chapter 4. After explaining proposed approach and implementation clearly,

development environment preparation is demonstrated step by step in Chapter 5 that is

called as Tool Support. Then, the approach is applied to an application, which called as

KidsBusä School Security, in Chapter 6. After that, in Chapter 7, related works are

handled with similarities and dissimilarities to proposed approach. In Conclusion

Chapter, the study is handled in broad perspective.

2

CHAPTER 2

FUNDAMENTALS

2.1. Behavior Driven Development

In agile development technique, information gap between stakeholders and

developers is tried to be reduced. User stories are used to reduce this gap. Each scenario,

that is written in natural language by stakeholders, should correspond to a piece of code.

Acceptance tests are used to ensure this match. Test Driven Development (TDD) offers

that writing Acceptance Tests (ATs) first then writing the code, which is evaluated by

the tests. When the code tested by all ATs, software could be assumed as complete with

respect to acceptance criteria. While applying TDD, Dan North encountered some

misunderstanding between analysts, developers and business people. To reduce this

mismatch, he proposed Behavior Driven Development. In BDD [1], the scenarios are

written in spoken language, e.g. English, Turkish. Thanks to these scenarios, acceptance

criteria are more understandable by all team members, e.g. Product Owners, Testers,

UX Designer, Programmers. There are various structures to write a scenario, e.g. Given

When Then [2]. In other words, they are structured documentation waiting to be

processed in different purposes, e.g. generating ATs. Martin Fowler also establishes

connection between Given When Then and Gerard Meszaros’ three phases of Four-

Phase Test [3] which are Setup, Exercise and Verify respectively [2]. In Chapter 3, this

is going to be focused in deeper in terms of acceptance test generation for applications

which have User Interface (UI) components such as buttons, text views or editable

views.

2.2. Gherkin Syntax

Gherkin [5] is a domain specific language to create project documentation and

automated tests. It provides the behavior definitions of the intended software not only to

product owners and business analysts but also to developers and testers. In other words,

it is a well-known language, which is understandable by any teams with +70 spoken

3

languages support. Gherkin is a line-oriented language in terms of structure and each

line has to be divided by the Gherkin keyword except feature and scenario descriptions.

Some of the Gherkin keywords, which are Scenario Outline, Given, When, And, Then,

Examples, are going to be handled in describing Software Product Line-Acceptance

Test (SPL-AT) Gherkin.

Scenario Outline is one of the keywords in Gherkin. Thanks to its structure,

different scenarios could be executed in same scenario skeleton. In Scenario Outline,

parameters, that are different for each scenario, are defined with in < > characters, i.e.

<parameter>. Furthermore, they should be included Examples data table [5]. In

Examples, the first row must include all described parameters in to the Scenario Outline.

Variation of the parameters are defined in the following rows respect to order of the first

row.

2.3. Page Object Design Pattern

PageObject design pattern was introduced for web pages to hide User Interface

details from client. It is a basic encapsulation mechanism because it finds to UI

components such as Header or Paragraph tags in HTML page and manipulates it

without any technical details, i.e., Web Driver. While writing test against any web page,

it is suitable to manipulate UI components. Despite Martin Fowler explains this pattern

for web pages, he claims that it could be applied to any User Interface technology [4].

According to his opinion, this pattern is going to be evolved to the Mobile Application

Testing domain in the following parts. For instance, you have a mobile application that

includes one page which is called as Login Page. It contains one editable field which is

called as EditText in Android or UITextField in iOS and one button to validate written

text in the editable component. While writing test cases to this page, one of the test

frameworks should use to manipulate it, i.e., Appium. Accessor methods, e.g.,

getText(), setText(…) could developed for editable field, and also button could

represented by action oriented methods, e.g., clickButton(). Appium API (Application

Programming Interface) methods as technical details are hidden behind these methods.

Thanks to this encapsulation, test methods, which are generated by test cases, could be

improved with accessor and action-oriented methods without knowledge of Appium

API.

4

2.4. TestNG

TestNG (Test Next Generation) is a testing framework, that is inspired by JUnit,

for Java developers [6]. It is suitable to write unit, functional, end-to-end, integration

etc. tests. It also suitable for test automation frameworks, e.g. Selenium, Appium. It

could be plugged some integrated development environment such as Eclipse, Intellij

IDEA in to use. It supports some strong features such as data-driven testing,

parametrized testing and flexible test configuration. Test methods could take one or

more parameters. With this feature, different parameters could be passed to same test

method in different scenarios. Parameters could set two different ways, with testing.xml

or programmatically. During the research, testing.xml is going to be used. Imagine that,

you have a java method that multiples given integer parameter with 2 and returns the

result. To test a method with three different parameters which are -1, 0, +1, testing.xml

should generated as Figure 2.2. When the test method executed in Figure 2.1, these three

test cases are going to be executed with only one test method. Another important feature

for the research is priority. If order of the test cases execution is critical, priority should

use with @Test tag. Priority is represented by integers and lower value is executed first.

In Figure 2.3, test_method_first always executes before the test_method_second.

5

@Parameters({"param"})
@Test
public void Test_Method (String param)
{
//send param to the multiplier here.
}

Figure 2.1. Example Test Method

<suite name="Suite">
<test name="multiplewithminusone">

<parameter
name="param" value="-1"></parameter>

</test>
<test name=" multiplewithzero">

<parameter
name="param" value="0"></parameter>

</test>
<test name=" multiplewithplusone">

<parameter
name="param" value="+1"></parameter>

</classes>
</test>

<….>
Figure 2.2. Example TestNG XML File

//rest of the test class...

@Test(priority = 0)

public void test_method_first()
{

//execute firstly.
}

@Test(priority = 1)
public void test_method_second()
{

//execute secondly.
}

//rest of the test class...

Figure 2.3. Example Test Method with Priority

6

CHAPTER 3

MAPPING RULES

Gherkin is efficient language to write User Scenarios. However, it is not

sufficient to generate Acceptance Tests for Mobile Applications. Main purpose of

Mapping Rules is transition between User Scenarios and automatically generated

Acceptance Test Project. If User Interfaces and their behavior are defined in User

Scenarios, transition would be easy and tag structures are generated to achieve this

convenience.

There are two different tag structures, which are address sign (@) and dollars

($). They are added on Gherkin to write convertible scenarios for executable

Acceptance Tests. While @ tag is used to define User Interface Components such as

Edit Text, Button, Text View etc., $ tag is used to define their behaviors. Thanks to

usage of them, user scenario writers could refer application components. @ tag has four

different sub-tags which are @PAGE, @EDIT_TEXT, @BUTTON, @TEXT_VIEW and

to define their action $ENTERED, $CLICKED, $SHOWN, $ENABLED, $DISABLED,

$OPENED tags are generated. After usage of the @ tag, identifier of the UI component

should be indicated. The identifier should be found in the Mobile Application project.

Relation between @ and $ are going to be considered in the following sections. While

explaining mapping rules in the following parts, Page Object Design Pattern and some

of TestNG framework are going to be focused.

There are eleven rules to generate automatically Acceptance Test Project from

feature files which are written in SPL-AT Gherkin. The rules are divided in two groups.

In the first group, there are three rules, which are related with Page Object design

pattern that is briefly mentioned above. And, second group has eight rules that are going

to be processed with TestNG framework. After explaining them one by one, case study,

which is a commercial mobile application developed by Delta Smart Technologies Inc.,

is going to explained in the following chapter.

