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ARTICLE INFO ABSTRACT

Keywords: The increase of silicate solubility is a big challenge for both hot and cold water because it reduces the deposition
Antiscalant of metal silicates frequently observed in such systems and causes operational obstacles. The deposition of silicate
Chelation coats the inner surface of the pipelines in an uncontrolled manner and reduces the harvesting of energy from
DFT brines. In this work, the solubility performance of two commercial water-soluble polymeric agents (poly(ethy-
;Z‘Z::E‘::te lene glycol) (PEG) and poly(vinyl alcohol) (PVA)) of various molecular weights employing dosage from 25 to
Stabilizer 100 mg/L was examined. Along with dispersant-type antiscalant, poly(acrylamide) (PAM), poly(vinylsulfonic

acid, sodium salt) (PVSA), and poly(vinylphosphonic acid) (PVPA) having chelating acidic groups were em-
ployed. Metal silicate deposits were obtained artificially in the lab-scale pressurized reactor. The experimental
conditions employed were quite similar to a model power plant located in Canakkale, Turkey. The concentration
of dissolved silica was increased from 130 to 420 mg/L when 100 mg/L PEG 1500 and 25 mg/L PVSA were
employed as a mixture. For the atomic-level understanding of the interaction of chelating groups with metal

cations, DFT calculations were performed too.

1. Introduction

Metal silicate scaling is a frequently observed obstacle to the utili-
zation of hot geothermal/petroleum fields and cold industrial water
systems. Metal silicates are formed by the polymerization of silicate
ions in the presence of metal cations via condensation polymerization.
The accumulation of metal silicates on the surface of parts such as
pipes, separating vessels and heat exchangers interferes with the flow of
the system, hence reducing the efficiency of the plants (Gallup, 2002;
Potapov et al., 2001). Since silicate scaling is dense and mechanically
resistant, strong acids particularly HF are often employed to disin-
tegrate the Si—O bond and eventually the silicate deposit (Demadis
et al., 2011a, b). However, working in an acidic environment is risky
because it may lead to serious corrosion or health issues unless the
concentration and chemical structure of the acid are selected meticu-
lously (Demir et al., 2014; Zhang et al., 2011). Increasing the solubility
of silicates by soft antiscalants appears to be a promising remedy to
minimize of scaling (Gallup, 2002; Gallup and Barcelon, 2005).

A limited number of studies on increasing the solubility of metal
silicates exists (Corsi, 1986; Demadis et al., 2012a, b; Gallup, 1998,
2002, 2009; Gallup and Barcelon, 2005; Spinde et al., 2011), and which
focus on mitigating the scaling via stabilization of the silicic acid by
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dispersion and/or chelation. The working principle is based on the
stabilization of silica colloids, which are considered to be the main
component of the metal silicate deposits. Polymeric molecules stabilize
the colloids (van der Waals forces or hydrogen bonding) so that they are
prevented from aggregating/agglomerating of the colloids. For in-
stance, Preari et al. (2014) employed PEG, which is mostly known as a
non-ionic surfactant, with various molecular weights (from 1.55 to
20 kg/mol) and revealed that PEG interacts with silica species via H
bonding at neutral conditions. On the other hand, another study fo-
cused on the removal of an ionic substance from the medium by elec-
trostatic interaction (Palencia et al., 2009; Porcelli and Judd, 2010).
Organic compounds containing positively charged groups have often
been preferred as ligands. These compounds include protonated pri-
mary, secondary or tertiary amines (Danilovtseva et al., 2011; Demadis
et al., 2008; Spinde et al., 2011); amide moieties (Demadis and
Neofotistou, 2007); and phosphonium (Demadis et al., 2012a, b), while
the functional groups are reactive silica species. The polymers reported
so far are molecules intended merely for the improvement of silica
solubility; however, similar attempts for the metal-silicates aiming at
metal solubility have not been examined (Topcu et al., 2017). The effect
of metal cations, known as catalysts for silica polycondensation
(Demadis et al., 2012a, b), on metal-silicate formation was reduced by
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using polymers with pendant groups that are capable of chelating me-
tals.

The Tuzla Geothermal Power Plant (TGPP) in Canakkale, Turkey,
was chosen as a model binary system to study metal silicate scaling.
This geothermal site is located in the volcanic zone and allows the
generation of 7.5 MWe from a connate water reservoir. Iron-magnesium
silicate (Fe, Mg silicate) is a deposit heavily formed in this plant. The
level of silica concentration is ~ 200 mg/L; note that some organic acids
are used for pH modification (Baba et al., 2015). A Fe, Mg silicate de-
posit can be prepared synthetically in the lab using a pressurized au-
toclave, starting from chloride-rich precursors in the presence of silicate
and carbonate salts.

