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Abstract: Nonlinear oscillation problems are extensively used inimegring and applied sciences. Due to non-availabilityhef t
analytic solutions, numerical approaches have been usetthdee equations. In this study, a numerical method whidhaged on
Newton-Raphson linearization and Fréchet derivativeggested. The convergence analysis is also studied lo€akypresent method
is tested on three examples: damped oscillator, Van-deed@tion and Schrodinger equation. It is shown that thaiéd solutions
via the present method are more accurate than those of th&mwesin second order Runge-Kutta method. When examiniagthsent
method, preservation of characteristic properties ofgleegiations is also considered. The obtained results stabththpresent method
is applicable with respect to the efficiency and the physioahpatibility.
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1 Introduction over a long time. We linearize the nonlinear equations bggisi
Newton-Raphson process and Fréchet derivative approxima
Solving nonlinear oscillation problems has a key role inligop  This technique is originated in the study of Liu & Wd,]], for
sciences and engineering because many engineering pblengolving ordinary differential equations(ODESs) of Duffitgpe
arise from vibrating systems which can be modeled by nonlinearity. It can also be seen ihl[12,5]. In Ref. [5], which
oscillation systems, sed $,6,4]. It is difficult to describe the s our main reference, the authors applied the techniquieo t
exact solution for the nonlinear problems. Therefore, systems of differential equations. The Fréchet derieaisvused
researchers have developed several methods to find ap@texim to convert a nonlinear differential equation into a lineareo
solutions of such equations. For example, homotopy arslysi jteratively. In the mentioned studies, the authors combine
methods 10], harmonic balance method14], homotopy  Fréchet derivative with the generalized differential dpaure
perturbation methodd] etc. rule(GDQR). In this work, Fréchet derivative is combinedhw
Moreover, a great deal of effort has been spent forthe central difference approximation. Additionally, the

developing the numerical solutions of nonlinear oscifiati  applicability of the method on the partial differential egjon is
problems. Differential transform method is used 1%][ Taylor also controlled.

matrix method has been improved for solving the Duffing
equation in £]. Operator splitting methods are used i8] and The paper is organized as follows: Section 2 provides the
[17]. The iterative splitting method is used to solve nonlinear introduction to proposed method for the systems of difféaén
oscillation problems ing]. A compact finite difference scheme equations. In addition, the convergence issue of the meithod
has been applied to nonlinear Schrodinger equation3jn [ discussed, locally. In Section 3, we consider three main
Another technique which is based on finding periodic sohgio oscillation systems which are known in engineering andiagpl
has been proposed for second and fourth order Duffing equatio sciences. In order to check the accuracy of the present shetho
in [7]. damped oscillator is first studied numerically. For thispmse,
Numerical methods produce approximated solutions.second order Runge-Kutta method (RK2) which is a
However, it is expected from the numerical schemes to gatisf well-known method among engineers and scientists is used fo
some qualitative properties of the exact solution. Thisepap comparing the results. As our second example, Van-der Pol
concerns with a linearization method for solving nonlinear equation is considered to see the effects of the presentooheth
oscillation problems which conserves the qualitative props on the ordinary differential equation. Finally, as a partia
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differential equation, Schrodinger equation is studiectiteck  RemarkiLet B be a Banach algebra. |fx [|< 1 then 1-x is
the validity of the present method. Section 4 is dedicatesuto  invertible with
brief conclusion. L 1
[ (1=X"" < ——-
1= x|

2 Local convergence analysis of the method  After substituting N’(6")~*N’(6*) — 1 in place of x, then

N’(6™)~1 exists and we obtain:
This section is associated with both the analysis and the 1

(11)

application of the method. After employing the convergence || N/(8")~IN'(6%) || < - . (12)
analysis locally, we will give a brief introduction for the 1-alen—6|
application of the method to the nonlinear differential fipn. Consider the method such as
A general nonlinear equation is given as follows:
g . g o™ — g" _ N'(8")IN(U). (13)