7

3.1. Page Object Design Pattern Part

Before explaining each rule, some assumptions should be mentioned. In our

proposed solution, there is a Base Page class, Figure 3.1, and it manages Appium API

methods. It also has five methods which are called as click(), setText() and getText(),

isEnabled() and isShown(). click() method is responsible to clickable UI components,

i.e. button. Addition to this, setText() is about editable UI components, i.e., EditText or

Text Area. And also, getText() helps us to get text which are represented on the UI

components such as TextView. isEnabled() and isShown() with Boolean return type

help us to be ensure about visibility of any UI components. All of them take identifier

(String) parameter to ensure which UI component is going to be referred on application

under test. In the future, if another test automation framework is considered,

implementation of these methods is going to be changed with chosen framework API. In

other words, the solution is open to change with other frameworks. Finally, before

introducing to the rules, each future file which is written in SPL-AT Gherkin has to

include only one Scenario Outline that was mentioned in previous chapters.

Figure 3.1. Base Page

3.1.1. Rule 1

The first rule is related with child classes of the Base Page class. Scenario

Outline, which is in the feature file, has to includes only one @PAGE tag with same

identifier in Given and When parts. If only one page on mobile application is going to be

tested, @PAGE sub-tag with another identifier only could be existed into Then part of

8

the SPL-AT Gherkin. If @PAGE tag is detected with identifier, child of the Base Page

should be created into Acceptance Test Project with identifierPage name. For instance,

in Figure 3.2, there is one @PAGE tag with this_is_identifier identifier. According to

the rule, ThisIsIdentifierPage class that is the child of the Base Page class, in Figure 3.3,

should be created into the Project.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given @PAGE this_is_identifier is opened
When …
Then …

Figure 3.2. Sample Scenario for Rule 1

Figure 3.3. Child of Base Page for Rule 1

3.1.2. Rule 2

In second rule, inside of child class that is mentioned in Rule 1 is going to be

processed. @EDIT_TEXT tag could be existed in Given and When parts in Scenario

Outline. Addition to this, delimited parameter in Gherkin [5] has to be within the same

part. When it is detected with delimited parameter, there should be a method into the

child class to set any text to mentioned UI component via @EDIT_TEXT tag. Moreover,

9

method of the Base Page, which is setText(String identifier, String text), should exist

inside of the generated method with the given identifier from SPL-AT Gherkin. For

instance, in Figure 3.4, @EDIT_TEXT tag exists in When part with

this_is_edit_text_identifier identifier. There is also delimited parameter, that is shown

with <> special characters, in When part and value of the parameter is defined on

Example data table [5]. When the rule is applied, UML is going to be changed as Figure

3.5. The point is that UML design is generated automatically so that the rule could be

applied for any Scenario Outline.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given @PAGE this_is_identifier is opened
When
<delimited_parameter> is entered on
@EDIT_TEXT this_is_edit_text_identifier
Then …

Examples:

| delimited_parameter |
| "this_is_value_for_edit_text" |

Figure 3.4. Sample Scenario for Rule 2

Figure 3.5. Child of Base Page for Rule 2

10

3.1.3. Rule 3

@BUTTON tag is going to be focused in Rule 3. This tag has to be in Given and

When parts for the Rule 3. In fact, pattern of this rule resembles to Rule 2. Because, it is

going to generate a filled method to inside of the child class, which is generated in Rule

1, for the clickable UI component, i.e., Button. When the tag is detected with the

identifier, action-oriented method has to be created inside of the child class. Then,

click(String identfier) method, that was implemented into the Base Page super class,

should be put into this method. For instance, in Figure 3.6, the sub-tag is found in When

part with this_is_button_identifier identifier. As a result, UML design, shown in Figure

3.7, is generated automatically.

3.2. TestNG Part

In the second group, eight rules that are related with the TestNG framework are

going to be analyzed. Test classes that collaborate with the Page classes, are going to be

generated based on the feature file that was written in SPL-AT Gherkin. During the

generation, parameterized test (@Parameters) and test prioritization (@Priority) topics

are going to be used in TestNG framework. Before explaining these rules, Base TestNG

class has to be focused. Like Base Page class, mentioned in section 3.1, it should also be

included for each test project. So that, it has to be generated before applying these eight

rules. In this class, there are two methods which are called as setup() and tearDown().

First method, setup(), is tagged with @BeforeClass TestNG annotation. It runs before

the first test method that takes part in the same test class. According to this feature, all

Appium driver configurations are set in this method. For instance, Unique Device

Identifier (UDID) [7] of the mobile device under test or package name of the application

under test have to set in it. When any configuration values are changed, this part of the

Base TestNG class is going to be handled. Moreover, the second method, tearDown(),

has @AfterClass TestNG annotation. Unlike setup() method, it runs after all test

methods that takes part in the same test class. So that, some rollback operations such as

closing Appium driver are managed in this method. In the following rule parts, this class

is going to be extended by the other test classes.

11

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given @PAGE this_is_identifier is opened
When
<delimited_parameter> is entered on
@EDIT_TEXT this_is_edit_text_identifier
And @BUTTON this_is_button_identifier is
pressed Then …

Examples:
| delimited_parameter |
| "this_is_value_for_edit_text" |

Figure 3.6. Sample Scenario for Rule 3

Figure 3.7. Child of Base Page for Rule 3

Figure 3.8. Base TestNG

12

3.2.1. Rule 4

At the end of the Part 3.1, “each feature file, which is written in SPL-AT

Gherkin has to include only one Scenario Outline” assumption is mentioned. So that,

number of the feature files equals to number of the scenarios. Moreover, scenario could

be detected easily when feature file is detected. Definition of the rule is that every

scenario, in other words, every Scenario Outline is a sub-class of the BaseTestNG. For

instance, in Figure 3.9, title of the Scenario Outline which, called as This is the title of

the Scenario Outline, is going to be converted to name of the class. When the definition

is applied, Figure 3.10 is going to be generated.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given …
When …
Then …

Examples:
| … |
| … |

Figure 3.9. Sample Scenario for Rule 4

Figure 3.10. Child of Base TestNG for Rule 4

13

3.2.2. Rule 5

When any Scenario Outline is analyzed, three base keywords, which are Given,

When, Then are noticed. Moreover, each keyword describes itself with one sentence.

Rule 5 claims that each keyword is going to be converted to a TestNG test method with

@Test annotation into the child of the BaseTestNG class that was described in Rule 4.

So that, number of the test methods are going to be equal to number of the keywords

that exist into these three base keywords. When the rule is applied on Figure 3.11,

Figure 3.12 is going to be generated.

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given this is the Given sentence
When this is the When sentence
Then this is the Then sentence

Examples:
| … |
| … |

Figure 3.11. Sample Scenario for Rule 5

Figure 3.12. Child of Base TestNG for Rule 5

14

3.2.3. Rule 6

There is a hierarchy between Given, When and Then keywords in terms of the

execution order. Given keyword is described as initialization part of the scenario such as

opening the application page. Addition to this, When keyword has some event based

operations, e.g. click button, set username in to text field. And, in Then keyword, some

assertion operations are found, e.g. page is opened or button is disabled. In summary,

test methods, which were generated in Rule 5 based on Given-When-Then template,

have to be executed in a sequence. So that, sorting of the methods has to be Given,

When, Then in respect to execution order. @priority TestNG, shown in Figure 3.13,

annotation is going to be used to implement this order.