In this study, poly(ethylene glycol) (PEG) and poly(vinyl alcohol)
(PVA), with various molecular weights, are employed as silica-targeted
metal-silicate antiscalants in several dosages. The solubility perfor-
mance of PEG and PVA (at 25, 50, and 100 mg/L) was investigated from
the concentration of leftover silica species in liquid phase after cen-
trifugation of the reaction mixture. To enhance the antiscaling effi-
ciency by eliminating metal cations, additional polymeric co-anti-
scalants containing acidic chelating groups were used, such as poly
(acrylamide) (PAM) (Girma et al., 2005, 2006), sodium salt of poly
(vinylsulfonic acid) (PVSA) (Palencia et al., 2009), and poly(vinyl-
phosphonic acid) (PVPA) (Rivas et al., 2004). Since metal-silicate
scaling is more common in hot/cold water systems, experiments were
carried out in a closed reactor system as an operational system to si-
mulate the real field conditions in terms of salinity of brine, pressure,
and temperature of the plants.

2. Experimental
2.1. Materials

FeCly*4H,O and MgCl,*6H,O were purchased from Merck
(Kenilworth, NJ, USA), CaCl, and Na,CO3; were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Na,SiO3; (35.5wt.% in H,O) was em-
ployed (Carl Roth, Karlsruhe, Germany) as a silica source. The various
molecular weights of PEG (Mw: 0.4, 1.5, and 6.0 kg/mol) and PVA (Mw:
40, 50, and 92 kg/mol) were supplied by Sigma-Aldrich. PAM, PVSA,
and PVPA were synthesized in our lab to employ as co-antiscalants and
detailed information regarding the synthesis was given in a previous
study (Topcu et al., 2017). All the antiscalants were dissolved in 50 mL
dH,0 and their dosage was fixed to 25, 50, and 100 mg/L. The mole-
cular structure of inhibitors is presented in Fig. 1. The deionized water
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Table 1
The concentration (mg/L) of the components in artificial brine for the control
experiment before and after the reaction.

[Fe**] [Mg**] [Ca**] [Na*] [Si0,]
Before Reaction 927 404 1330 1912 598
After Reaction 3.5% 48 270 332 135

Temperature (°C): 137.6 — Pressure (bar): 3.2, *%[Fe>*/3*].

(18.2MQcm ™! at 25°C) used in all experiments was produced by a
Milli-Q Advantage Water Purification System (Merck).

2.2. Methods

Metal-silicate deposits were synthesized in an autoclave reactor
system (Biichi Glas Uster, mini clave 075 model, Switzerland). First, a
synthetic brine solution was prepared in 200 mL deionized water using
132mg FeCl,4H,0, 135mg MgCl,6H,0, 240mg CaCl,, 70mg
Na,CO3, and 440 puL Na,SiO3 (Table 1). The solution was loaded into
the reactor under ambient conditions. Subsequently, the mixture was
heated to 137.6°C at 3.2 bar pressure. The technical drawing of the
reactor is shown in Fig. 2. After a heat and pressure treatment for
~45 min, an antiscalant solution was added to the brine solution. The
mixture was ejected to plastic vessel through a Teflon pipe to cool down
in ice bath. A sudden decrease in the pressure and temperature of the
reaction causes the precipitation of an artificial deposit. The resulting
reaction mixture is centrifuged at 6000 rpm. The deposit is isolated for
analysis. The leftover decantate solution was analyzed using UV-spec-
trophotometry (Hach DR 5000, Loveland, CO, USA) for molybdate re-
active silica and an Inductively Coupled Plasma Mass Spectroscopy
(ICP-MS, Agilent 7500 CE Octopole, Santa Clara, CA, USA) for metal
cation concentrations. The pH regime of the solution was examined at
room temperature by using a multiparameter (pHenomenal MU 6100 L,
VWR International, Vienna, Austria)

Spectrometric methods are utilized on the liquid phase for precise
examination of the performance of the polymers in silica formation. For
instance, the silicomolybdate method is a facile way used in UV spec-
troscopy to detect reactive silica species, including monomeric, dimeric,
and perhaps trimeric forms of silica (Coradin et al., 2004; Iler, 1979).
This method is based on the principle that ammonium molybdate reacts
with reactive silica (especially monomer form) and any phosphate
group at low pH resulting in yellow products. The molybdophosphoric
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Fig. 1. Molecular structures of polymeric antiscalants.
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Fig. 2. Schematic representation of autoclave system (Celik et al., 2017).

acid formation is eliminated by adding oxalic acid to prevent any color
interference from the phosphates, hence the resulting color will be
caused by the silicomolybdate complex only. Therefore, reported silica
concentration throughout the text is molybdate reactive silica (Icopini
et al., 2005).

