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2 Department of Mathematics, Izmir Institute of Technology,Izmir 35430, Turkey

Received: 19 Feb. 2018, Revised: 2 Apr. 2018, Accepted: 11 Apr. 2018
Published online: 1 May 2018

Abstract: Nonlinear oscillation problems are extensively used in engineering and applied sciences. Due to non-availability of the
analytic solutions, numerical approaches have been used for these equations. In this study, a numerical method which isbased on
Newton-Raphson linearization and Fréchet derivative is suggested. The convergence analysis is also studied locally. The present method
is tested on three examples: damped oscillator, Van-der Polequation and Schrödinger equation. It is shown that the obtained solutions
via the present method are more accurate than those of the well-known second order Runge-Kutta method. When examining the present
method, preservation of characteristic properties of these equations is also considered. The obtained results show that the present method
is applicable with respect to the efficiency and the physicalcompatibility.
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1 Introduction

Solving nonlinear oscillation problems has a key role in applied
sciences and engineering because many engineering problems
arise from vibrating systems which can be modeled by
oscillation systems, see [15,6,4]. It is difficult to describe the
exact solution for the nonlinear problems. Therefore,
researchers have developed several methods to find approximate
solutions of such equations. For example, homotopy analysis
methods [10], harmonic balance method [14], homotopy
perturbation method [8] etc.

Moreover, a great deal of effort has been spent for
developing the numerical solutions of nonlinear oscillation
problems. Differential transform method is used in [16], Taylor
matrix method has been improved for solving the Duffing
equation in [2]. Operator splitting methods are used in [13] and
[17]. The iterative splitting method is used to solve nonlinear
oscillation problems in [9]. A compact finite difference scheme
has been applied to nonlinear Schrödinger equation in [3].
Another technique which is based on finding periodic solutions
has been proposed for second and fourth order Duffing equation
in [7].

Numerical methods produce approximated solutions.
However, it is expected from the numerical schemes to satisfy
some qualitative properties of the exact solution. This paper
concerns with a linearization method for solving nonlinear
oscillation problems which conserves the qualitative properties

over a long time. We linearize the nonlinear equations by using
Newton-Raphson process and Fréchet derivative approximation.
This technique is originated in the study of Liu & Wu, [11], for
solving ordinary differential equations(ODEs) of Duffing-type
nonlinearity. It can also be seen in [11,12,5]. In Ref. [5], which
is our main reference, the authors applied the technique to the
systems of differential equations. The Fréchet derivative is used
to convert a nonlinear differential equation into a linear one
iteratively. In the mentioned studies, the authors combine
Fréchet derivative with the generalized differential quadrature
rule(GDQR). In this work, Fréchet derivative is combined with
the central difference approximation. Additionally, the
applicability of the method on the partial differential equation is
also controlled.

The paper is organized as follows: Section 2 provides the
introduction to proposed method for the systems of differential
equations. In addition, the convergence issue of the methodis
discussed, locally. In Section 3, we consider three main
oscillation systems which are known in engineering and applied
sciences. In order to check the accuracy of the present method a
damped oscillator is first studied numerically. For this purpose,
second order Runge-Kutta method (RK2) which is a
well-known method among engineers and scientists is used for
comparing the results. As our second example, Van-der Pol
equation is considered to see the effects of the present method
on the ordinary differential equation. Finally, as a partial
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differential equation, Schrödinger equation is studied to check
the validity of the present method. Section 4 is dedicated toour
brief conclusion.

2 Local convergence analysis of the method

This section is associated with both the analysis and the
application of the method. After employing the convergence
analysis locally, we will give a brief introduction for the
application of the method to the nonlinear differential equation.
A general nonlinear equation is given as follows:

N(U) = 0 (1)

whereN includes differential operators. By the Newton-Raphson
process, the solution of (1) is

Un+1 = Un+θ n. (2)

Heren corresponds to the iteration number andθ n corresponds
to the refinement variable for correcting functionUn. Primarily,
for solving refinement variable, we deal with the following
differential equation

θ nN′(Un)+N(Un) = 0. (3)

By definition of Fréchet derivative the termθ nN′(Un) is defined
as follows:

θ nN′(Un) =
∂

∂ε
N(Un+ εθ n)

∣

∣

ε=0 . (4)