3.2.4. Rule 7

Parameterized tests are important topic in automation testing. Different test cases

could be handled clearly with it. Moreover, same test method could be executed with

different test inputs. When Rule 6 considered, there are three test methods which are

thisIsTheGivenSentence, thisIsTheWhenSentenceTest, thisIsTheThenSentenceTest in

ThisIsTheTitleOfTheScenarioOutlineTest class. And, one of the aimed solution is that

execute many test cases with these methods. To achieve this, Examples Table, which is

defined in feature file, is going to be converted to @Parameters TestNG annotation. In

Examples Table, header row should be represented into Scenario Outline. And, other

rows represent value of each cell of header row. For instance, in Figure 3.14, there are

two different delimited parameters which are delimited_parameter_1 and

delimited_parameter_2 in Scenario Outline. And also, value of these parameters

appears in second and third row of Examples tables, i.e. this_is_value_for_param_1,

this_is_value_for_param_2 etc. The rule argues that when any delimited parameter

detected on Scenario Outline, it is going to be converted to parameter of the test

method. For instance, delimited_parameter_1 is going to be defined as parameter to

thisIsTheGivenSentenceTest test method.

15

public class ThisIsTheTitleOfTheScenarioOutlineTest extends
BaseTestNG{

//This is attribute field

@Test(priority = 0)
public void thisIsTheGivenSentenceTest (){

//firstly executed
}

@Test(priority = 1)
public void thisIsTheWhenSentenceTest (){

//secondly executed
}

@Test(priority = 2)
public void thisIsTheThenSentenceTest (){

//thirdly executed
}
}

Figure 3.13. Generated Test Method for Rule 6

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given this is the Given sentence
<delimited_parameter_1> When this is the When sentence
Then this is the Then <delimited_parameter_2> sentence

Examples:
| delimited_parameter_1 | delimited_parameter_2 |
|"this_is_value_for_param_1"|"this_is_value_for_param_2"

|"this_is_a_value_for_param_1"|"this_is_a_value_for_param_2"|

Figure 3.14. Sample Scenario for Rule 7

3.2.5. Rule 8

After setting parameter annotations in the test class, which was called as

ThisIsTheTitleOfTheScenarioOutlineTest in previous rule parts, values of these

parameters should be passed to the test methods, i.e. thisIsTheGivenSentenceTest,

16

thisIsTheThenSentenceTest. Passing parameters values through testng.xml is one of the

passing manner in TestNG framework [8]. Testng.xml file is a configuration file to

manage test suite and its parameters in any test project. There are many different xml

tags such as <test>, <parameters> etc. in testng.xml configuration file. In Rule 8,

<test>, <parameters>, <classes> and <class> are going to be focused. When number

of rows are detected, as the first step, on Examples Tables, <test> tag is going to be

generated for each of them with name attribute. This name attribute should be unique to

identify test case, that’s why it was considered as GUID [9] string. Then, as the second

step, <parameter> tags with name and value attributes will be generated for each

parameter, that was considered in Rule 7, into the <test> tag. After that, as the third

step, <class> tag with name attribute will also be generated in to the <test> tag. These

three steps are run for every rows of Examples Table except the header row. For

instance, in Figure 3.14, there are two rows that are in Rule 8 scope. When the first and

second steps are applied, two <test> tags with different name attributes will be

generated with two <parameter> tags into the testng.xml file. Then, according to the

third step, one <class> tag will be generated in to the each <test> tag. The key point in

Rule 8, each <test> tag should be assigned with different names and also same <class>

name. As a result, Figure 3.17, that describes testng.xml file, will be generated with the

Rule 8. In Figure 3.18, test class, that was called as

ThisIsTheTitleOfTheScenarioOutlineTest, was changed with some line of codes to be

more understandable about Rule 8. When the test class is run with the testng.xml file,

test outputs will be generated as Figure 3.15. Thanks to Rule 8, many different test cases

with the different parameter values could run with only these three test methods.

Figure 3.15. Output for Rule 8

17

Figure 3.16. Child of Base TestNG for Rule

<suite name="Suite">
<test name="74129e81-7ce2-458b-8683-
0a235978dc98"> <parameter

name="delimited_parameter_1"
value="this_is_value_for_param_1">

</parameter>
<parameter

name="delimited_parameter_2"
value="this_is_value_for_param_2">

</parameter>
<classes>
<class name="Tests.ThisIsTheTitleOfTheScenarioOutline">
</class>
</classes>
</test>
<test name="7f935cad-8d28-4dc4-8fc0-725286b83f87">
<parameter

name="delimited_parameter_1"
value ="this_is_a_value_for_param_1">

</parameter>
<parameter

name="delimited_parameter_2"
value="this_is_a_value_for_param_2">

</parameter>
…

Figure 3.17. Generated TestNG XML File for Rule 8

18

public class ThisIsTheTitleOfTheScenarioOutline extends
BaseTestNG{

//This is attribute field

@Parameters({"delimited_parameter_1"})
@Test(priority = 0)
public void thisIsTheGivenSentence(String

param){ //firstly executed
System.out.println(

"thisIsTheGivenSentence " +
" param is " + param);

}

@Test(priority = 1)
public void thisIsTheWhenSentence(){

//secondly executed
System.out.println("thisIsTheWhenSentence");

}

@Parameters({"delimited_parameter_2"})
@Test(priority = 2)
public void thisIsTheThenSentence(String param){

//thirdly executed
System.out.println(
"thisIsTheThenSentence " + " param is " + param);

}
}

Figure 3.18. Generated Test Method for Rule 8

3.2.6. Rule 9

Up to this rule, PageObject design pattern and TestNG parts are covered.

However, these two main concepts are not connected to each other. In other words,

inside of the test methods generated by Rule 5 are not filled with the proper line of

codes. Not only content of the test methods but also another tag structure, which was

called as dollars ($), and relation between dollars ($) and address sign (@) will be

covered in this section.

When the rule set, except Rule 8, is review, somehow the PageObject design

pattern methods, which were covered in Rule 2 and Rule 3, and the test methods, which

were focused on Rule 5, should work with together. To achieve this goal, $ tag structure

19

and its relation with @ are thought. It has different adjective keywords such as

$ENTERED, $OPENED, $CLICKED, $ENABLED, $DISABLED. In relation

perspective, these $ tags should be used with @ in Given, When and Then parts, which

are covered in SPL-AT Gherkin. In Given and When parts, while @PAGE should be

used only with $OPENED, $CLIKED should take part with @BUTTON. And also,

$ENTERED ought to be used with @EDIT_TEXT. In Figure 3.19, these correlations are

represented clearly with their identifier. In Then part, @PAGE should be use with

@MOVED, and also, @EDIT_TEXT and @BUTTON ought to take part with

$ENABLED or $DISABLED, see also Figure 3.20. Briefly, these correlations should be

existed in Scenario Outline to fill inside of the test methods with the correct lines of

codes.

Figure 3.19. Relations for Given and When Parts

Figure 3.20. Relations for Then Part

Until this part of the Rule 9, correlations between @ and $ were mentioned

with their identifier. And now, converting these relations to lines of codes, which are

going to be set to inside of the test methods, will be focused. While focusing on any

correlation, it will be demonstrated as C identifier. For instance, C1 will be used to

20

refers relation between @PAGE and $OPENED in Given and Then parts. If C3 is

detected on Scenario Outline, then the PageObject design pattern method, that was

generated on Rule 2, will be written inside of the Given or When test method. And also,

if C2 is noticed, then the test method will be implemented with the method which was

generated on Rule 3. While code generation is understandable easily for Given and

When parts, on the other hand, it is not quite understandable for Then part.