NU) =0 1)
whereN includes differential operators. By the Newton-Raphson
process, the solution of) is

UMl yngn. @2 6"-6"=0"-0"—N(8")'NU) (14)
~N'(6M 1 (N(U) - N'(8") (8" - 6%))

Subtracting6* from Equation {3) and then using Lagrange
identity, we obtain:

Heren corresponds to the iteration number a#iticorresponds

to the refinement variable for correcting functiofl. Primarily, a1t e [ e N oa
for solving refinement variable, we deal with the following =-L(6")"L(e )/o L'(6%)""x(6",6)(6" —6")dt,
r;ll:fe,ren:al equa:on wherex (6*,8) = (N'(6* +t(8"— 67)) — N'(8")) andN(U) =

N'(UT) +NUT) = 0. ®) N(8"™) = 0. After taking norms and using)we obtain:
By definition of Fréchet derivative the ter@8'N’(U") is defined ; _ ;
as follows: | g™t —e* || < | N/(Q:) IN'(6%) || - (15)
ON'(U") = TN+ 20", (4) | [ W) e 0)(6"—0%)at |

1

|4 n * 12
<= _Yien_pg
S Taqe—o 2| I

<h(|6"—6"[)[|6"—6" <] 6"—6" .
Let X andY be Banach spaces ahd Q C X — Y be nonlinear T expres®" in terms of8°, we substituter= 0,1, ... n and get

operator given in Equatiorl) in an open domaif2g C Q. We the following
concentrate on the following method:

2.1 Convergence analysis

9n+1 _ en_ N/(en)le(U). (5) H 9n+1_ 0" H < h(“ en_ 0" |Dn+l H 90_ 0" H7 (16)
n_ p* * 1
Assumption 2.1.1 Let N: Qyp € X — Y be a Fréchet where| 87— 6" || B(6 ?0+B/2)' o
differentiable operator given in Equatiorl)( Assume that  1hen nby . tanklgg the  limit Surfﬂ tDat
a>0,B>0andy> 0 are real numbers satisfying that there IMn—eh(|| 87— 8% )7 = 0 we have liM.6""" = 6
exists a fixed poink* € Q for everyx,y € Qg yields: which means that recommended method converges to the
B 1 solution.
N(X) =0, N(X)""eN(X)Y), (6)
IN'OE)HN' () = N'(X)) || < a [ x—=x" ||
IN'(X) N =N (W) || < B[ x=y]- (7) 2.2 Application of the method

We also introduce a helpful function as follows:

Bs 1 Since the convergence of the method is guaranteed, it can be
h(s) = S 1 as (8) applied to any nonlinear differential equations. In thisdst we

mainly focus on the systems of nonlinear oscillatory system

1
Letus choose & s < a+B/2’ then Thus, as for the systems of differential equations, the
0<h(s) <1 9) Equation () turns to
Under this assumption, the following theorem describes theN; (U,V) = 0,
local convergence analysis of the method. Na(U,V) = 0. 17)

Theorem 2.1.2Let N : Qg C X — Y be a Fréchet differentiable . ) . )
operator given in EquatiorL), Assume thatr > 0, 8 > 0 and The Newton-Raphson method is applied for both variablesrgiv

y > 0 are real numbers satisfying that there exists a fixed point" Equation (7). It yields
X" € Qo. Then the method defined b§)(is well defined for every ~ ynt1 — yn4 g;"

n * 1 _ *
6" e B(6 7m) wheren=0,1,2,... and converges t6*. vl _yn g gn (18)
Proof 2.1.2We start with ti iven iB)(i.e.

ro/o o /esnar WI/ a*ssump on g;venl*)(le with the iteration numbern. Here, 6;" and 6," are the
[N7(67)"“(N(6") —N'(6")) [ < a || 676" <1 (10)  refinements. Whe8;" and 8," are approaching to zert; and
where6" € Qy. Remember the following remark: U, are approximating to their fixed points. Thus, finding the
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Table 1: Numerical errors for differentAt. Estimated
values of6," and 6," have essential role in determining the €ITOrs usmg_w,. L2 and_l-l norms are obtained comparing
solution. To get these values the following equation will be With the analytic solution.
solved in each iteration.