The solubility performance of silicates in the presence of polymeric
antiscalants was determined by the concentration of molybdate reactive
silica. For quantitative analysis, the following equation was used:

Cz - Cl
Cini[ial - Cl

n=

(€)]
where C; and C, refer to molybdate reactive silica after the autoclave
experiment without and with antiscalant, respectively. The initial silica
concentration is expressed as Ci;;iy and observed as 598 mg/L. Table 2
presents the results of trials containing information regarding the type
of polymeric antiscalant, dosage, and solubility performance.

Qil Circulator

The crystal properties of deposits were characterized by X-ray dif-
fraction spectroscopy (XRD; X’Pert Pro, Philips, Eindhoven, The
Netherlands), while their morphology was monitored by using a scan-
ning electron microscope (SEM; 300VP, Carl Zeiss, Oberkochen,
Germany). The vibrational characteristics of deposits were examined by
both Raman (Horiba, XploRA PLUS, Kyoto, Japan) and ATR FT-IR
(PerkinElmer, Frontier, MA, US) spectroscopy. Elemental composition
of the deposit was determined using X-ray fluorescence spectroscopy
(XRF, Spectro iQ II, Kleve, Germany).

2.3. Computational details

To provide complete information on the structural characteristics
and selective metal ion-chelating performance of the molecules,
quantum mechanical calculations were performed using density func-
tional theory (DFT). The Vienna ab initio simulation package (VASP)

Table 2
Information regarding the all antiscalants and the experiments along with their solubility performance.
Antiscalant I Antiscalant 1T Molecular Dosage 1 Dosage 11 Solubility
Weight (kDa) (mg/L) (mg/L) performance (%)

PEG400 - 25 - 6.5

0.4 50 12.7

100 15.5

PEG1500 - 25 - 14.5

1.5 50 38

100 51.5

PEG6000 - 25 - 15.5

6.0 50 29.1

100 25.7

PVA40 - 25 - 14

30-50 50 19.1

100 22.5

PVA50 - 25 - 15.5

30-70 50 20

100 23.4

PVA92 - 25 - 24.5

88-97 50 20.4

100 25.7

PEG1500 PVSA - 100 25 61.0

PEG1500 PAM - 100 100 48.5

PEG1500 PVPA - 100 100 43.5

108
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Fig. 3. (a) XRD pattern and (b) Raman spectra of the resulting artificial de-
posits.

300

(Kresse and Furthmiiller, 1996a, b) software package was used to per-
form first-principle calculations. We used projector-augmented wave
(PAW) (Blochl, 1994) potentials for ion-electron interaction and the
exchange-correlation potential, which is approximated by the Perdew,
Burke, and Ernzerhof (PBE) functional (Perdew et al., 1996). Van der
Waals interactions were included using the DFT-D2 (Grimme, 2006)
approach. The cut-off energy of the plane-wave basis set was chosen to
be 500 eV. Structure optimizations were performed in vacuum condi-
tions and relaxation criteria were completed when the force on each
atom was smaller than 0.1 peV/A. The binding energy of the ions on the
molecules is defined by the formula

Eb = EMolecule + llx_EMolecule-Hc’ (X = Fe, Mg’ Ca) (2)

where Ej, is the binding energy of the ion on the molecule, Eppecuie is the
energy of the molecule, p, is the chemical potential of the ion,
Enpolecute + x 1S the total energy of the ion-molecule system. The binding
energy of an adatom was calculated in the ground state of the ion—
molecule system. To determine the most favorable binding site for the

109
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Fig. 4. SEM images of the deposits, which are formed in (a) the absence
(control) and (b, c) the presence of the antiscalants (PEG, PEG + PVSA). Scale
bars indicate 20 um (insets show higher magnification. Scale bar: 1 pm).

ion bound to the molecule, four calculations assuming different initial
geometry were performed.