In Then part, $OPENED, $ENABLED, $DISABLED and $SHOWN tags are

available for @PAGE, @BUTTON, @EDIT_TEXT and @TEXT_VIEW. If C4 is

detected with the <delimited> parameter in Then part, it is converted to

assertEquals(String actual, String expected) line of code into the Then test method,

which was focused on Rule 5. The critical part for this line of code is actual and

expected values, because it will be assertion part for the test scenario. In other words, it

will decide that the test is fail or not. To determine actual part, Appium driver method,

which is as called currentActivity() [10], will be used. In other words, actual part will be

assigned to returned value of this method. On the other hand, expected value could be

assigned easily with the value of the delimited parameter, which was occurred in

Examples Table in SPL-AT Gherkin, see also Rule 7. If one of the correlations, C5 or

C6 or C7, is detected on Then part, assertTrue(boolean condition) methods will take

part into the Then test method. The task for C5, C6 and C7, that should be considered, is

how we decide value of the condition parameter for assertTrue(Boolean condition)

method. To implement this task, isEnabled() [11] Appium driver method will be used. It

determines that element, which could be edit text or button for our domain, is currently

enabled or not. In other words, value of this method will be assigned to condition

variable, which is passed as parameter to assertTrue(…) method.

To sum up, implementation of the three test methods, which were focused on

Rule 5, was studied in Rule 9. Figure 3.21 is written to be more understandable for not

only this rule but also previous rules. If the rule set that is occurred from Rule 1 to Rule

9 is applied to Scenario Outline in Figure 3.21, UML diagram, in Figure 3.22, and

implementation of the classes, in Figure 3.23 and Figure 3.24, and also testng.xml file,

in Figure 3.25, is generated automatically. In other words, Scenario Outline that was

written with SPL-AT Gherkin is converted to implemented Mobile Application Test

Project.

21

@tag
Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario
Outline Given @PAGE this_is_identifier is $OPENED
When <parameter_for_edit_text> is $ENTERED on

@EDIT_TEXT this_is_edit_text_identifier
And @BUTTON this_is_button_identifier is
$CLICKED Then Application is

$OPENED @PAGE <parameter_for_page>

Examples:

| parameter_for_edit_text | parameter_for_page |
| "this_is_value_1_for_edit_text" |"this_is_value_1_for_page"| |
"this_is_value_2_for_edit_text" | "this_is_value_2_for_page"|

Figure 3.21. Sample Scenario for Rule 9

Figure 3.22. Output UML applying Mapping Rule Set

22

public class ThisIsIdentifierPage extends BasePage{
public ThisIsIdentifierPage(AndroidDriver driver,

WebDriverWait wait)
{

super(driver, wait);
// ...

}

/*
* This method is Auto-generated by the rule 2.
* */

public void setThisIsEditTextIdentifier(String
delimetedParameter){

super.setText(

"thisIsEditTextIdentifier", delimetedParameter);
}

/*
* This method is Auto-generated by the rule 3.
* */
public void clickThisIsButtonIdentifier(){

super.click("thisIsButtonIdentifier");
}

}

Figure 3.23. Generated BasePage for Rule 9

23

public class ThisIsTheTitleOfTheScenarioOutline extends
BaseTestNG{

//This is attribute field
ThisIsIdentifierPage page = new ThisIsIdentifierPage(driver,

wait);

@Test(priority = 0)
public void

Given_PAGE_this_is_identifier_is_OPENED(String param){
//firstly executed
//start appium here.

}

@Parameters({"parameter_for_edit_text"})
@Test(priority = 1)
public void

When_parameter_for_edit_text_is_ENTERED_on_EDIT_TEXT_this_is
_edit_text_identifier(String param){

//secondly executed
page.setThisIsEditTextIdentifier(param);

}

@Test(priority = 2)
public void

And_BUTTON_this_is_button_identifier_is_PRESSED(){
//thirdly executed
page.clickThisIsButtonIdentifier();

}

@Parameters({"parameter_for_page"})
@Test(priority = 3)
public void

Then_Application_MOVED_PAGE_parameter_for_page(String param){
//fourthly executed
assertEquals(param, ((AndroidDriver<MobileElement>)

driver).currentActivity());
}

}

Figure 3.24. Generated BaseTestNG for Rule 9

24

<suite name="Suite">
<test name="74129e81-7ce2-458b-8683-

0a235978dc98"> <parameter
name="parameter_for_edit_text" value
="this_is_value_1_for_page"> </parameter>

<parameter name="parameter_for_page"
value="this_is_value_1_for_page">

</parameter>
<classes>

<class name="Tests.ThisIsTheTitleOfTheScenarioOutline">
</class>

</classes>
</test>
<test name="7f935cad-8d28-4dc4-8fc0-

725286b83f87"> <parameter
name="parameter_for_edit_text" value
="this_is_value_2_for_page"> </parameter>

<parameter name="parameter_for_page"
value="this_is_value_2_for_page">

</parameter>
<classes>

<class name="Tests.ThisIsTheTitleOfTheScenarioOutline">
</class>

</classes>
</test>

</suite>

Figure 3.25. Generated TestNG XML for Rule 9

25

CHAPTER 4

IMPLEMENTATION of the MAPPING RULE SET

In previous chapter, mapping rule set, that converts feature files, which are

written in SPL-AT Gherkin, to Mobile Application Test Project, which has two different

concepts as PageObject design pattern and TestNG parts, are explained step by step.

Object Oriented Programming (OOP) paradigm will be used to implement these rules to

Java language. Moreover, in design part, Unified Modeling Language (UML) will assist

to understand concepts of implementation part.

Firstly, all Gherkin keywords, which are Scenario Outline, Given, When, Then,

And, Example, Feature are translated to objects. In terms of OOP, when any feature file

is analyzed, the opinion that every Feature could has one or many Scenario Outlines is

realized. However, in this study, it should only one Scenario Outline. With these ideas,

Feature class is designed to have many Scenario Outline objects to support future

works, in Figure 4.1.

Figure 4.1. UML for Feature and Scenario Outline

After designing Feature object, Scenario Outline was needed to extend Gherkin

keywords design part. In Gherkin, A Scenario Outline has not only many Steps, which

are Given, When, Then, And but also one Examples table [5]. According to this

argument, two different classes, which are Step and Example Data Table, are designed

26

as list attribute into the Scenario Outline class to support future works as previous. And

also, in Figure 4.2, name and id attributes are considered to identify Scenario Outline. In

the following part of the implementation, these identifiers will be used as test methods

and classes name.

Figure 4.2. UML for Step and Example Data Table

Every line that is divided by Given, When, Then or And in Scenario Outline is a

Step in Gherkin [5]. To identify each Step, name, keyword and line attributes are put as

string, string, integer types respectively into Step class. While keyword is identifier for

Step, e.g. Given, name has whole sentence after the keyword. And also, line refers to

line number of the Step. Name attribute will be used as the test method name that was

focused on Rule 5.

Figure 4.3. UML for Step and Scenario Outline

27

Apart from the first row, every row in Examples data table is executed on

Scenario Outline as test scenario [5]. So that, ExampleDataTable class, which was

introduced before, consists of list of Row class, that has list of cells as String, see also

Figure 4.4.