2.1 Convergence analysis

Let X andY be Banach spaces andL : Ω ⊆ X →Y be nonlinear
operator given in Equation (1) in an open domainΩ0 ⊆ Ω . We
concentrate on the following method:

θ n+1 = θ n−N′(θ n)−1N(U). (5)

Assumption 2.1.1 Let N : Ω0 ⊆ X → Y be a Fréchet
differentiable operator given in Equation (1). Assume that
α > 0, β > 0 andγ > 0 are real numbers satisfying that there
exists a fixed pointx∗ ∈ Ω0 for everyx,y∈ Ω0 yields:

N(x∗) = 0, N′(x∗)−1 ∈ N(X,Y), (6)

‖ N′(x∗)−1(N′(x)−N′(x∗)) ‖ ≤ α ‖ x−x∗ ‖,

‖ N′(x∗)−1(N′(x)−N′(y)) ‖ ≤ β ‖ x−y ‖ . (7)

We also introduce a helpful function as follows:

h(s) =
βs
2

1
1−αs

. (8)

Let us choose 0≤ s< 1
α+β/2 , then

0≤ h(s)< 1. (9)

Under this assumption, the following theorem describes the
local convergence analysis of the method.

Theorem 2.1.2Let N : Ω0 ⊆ X →Y be a Fréchet differentiable
operator given in Equation (1). Assume thatα > 0, β > 0 and
γ > 0 are real numbers satisfying that there exists a fixed point
x∗ ∈ Ω0. Then the method defined by (5) is well defined for every
θ n ∈ B(θ ∗, 1

α+β/2) wheren= 0,1,2, . . . and converges toθ ∗.

Proof 2.1.2We start with assumption given in (6) i.e.

‖ N′(θ ∗)−1(N′(θ n)−N′(θ ∗)) ‖ ≤ α ‖ θ n−θ ∗ ‖≤ 1 (10)

whereθ n ∈ Ω0. Remember the following remark:

Remark.Let B be a Banach algebra. If‖ x ‖≤ 1 then 1− x is
invertible with

‖ (1−x)−1 ‖≤
1

1− ‖ x ‖
. (11)

After substituting N′(θ n)−1N′(θ ∗) − 1 in place of x, then
N′(θ n)−1 exists and we obtain:

‖ N′(θ n)−1N′(θ ∗) ‖ ≤
1

1−α ‖ θ n−θ ∗ ‖
. (12)

Consider the method such as

θ n+1 = θ n−N′(θ n)−1N(U). (13)

Subtractingθ ∗ from Equation (13) and then using Lagrange
identity, we obtain:

θ n+1−θ ∗ = θ n−θ ∗−N′(θ n)−1N(U) (14)

= −N′(θ n)−1(N(U)−N′(θ n)(θ n−θ ∗)
)

= −L′(θ n)−1L′(θ ∗)

∫ 1

0
L′(θ ∗)−1χ(θ ∗,θ )(θ n−θ ∗)dt,

whereχ(θ ∗,θ ) =
(

N′(θ ∗+ t(θ n−θ ∗))−N′(θ n)
)

andN(U) =
N(θ n) = 0. After taking norms and using (6) we obtain:

‖ θ n+1−θ ∗ ‖ ≤ ‖ N′(θ n)−1N′(θ ∗) ‖ · (15)

‖
∫ 1

0
N′(θ ∗)−1χ(θ ∗,θ )(θ n−θ ∗)dt ‖

≤
1

1−α ‖ θ n−θ ∗ ‖
·

γ
2
‖ θ n−θ ∗ ‖2

≤ h(‖ θ n−θ ∗ ‖) ‖ θ n−θ ∗ ‖<‖ θ n−θ ∗ ‖ .

To expressθ n in terms ofθ 0, we substituten= 0,1, . . .n and get
the following

‖ θ n+1−θ ∗ ‖ ≤ h(‖ θ n−θ ∗ ‖)n+1 ‖ θ 0−θ ∗ ‖, (16)

where‖ θ n−θ ∗ ‖∈ B(θ ∗, 1
α+β/2).

Then by taking the limit such that
limn→∞ h(‖ θ n − θ ∗ ‖)n+1 = 0 we have limn→∞ θ n+1 = θ ∗

which means that recommended method converges to the
solution.

