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Department of Physics, İzmir Institute of Technology, IZTECH,
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This talk summarizes recent studies on the gravitational properties of vac-

uum energy in a non-Riemannian geometry formed by the stress-energy tensor
of vacuum, matter and radiation. Postulating that the gravitational effects

of matter and radiation can be formulated by an appropriate modification
of the spacetime connection, we obtain varied geometro-dynamical equations

which properly comprise the usual gravitational field equations with, however,

Planck-suppressed, non-local, higher-dimensional additional terms. The prime
novelty brought about by the formalism is that, the vacuum energy does act

not as the cosmological constant but as the source of the gravitational constant.

The formalism thus deafens the cosmological constant problem by channeling
vacuum energy to gravitational constant. Nevertheless, quantum gravitational

effects, if any, restore the problem via the graviton and graviton-matter loops,

and the mechanism proposed here falls short of taming such contributions to
cosmological constant.

Keywords: Stress-energy connection; Cosmological constant; Gravitational con-

stant.

1. Introduction

In four-dimensional spacetime, there exist three symmetric, valency-two,

divergence-free tensor fields. They are the metric tensor gαβ , the Einstein

tensor Gαβ (g,Γ), and the stress-energy tensor Tαβ of matter, radiation and

vacuum. Some linear combination of them

aGαβ + bgαβ + cTαβ (1)

must vanish as there is no other tensor field exhibiting the same properties.

Therefore, by an appropriate choice of the constants a, b and c one is led
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to the Einstein field equations of gravitation1

Gαβ (g,Γ) = −Λ0gαβ + (8πGN )Tαβ (2)

where Λ0 – Einstein’s cosmological constant (CC)2 – represents the intrinsic

curvature of spacetime, and GN stands for the gravitational constant. The

tensor fields in (1) are simultaneously divergence-free if the connection Γ is

compatible with metric, that is, if it is the Levi-Civita connection

Γλαβ =
1

2
gλρ (∂αgβρ + ∂βgρα − ∂ρgαβ) . (3)

It is this connection that generates the Einstein tensor Gαβ(g,Γ) (further

details: Conventionsa).

In general, Tαβ involves all the matter and force fields as well as the

metric tensor. Indeed, Tαβ is computed from the quantum effective action

which encodes quantum fluctuations of entire matter and all forces but

gravity in the background geometry determined by gαβ . Quantum theoretic

structure ensures that

Tαβ = −E gαβ + tαβ (6)

where E is the energy density of the vacuum, and tαβ is the stress-energy

tensor of everything but the vacuum. Putting Tαβ into Eq. (2) gives rise to

an effective CC

Λeff = Λ0 + 8πGNE (7)

which must nearly saturate the present expansion rate of the Universe

Λeff . H
2
0 (8)

where H0 ' 73.2 Mpc−1 s−1 km according to the WMAP seven-year mean3 .

If Λ0 not Λeff were used, the bound (8) would furnish, through the ob-

servational value of H0 quoted above, an empirical determination of Λ0, as

for any other fundamental constant of Nature. The same does not apply

aConventions: In general, a given connection Gλαβ generates the Einstein tensor

Gαβ (g, G) = Rαβ (G)−
1

2
gαβR (g, G) (4)

where the metric tensor gαβ forms the Ricci scalar R (g, G) ≡ gµνRµν (G) from the Ricci
tensor Rαβ (G) ≡ Rµαµβ (G) with

Rµανβ (G) = ∂ν G
µ
βα −∂β G

µ
να + GµνλG

λ
βα − G

µ
βλG

λ
να (5)

being the Riemann tensor. By the way, the symbol G, the letter b in Turkic runic, is
short-hand for bagh meaning ‘connection’ in Turkish.
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to Λeff, however. This is because the vacuum energy density E, equaling

the zero-point energies of quantum fields plus enthalpy released by various

phase transitions, is much larger than Λ
exp
eff/8πGN . Therefore, previously

determined, experimentally confirmed matter and forces down to the teras-

cale MW ∼ TeV, are expected to induce a vacuum energy density of order

M4
W . This is enormous compared to Λexp

eff/8πGN , and hence, enforcement of

Λeff to respect the bound (8) introduces a severe tuning of Λ0 and 8πGNE

up to at least sixty decimal places. This immense tuning becomes incre-

mentally worse as the electroweak theory is extended to higher and higher

energies. As a result, we face the biggest naturalness problem – the cosmo-

logical constant problem (CCP) – which plagues both particle physics and

cosmology.