Figure 4.4. UML for Example Data Table and Row

According to Gherkin keyword specifications [5], some of the keywords, which

are Scenario Outline, Given, When, Then, And, Example, Feature are converted to Java

classes, in Figure 4.5, to use following sections. Addition to them, these classes will be

called as Gherkin Plain Old Java Object (POJO) in the following parts.

Figure 4.5. UML for All Gherkin Keywords

28

One of the preliminary tasks to implement the Rule set is writing a parser to

parse Feature keyword to corresponding Gherkin POJO classes, that are shown in

Figure 4.6. A basic class, that is named as GherkinParser, is designed with the method,

called as gherkingToPOJO(..). It takes only one parameter, that is physical path of the

feature file written in SPL-AT Gherkin and returns parsed Feature class. So that, it has

one dependency to the Feature class.

Figure 4.6. UML with Gherkin Parser

Another task is finding the proposed tag structures, which are address sign (@)

and dollar sign ($), in Chapter 3. Considering consequences of different

implementation, an interface named as ITagFinder is designed with two methods, which

are findAddressSignTag(…) and findDollarSignTag(…). Both of them take two

parameters as list of Step and keyword as String. In other words, these methods find the

given keyword, such as PAGE, and returns the identifier of it.

29

Figure 4.7. UML with Tag Finder

The most complex part is Generator concept, in Figure 4.8, since all business

logics that related with rule set are handled in this concept. As first step, FileGenerator

abstract class is designed to handle common operations such as writing a content to any

file respect to file path or writing content of the file to console. And also, as child of the

FileGenerator class, two different file generators, which are ClassFileGenerator and

XMLFileGenerator abstract classes, are designed. In ClassFileGenerator class, there are

helper methods to create java methods or inject some line of codes to content of the

given method. And also, it has a method to inject some annotations [12] to content of

given method content as parameter. It also has two children classes which are

BasePageClassGenerator and TestNGClassGenerator. In a few words,

BasePageClassGenerator and TestNGClassGenerator are responsible for first part of

the rule set, which is from Rule 1 to Rule 3, and second part of the rule set, which is

from Rule 3 to Rule 9, respectively. On the other hand, XMLFileGenerator is less

30

complex than ClassFileGenerator. Because it has only one child class, which is named

as TestNGXMLFileGenerator. The child class is only responsible for testng.xml file,

which is focused on Rule 8.

Figure 4.8. UML with Generators

Java Console Application, in Figure 4.9, with Main class is generated to execute

these concepts on console application, for now. However, these concepts could be

improved with web page or any Graphical User Interface framework as future work.

31

Figure 4.9. UML for Implementation of The Mapping Rule Set

 32

CHAPTER 5

TOOL SUPPORT

Some setups are needed to run implementation of the proposed test method

generation technique. In this chapter, these tools and libraries are going to be explained

step by step. End of the chapter, anyone who is interested in proposed technique can

understand usage of the technique on any local computer.

5.1. Eclipse

Eclipse (https://www.eclipse.org) is one of the popular Integrated Development

Environment (IDE) for Java developers. During the study, Eclipse IDE for Java

Developers Neon 3 Release 4.6.3 is used and anyone can download it from

https://www.eclipse.org/downloads address.

5.2. Appium

Appium’s (http://appium.io) desktop application is needed to execute Java client

project on any real device or emulators. During the study, Appium desktop application

for Mac Version 1.12.1 is used. It also supports Linux and Windows operating systems.

Everyone can download it from http://appium.io/downloads.html address under Appium

Desktop Apps title.

5.3. Creating Maven Project

Apache Maven (https://www.maven.apache.org) is tool to build and manage

Java projects. After downloading Eclipse IDE, an empty maven project could be created

under File > New > Project path (Figure 5.3).

33

5.4. Adding Libraries to Maven Project

If maven project is created successfully, Project Object Model (POM) xml file is

created under root directory of the project. In pom.xml file, any library could be added

easily with dependency tag as child of the dependencies tag. Six libraries have to be

added on the project which are, testng, appium-java-client, cucumber-core, cucumber-

java, cucumber-testng and gson.

5.5. Adding Implementation of The Mapping Rule Set to Maven

Project

After adding required libraries, implementation of the mapping rule set, which is

explained in Chapter 4 with UMLs, could be added as hardcoded class by class to the

maven project. The implementation is developed in Java language with twenty-three

classes. All classes are going to be available in GitHub repository. Final skeleton of the

project is shown in Figure 5.1. In File package, java and xml file generators, which are

explained in Figure 4.8, are located. In GherkinReader.GherkinPOJO package, each

concrete component, which are described in Figure 4.5, in Gherkin is implemented. And

also, in Utils package, some configuration classes with static variables such as

describing @PAGE, $CLICKED string values in TagConfiguration.java or connection

strings for mobile device under test in MobileConfiguration.java are developed.

Additionally, Feature directory also should be created in the project because Scenario

Outlines, which are written in SPL-AT Gherkin, is going to be stored in that location.

Also, MobileConfiguration.java class should be changed based on application and

mobile device, which are going to be tested. When MainProgram.java class is executed,

children of the BasePage and BaseTestNG classes are going to be generated

automatically in Pages and Tests directories respectively. Please do not forget refreshing

the project after executing MainProgram.java class.

34

Figure 5.1. Complete Project Structure

35

CHAPTER 6

CASE STUDY

KidsBusÒ system has five different mobile applications which are KidsBusÒ

School Manager, KidsBusÒ School Security, KidsBusÒ Hostess, KidsBusÒ School

Staff and KidsBusÒ Parent. And also, these mobile applications have different features

in terms of their assignments. For instance, while any user from KidsBusÒ Hostess is

responsible for students, who are using his or her bus, users from KidsBusÒ School

Security could only deliver students, who will be picked up by trusted parent.

Figure diagrams [13] are tool to represent the feature options in SPLs for user

selection. Figure 6.1 is given as an example for feature diagrams. It is a SPL for

KidsBus ä, that is chosen as case study in proposed study. KidsBusä is a platform that is

developing by Delta Smart Technologies Inc. (www.deltasmart.tech). It provides

different types of mobile applications, which are Parent, School Admin, School

Security, Hostess and Bus Company, to manage school bus transportation effectively.

The root of feature diagram represents the SPL and the nodes are features, which can be

mandatory or optional, represented by filled circle and empty circle respectively.

Product diagrams, similar to feature diagrams, are user-centric representations of

product feature configurations, where all feature selections are made for the product. In

Figure 6.1, an example product diagram shows selected features of the product, that is

called Gold KidsBusä. Filled and empty circles are removed because the feature

selections are completed.

The proposed feature-oriented testing approach with SPL-AT Gherkin provides

automatically acceptance tests generation with respect to selected feature combination in

product diagram. Analysts and testers could write scenario for customized product in

SPL-AT Gherkin, which has a tag structure to refers concrete objects, to generate test

methods. The proposed approach follows agile practices for developing software

product lines proposed by de Souza and Vilain [14].

Implementation of the mapping rules, which was explained in Chapter 4, will be

applied on a mobile application, which is called as KidsBusÒ School Security. School

36

securities, in KidsBusÒ environment, can display the list of students whom will be

taken from the school by an adult. While running the implementation of the mapping

rules on the mobile application, five different pages, which are getting SMS code,

verifying the SMS code, creating new password, main and login pages will be tested.