3. Results and discussion

To test the performance of antiscalants, the solubility of molybdate
reactive silica is followed in the presence of potential antiscalants
during the course of artificial deposit formation. The artificial (Fe, Mg)
silicate, which has a similar elemental composition and crystal structure
to the natural one was previously obtained by a pressurized autoclave
reactor system (Fig. 2) (Celik et al., 2017). The pH of the initial mixture
was measured 7.90 at room temperature. The alkali nature of the initial
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Table 3
Metal:silica ratio of the artificial deposits.
Ca:SiO, Mg:SiO, Fe:SiO,

Control 0.079 0.080 0.377
PEG400 0.062 0.089 0.430
PEG1500 0.085 0.085 0.348
PEG6000 0.081 0.070 0.358
PVA40 0.053 0.078 0.388
PVAS0 0.057 0.080 0.365
PVA92 0.050 0.079 0.378

mixture originated from the presence of carbonate ions. The conjugate
of weak acids (carbonic acid) acted as a base so that the mixture might
show a slight increase in pH. After the completion of the reaction, it
dropped to 5.86. The diminishing number of carbonate ions may direct
the mixture toward an acidic pH. Upon the addition of polymeric
chelating agents, the pH of the leftover dispersion varied. It was re-
duced to 6.09, 5.95, and 4.47 by the application of PAM, PVSA, and
PVPA, respectively. The concentration of silica was found to be
135mg/L under the experimental conditions employed (control
sample). This concentration is quite close to the one reported in the
literature (Demadis et al., 2012a, b). This level of concentration is used
as a benchmark for the performance of the antiscalants in the figures
with a dashed line.

Fig. 3a shows the XRD pattern of the powder (artificial deposit)
prepared in the presence of PEG 1500 (100 mg/L) and PEG 1500
(100 mg/L) + PVSA (25mg/L) along with a control sample (no anti-
scalant polymers). For all samples, the deposits have an amorphous
halo with partially crystalline features. There are two broad signals (26:
36° and 62°), which may refer to the (311) and (440) planes of local
magnetite (FeO-Fe;03) in a deposit as previously reported (Celik et al.,
2017). Note that either the dispersant (PEG 1500) or the chelating
agent (PVSA) was ineffective in the presence of magnetite. XRD was
also performed for the other deposits and showed the presence of
polymers. However, no distinct effect on crystallinity was observed
(Fig. S1). The local magnetite formation was also verified by Raman
spectroscopy (Fig. 3b). The measurements were carried out on various
regions (indicated A and B in the figure) of the deposit (control sample).
While no vibrational mode can be identified in Region A, the char-
acteristic Fe-O vibration modes (T,g and E;) are observed at 206 and
266 cm ™! in the other region (Shebanova and Lazor, 2003). Fig. 4
presents an overview of SEM images of the deposits. The samples have a
heterogeneous nature such that amorphous silica and metal-amorphous
silica associates simultaneously exist in aggregated and agglomerated
forms. No distinct difference between the two was observed. An inset of
images having a higher magnification (x30000) revealed that rigid
deposits were formed by spherical-shaped subunits, which were ap-
proximately 30 nm in diameter. Recently, Demadis et al. reported on
the internal structure of metal silicates on the basis of example mag-
nesium silicate system (Spinthakia et al., 2018). The authors proposed
that the precipitates never correspond to true metal silicates, rather
metal ions embedded or adsorbed in amorphous silica. Metal:silica ra-
tios presented in Table 3 may support this hypothesis.

3.1. Effect of silica stabilizers on solubility (PEG and PVA)

The dosages were fixed at 25, 50, and 100 mg/L for all the anti-
scalants employed. The concentration of molybdate reactive silica for
dispersant-type antiscalant trials are given in Fig. 5. It is well estab-
lished that silicic acid forms a complex with oxygen atoms of ethers and
alcohols (Iler, 1952), hence PEG and PVA were employed due to their

110

Geothermics 77 (2019) 106-114

600

I 25 mg/L [ 50 mg/L [ 100 mg/L

450 -

300

[SiO,] (mg/L)

150

Control

PEG400
PEG1500
PEG6000

PVA40
PVAS0
PVA92

Fig. 5. Concentration of molybdate reactive silica in the presence of polymeric
silica stabilizers (PEG and PVA) with different molecular weight. (Dashed line
refers to the concentration in the absence of stabilizer).

oxygen containing chemical structure. Two main parameters were
studied throughout this work: dosage and molecular weight of the in-
hibitors. The effect of the former parameter is evident. As a re-
presentative example, PEG 1500 enhances the solubility of silica from
200 mg/L to 375 mg/L as the dosage of antiscalant increases from 25 to
100 mg/L. Since lone pairs of oxygen moieties are able to form hy-
drogen bonds with silicic acid derivatives, solubility is positively af-
fected by increasing the dosage of the antiscalant. In other words, the
higher the number of oxygen atoms introduced into the system, the
greater the amount of silicic acid it is complexed with. A similar result
is obtained for PEG 400. However, this trend diminished at a 100 mg/L
dosage of PEG 6000. The level of silica appeared to be lower than the
one obtained from the application of 25 and 50 mg/L. The reason for
this decrease in silicic acid concentration may be related to the en-
trapment of the polymer in the deposit structure (Preari et al., 2014).
FTIR was used to understand whether the polymeric chain in structure
of the artificial deposit remains. At a high molecular weight, the
polycondensation onto the polymer backbone continued. Hence, the
polymer chain may settle in a deposit (flocculation) due to entrapment
by the silica framework (Fig. S2 and S3) that obviously caused a slight
decrease in solubility.