Norms

elanl(Un7Vn)_‘_eanll(Un’Vn)_i_Nl(Un’Vn) — 0’ a Method h T [ )
8:"Ny (UM, V™) + BNy (UM, V™) £ Np(U, V1) = 0 (19) oo Thepesgmmenod 3 S88% 8585 88028
oo Tevgerod & gEEl  cum™ on%

NNt/ - . . - . : . .
where 9| Nj (U n’Vn)’ ] = 1> 2 is obtained by the he'P of The present method 2 9.2573e-005 2.8095€-004 0.0013
0.0001 RK2 2 1:1844e-004 2.9516€-004 0.0012

Fréechet derivatives. Then,

6."N/'(U", V") = %Ni (UN+e6,", V")

£=0
20) After rearranging the equations, it corresponds to

£=0 156 +AO +B(O,A) = —IpA — AN —C(A),  (27)
Crank-Nicolson scheme is implemented to the Equatif) {0 T T

describe the solutions. To be more understandable of théVnere® = (61,62)", A = (a1, )",

expression, the application of the present method to the 0-1 0

nonlinear oscillation problems will be shown in the nexttget A= {1 0 } , B(OA)= {SGqZZQJ and CA\) =

Moreover, |, is a 2x 2 identity matrix. The system given in

6:,"N/ (U™ V") = %Ni (UM V" +e6,")

0
ag?®

3 Numerical tests and simulations Equation 27) is linear with respect t@®. Thus, this system is
solved for® by using Crank-Nicolson scheme. We have

The main purpose of this section is to test the efficiency ef th @+l _ g, el @n L N AL AL

proposed method for some numerical examples and to checke At + 2 +D(ey AT = _IZT

whether the method preserves the characteristic propertige AML AN

equations. _Bf — C(AMY). (28)

Example 31 To gee the. performance of the method, the The problem is solved when the initial position is 1 and thigah
damped oscillator is considered as a test problem. However

before giving the results, we shall show how the method isVelocny is zero. Ht_ere, the analytic solution of one-dimenal
. . . . damped oscillator is
applied to any systems of differential equations.
cost |
q +f(d)+q=0, 1) qt) = W7 where o — 0" (29)
4
wheref(q) = o (q’)3 and o denotes the damping constant. By
redefining the variables, the second order equation is dutme
the first order system of differential equation

For details, it is referred to1].
In Table 1, the errors are presented in different discrete
norms, namehLs, L, and L. Here,L1, L, andLe norms are

a'-a =0, defined by
&' +q+ag® =0 (22) n=N
) -l = ZO\U(nh)—U(nh)L

where q(t) = gu1(t) and q'(t) = go(t). Thus, two systems of =

equations are obtained as follows: n=N 12
I, = u(nh) —U (nh)|?

N1(g1,q2) = a1’ — 2 (23) Il (nZO| (nhy ~U(h)[%)

N2(01,0p) = G2+ + agp®. (24) |||l = max |u(nh)—U(nh)|.