Figure 6.1. SPL Feature Diagram for KidsBusä

Figure 6.2. SPL Product Diagram for Gold KidsBusä

In the first page, getting SMS code shown in Figure 6.3, there are two different

user interface components which are button and edit text. Users can enter their

cellphones on edit text and can send the cellphone to KidsBusÒ system with the button.

If the cellphone number exists in KidsBusÒ system as school security role, SMS which

has verification code will be send the cellphone. Otherwise, the application remains the

same page with an error message. Two different test scenarios will be executed on this

page. In the first scenario, cellphone number, which belongs to any school security role,

37

will be executed and then assert that the page is changed or not. On the other hand, in

the second scenario, cellphone number, does not belong to any school security role and

expected that current page will not be changed. When the scenario outline, shown in

Figure 6.4, is executed with the implementation of the mapping rules, mobile

application test codes will be generated automatically and run on the mobile application,

which is installed on any mobile device. Addition to them, the page also has a TextView

component shown as “KidsBus School Security” in Figure 6.3. Another test scenario,

which is shown in Figure 6.5, will be written to be ensure that the Title is shown or not.

Figure 6.3. Screen for Page Getting SMS Code

Feature: Getting SMS Code

Scenario Outline: Getting SMS code scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
When <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
Then @PAGE is $OPENED <page>.

Examples:
username	page
“5454339401”	“.Activity.CommitVerificationCodeActivity”
“5359144691”	“.Activity.ReceiveVerificationCodeActivity”

Figure 6.4. Scenario for Getting SMS Code

38

Feature: SMS Code Title

Scenario Outline: SMS Code Title scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED

Then @TEXT_VIEW receive_access_activity_app_label

is $SHOWN

Figure 6.5. Scenario for Getting SMS Code Title

The second page or verifying the SMS code page, shown in Figure 6.7, has five

different user interface components which are button, edit text and three different text

views, like getting SMS code page. Users, who has school security role in KidsBusÒ

system, should enter the verification code, which is send via SMS to the cellphone, to

create user password in the third page, which is called as creating new password page.

To test this feature, KidsBusÒ system generates same verification code for all test users.

So that, mobile application test project does not need to read content of the SMS. In

other words, mobile application test project assumes that verification code is 112233, if

the cellphone is verified by KidsBusÒ system as school security role. Two different test

scenarios, in Figure 6.8, will be executed as valid and invalid verification code. These

scenarios could be extended with different verification code combinations as included

character etc. because the code should be formed with numbers. Addition to these two

scenarios, three different scenarios for text views, which are title of the page, send again

and timer for passcode, will be generated to ensure visibility of them in Figures 6.6, 6.9

and 6.10.

Feature: Verify SMS Code Send Again Text
Scenario Outline: Verify SMS Code Send Again Text scenario Given
@PAGE ReceiveVerificationCodeActivity is $OPENED When
<username> is $ENTERED on @EDIT_TEXT usernameInput And
@BUTTON loginButton is $CLICKED
And @PAGE CommitVerificationCodeActivity is $OPENED
Then @TEXT_VIEW send_again is $SHOWN Examples:

| username |
| "5454339401" |

Figure 6.6. Scenario for Send Again Text

39

Figure 6.7. Screen for Verify SMS Code

Feature: Verify SMS Code

Scenario Outline: Verify SMS Code scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
When <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
Then @PAGE CommitVerificationCodeActivity is $OPENED And
<passcode> is $ENTERED on @EDIT_TEXT activation_code
And @BUTTON loginButton is $CLICKED again
And @PAGE is $OPENED <second_page>

Examples:

| username | passcode | second_page |
| "5454339401" | "111111" |

".Activity.CommitVerificationCodeActivity" |
| "5454339401" | "112233" | ".Activity.CreateNewPasswordActivity"|

Figure 6.8. Scenario for Verify SMS Code

40

Feature: Verify SMS Code Count Down Timer Text

Scenario Outline: Verify SMS Code Count Down Timer Text scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
When <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
And @PAGE CommitVerificationCodeActivity is $OPENED
Then @TEXT_VIEW countdown_timer is $SHOWN
Examples:

| username |
| "5454339401" |

Figure 6.9. Scenario for Count Down Timer Text

Feature: Verify SMS Code Title
Scenario Outline: Verify SMS Code Title scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
When <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
And @PAGE CommitVerificationCodeActivity is $OPENED
Then @TEXT_VIEW entry_approvement_info_text is $SHOWN
Examples:

| username |
| "5454339401" |

Figure 6.10. Scenario for Title Text

In the third page or creating new password page, shown in Figure 6.11, users,

who are in school security role in in KidsBusÒ system, could create new password with

two different edit text and one button user interface components. The critic requirement

for this page is that user should enter same password into the these edit text components.

Because, KidsBusÒ system should be ensured that given password is

confirmed by the user. The test scenario outline, shown in Figure 6.12, is created to test

this feature with two different test scenarios as password confirmed and not. Another

test scenario could be added as content of the passwords such as strong, weak or non-

digit password. And also, the page has an information text view, which staring with

“KidsBus School Security is an application…” sentence in Figure 6.11. An

additional scenario also could be developed for this UI component shown in Figure

6.13.

41

Figure 6.11. Screen for Create New Password

Feature: Create New Password

Scenario Outline: Create new password scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
And <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
And @PAGE CommitVerificationCodeActivity is $OPENED
And <passcode> is $ENTERED on @EDIT_TEXT
activation_code And @BUTTON loginButton is $CLICKED again
And @PAGE CreateNewPasswordActivity is $OPENED
When <new_password> is $ENTERED on @EDIT_TEXT

new_password
And <new_password_confirm> is $ENTERED on

@EDIT_TEXT confirm_new_password
And @BUTTON button_save_new_password is $CLICKED
Then @PAGE is $OPENED <result_page>

Examples:
| username | passcode | new_password | new_password_confirm |

result_page |
| "5454339401" | "112233" | "555666" | "555555"
| ".Activity.CreateNewPasswordActivity" |

Figure 6.12. Scenario for Create New Password

42

Feature: Create New Password Title
Scenario Outline: Create New Password Title scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
And <username> is $ENTERED on @EDIT_TEXT
usernameInput And @BUTTON loginButton is $CLICKED
And @PAGE CommitVerificationCodeActivity is $OPENED
And <passcode> is $ENTERED on @EDIT_TEXT
activation_code And @BUTTON loginButton is $CLICKED again
And @PAGE CreateNewPasswordActivity is $OPENED
Then @TEXT_VIEW titleTextView is $SHOWN
Examples:
| username | passcode |
| "5454339401" | "112233" |

Figure 6.13. Scenario for Create New Password Title

After user, who has School Security role, is introduce himself or herself to the

application, main page, which indicates list of students whom will be taken from the

school by an adult, is opened shown in Figure 6.14. The page includes one text view on

top of itself to show user’s name and surname. A scenario could be written to test this

text view is shown or not, see also Figure 6.15.

Figure 6.14. Main Screen

43

Feature: Main User Info Title

Scenario Outline: Main User Info Title scenario
Given @PAGE MainActivity is $OPENED

Then @TEXT_VIEW main_activity_user_info_label is $SHOWN

Figure 6.15. Scenario for Main Title

Any user, who is identified by KidsBusÒ, can log out from the application.