2.2 Application of the method

Since the convergence of the method is guaranteed, it can be
applied to any nonlinear differential equations. In this study we
mainly focus on the systems of nonlinear oscillatory systems.
Thus, as for the systems of differential equations, the
Equation (1) turns to

N1(U,V) = 0,

N2(U,V) = 0. (17)

The Newton-Raphson method is applied for both variables given
in Equation (17). It yields

Un+1 = Un+θ1
n,

Vn+1 = Vn+θ2
n, (18)

with the iteration numbern. Here, θ1
n and θ2

n are the
refinements. Whenθ1

n andθ2
n are approaching to zero,U1 and

U2 are approximating to their fixed points. Thus, finding the
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values ofθ1
n and θ2

n have essential role in determining the
solution. To get these values the following equation will be
solved in each iteration.

θ1
nN1

′(Un,Vn)+θ2
nN1

′(Un,Vn)+N1(U
n,Vn) = 0,

θ1
nN2

′(Un,Vn)+θ2
nN2

′(Un,Vn)+N2(U
n,Vn) = 0 (19)

where θi
nNj

′(Un,Vn), i, j = 1,2 is obtained by the help of
Fréchet derivatives. Then,

θ1
nNi

′(Un,Vn) =
∂

∂ε
Ni
(

Un+ εθ1
n,Vn)

∣

∣

∣

∣

ε=0

θ2
nNi

′(Un,Vn) =
∂

∂ε
Ni
(

Un,Vn+ εθ2
n)
∣

∣

∣

∣

ε=0
. (20)

Crank-Nicolson scheme is implemented to the Equation (20) to
describe the solutions. To be more understandable of the
expression, the application of the present method to the
nonlinear oscillation problems will be shown in the next section.

3 Numerical tests and simulations

The main purpose of this section is to test the efficiency of the
proposed method for some numerical examples and to check
whether the method preserves the characteristic properties of the
equations.

Example 3.1. To see the performance of the method, the
damped oscillator is considered as a test problem. However,
before giving the results, we shall show how the method is
applied to any systems of differential equations.

q′′+ f (q′)+q = 0, (21)

where f (q′) = α (q′)3 andα denotes the damping constant. By
redefining the variables, the second order equation is turned to
the first order system of differential equation

q1
′−q2 = 0,

q2
′+q1+αq2

3 = 0 (22)

where q(t) = q1(t) and q′(t) = q2(t). Thus, two systems of
equations are obtained as follows:

N1(q1,q2) = q1
′−q2 (23)

N2(q1,q2) = q2
′+q1+αq2

3. (24)

For sake of clarity, we only deal with the time interval[0,h] in
introducing the algorithm. By using the algorithms given in(19)
and (20), we obtain

N1(q1,q2) =
∂

∂ε
[

q1
′+ εθ1

′−q2
]

∣

∣

∣

∣

ε=0
+

∂
∂ε

[

q1
′−q2− εθ2

]

∣

∣

∣

∣

ε=0

N2(q1,q2) =
∂

∂ε
[

q2
′+(q1+ εθ1)+α(q2)

3]
∣

∣

∣

∣

ε=0

+
∂

∂ε
[

q2
′+ εθ2

′+q1+α(q2+ εθ2)
3]
∣

∣

∣

∣

ε=0
.

As a result,

θ1
′−θ2+q1

′−q2 = 0 (25)

θ2
′+θ1+3αq2

2θ2+q2
′+q1+αq2

3 = 0. (26)

Table 1: Numerical errors for different∆ t. Estimated
errors usingL∞, L2 andL1 norms are obtained comparing
with the analytic solution.

α Method h
Norms

L∞ L2 L1

0.0001
The present method 2−3 0.0011 0.0017 0.0038

RK2 2−3 0.0020 0.0030 0.0065

0.0001
The present method 2−4 2.9783e-004 6.1720e-004 0.0020

RK2 2−4 5.1439e-004 0.0010 0.0030

0.0001
The present method 2−5 9.2573e-005 2.8095e-004 0.0013

RK2 2−5 1.1844e-004 2.9516e-004 0.0012

After rearranging the equations, it corresponds to

I2Θt +AΘ +B(Θ ,Λ ) =−I2Λt −AΛ −C(Λ ), (27)

whereΘ = (θ1,θ2)
T , Λ = (q1,q2)

T ,

A=

[

0 −1
1 0

]

, B(Θ ,Λ ) =

[

0
3αq2

2θ2

]

and C(Λ ) =

[

0
αq2

3

]

.