Over the decades, since its first solidification4 , the CCP has been ap-

proached by various proposals and interpretations, as reviewed and criti-

cally discussed by certain works5,6. Each proposal involves a certain degree

of speculation in regard to going beyond (2) by postulating novel sym-

metry arguments, relaxation mechanisms, modified gravitational dynamics

and statistical interpretations5,6. Except for the nonlocal, acausal modifica-

tion of gravity7 and the anthropic approach8, most of the solutions proposed

for the CCP seem to overlook the already-existing vacuum energy density

O
[
TeV4

]
induced by known physics down to the terascale9. However, any

resolution of the CCP, irrespective of how speculative it might be, must,

in the first place, provide an understanding of how this existing energy

component is to be tamed.

The CCP is a highly inextricable problem. Therefore, its crystallization

proves highly critical in determining the correct solution strategy. The dis-

cussions above make it clear that problem stems from covariantly constant

parts in equation (2). This means that the solution strategy, if any, must,

first of all, look for ways of nullifying those terms involving constant mul-

tiples of gαβ in the fundamental structure (1)10. Clearly, this would be ac-

complished if metric tensor is prohibited to have vanishing divergence. This

observation can be taken to indicate that a resolution of the CCP might be

found in non-Riemannian geometries in which metric tensor is not conva-

riantly constant or, equivalently, the non-metricity tensor does not vanish.

One can thus put forth the interpretation that the CCP is actually the

problem of finding the correct method for incorporating the stress-energy

tensor Tαβ into the matter-free gravitational field equations so that the vac-

uum energy E, however large it might be, does not contribute to the effective

CC. Depending on how this incorporation is made, the gravitational field

<i>Mahematical Physics : Proceedings of the 13th Regional Conference</i>, edited by Ibrahim Semiz, and Ugur Camci,
         World Scientific Publishing Co Pte Ltd, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/iyte/detail.action?docID=1080987.
Created from iyte on 2019-10-27 23:33:32.

C
op

yr
ig

ht
 ©

 2
01

3.
 W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
o 

P
te

 L
td

. A
ll 

rig
ht

s 
re

se
rv

ed
.



August 17, 2012 11:7 8566: Mathematical Physics — Proceedings Trim size: 9in x 6in

156 Stress-energy connection: Degravitating the vacuum energy

equations can admit variant interpretations and maneuvers for the vacuum

energy, and it might then be possible to achieve a resolution for the CCP.

The material of this talk was covered by author’s previous papers11,12.

The talk is largely based on the paper 12, and repeats its contents. Given

in Sec. 2 below is a detailed discussion of the method. The novel concept

of ‘stress-energy connection’ will be introduced therein. Sec. III discusses

certain questions concerning the workings of the mechanism. Sec. IV con-

cludes.

2. Stress-Energy Connection and Cosmological Constant

In accord with the reasonings above, a formalism will be proposed

and analyzed in this section. The key ingredient of the formalism shall be

non-Riemannian geometries based on the stress-energy tensor of matter,

radiation and vacuum.

In regions of spacetime devoid of energy, momentum, stress or pressure

distribution, curving of the spacetime fabric is governed by the matter-free

gravitational field equations

Gαβ (GV , V ) = Vαβ (9)

written purposefully in a slightly different form by utilizing the ‘metric

tensor’

Vαβ = −Λ0gαβ (10)

which is nothing but the stress-energy tensor of nothingness. It generates

the connection

(GV )
λ
αβ =

1

2

(
V −1

)λµ
(∂αVβµ + ∂βVµα − ∂µVαβ) (11)

which is identical to the Levi-Civita connection in (3). This equivalence

between GV and Γ holds for any value of Λ0 provided that it is strictly

constant.

If the region of spacetime under concern is endowed with an energy,

momentum, stress or pressure distribution, which are collectively encap-

sulated in the stress-energy tensor Tαβ , the matter-free gravitational field

equations (9) change to

Gαβ (GV , V ) = Vαβ + 8πGNTαβ (12)

wherein the two sources are seen to directly add up1. It is this additive

structure that is responsible for the CCP.
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In search for a resolution for the CCP, certain clues are provided by

the scaling properties of gravitational field equations. Under a rigid Weyl

rescaling13

gαβ → a2gαβ (13)

the gravitational field equations (12) take the form

Gαβ (GV , V ) = a2Vαβ + 8π
(
GNa

−2
)
Tαβ

(
adµ(d)

)
(14)

where µ(d) is a mass dimension-d coupling in the matter sector. The ge-

ometrodynamical variables (GV )
λ
αβ and Gαβ (GV , V ) are strictly invariant

under the global rescaling (13). However, sources Vαβ and GNTαβ , con-

taining fixed scales corresponding to masses, dimensionful couplings and

renormalization scale, do not exhibit any invariance as such. Notably, how-

ever, even if the bare CC Λ0 vanishes completely or if the matter sector

possesses exact scale invariance ( Tαβ → a−2Tαβ), gravitational field equa-

tions are never Weyl invariant simply because Newton’s constant is there

to scale as a−2.