Afterwards, in any time, user can log in to the application with credentials which are

defined on create new password page. Login page totally includes five different UI

components which are welcome text view, username edit text, password edit text, login

button and forgot password text view, see also Figure 6.16. One scenario with two

different cases could be written to test integrity of the credentials as valid and invalid,

see also Figure 6.17. Addition to this test scenario, two different scenarios which are

related with visibility of the text views also could be generated, see also Figure 6.18 and

Figure 6.19.

Figure 6.16. Login Screen

44

Feature: Login
Scenario Outline: Login scenario
Given @PAGE MainActivity is $OPENED
And @BUTTON logout is $CLICKED
And @PAGE LoginActivity is $OPENED
When <username> is $ENTERED on @EDIT_TEXT
usernameInput And <password> is $ENTERED on @EDIT_TEXT
passwordInput And @BUTTON loginButton is $CLICKED
Then @PAGE is $OPENED <second_page>.

Examples:

| username | password | second_page |
| "5454339401" | "123456" | ".Activity.MainActivity" |

| "5454339401" | "111111" | ".Activity.LoginActivity" |

Figure 6.17. Scenario for Credential Integrity

Feature: Login Forgot Password Title
Scenario Outline: Login Forgot Password Title scenario
Given @PAGE MainActivity is $OPENED
And @BUTTON logout is $CLICKED
And @PAGE LoginActivity is $OPENED
Then @TEXT_VIEW forgottenPassword is $SHOWN

Figure 6.18. Scenario for Forgot Password Title

Feature: Login Welcome Title
Scenario Outline: Login Welcome Title scenario
Given @PAGE MainActivity is $OPENED
And @BUTTON logout is $CLICKED
And @PAGE LoginActivity is $OPENED
Then @TEXT_VIEW welcome is $SHOWN

Figure 6.19. Scenario for Welcome Title

In Chapter 6, five different pages in KidsBusÒ School Security mobile

application, which are getting SMS code, verifying the SMS code, creating new

password, main and login, are tested with the twelve different feature files, that is

written in SPL-AT Gherkin. While five different children of the BasePage (see also

Chapter 3.1) classes are created with the mapping rules, and also, twelve different

children of the BaseTestNG (see also Chapter 3.2,) classes are generated. Fifteen

different test case scenarios are also covered with generated mobile application test

project.

45

Test reports of these scenarios are represented step by step as fail or passed by

eclipse console for TestNG framework, see also Figure 6.20. In other words, any

particular study for Test Reporting is not covered in scope of the thesis. Custom test

report generation also is easy to handle with Listeners and Reporters, which implement

org.testng.ITestListener and org.testng.IReporter interfaces respectively, in TestNG

framework. Addition to them, while the report could be generated as PDF format which

is observed end of test scenarios execution, it also monitored as real-time with Graphical

User Interface (GUI) supports such as progress bar etc. [18].

Test scenarios also could be extended with different combination of the

Examples data table in case study. While the scenarios are increasing, automatic code

generation time is also increasing. Generation time in milliseconds for each scenario are

demonstrated in Figure 6.2. These values are calculated with System.currentTimeMillis()

method which returns the current time in milliseconds from January 1, 1970 Universal

Time Coordinated (UTC) to current time. Total generation time for implementation of

the twelve test scenarios, which are written in SPL-AT Gherkin, is three hundred and

thirty-seven milliseconds. In other words, acceptance test project, which covers twelve

different test scenarios, for KidsBusÒ School Security mobile application is generated

in three hundred and thirty-seven milliseconds without any test framework knowledge.

Figure 6.20. Test Results

46

Figure 6.21. Scenarios’ Generation Time in Milliseconds

47

CHAPTER 7

RELATED WORKS

7.1. Robot Framework

Robot framework which is open source automation framework hosted on GitHub

for acceptance testing, acceptance test driven development, and robotic process

automation [16]. It is also released under Apache License 2.0 and anyone can download

it from official web page which is robotframework.org. Firstly, it was developed by

Nokia Networks (networks.nokia.com). In these days, it is supported by its own

foundation which is called as Robot Framework Foundation

(robotframework.org/foundation/). Also, it uses keyword-driven testing approach, which

is called as table-driven testing or action word-based testing.

When Robot framework and proposed feature-oriented testing approach with

SPL-AT Gherkin are compared, not only similarities but also differences are found.

And, they are going to be focused in the following paragraphs.

The framework syntax has different special keywords, which are Settings,

Variables, Keywords and Test Cases to used different purposes, see also Figure 7.1. So

that, everyone who is interested in Robot framework has to learn its own syntax firstly.

On the other hand, in proposed approach, everyone, who has experience about Gherkin,

can adopt SPL-AT Gherkin in a short time with cost of learning tags which are

addressing (@) and dollars ($) signs. While test data and identifier of any user interface

component such as Button could be written in **Variable** section as weak practice in

robot framework, this differentiation is already handled in SPL-AT Gherkin with

addressing sign (@) and Examples data table Figure 7.2 and Figure 7.3 compare robot

framework with SPL-AT Gherkin.

There are also similarities between Robot Framework and proposed feature-

oriented testing approach with SPL-AT Gherkin. Major similarity is that both of them

are working on acceptance testing and acceptance test driven development and generate

the test project automatically based on their syntax rules. And also, they hide technical

details with spoken language keywords such as **Test Cases**, Click Element,

48

@EDIT_TEXT and $ENTERED to be clear for project team that includes not only

technical but also non-technical members.

*** Settings ***
... Settings here.

*** Variables ***
... Variables here.

*** Test Cases ***
... Test Cases here.

*** Keywords ***
... Keywords here.

Figure 7.1. Robot File with Empty Skeleton

*** Settings ***
Library AppiumLibrary
....

*** Variables ***
${BTN_ID} = id=this_is_button_identifier
${EDITTEXT_ID} = id=this_is_edit_text_identifier
${CONTENT} = this_is_content
....

*** Test Cases ***
Add Content And Submit Button Is Clicked

Add Content ${CONTENT}
Submit Button
....

*** Keywords ***
Submit Button

Click Element ${BTN_ID}

Add Content
[Arguments] ${content}
Input Text ${EDITTEXT_ID} ${content}
....

Figure 7.2. Sample Robot with Appium

49

Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given …
When <delimited_parameter> is $ENTERED

on @EDIT_TEXT this_is_edit_text_identifier
And @BUTTON this_is_button_identifier is $CLICKED
Then …

Examples:

| delimited_parameter |
| "this_is_content" |

Figure 7.3. Sample SPL-AT Gherkin

7.2. Cucumber

Cucumber is a tool that scans executable specifications, which are written in

plain text, and validates the software which is responsible for those specifications [17].

It is also based on Behavior Driven Development, that is briefly explained in Chapter 2,

to write acceptance tests. Cucumber indicates that the software is success or failure

based on each scenario. It has also MIT License and everyone can follow and download

it from its official GitHub page (https://github.com/cucumber). Each scenario in

Cucumber is written in Gherkin, that is also explained in Chapter 2, therefore, everyone,

who wants to use Cucumber tool, should learn Gherkin syntax rules.

The main similarity between Cucumber tool and proposed feature-oriented

testing approach with SPL-AT Gherkin is language of the acceptance scenarios. In other

words, anyone, who worked before with Cucumber, can adapt SPL-AT Gherkin in a

short time. Another similarity is that both of them generate acceptance test methods and

classes automatically based on their domain specific languages.