Moreover, I2 is a 2× 2 identity matrix. The system given in
Equation (27) is linear with respect toΘ . Thus, this system is
solved forΘ by using Crank-Nicolson scheme. We have

I2
Θn+1−Θn

∆ t
+A

Θn+1+Θn

2
+ D(Θn+1

n ,Λ n+1
n ) = −I2

Λ n+1−Λn

∆ t

−B
Λ n+1+Λ n

2
− C(Λ n+1

n ). (28)

The problem is solved when the initial position is 1 and the initial
velocity is zero. Here, the analytic solution of one-dimensional
damped oscillator is

q(t) ≈
cost

√

1+ 3αt
4

, where α → 0+. (29)

For details, it is referred to [1].
In Table 1, the errors are presented in different discrete

norms, namelyL1, L2 and L∞. Here,L1, L2 and L∞ norms are
defined by

‖.‖L1 =
n=N

∑
n=0

|u(nh)−U(nh)|,

‖.‖L2 =
(

n=N

∑
n=0

|u(nh)−U(nh)|2
)1/2

‖.‖L∞ = max
0≤n≤N

|u(nh)−U(nh)|.

The numerical solution obtained by the present method is
compared with the analytic one on the interval[0,1] for various
values of α. Table 1 reveals that the proposed linearized
method(PLM) is more efficient than the well-known second
order Runge-Kutta method(RK2).

Figs 1 and 2 illustrate that there is no difference between the
numerical solutions and the analytic solutions forα = 0.1 and
α = 0.001, respectively, on[0,30]. It can also be seen from the
figures that the amplitude of the Equation (21) is damping asα
getting bigger.
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Fig. 1: Analytic solution vs.
Numerical solution forα = 0.1
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Fig. 2: Analytic solution vs.
Numerical solution forα = 0.001

In Figs3 and 4, α is taken as 1 in order to see the effects of
nonlinearity on the present method. However, to the best our
knowledge, there is no exact solution for the Equation (21) for
the choice ofα. For this reason, the results obtained from the
present method are compared with a known software in
MATLAB, ODE45 which is known as an explicit solver. Figs3
and 4 compare the solutions obtained by the present method
with ODE45 and RK2. It is worth to say that the RK2 has the
stability problem over a long time. We studied with∆ t = 1/8 on
[0,30]. In Figure3, it is obvious that the present method is in a
perfect agreement with the ODE45 in MATLAB.

Example 3.2.As our second example we consider Van-der Pol
equation which has a great deal of importance for engineers,
physicists as well as mathematicians.

ẍ+µ(x2−1)ẋ+x = 0, (30)

where µ denotes the constant of nonlinearity. Rearranging
Equation (30) and employing the present method given in
Section2, we have

I2Θt +AΘ +D(X)Θ =−I2Xt −AX−C(X), (31)

whereΘ = (θ1,θ2)
T , X = (x1,x2)

T andI2 is the identity matrix.
Here,

A=

[

0 −1
1 0

]

, D(X) =

[

0 0
2µx1x2 µ(x1

2−1)

]

,

C(X) =

[

0
µ(x1

2−1)x2

]

.

To obtain Figs5 and 6, ∆ t is taken as 0.01 over the interval
[0,60] whereµ = 5 andµ = 10, respectively. The solutions of
the present method are compared with the ODE23s code in
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Fig. 3: Solutions of ODE45 and the
present method
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Fig. 4: Solutions of ODE45, RK2
and the present method

MATLAB since there is no exact solution for Equation (30). We
note that the ODE23s is valid for the stiff and nonlinear
problems. which means that ODE23s is an implicit solver in
MATLAB. Although the present method is explicit, Figs5 and
6 show that the present method is in a good agreement with
ODE23s for different values ofµ. It is known that many explicit
methods do not preserve some qualitative properties. Even
though the present method is explicit, it preserves the limit cycle
of Van-der Pol equation which is the most known qualitative
property of the equation. Figure7 emphasizes that the present
method preserves the limit cycle of the equation in the case of
µ = 10 where t ∈ [0,60]. For the chosen parameters, it is
observed that the elapsed time is 0.2031 for the present method
whereas the elapsed time is 1.4063 for the software of
MATLAB, ODE23s, with the same number of steps on time.
Although the difference is a small number, it will be important
whenever the system is huge or multi-dimensional. Thus, we
shall emphasize that the present method is faster than ODE23s
in CPU runtime.