A short glance at (14) reveals that, the combination

Gαβ (GV , V )− 8π
(
GNa

−2
)
Tαβ

(
adµ(d)

)
(15)

owns the transformation property of the Einstein tensor pertaining to a

non-Riemannian geometry. This is readily seen by noting that, a general

connection G can always decomposed as

Gλαβ= (GV )
λ
αβ + ∆λ

αβ (16)

where ∆ is a rank (1,2) tensor field. In response to this split structure, the

Einstein tensor of G breaks up into two

Gαβ (G, V ) = Gαβ (GV , V ) + Gαβ (∆, V ) (17)

where Gαβ (∆, V ), not found in GR, reads as

Gαβ (∆, V ) = Rαβ(∆)− 1

2
Vαβ

(
V −1

)µν Rµν(∆) (18)

with

Rαβ (∆) = ∇µ∆µ
αβ −∇β∆µ

µα + ∆µ
µν∆ν

αβ −∆µ
βν∆ν

αµ . (19)

Under the global scaling in (13), Gαβ (GV , V ) stays at its original value yet

Gαβ (∆, V ) exhibits modifications contingent on how ∆λ
αβ depends on the

metric tensor. Formally, the Einstein tensor in (17) changes to

Gαβ (GV , V ) + Gαβ (∆(a), V ) (20)
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which obtains the same structure as the combination in (15) as far as the

scaling properties of individual terms are concerned.

At this point, there arises a crucial question as to whether their formal

similarity under scaling can ever promote (20) to a novel formulation alter-

native to (15). In other words, can part of (15) involving the stress-energy

tensor arise, partly or wholly, from Gαβ (∆, V )? Can matter and radiation

be put in interaction with gravity by enveloping Tαβ into connection instead

of adding it to Vαβ as in (12)? These questions, which are at the heart of the

novel formulation being constructed, cannot be answered without a proper

understanding of the tensorial connection ∆. To this end, one observes that

generating Tαβ from Gαβ (∆, V ) can be a quite intricate process since while

Tαβ is divergence-free Gαβ (∆, V ) is not

∇αGαβ (∆, V ) 6= 0 (21)

because Rαβ (∆), as it is not generated by commutators of ∇GV or ∇G, is

not necessarily a true curvature tensor to obey the Bianchi identities. For

relating ∆λ
αβ to Tαβ , it proves facilitative to introduce a symmetric tensor

field

Tαβ = −Λgαβ + Θαβ (22)

which will be related to Tαβ in the sequel. For definiteness, Tαβ , similar

to the stress-energy tensor Tαβ , is split into a covariantly-constant part

which is its first term (Λ is strictly constant), and a generic symmetric

tensor field Θαβ which does, by construction, not contain any covariantly-

constant structure. As an obvious way of incorporating Tαβ into (9) via G,
one can write

Gλαβ= (GV+T)
λ
αβ (23)

which follows from (11) by replacing Vαβ therein with Vαβ + Tαβ . As a

result, ∆ becomes

∆λ
αβ =

1

2

(
(V + T)

−1
)λν

(∇αTβν +∇βTνα −∇νTαβ)

=
1

2

(
(V + T)

−1
)λν

(∇αΘβν +∇βΘνα −∇νΘαβ) (24)

which is seen to be a sensitive probe of Θαβ since it vanishes identically as

Θαβ → 0.

By way of (23), the Einstein tensor in (20) takes the form

Gαβ (GV , V ) + Gαβ
(
(Λ0 + Λ)a2,Θ(a)

)
(25)

whose comparison with (14) reveals the following features:
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(1) The parameter Λ in (22) must be related to the gravitational constant

GN . Actually, a relation of the form

Λ + Λ0 = (8πGN )−1 (26)

is expected on general grounds.

(2) In the limit Tαβ → 0, the gravitational field equations (12) uniquely

reduce to the matter-free field equations (9). Likewise, the gravitational

field equations to be obtained here, as suggested by (23), must smoothly

reduce to (9) as T→ 0. Therefore, any functional relation Tαβ = Tαβ [T ]

between T and T should exhibit the correspondence

Tαβ = 0⇐⇒ Tαβ = 0 . (27)

In addition, as Tαβ → −Egαβ , the right-hand side of (9) changes to

(1 + E/Λ0)Vαβ , which clearly signals the CCP. In contrast, however,

as Tαβ → −Λgαβ , Gαβ (GV+T, V ) reduces to the matter-free form

Gαβ (GV , V ). In other words, even if matter and radiation are discarded,

that is, Tαβ = −Λgαβ (tαβ = 0), the gravitational field equations

(12) suffer from the CCP. However, when Tαβ = −Λgαβ (Θαβ = 0),

Gαβ (GV+T, V ) remains unchanged at Gαβ (GV , V ) with complete im-

munity to Λ.

These observations evidently reveal the physical and CCP-wise relevance

of the method.