While proposed feature-oriented testing approach with SPL-AT Gherkin is

automatically implement the generated acceptance test methods and classes, Cucumber

only generates skeleton without any implementation. For instance, when sample

scenario in Figure 7.4, which is written in Gherkin, is run, Figure 7.5 is generated

automatically by Cucumber.

50

Feature: Is it Friday yet?
Everybody wants to know when it's Friday

Scenario: Sunday isn't Friday
Given today is Sunday
When I ask whether it's Friday yet
Then I should be told "Nope"

Figure 7.4. Sample Scenario in Gherkin for Cucumber

@Given("^today is Sunday$")
public void today_is_Sunday() {

// Write code here that turns the phrase above into //concrete
actions throw new PendingException();

}
@When("^I ask whether it's Friday yet$")
public void i_ask_whether_it_s_Friday_yet() {

// Write code here that turns the phrase above into //concrete
actions throw new PendingException();

}
@Then("^I should be told \"([^\"]*)\"$")
public void i_should_be_told(String arg1) {

// Write code here that turns the phrase above into //concrete
actions throw new PendingException();

}

Figure 7.5. Generated Test Method by Cucumber

7.3. Gauge

Gauge is open source framework for test automation especially acceptance tests

(https://gauge.org/). It is also released under GNU Public License version 3.0

(http://www.gnu.org/licenses/gpl-3.0.txt) and available its official GitHub page

(https://github.com/getgauge/gauge). It has own syntax that is not Given-When-Then

style, however it is understandable for everyone like Gherkin. It works with different

languages such as JavaScript, C#, Java, Python, Ruby.

The common purpose for Gauge and proposed solution is generating acceptance

test cases against software which has User Interface components. Gauge works with

Taiko (https://github.com/getgauge/taiko), which is a free and open source browser

51

automation tool, to generate test cases. Taiko works on Linux, MacOS and Windows,

however, it supports Chrome web browser because it uses the Chrome DevTools API

(https://chromedevtools.github.io/devtools-protocol/tot/Browser). As an example, the

specification file shown in Figure 7.6, which is written in Gauge syntax, generates the

step implementation file shown in Figure 7.7, that uses Taiko automation tool.

Search Google

* Goto Google's search page
* Search for "github Taiko"
* Page contains "getgauge/taiko"

Figure 7.6. Sample Scenario in Gauge Syntax

/* globals gauge*/
"use strict";
const { openBrowser,write, closeBrowser, goto, press,text, contains } =
require('taiko');
const assert = require("assert");
const headless = process.env.headless_chrome.toLowerCase() === 'true';

beforeSuite(async () => {

await openBrowser({ headless: headless })
});

afterSuite(async () => {

await closeBrowser();
});

step("Goto Google's search page", async () =>

{ await goto('http://google.com');
});

step("Search for <query>", async (query) => {

await write(query);
await press('Enter');

});

step("Page contains <content>", async (content) =>
{ assert.ok(await text(contains(content)).exists());

});

Figure 7.7. Implementation File for Gauge

52

CHAPTER 8

CONCLUSION

In this study, a feature-oriented testing approach is proposed for platform-based

SPLs through a novel extension to Gherkin called SPL-AT Gherkin and a novel

automatic test method technique based on TestNG framework.

KidsBusÒ system, which is platform that manages the school bus transportation

process, is selected as a case study. Five different pages in KidsBusÒ School Security,

which are getting SMS code, verifying the SMS code, creating new password, main and

login are tested with twelve different feature files written in SPL-AT Gherkin. These

feature files generate five and twelve different children of the BasePage and

BaseTestNG classes respectively. And also, fifteen different test cases are covered

without any technical implementation such as writing test suite or method in TestNG

framework with these classes. The test cases could be increased with additional feature

files that have different combination of test data on Examples data table. In terms of test

case generation, future task is increasing test cases using reusable feature files. Thanks

to more test cases, coverage percentage could be rising. In other words, generating more

test cases using less feature file is one of the objectives.

While generating test cases during case study, importance of execution order for

complete test scenarios such as Getting SMS code scenario (Figure 6.4) and Main User

Info Title scenario (Figure 6.15) was observed. Because, the user should be

authenticated by the KidsBusÒ API to reach main page in KidsBusÒ School Security.

In other words, some test scenarios have to be run before the others. To solve this

challenge, a test case management tool for acceptance tests that are generated by feature

files written in SPL-AT Gherkin is going to be developed as another future work. The

tool could be an extension for SPL-AT Gherkin such as another tag structure like

address sign (@) or dollar sign ($) or a platform that has some UI components to be

more understandable and administrable by project management team. While developing

automatic test method technique that is explained in Chapter 4 Implementation of The

Mapping Rule Set, the solution is designed based on SOLID principles of object-

oriented programming [19], which was introduced by Robert C. Martin, as much as

53

possible. Addition to it, connection the proposed approach with input contract testing

based on Event Sequence Graphs [15] is planned, so that coverage-based test generation

can be achieved for platform-based SPLs.

54

REFERENCES

[1] Introducing BDD. (2017, February 09). Retrieved April 15, 2019, from

https://dannorth.net/introducing-bdd/#translations

[2] Bliki: GivenWhenThen. (n.d.). Retrieved April 15, 2019, from

https://www.martinfowler.com/bliki/GivenWhenThen.html

[3] Four-Phase Test. (n.d.). Retrieved April 15, 2019, from http://xunitpatterns.com/Four

Phase Test.html

[4] Bliki: PageObject. (n.d.). Retrieved April 15, 2019, from

https://martinfowler.com/bliki/PageObject.html

[5] Gherkin Reference. (n.d.). Retrieved April 15, 2019, from

https://docs.cucumber.io/gherkin/reference/

[6] Welcome. (n.d.). Retrieved April 15, 2019, from https://testng.org/doc/index.html

[7] UDID. (2019, February 01). Retrieved April 15, 2019, from

https://en.wikipedia.org/wiki/UDID

[8] (n.d.). Retrieved April 15, 2019,

from https://testng.org/doc/documentation-main.html

[9] Universally unique identifier. (2019, April 15). Retrieved April 15, 2019, from

https://en.wikipedia.org/wiki/Universally_unique_identifier

[10] Edit this Doc Get Current Activity. (n.d.). Retrieved April 15, 2019, from

http://appium.io/docs/en/commands/device/activity/current-activity/

[11] Edit this Doc Is Element Enabled. (n.d.). Retrieved April 15, 2019, from

http://appium.io/docs/en/commands/element/attributes/enabled/

[12] Annotations Basics. (n.d.). Retrieved April 15, 2019, from

https://docs.oracle.com/javase/tutorial/java/annotations/basics.html

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-

oriented domain analysis (FODA) feasibility study,” Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst, 1990.

[14] D. S. de Souza, P. Vilain. “Selecting Agile Practices for Developing Software Product

Lines”, International Conference on Software Engineering & Knowledge Engineering
(SEKE 2013), 220-225, 2013.

[15] T. Tuglular, F. Belli, and M. Linschulte. Input contract testing of graphical user

interfaces. International Journal of Software Engineering and Knowledge Engineering,
26(02), pp.183-215, 2016.

55

[16] Robot Framework. (n.d.). Retrieved May 3, 2019, from https://robotframework.org/

[17] Cucumber. (n.d.). Retrieved May 13, 2019, from https://cucumber.io/

[18] (n.d.). Retrieved June 10, 2019, from

https://testng.org/doc/documentation-main.html#logging

[19] Martin, R. C. (2000). Design principles and design patterns.

Object Mentor, 1(34), 597.

56