The latter parameter, molecular weight, shows a nonlinear re-
lationship with the concentration of molybdate-reactive silica. For in-
stance, at 25 mg/L of PEG, the silicic acid concentration increases as the
molecular weight of the polymers increases. This result is consistent
with the literature (Iler, 1952; Preari et al., 2014). However, the solu-
bility increases with PEG 1500 appears to be greater than that of PEG
400 and PEG 6000 at fixed dosages. Note that at 100 mg/L, PEG 1500
shows the greatest silica concentration (375 mg/L, solubility increase:
51.5%) compared to the shorter (PEG 400, 200 mg/L, solubility in-
crease: 15.5%) and longer chains (PEG 6000, 240 mg/L, solubility in-
crease: 25.7%).

Unlike for PEG, the concentration of molybdate-reactive silica
fluctuates in the range between 200-250 mg/L for PVA. Although this
level of silicate is higher than the control sample, the efficiency of PVA
appears to be lower than that of PEG. The reason for this difference may
lie in the chemistry of the monomeric units of the polymer chains. The
placement of an oxygen atom in the monomeric structure is considered
to be the key issue in the solubility performance (Iler, 1952). It is
known that alcohols are more capable of forming hydrogen bonds than
their isomeric ethers (e.g., their solubility in water is higher than that of
the ethers). Even though PVA can be expected to enhance silica
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solubility more than PEG, our experimental results suggest the opposite,
that is, PEG increases it more. Oxygen atoms are located on the back-
bone of PEG; on the other hand, they are sterically hindered on the
pendant hydroxyl group of PVA. The long backbone of PVA as a pen-
dant group may cause a steric hindrance for the interaction between
silicic acid and oxygen atoms. Note that PVA is obtained by hydrolysis
of a polyvinylacetate in alkaline medium such that a certain amount of
unhydrolyzed acetate groups is inevitably present on the backbone of
the PVA chain.

To provide further information about the interaction between
polymer chains and silicic acid derivatives, namely, hydrogen bonding,
the number of silicic acid molecules per oxygen moiety (Si:O ratio) was
calculated. For instance, PEG 1500 has 34 O atoms
(M,, of polymer/M,, of repeating unit) in one chain and can capture a
maximum of 68 Si(OH), groups at maximum. Therefore, this ratio may
hint at the density of hydrogen bonds on the backbone, namely, solu-
bility. Molybdate-reactive silica predominantly consists of monomeric
silicic acid; hence, only it was taken into account to keep the calculation
simple. For the concentration of mono silicic acid, the data presented in
Fig. 5 was used. The molar ratios of the molybdate reactive silica and
the polymer were divided into the number of oxygen moieties per chain
assuming that all the ethylene oxide moieties are active and interacting
evenly with the silicic acids molecules. Figs. 6a and b show the Si:O
ratio at various dosages. In the case of all antiscalant treatments, the
Si:O ratio decreases to 0.5-1.5, that is, below the numerical limit of two
(oxygen has two lone pairs of electrons that two hydrogen atoms can
interact with). This result suggests that not all the oxygen atoms un-
dergo hydrogen bonding with silicic acid. The size of the silicic acid
molecules is larger than the distance between two consecutive oxygen
atoms on the PEG backbone. Thus, silicic acid molecules are sterically

hindered from approaching all the available oxygen atoms on the
backbone. Independent of the chemistry of polymers, this ratio follows
a decreasing trend as the dosage increases. Although a higher number
of silicic acid molecules undergoes complexing at higher dosages, the
ratio of silicic acid to oxygen atoms decreases with the increase in the
dosage of the antiscalant.

The number of H-bonded Si atoms per polymeric chain was also
estimated (Figs. 6¢ and d), assuming that the polymeric molecules in a
system are of an equal molecular weight. At a fixed dosage, not sur-
prisingly, the degree of polymerization is higher for high molecular
weight polymers. The rate of increment (slopes) shows a systematic
reduction with increasing dosage. The reason could be related to the
morphology of the chains in water. The chains tend to bend, twist and
undergo inter/intra molecular entanglement so that some of the Si
atoms are hidden in the tangled mass of polymer chain and they will
not be available for the interaction.