As a matter of course, the dynamical equation

Gαβ (GV+T, V ) = Vαβ , (28)

as directly follows from (9) via the replacement GV→GV+T, forms the germ

of the CCP-free gravitational dynamics under attempt. Under (17), it gives

Gαβ (GV , V ) = Vαβ − Gαβ (∆, V ) (29)

which refines the germinal equation (28). To proceed further, it is necessary

to establish the relation between Tαβ and Tαβ so that (28) reduces to (12),

at least approximately. This reduction does of course not affect the value of

CC; it stays put at Λ0. On the other hand, with (26) relating Λ to GN , on

physical grounds, one expects |Λ| � |Θ|. Then, all quantities, in particular,

∆λ
αβ can be expanded in powers of Θ/Λ such that (29), at the leading order,

is to return the gravitational field equations (12). As a matter of fact, the

dynamical equation (29), after using
(

(V + T)
−1
)
αβ

= (8πGN )gαβ − (8πGN )2Θαβ + (8πGN )3Θµ
αΘµβ − . . .
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takes the form

Gαβ (GV , V ) = C
(0)
αβ + (8πGN )C

(1)
αβ + (8πGN )2C

(2)
αβ + . . . (30)

where C
(n)
αβ are valency-two symmetric tensor fields encapsulating all the

terms of order (8πGN )n. For n = 0, the tensorial connection ∆λ
αβ vanishes

identically, and hence,

C
(0)
αβ = Vαβ (31)

so that (28) directly reduces to the matter-free gravitational field equations

(9) for Tαβ = 0 as well as Tαβ = −Λgαβ .

For n = 1,

∆λ
αβ = 4πGN (∇αΘλ

β +∇βΘλ
α −∇λΘαβ) (32)

is linear in Θαβ , and so is the derivative part of Rαβ (∆). Then, Gαβ (∆, V )

defined in (18) yields

C
(1)
αβ = −2

[
K−1 (∇)

]µν
αβ

Θµν (33)

where

[
K−1

]
αβµν

(∇) =
1

8
(∇µ∇αgνβ +∇µ∇βgαν) +

1

8
(∇ν∇αgµβ +∇ν∇βgαµ)

− 1

8
(∇α∇β +∇β∇α) gµν −

1

8
(∇µ∇ν +∇ν∇µ) gαβ

− 1

8
� (gαµgβν + gανgµβ − 2gαβgµν) (34)

is nothing but the inverse propagator for a ‘massless spin-2 field’ in the

background geometry generated by gαβ . To reproduce the gravitational

field equations (12) correctly, one must impose

−2
[
K−1 (∇)

]µν
αβ

Θµν = −2
[
K−1 (∇)

]µν
αβ

Tµν ≡ tαβ (35)

where “tαβ” was defined in (6) to involve ‘no covariantly-constant part’.

This equality lies at the heart of the mechanism being proposed, and there-

fore, its analysis and examination prove vital for further progress. The main

question is this: Can the right-hand side of (35) ever involve a covariantly-

constant part (of the form c1gαβ with c1 constant) added to tαβ? If the

answer turns out to be affirmative then whole mechanism collapses down

since c1/M
2, unless guaranteed to lie near Λ0 by some reason, brings back

the CCP. In examining, one first notes that the equality (35) works fine

for both Θαβ and Tαβ since a covariantly-constant part (like Λgαβ) is au-

tomatically nullified by
[
K−1 (∇)

]µν
αβ

. Therefore, if tαβ in (35) is to change
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to tαβ + c1gαβ there has to be an appropriate structure within Tαβ . The

requisite structure is found to be

δTαβ = [K (∇)]
µν
αβ (c1gµν) ≡ k1gαβ (36)

where structure of the spin-2 propagator [K (∇)]
µν
αβ guarantees that k1 =

±∞ independent of the value of c1. This result implies that the covariantly-

constant part of Tαβ in (22) changes to (Λ + k)gαβ ≡ Λeffgαβ with

Λeff = ±∞. In other words, an infinite Λ in Tαβ corresponds to a

covariantly-constant part of the form c1gαβ in (35). However, Λ→ ±∞ in

Tαβ causes the tensorial connection ∆λ
αβ in (24) to vanish, and hence, the

germinal equation (28) to reduce to the original matter-free gravitational

field equations (9). This implies that an infinite Λ prohibits the incorpo-

ration of matter and radiation into (9). These observations and findings

should provide enough evidence that “tαβ” in (35) is the stress-energy ten-

sor of everything but vacuum; it cannot have a covariantly-constant part.