Example 3.3. One-dimensional cubic nonlinear Schrödinger
equation(CNSE) which arises in the quantum physics and
applied sciences is considered. The CNSE is defined as follows:

ψt =

(

−
1
2

∂ 2

∂x2 +(
1

1+sin2x
+30∗ |ψ|2)

)

ψ, (32)

subject to the Dirichlet boundary condition

ψ(xL, t) = ψ(xR, t) = 0,

and the initial condition is taken

ψ0(x) = γ exp(sin2x),
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Fig. 5: Comparison of the solutions
of the present method and ODE23s
in the case ofµ = 5.
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Fig. 6: Comparison of the solutions
of the present method and ODE23s
in the case ofµ = 10.
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Fig. 7: Comparison of the obtained solutions by the
present method and ODE23s to see the conservation of
the limit cycle of the Equation (30). Here, µ = 10 and
t ∈ [0,60] with ∆ t = 0.01.

whereγ represents the normalization constant.
Applying the present method and doing tedious calculations

the system to be computed has arisen. The main objective of this
example is to check the validity of the present method on the
partial differential equations. For that purpose, the mainfocus is
the conservation of the qualitative properties such as probability
density of the particle and the mass conservation of the particle.

To compare the present method with the second order
Runge-Kutta(RK2) method, we also study forx ∈ [−20,20]

whereNx = Nt = 100. The system is integrated to the final time
tend = 4. Figs 8 and 9 illustrate the numerical solutions of the
present method and the RK2, respectively. It is obvious thatthe
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Fig. 8: Numerical Solution of
Equation (32) obtained by RK2
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Fig. 9: Numerical solution of
Equation (32) obtained by the
present method

numerical solutions are so similar to each other, see Figs8 and
9. However, when the final time is taken astend = 5, it is
observed that the RK2 does not preserve the probability density
of the particle in Equation (32) for a long time.
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Fig. 10: The numerical solutions obtained from the RK2
method overt ∈ [0,5].

The probability density of the particle should be conserved
with respect to the conservation law. Figure10 indicates that the
RK2 does not confirm the law whereas in Figs11 and 12 the
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present method preserves the probability density of the particle
in Equation (32) even when the final timetend= 8.
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Fig. 11: Numerical Solution of Equation (32)
obtained by the present method
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Fig. 12:Contour Plot of the numerical solution
of Equation (32) obtained by the present
method

Due to the aim of this study, to ensure the validity of the
present method, checking conservation of the mass is necessary.
To this end, the initial mass is computed as

∫ 20

−20
|ψ|2dx= 0.4000

while the numerical solutions obtained by the present method and
RK2, respectively, attend= 4

∫ 20

−20
|ψ|2dx= 0.3968, and

∫ 20

−20
|ψ|2dx= 0.4038.

At tend= 7 the observed results are

∫ 20

−20
|ψ|2dx= 0.3913, and

∫ 20

−20
|ψ|2dx= NaN.

These results guarantee that the present method has the long-time
behavior for the conservation of the characteristic properties.

4 Conclusions and discussions

This numerical study introduces a linearization method whose
iterative process is based on the Newton-Raphson process and
Fréchet derivative. After ensuring that the method is convergent,
the performance of the present method is tested on three main
nonlinear oscillation problems. To check it, analytic solution
and some numerical software in MATLAB are used as well as
the second order Runge-Kutta method (RK2). It is observed that
the present method conserves the qualitative properties ofthe
equations. Moreover, it is more efficient than the compared
methods. Even though the present method is explicit, it achieves
a good agreement with an implicit solver, ODE23s, and the
analytic solution. The RK2, which is a well-known method
among the engineers, has some problems on the conservation of
the qualitative problems and on the long-time behavior. As a
result, the present method is applicable for nonlinear oscillation
problems in applied sciences and engineering.
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