In addition to Si, the concentration of metal cations was followed,
too (Fig. 7). The use of PEG and PVA did not show a significant increase
in the concentrations of Ca®>* or Mg?™. Rather their concentration level
shows a slight increase compared to the control sample (shown as a
dashed line). For instance, in the case of Fe2™3* | the concentration in
the presence of a polymeric antiscaling agent fluctuated between 2 and
12 mg/L. In the 25 mg/L PVA92 experiment, the Fe>*->* concentration
appears to go up to 12 mg/L that is about 3 times the concentration in
the control.

3.2. Effect of mixing a metal-chelating agent and dispersants on solubility

Although the effect of PEG and PVA on the solubility of silica is
promising, the elimination of metal cations may further mitigate the
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Table 4

Binding energy between various chelating agents and the metal cations.
Adatom Mg adatom Ca adatom Fe adatom
Molecule
Acrylamide 0.28 eV 0.72eV 1.08 eV
Vinyl phosphonic acid 0.45eV 1.03eV 1.37 eV
Vinyl sulfonic acid 0.77 eV 1.47 eV 1.63 eV

formation of metal silicate deposits. Organic acids are known to chelate
the cations. So that they can be used as co-antiscalants for PEG 1500,
which showed the best results as presented above. For this purpose, the
effect of metal-chelating agents (PAM, PVSA, and PVPA) in the presence
of PEG 1500 was examined. These agents were chosen because they
were found to be active in the reduction of metal silicate scaling in our
previous work (Topcu et al., 2017). The concentration of molybdate-
reactive silica for mixed antiscalants was examined. The addition of
PVPA or PAM causes an increase in silica solubility. These two com-
pounds indirectly increase the concentration of molybdate-reactive si-
lica to 365 and 335 mg/L, respectively. The most considerable increase
in silica concentration is achieved from PEG 1500 by supporting PVSA
(25mg/L). The concentration of silica increases to 420 mg/L, namely
61.0% efficiency, when using PVSA co-antiscalant.

To obtain a further understanding of the efficiency of metal-che-
lating agents, the binding characteristics of the ions with the molecules
were investigated by computation via DFT methods. The calculated
binding energies are listed in Table 4. The full relaxation of ions with all
the molecules resulted in positive binding energies, hence all the mo-
lecules tended to bind with Mg®*, Ca®* and Fe?>" ions spontaneously.
The binding energy values of Fe?* indicated that this cation has the
strongest bond with all the molecules. On the contrary, Mg>* was
found to form the weakest bond compared to Ca®>* and Fe?*. The se-
lective metal ion-chelating performance of the molecules has also been
examined. The best performance was observed in vinylsulfonic acid
sodium salt (VSA) for all the ions. The ion-chelating performance of
vinyl phosphonic acid (VPA) molecule took second place after the VSA.
Lastly, the binding energies of the ions on the acrylamide (AM) mole-
cule were found to be the lowest ones. Nevertheless, even though
computational and experimental results are comparable for both VSA
and VPA, it may not be very convenient to compare acrylamide to the
others with a single calculation due to its various binding sites (Girma
et al., 2005). Fig. 8 shows binding sites of the ions captured by the
molecules, which are calculated using VASP. All the cations were bound
to oxygen sites in the pendant groups. In this regard, it was shown that
unsaturated oxygen bonds in the molecules are favorable binding sites
for the metal adatoms. To sum up, the results of the computational
study are consistent with the experimental ones. Since both divalent
and trivalent forms of Fe exist at the end of the reaction, the compu-
tation was also performed for Fe**. According to the binding energy
formula, the energy of Fe** ion is calculated at the vacuum level
meaning that there is no interaction and it has 4 unoccupied electrons
in the vacuum ground state. Therefore, Fe ™ ions lead to quite similar
structural and electronic features as with Fe>™" ions.

4. Conclusions

Metal-silicate scaling is a major issue that needs to be elucidated for
water based-system. Instead of employing strong acids, water treatment
using soft organic inhibitors is an eco-friendly option for increasing the
solubility of silica to prevent deposit formation. This study provides
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Fig. 8. Schematic representation of binding of the ions captured by the molecules that (a) Acrylamide (b) Vinylphosphonic Acid and (c) Sodium Salt of vinylsulfonic

Acid, respectively.

evidence that Si(OH), polycondensation is inhibited by ether and al-
cohol moieties even in the presence of various metal cations (Fe?™,
Mg?*, and Ca®?"). The enhancement of silicate solubility is achieved
even though the metal cations act as a catalyst for polycondensation.
The concentration of molybdate reactive silica increased from 130 mg/
L to 375 when PEG 1500 (100 mg/L) was employed. This level of
concentration is further increased to 420 mg/L by the chelating per-
formance of PVSA (25 mg/L). The mixture of PEG and PVSA is an en-
vironmentally friendly approach to decrease of metal silicate formation
observed not only in hot (geothermal and petroleum wells) but also in
cold industrial water systems.