It is precisely what was meant in writing (22), and hence, everything but

vacuum gravitates precisely as in the GR. Obviously, Θαβ is related to tαβ
non-locally yet causally since Θαβ involves values of tαβ in every place

and time as propagated by the ‘massless spin-2 propagator’ Kαβµν (∇). By

inverting (35) one finds

Tαβ = Θ0
αβ −

1

2
[K (∇)]

µν
αβ tµν (37)

where Θ0
αβ ≡ −Λgαβ is covariantly-constant. In fact, it must be propor-

tional to the vacuum energy density in (6), that is, Θ0
αβ ∝ Egαβ . Conse-

quently,

Tαβ = −L2Egαβ −
1

2
[K (∇)]

µν
αβ tµν (38)

wherein Λ = L2E, and L2, having the dimension of area, arises for dimen-

sionality reasons. This expression establishes a direct relationship between

Tαβ and Tαβ so that Tαβ = 0 ⇐⇒ Tαβ = 0, as was discussed in detail in

relation to (27). Actually, it is possible to interpret the result (38) in a more

general setting by generalizing the propagator (34) to massive case

[
K−1

]
αβµν

(
∇, L2

)
=
[
K−1

]
αβµν

(∇)

− f
(
L2�

)

4L2 (gαβgµν − gαµgβν − gανgµβ) (39)

where the operator f
(
L2�

)
/L2 serves as the ‘mass-squared’ parameter with
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the distributional structure

f(x) =

{
1, x = 0

0, x 6= 0
(40)

similar to the one used in 7. In (39), care is needed in interpreting the

‘mass term’ in that there is actually no ‘spin-2 mass term’ to speak about:

It vanishes for non-uniform sources like tαβ and stays constant for uniform

sources like Λgαβ . Clearly, the ‘massive propagator’ above automatically

reproduces the result in (38)

Tαβ = [K]
µν
αβ

(
∇, L2

)
Tµν = −L2Egαβ − (1/2)K (∇)

µν
αβ tµν (41)

thanks to the distributional structure of f(x).

For n = 2 and higher, the tensorial connection ∆λ
αβ goes like Θn−1 times

∇Θ, and is always proportional to ∆(n = 1). More explicitly,

∆λ
αβ(n) =

[
Πn−1
k=1(−8πGN )kΘλ

µk

]
∆µ1

αβ (1) (42)

where each Θ factor is expressed in terms of t via (41). Gradients of ∆λ
αβ(n)

and bilinears [∆(n− k)⊗∆(k)]αβ (k = 1, 2, . . . , n− 1) add up to form C
(n)
αβ

in accord with the structure of Gαβ (∆) in (18). In contrast to the three

tensor fields Gαβ(GV , V ), C
(0)
αβ and C

(1)
αβ , it is not clear if C

(n≥2)
αβ acquires

vanishing divergence, in general. Therefore, the gravitational field equations

Gαβ = −Λ0gαβ + (8πGN )tαβ +O
[
(8πGN∇Θ)

2
, (8πGN )

2
Θ∇∇Θ

]
(43)

distilled from the germinal dynamics in (28), are insensitive to vacuum

energy density E yet suffer from a serious inconsistency that the divergence

of C
(n≥2)
αβ may not vanish at all. The next section will give a critique of the

formalism, as developed so far.

3. More on the Formalism

Comparison of (43) with (12) raises certain questions pertaining to the

consistency of the elicited gravitational dynamics. There are mainly three

questions:

Question 1. What precludes Gαβ (∆, V ) from developing a covariantly-

constant part that can act as the CC?

Question 2. What must be the structure of Tαβ such that, despite

Eq.(21), ∇αGαβ (∆, V ) is nullified to make both sides of (29) divergence-

free?

Question 3. What is the status of CCP under the formalism developed

here?
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Answers to these questions will disclose the physical meaning, scope and

reach of the gravitational field equations (43).

3.1. Answer to Question 1

It is of prime importance to determine if the quasi Einstein tensor

Gαβ (∆, V ) can develop a covariantly-constant part since this type of con-

tribution can cause the CCP.

As the definition of ∆λ
αβ in (24) manifestly shows, Λ, in whatever way

it might be related to E, does not provide any contribution to CC. In fact,

a nontrivial ∆λ
αβ originates from Θαβ only. Though it vanishes identically

for Θαβ = 0, it remains nonvanishing even for Λ = 0. Therefore, Gαβ (∆, V )

depends critically on Θαβ , and any value it takes, covariantly-constant or

otherwise, is governed by Θαβ . There is no such sensitivity to Λ.