0<n<N
For sake of clarity, we only deal with the time interyalh] in
introducing the algorithm. By using the algorithms giver(18)
and @0), we obtain

The numerical solution obtained by the present method is
compared with the analytic one on the inter{@&ll] for various

values of a. Table 1 reveals that the proposed linearized
method(PLM) is more efficient than the well-known second

17
Ni(dr, ) = - [t +€61" — ] order Runge-Kutta method(RK2).

oe

9
+ 35 [ — g — £6,]

e=0 e=0
0
No(d1, G2) = 5 [0’ + (o +£61) +a1(q)’]
€=0 Figs 1 and 2 illustrate that there is no difference between the
d ’ 3 numerical solutions and the analytic solutions éoe= 0.1 and
— o a € . :
+d£ [qz +e6 +a+ald+ed) ] £=0 o = 0.001 respectively, orf0,30]. It can also be seen from the

figures that the amplitude of the Equatid@t) is damping asx

As aresult, getting bigger.
6 — 0+~ =0 (25)

6, + 61+ 3a02%6, + @’ + o + agp® = 0. (26)
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Fig. 1: Analytic solution vs. Fig. 3: Solutions of ODE45 and the
Numerical solution foor = 0.1 present method
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Fig. 2: Analytic solution vs. Fig. 4: Solutions of ODE45, RK2
Numerical solution forr = 0.001 and the present method

In Figs3 and 4, a is taken as 1 in order to see the effects of
nonlinearity on the present method. However, to the best outMATLAB since there is no exact solution for Equatidsof. We
knowledge, there is no exact solution for the Equati?h) for note that the ODE23s is valid for the stiff and nonlinear
the choice ofa. For this reason, the results obtained from the problems. which means that ODE23s is an implicit solver in
present method are compared with a known software inMATLAB. Although the present method is explicit, Figsand
MATLAB, ODE45 which is known as an explicit solver. Figs 6 show that the present method is in a good agreement with
and 4 compare the solutions obtained by the present methodODE23s for different values gi. It is known that many explicit
with ODE45 and RK2. It is worth to say that the RK2 has the methods do not preserve some qualitative properties. Even
stability problem over a long time. We studied witlh = 1/8 on though the present method is explicit, it preserves the kigtle
[0,30]. In Figure3, it is obvious that the present method is in a of Van-der Pol equation which is the most known qualitative
perfect agreement with the ODE45 in MATLAB. property of the equation. Figuré emphasizes that the present

Example 3.2.As our second example we consider Van-der Pol method preserves the limit cycle of the equation in the cése o
1 = 10 wheret € [0,60]. For the chosen parameters, it is

equation which has a great deal of importance for engineers! L
physicists as well as mathematicians. observed that the elapsed time i2@B1 for the present method

whereas the elapsed time is4@63 for the software of
%+ p(x® —1)x+x =0, (30) MATLAB, ODE23s, with the same number of steps on time.
) . . Although the difference is a small number, it will be imparta
where u denotes the constant of nonlinearity. Rearranging, henever the system is huge or multi-dimensional. Thus, we

Equa}tion 60) and employing the present method given in shall emphasize that the present method is faster than GDE23
Section2, we have in CPU runtime

126t +AOQ 4+ D(X)0 = —IX% — AX —C(X), (31) Example 3.3. One-dimensional cubic nonlinear Schrodinger
equation(CNSE) which arises in the quantum physics and
where@ = (81,6,)T, X = (x,x2)" andl, is the identity matrix.  applied sciences is considered. The CNSE is defined as fallow
Here,

192 1 2
_|0-1 _ 0 0 = (—50X2+(1+Sinzx+30*|ll,l| )) v (32)
A= ) D(X) - 2 )
10 2uxaxp H(x1=—1) . . .
0 subject to the Dirichlet boundary condition

C(X) = .
) [ y(xlz—l)xJ YOt = WiR,t) =0,
To obtain Figs5 and 6, At is taken as @1 over the interval  and the initial condition is taken

[0,60 wherepu = 5 andu = 10, respectively. The solutions of
the present method are compared with the ODE23s code in Yo(x) = yexp(sin),
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— whereNy = Ny = 100 The system is integrated to the final time
e tend = 4. Figs 8 and 9 illustrate the numerical solutions of the
: present method and the RK2, respectively. It is obvious ttiat

solution

Fig. 5: Comparison of the solutions
of the present method and ODE23s
in the case oft = 5.
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Fig. 8: Numerical Solution of
Equation 82) obtained by RK2

solution
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Fig. 6: Comparison of the solutions
of the present method and ODE23s
in the case oft = 10.

probability density of the present method

Fig. 9: Numerical solution of
Equation B82) obtained by the
present method

15

ODE23s
—%— the present Method

10

numerical solutions are so similar to each other, see &igsd

9. However, when the final time is taken &gq =5, it is
observed that the RK2 does not preserve the probabilityityens
of the particle in Equation3@) for a long time.