Funding sources

This research is funded by The Scientific and Technological
Research Council of Turkey (Tubitak) with a project number 114Z940.

References

Baba, A., Demir, M.M., Kog, G.A., Tugcu, C., 2015. Hydrogeological properties of hyper-
saline geothermal brine and application of inhibiting siliceous scale via pH mod-
ification. Geothermics 53, 406-412.

Blochl, P.E., 1994. Projector augmented-wave method. Phys. Rev. B 50, 17953.

Celik, A., Topcu, G., Baba, A., Akdogan, Y., Sentiirk, U., Demir, M.M., 2017. Experimental
modeling of silicate-based geothermal deposits. Geothermics 69, 65-73.

Coradin, T., Eglin, D., Livage, J., 2004. The silicomolybdic acid spectrophotometric
method and its application to silicate/biopolymer interaction studies. J. Spectrosc.
18, 567-576.

Corsi, R., 1986. Scaling and corrosion in geothermal equipment: problems and preventive
measures. Geothermics 15, 839-856.

Danilovtseva, E.N., Pal’shin, V.A., Likhoshway, Y.V., Annenkov, V.V., 2011. Condensation
of silicic acid in the presence of co (1-vinylimidazole-acrylic acid). Adv. Sci. Lett. 4,
616-621.

Demadis, K.D., Neofotistou, E., 2007. Synergistic effects of combinations of cationic
polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica forma-
tion: a bioinspired approach. Chem. Mater. 19, 581-587.

Demadis, K.D., Ketsetzi, A., Pachis, K., Ramos, V.M., 2008. Inhibitory effects of multi-
component, phosphonate-grafted, zwitterionic chitosan biomacromolecules on silicic
acid condensation. Biomacromolecules 9, 3288-3293.

Demadis, K.D., Mavredaki, E., Somara, M., 2011a. Additive-driven dissolution enhance-
ment of colloidal silica. 1. Basic principles and relevance to water treatment. Ind.
Eng. Chem. Res. 50, 12587-12595.

Demadis, K.D., Mavredaki, E., Somara, M., 2011b. Additive-driven dissolution enhance-
ment of colloidal silica. 2. Environmentally friendly additives and natural products.

113

Ind. Eng. Chem. Res. 50, 13866-13876.

Demadis, K.D., Ketsetzi, A., Sarigiannidou, E.-M., 2012a. Catalytic effect of magnesium
ions on silicic acid polycondensation and inhibition strategies based on chelation.
Ind. Eng. Chem. Res. 51, 9032-9040.

Demadis, K.D., Tsistraki, A., Popa, A., Ilia, G., Visa, A., 2012b. Promiscuous stabilisation
behaviour of silicic acid by cationic macromolecules: the case of phosphonium-
grafted dicationic ethylene oxide bolaamphiphiles. RSC Adv. 2, 631-641.

Demir, M.M., Baba, A., Atilla, V., Inanli, M., 2014. Types of the scaling in hyper saline
geothermal system in northwest Turkey. Geothermics 50, 1-9.

Gallup, D.L., 1998. Aluminum silicate scale formation and inhibition (2): scale solubilities
and laboratory and field inhibition tests. Geothermics 27, 485-501.

Gallup, D.L., 2002. Investigations of organic inhibitors for silica scale control in geo-
thermal brines. Geothermics 31, 415-430.

Gallup, D.L., 2009. Production engineering in geothermal technology: a review.
Geothermics 38, 326-334.

Gallup, D.L., Barcelon, E., 2005. Investigations of organic inhibitors for silica scale control
from geothermal brines-II. Geothermics 34, 756-771.

Girma, K., Lorenz, V., Blaurock, S., Edelmann, F.T., 2005. Coordination chemistry of
acrylamide. Coord. Chem. Rev. 249, 1283-1293.

Girma, K., Lorenz, V., Blaurock, S., Edelmann, F.T., 2006. Coordination chemistry of
acrylamide 3: synthesis, crystal structure and IR spectroscopic properties of dichloro-
tetrakis (O-acrylamide) copper (II),[Cu (O-OC (NH 2) CH. Inorg. Chim. Acta 359,
364-368.