As dictated by the structure of the quasi curvature tensor Rαβ in (19),

for Gαβ (∆, V ) to develop a covariantly-constant part, at least one of

∇µ∆µ
αβ , ∆µ

µν∆ν
αβ , ∇β∆µ

µα , ∆µ
βν∆ν

αµ (44)

must be partly proportional to the metric tensor gαβ or must partly take

a constant value when contracted with the metric tensor. Concerning the

first and second structures above, a reasonable ansatz is ∆λ
αβ 3 Uλgαβ

where Uα is a vector field. With this structure for ∆λ
αβ , all one needs is to

set ∇µUµ = c1 for ∇µ∆µ
αβ 3 c1gαβ , and UµU

µ = c2 for ∆µ
µν∆ν

αβ 3 c2gαβ ,

where c1 and c2 are constants. With the same ansatz for ∆λ
αβ , the remaining

terms in (44) give rise to a covariantly-constant part in Gαβ (∆, V ) not by

themselves but via Vαβ
(
V −1

)µν Rµν (∆). Indeed, ∇β∆µ
µα 3 ∇βUα and

∆µ
βν∆ν

αµ 3 UαUβ , and they contract to c1 and c2 for ∇µUµ = c1 and

UµU
µ = c2, respectively. A more accurate ansatz for a symmetric tensorial

connection would be

∆̃λ
αβ = aUλgαβ + b

(
δλαUβ + Uαδ

λ
β

)
. (45)

As follows from (19), the Ricci tensor R̃αβ for this particular connection

becomes symmetric for a = −5b, and the Einstein tensor

G̃αβ = b (∇αUβ +∇βUα)− 22b2UαUβ + b∇ · Ugαβ + b2U · Ugαβ (46)

contributes to the CC by its third term in an amount δΛ0 = 4bc1 if ∇µUµ =

c1, and by its fourth term in an amount δΛ0 = −b2c2 if UµU
µ = c2. These

results ensure that, at least for a connection in the form of (45), the CCP

could be resurrected depending on how the contribution of Uµ compares

with the bare term Λ0. To this end, being a symmetric tensorial connection
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with symmetric Ricci tensor, ∆̃λ
αβ in (45) can be directly compared to ∆λ

αβ

in (24) to find

1

2
∇α log (Det [T]) = ∆̃µ

µα = 0 (47)

and
1

2

(
T−1

)λρ
(2∇αTαρ −∇ρTαα) = gαβ∆̃λ

αβ = −18bUλ . (48)

The first condition, namely the one in (47), requires Tαβ = c̃ gαβ where c̃ is

a constant. In other words, (47) enforces Θαβ = 0, and its replacement in

(48) consistently gives b = 0. Therefore, at least for connections structured

like (45), there does not exist a Θαβ to equip Gαβ (∆, V ) with a covariantly-

constant part.

Despite the firmness of this result, one notices that, it is actually not

necessary to force ∆λ
αβ to be wholly equal to ∆̃λ

αβ since it is sufficient to

have only part of Gαβ (∆, V ) be covariantly-constant. Thus, in general, one

can write

∆λ
αβ = ∆̃λ

αβ +Dλαβ (49)

where Dλαβ = Dλβα, and ∇βDµµα = ∇αDµµβ for Rαβ (D) = Rβα (D). This

condition enforces either Dµµα = 0 or Dµµα = ∇αΦ, Φ being a scalar. The

former, which was used for ∆̃λ
αβ in (45), does not change the present conclu-

sion. The latter, which was used for ∆λ
αβ in (24), guarantees that ∆λ

αβ and

Dλαβ are identical up to some determinant-preserving transformations. More

accurately, while ∆λ
αβ makes use of Tαβ , Dλαβ involves Tαβ which must equal

Mµ
αTµν

(
M−1

)ν
β

with Mαβ being a generic tensor field. All these results en-

sure that, ∆λ
αβ cannot cause Gαβ (∆, V ) to develop a covariantly-constant

part, at least for tensorial connections of the form (45).

3.2. Answer to Question 2

The left-hand side of (43) is divergence-free by the Bianchi identities;

however, its right-hand side exhibits no such property for n ≥ 2. Indeed,

unlike GR wherein the right-hand side obtains vanishing divergence by the

conservation of matter and radiation flow, the right-hand side of (43) lacks

such a property because the quasi curvature tensor Rµανβ (∆) does not obey

the Bianchi identities. A remedy to this conservation problem, an aspect

that the initiator work11 was lacking, comes via the expansion

Tαβ = −Λ
∞∑

n=0

(−8πGN )
n
Θ

(n)
αβ = −Λgαβ + Θ

(1)
αβ − (8πGN )Θ

(2)
αβ + . . .(50)
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over a set of tensor fields
{

Θ
(0)
αβ ≡ gαβ , Θ

(1)
αβ , Θ

(2)
αβ , . . .

}
, and requiring terms

at the n–th order to give, through the dynamics of Θ
(n)
αβ , a conserved tensor

field C
(n)
αβ . In (50), use has been made of Λ ' (8πGN )−1 as follows from (26)

thanks to the extreme smallness of |Λ0|. Clearly, Θ
(1)
αβ in (50) corresponds to

Θ in (22), and Θ
(n≥2)
αβ represent the added features for achieving consistency

in (43).