\dot{x}
°

Fig. 7: Comparison of the obtained solutions by the
present method and ODE23s to see the conservation of
the limit cycle of the Equation30). Here,u = 10 and

t € [0,60] with At =0.01

4
3
s
2z
5}
8
3
g
H
5

wherey represents the normalization constant.

Applying the present method and doing tedious calculations_. . . .
the system to be computed has arisen. The main objectivésof th F19- 10: The numerical solutions obtained from the RK2
example is to check the validity of the present method on theMethod ovet € [0,5].
partial differential equations. For that purpose, the nfieaus is
the conservation of the qualitative properties such asatitiby
density of the particle and the mass conservation of thécpeart The probability density of the particle should be conserved

To compare the present method with the second ordemwith respect to the conservation law. Figli@indicates that the
Runge-Kutta(RK2) method, we also study fere [—20,20] RK2 does not confirm the law whereas in Fisand 12 the
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present method preserves the probability density of thictar
in Equation 82) even when the final timgng= 8.

o o o
o 9 o
S @ R

probability density of the present method
S
2

N
S

Fig. 11: Numerical Solution of Equatior8)
obtained by the present method

Fig. 12: Contour Plot of the numerical solution
of Equation B82) obtained by the present
method

Due to the aim of this study, to ensure the validity of the
present method, checking conservation of the mass is reyess
To this end, the initial mass is computed as

20
/ |[2dx = 0.4000
—-20

while the numerical solutions obtained by the present nueémal
RK2, respectively, dfng= 4

-20 20
/ |w|2dx = 0.3968 and / w[2dx = 0.4038
—20 -20
At teng = 7 the observed results are
-20 -20
/ |w[2dx=0.3913 and / |w[2dx= NaN.
—20 —20

These results guarantee that the present method has thértang
behavior for the conservation of the characteristic pridger

4 Conclusions and discussions

This numerical study introduces a linearization method seho
iterative process is based on the Newton-Raphson procelss an
Fréchet derivative. After ensuring that the method is eogent,

the performance of the present method is tested on three main
nonlinear oscillation problems. To check it, analytic $iao

and some numerical software in MATLAB are used as well as
the second order Runge-Kutta method (RK2). It is observat th
the present method conserves the qualitative propertigheof
equations. Moreover, it is more efficient than the compared
methods. Even though the present method is explicit, itevelsi

a good agreement with an implicit solver, ODE23s, and the
analytic solution. The RK2, which is a well-known method
among the engineers, has some problems on the conservation o
the qualitative problems and on the long-time behavior. As a
result, the present method is applicable for nonlinearlasoin
problems in applied sciences and engineering.

Acknowledgement

The authors thank the anonymous referee for a careful amgcki
of the details and for helpful comments that improved thisqua

References

[1] C.M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers |, Springer Science &
Business Media, New York, (1999)

[2] B. Bulbul and M. Sezer, Numerical Solution of Duffing
Equation by using an Improved Taylor Matrix Method,
Journal of Applied Mathematics, Vol. 2013, 6 pages, doi:
10.1155/2013/691614, (2013).

[3] M. Dehghan and A. Taleei, A compact split-step finite
difference method for solving the nonlinear Schrodinger
equations with constant and variable coefficients, Compute
Physics Communications, Vol. 181, No.1, pp. 43-51 (2010).