Grimme, S., 2006. Semiempirical GGA-type density functional constructed with a long--
range dispersion correction. J. Comput. Chem. 27, 1787-1799.

Icopini, G.A., Brantley, S.L., Heaney, P.J., 2005. Kinetics of silica oligomerization and
nanocolloid formation as a function of pH and ionic strength at 25 C. Geochim.
Cosmochim. Acta 69, 293-303.

Iler, R.K., 1952. Association between polysilicic acid and polar organic compounds. J.
Phys. Chem. -U. S. 56, 673-677.

Iler, K.R., 1979. The Chemistry of Silica. John Wiley & Sons, New York.

Kresse, G., Furthmiiller, J., 1996a. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15-50.

Kresse, G., Furthmiiller, J., 1996b. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54 11169.

Palencia, M., Rivas, B.L., Pereira, E., 2009. Metal ion recovery by polymer-enhanced
ultrafiltration using poly (vinyl sulfonic acid): fouling description and membrane—
metal ion interaction. J. Membr. Sci. 345, 191-200.

Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865.

Porcelli, N., Judd, S., 2010. Chemical cleaning of potable water membranes: a review.
Sep. Purif. Technol. 71, 137-143.

Potapov, V., Kashpura, V., Alekseev, V., 2001. A study of the growth of deposits in
geothermal power systems. Therm. Eng. 48, 395-400.

Preari, M., Spinde, K., Lazic, J1., Brunner, E., Demadis, K.D., 2014. Bioinspired insights
into silicic acid stabilization mechanisms: the dominant role of polyethylene glycol-
induced hydrogen bonding. J. Am. Chem. Soc. 136, 4236-4244.

Rivas, B.L., Pereira, E., Gallegos, P., Homper, D., Geckeler, K.E., 2004. Metal ion binding
capability of the water-soluble poly (vinyl phosphonic acid) for mono-, di-, and tri-
valent cations. J. Appl. Polym. Sci. 92, 2917-2922.


http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0005
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0005
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0005
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0010
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0015
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0015
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0020
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0020
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0020
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0025
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0025
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0030
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0035
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0035
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0035
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0040
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0040
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0040
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0045
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0045
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0045
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0050
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0050
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0050
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0055
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0060
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0065
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0065
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0070
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0070
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0075
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0075
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0080
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0080
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0085
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0085
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0090
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0090
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0095
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0095
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0095
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0095
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0100
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0100
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0105
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0105
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0105
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0110
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0110
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0115
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0120
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0120
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0125
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0125
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0130
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0130
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0130
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0135
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0135
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0140
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0140
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0145
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0145
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0150
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0150
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0150
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0155
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0155
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0155

G. Topcu et al.

Shebanova, O.N., Lazor, P., 2003. Raman spectroscopic study of magnetite (FeFe204): a
new assignment for the vibrational Spectrum. J. Solid State Chem. 174, 424-430.

Spinde, K., Pachis, K., Antonakaki, I., Paasch, S., Brunner, E., Demadis, K.D., 2011.
Influence of polyamines and related macromolecules on silicic acid polycondensa-
tion: relevance to “soluble silicon pools”? Chem. Mater. 23, 4676-4687.

Spinthakia, A., Petratosa, G., Matheisb, J., Haterb, W., Demadis, K.D., 2018. The pre-
cipitation of “magnesium silicate” under geothermal stresses. Formation and

114

Geothermics 77 (2019) 106-114

characterization. Geothermics 74, 172-180.
Topgu, G., Celik, A., Baba, A., Demir, M.M., 2017. Design of polymeric antiscalants based
on functional vinyl monomers for (Fe, Mg) silicates. Energy Fuel 31, 8489-8496.
Zhang, B.-R., Chen, Y.-N., Li, F.-T., 2011. Inhibitory effects of poly (adipic acid/amine-
terminated polyether D230/diethylenetriamine) on colloidal silica formation. Colloid
Surface A 385, 11-19.


http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0160
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0160
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0165
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0165
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0165
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0170
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0170
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0170
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0175
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0175
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0180
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0180
http://refhub.elsevier.com/S0375-6505(18)30086-5/sbref0180

	Increasing solubility of metal silicates by mixed polymeric antiscalants
	Introduction
	Experimental
	Materials
	Methods
	Computational details

	Results and discussion
	Effect of silica stabilizers on solubility (PEG and PVA)
	Effect of mixing a metal-chelating agent and dispersants on solubility

	Conclusions
	Funding sources
	References