Despite the structure (50), C
(0)
αβ and C

(1)
αβ both stay put at their previous

values in (31) and (33), respectively. The only difference is that Θ in (35) is

replaced by Θ
(1)
αβ , and hence, what appears in (38) are the first two terms of

(50). Consequently, at levels of n = 0 and n = 1, gravitational dynamics in

(43) stay intact to the serial structure of T introduced in (50). At the higher

orders, n ≥ 2, the situation changes due to the introduction of Θ
(n≥2)
αβ . For

example, if n = 2, the tensorial connection ∆λ
αβ is quadratic in Θ(1)

αβ and

linear in Θ(2)
αβ

∆λ
αβ(2) = 8πGN

(
−Θ(1)λ

ρ∆ρ
αβ (1) + 4πGN

(
δ(2)
)λ
αβ

)
(51)

which differs from (42) by the presence of

(
δ(2)
)λ
αβ

= ∇αΘ(2)λ

β +∇βΘ(2)λ

α −∇λΘ(2)
αβ (52)

induced by Θ(2)
αβ alone. Replacement of (51) in (29) yields O

[
(8πGN )

2
]

terms which involve both Θ(2)
αβ and Θ(1)

αβ , where the latter is related to

tαβ via Eq. (35).

The Bianchi-wise consistency and completeness of Einstein field equa-

tions are based on the feature that the three tensor fields, Gαβ (GV , V ),

C
(0)
αβ and C

(1)
αβ , are the only divergence-free symmetric tensor fields in 4-

dimensional spacetime14. There exist no other divergence-free, symmetric

tensor fields with which C
(n≥2)
αβ can be identified. In fact, there is no ana-

logue of Huggins tensor in curved space14,15. Consequently, instead of strict

vanishing of the divergences of C
(n≥2)
αβ , which cannot be achieved, one must

be content with non-vanishing yet higher order remnants to be canceled by

divergences of higher orders. More accurately, if divergence of C
(n)
αβ , in the

equation of motion (30), gives a remnant at order of (n+ 1)-st and higher

then divergence at the n-th level is effectively nullified. At the n = 2 level,
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for instance, one can consider the tensor field

C
(2)
αβ =

(
−�αβgµν +�αµgβν +�βµgαν −∇µ∇νgαβ − 2Gαµβν

+
1

2
� (2gµνgαβ − gαµgβν − gανgβµ)

)
Ωµν (53)

where �αβ ≡ ∇α∇β −Gαβ , Gαµβν ≡ Rαµβν − 1
2gαβRµν , and

Ωαβ = c1Θ(1)µ

αΘ(1)
µβ + c2Θ(1)µ

µΘ(1)
αβ + c3Θ(1)µ

µΘ(1)ν

νgαβ + c4tαβ (54)

with c1,...,4 being dimensionless constants. Obviously, divergence of Ωαβ
does not vanish, and it is non-local due to its dependence on Θ(1)

αβ . Ex-

pectedly, divergence of C
(2)
αβ does not vanish yet it is O [(8πGN )t∇Ω] on

the equation of motion (30). It is sufficiently suppressed since it falls at the

n = 4 order, and may be made to cancel with the divergence of n = 4 term.

This progressive, systematic cancellation works well as long as divergence

of C
(n)
αβ produces terms at the n–th and (n+ 1)–st orders so that the n–th

order term cancels the non-vanishing divergence coming from the (n−1)–st

order. This procedure, order by order in (8πGN ), adjusts Tαβ , more cor-

rectly its Θαβ part, to guarantee the conservation of matter and radiation

flow.

In general, the mechanism proposed involves higher powers of GN asso-

ciated with higher powers of Θ(n) encoding the matter sector. Accordingly,

the dynamical equations are expected to involve higher powers of curvature

tensors. These higher order contributions from either sector are constrained

by the Bianchi identities. In fact, C
(n)
αβ encode nothing but these mutual con-

tributions from material and gravitational sectors. This is best illustrated

by C
(2)
αβ in (53): Curvature tensors and covariant derivatives acting on Ωαβ

are collected together to make the divergence of C
(2)
αβ higher order.