[4] A. D. Dimarogonas, Vibration for Engineers, PrenticellHa
New Jersey, (1996).

[5] M.R. Fazel, M.M. Moghaddam and J. Poshtan, Application
of GDQ method in nonlinear manipulator undergoing large
deformation, Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science, Vol. 227, No. 12, pp. 2671-2685 (2013).

[6] A. Fidlin, Nonlinear Oscillations in Mechanical Engieeng,
Nonlinear Oscillations in Mechanical Engineering, Speng
Berlin, (2010).

[7] F. R. Groves JR., Numerical solution of nonlinear diéfietial
equation using computer algebra, International Journal of
Computer Mathematics, Vol. 13, No. 3-4, pp. 301-309 (1983).

[8]J. H. He, Homotopy perturbation technique, Computer
Methods in Applied Mechanics and Engineering, Vol. 178,
No. (3-4), pp. 257-262 (1999).

[9] S. O. Korkut Uysal and G. Tanoglu, An Efficient Iterative
Algorithm for Solving Non-Linear Oscillation Problems,
FILOMAT, Vol. 31, No. 9, pp. 2713-2726 (2017).

[10] S. J. Liao and A. T. Cheung, Application of homotopy
analysis method in nonlinear oscillations, Journal of Agxpl
Mechanics, Vol. 65, No. 4, pp. 914-922 (1998).

(@© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 3, 537-543 (2018)www.naturalspublishing.com/Journals.asp %N//S' =) 543

[11]G. R. Liu and T. Y. Wu, Numerical solution for
Differential Equations of Duffing-Type non-linearity ugin Gamze Tandglu is Proffesor
the Generalized differential Quadrature Rule, Journal of[® in Mathematics at Izmir Institute
Sound and Vibration, Vol. 237, No. 5, pp. 805-817 (2000). of Technology. She received the PhD

[12] G. R. Liu and T. Y. Wu, An application of the generalized [y Ui degree in "Applied Mathematics”
differential quadrature rule in Blasius and Onsager eqoati at University of Delaware (USA)
International Journal for Numerical Methods in Enginegrin in 2000. She has published research
Vol. 52, No. 9, pp. 1013-1027 (2001). articles in reputed international

[13] C. Lubich, On splitting Methods for Schrodinger-Paiss journals  of  mathematical ~and
and cubic nonlinear Schrodinger Equations, Mathematics of engineering sciences. Her research
computation, Vol. 77, No. 264, pp. 2141-2153 (2008). interests are in the areas of

[14]R. E. Mickens, Mathematical and numerical study of dynamical ~ systems,  applied
the Duffing-harmonic oscillators, Journal of Sound and mathematics and numerical methods
Vibration, Vol. 244, No. 3, pp. 563-567 (2001). for differential equations including construction of a imed and

[15] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, analysis.
WILEY-VCH Verlag GmbH & Co. KGaA, (2004)

[16] K. Tabatabaei and E. Gunerhan, Numerical Solution of
Duffing Equation by the Differential Transform Method,
Appl. Math. Inf. Sci. Lett., Vol. 2, No. 1, pp. 1-6 (2014).

[17] M. Thalhammer, High-Order Exponential Operator
Splitting Methods for Time-Dependent Schrodinger
Equations, SIAM J. Numer. Anal., Vol. 46, No. 4, pp.
2022-2038 (2008).

Sila O. Korkut received
the PhD degree in Mathematics
at Izmir Institute of Technology.
Her research interests are in
the areas of applied mathematics
and numerical methods
for differential equations
including construction
1 i of a method and analysis.

Nurcan Giciyenen Kaymak
got her PhD degree in Mathematics
at lzmir Institute of technology.
Her research interests are: applied
mathematics and numerical
methods for differential equations
including  construction of a
method and analysis.

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Local convergence analysis of the method
	Numerical tests and simulations
	Conclusions and discussions 