Also, one notes that the expression of C
(2)
αβ in (53) serves only as an

illustration. It is obviously not exhaustive, as C
(2)
αβ cannot be guaranteed

to depend on Θ(1) through only Ω. It may well involve structures like

∇Θ(1)∇Θ(1) or Θ(1)∇∇Θ(1). One also notes that, however it is composed of

Θ(1)
αβ and tαβ , Ωαβ originates from Θ(2)

αβ as the remnant of competing

Θ(1)– and Θ(2)–dependent parts of (51). Essentially, what is happening is

that Θ(2)
αβ gets expressed in terms of Θ(1)

αβ via Ωαβ so that the divergence

of C
(2)
αβ jumps to n = 4 level.
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3.3. Answer to Question 3

Having arrived at the gravitational field equations (43), it is clear that Λ0

stands out as the only dark energy source to account for the observational

value of the CC3. In other words, one is left with the identification

Λeff = Λ0 . H
2
0 (55)

to be constrasted with (7) in GR. It is manifest that this result involves no

fine or coarse tuning of distinct curvature sources. The vacuum energy E,

instead of gravitating, generates the gravitational constant GN via

(8πGN )
−1 ' L2E (56)

where L2 is an area parameter which converts the vacuum energy into New-

ton’s constant. This parameter is not fixed by the model. Essentially, it

adjusts itself against possible variations in vacuum energy density E so that

GN is correctly generated. If E ∼ (MEW )
4

then L2 ∼ m−2
ν . In this sce-

nario, contributions to vacuum energy from quantal matter whose loops

smaller than the electroweak scale are canceled by some symmetry prin-

ciple. Low-energy supersymmetry is this sort of symmetry. On the other

hand, if E ∼ (8πGN )
−2

then L ∼ `Pl. In this case vacuum energy stays

uncut up to the Planck scale, and E and L2 happen to be determined by

a single scale. Therefore, this case turns out to be the most natural one

compared to cases where the vacuum energy falls to an intermediate scale.

In a sense, the worst case of GR translates into the best case of the present

scenario.

As was also noted in Ref. 11, the result (56) guarantees that matter

and radiation are prohibited from causing the CCP. In spite of this, one

must keep in mind that quantum gravitational effects can restore the CCP

by shifting Λ0 by quartically-divergent contribution of the graviton and

graviton-matter loops. If gravity is classical, however, the mechanism suc-

cessfully avoids the CCP by canalizing the vacuum energy deposited by

quantal matter into the generation of the gravitational constant. Namely,

stress-energy connection alters the role and meaning of the vacuum energy

in a striking way. Newton’s constant is the outlet of the vacuum energy.

A critical aspect of the mechanism, which has not been mentioned so

far, is that the seed dynamical equations (28) do not follow from an action

principle. Indeed, the germ of the mechanism rests entirely upon the matter-

free gravitational field equations in GR, and it is not obvious if it can ever

follow from an action principle. Though one can argue for the Einstein-

Hilbert action at the linear level in (43), the non-local, higher-order terms
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do not fit into this picture. Thus, one concludes that, gravitational field

equations at finis involve non-local, Planck-suppressed higher-order effects,

and they are difficult, if not impossible, to derive from an action principle.

4. Conclusion

The CCP is too perplexing to admit a resolution within the GR or

quantum field theory. Any attempt at adjudicating the problem is immedi-

ately faced with the conundrum that the fundamental equations are to be

processed to offer a resolution for the CCP by maintaining all the successes

of quantum field theory and GR.

In the present work, gravity is taken classical yet matter and radiation

are interpreted as quantal. The vacuum energy deposited by quantal matter

and its gravitational consequences are explored in complete generality by

erecting a non-Riemannian geometry on the stress-energy tensor. By using

the scaling properties of gravitational field equations in GR as a guide, it

has been inferred that stress-energy tensor can be incorporated into gravi-

tational dynamics by modifying the connection. This observation gives rise

to a novel framework in which the gravitational constant GN derives from

the vacuum energy. In fact, vacuum energy, instead of curving the space-

time, happens to generate the gravitational constant. Indeed, contrary to

GR, the vacuum energy induced by quantal matter is not ‘cosmological

constant’; it just sources the ‘gravitational constant’. The CC stays put at

its bare value, and its identification with the observational value involves no

tuning of distinct quantities as long as gravity is classical. Quantum gravi-

tational effects bring back the CCP by adding to Λ0 quartically-divergent

contributions of the graviton and graviton-matter loops.

In spite of these observations, the model is in want of certain rectifi-

cations for a number of vague aspects. One of them is the absence of an

action principle. Another aspect concerns a complete analysis of the quan-

tum gravitational effects. Another point to note is the parameter L2 whose

dynamical origin is obscure. Finally, the case |Θ| . |Λ| must be studied in

depth to determine strong gravitational effects. All these points and many

not mentioned here are topics of further analyses of the model.

The literature consists of numerous attempts at solving the CCP. The

proposals conceptually and practically vary in a rather wide range (See

the long list of references in the review volumes5,6,9 as well as the paper

11. Recent work based on extended gravity theories are listed below16) .

The mechanism proposed in this work, which significantly improves and

expands Ref. 11, differs from those in the literature by its ability to tame
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the vacuum energy induced by already known physics down to the teras-

cale, by its immunity to any symmetry principle beyond general covariance,

and by its originality in canalizing the vacuum energy to generation of the

gravitational constant.
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