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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Mehmet Yaman

December 2018
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ABSTRACT

ON GENERALIZATION OF HOPFIAN MODULES

The notion of Hopfian modules are defined as a generalization of modules of

finite length as the modules whose surjective endomorphisms are isomorphisms. These

modules and several generalizations of them are extensively studied in the literature. The

aim of this thesis is to review some known results and extends some results about gener-

alized Hopfian and weakly Hopfian modules. It is shown that a module is Hopfian if and

only if it is both generalized Hopfian and weakly Hopfian. Torsion-free abelian groups are

weakly Hopfian. Any nonsingular uniform module is weakly Hopfian. Direct summands

of weakly Hopfian modules is weakly Hopfian. It is shown that direct sum weak Hopfian

modules is not necessarily weakly Hopfian.
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ÖZET

HOPFIAN MODULLERİN GENELLEMELERİ ÜZERİNE

Hopfian modülleri kavramı; örten endomorfizmaları izomorfizma olan sonlu uzun-

luktaki modüllerin genelleştirilmesi olarak tanımlanmaktadır. Bu modüller ve bunların

çeşitli genellemeleri literatürde kapsamlı olarak incelenmiştir. Bu tezin amacı, bilinen

bazı sonuçların gözden geçirilmesi ve genel Hopfian ve zayıf Hopfian modülleri hakkında

bazı sonuçların ortaya konulmasıdır. Bir modülün Hopfian modül olmasının gerek ve

yeter koşulunun o modülün hem genel Hopfian hemde zayıf Hopfian olduğu göster-

ilmiştir. Serbest Torsion değişmeli gruplar zayıf Hopfiandır. Herhangi düzensiz tekil

olmayan modüller zayıf Hopfian modüllerdir. Zayıf Hopfian modüllerin direk toplamı

zayıf Hopfian modüldür. Direk toplamı zayıf Hopfian modül olan modüllerin zayıf Hop-

fian modül olmak zorunda olmadığı gösterilmiştir.
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LIST OF ABBREVIATIONS

R an associative ring with unit unless otherwise stated

Z, Z+ the ring of integers, the set of all positive integers

Q the field of rational numbers

HomR(M,N) all R-module homomorphisms from M to N

⊕i∈I Mi direct sum of R- modules Mi∏
i∈I Mi direct product of R- modules Mi

Ker f the kernel of the map f

im f the image of the map f

S ocM the socle of the R-module M

RadM the radical of the R-module M

E(M) the injective envelope (hull) of a module M

T (M) the torsion submodule of a module M

Z(M) the singular submodule of a module M

� small ( or superfluous) submodule

E essential submodule

AnnlR(X) = {r ∈ R|rX = 0} = the left annihilator of a subset X of a left

R-module M

AnnrR(X) = {r ∈ R|Xr = 0} = the right annihilator of a subset X of a

right R-module M

� isomorphic

≤ submodule

viii



CHAPTER 1

INTRODUCTION

Let R be a ring with identity. It is known that any surjective endomorphism of

a module of finite length is an isomorphism. Hopfian right modules are the modules

whose surjective endomorphisms are isomorphism. Hopfian modules are studied in (A.

Ghorbani and A. Haghany, 2002). A right module is called generalized Hopfian if ev-

ery surjective endomorphism is small i.e. have small kernel. Weakly Hopfian modules

are defined as the right modules whose small surjective endomorphisms are isomorphism

(Youngduo Wang, 2005). From the definitions it is clear that a right module is Hopfian if

and only if it is generalized Hopfian and weakly Hopfian. A generalized Hopfian module

need not be weakly Hopfian and vice versa. Pseudo-projective modules are weakly Hop-

fian. All torsion-free abelian groups are weakly Hopfian. Direct sum of weakly Hopfian

(even quasi-projective) modules need not be weakly Hopfian.

We give examples in order to exhibit the relations between the classes of generalized

Hopfian, weakly Hopfian and dual automorphism-invariant modules of (Surjeet Singh

and Ashish K.Srivastava, 2012).
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CHAPTER 2

PRELIMINARIES

In this chapter we give the basic definitions and results that are used in the sequel.

2.1. Definitions

Definition 2.1 A submodule N ≤ M is called maximal if N , M and it is not properly

contained in any proper submodule of M.

In a finitely generated R-module, every proper submodule is contained in a maximal sub-

module.

Definition 2.2 A submodule K of an R-module M is called essential or large in M if for

every nonzero submodule L ≤ M, we have K ∩ L , 0.

Then M is called an essential extension of K and we write K E M. A monomor-

phism f : L→ M is said to be essential if Im f is an essential submodule of M.

Hence a submodule K ≤ M is essential if and only if the inclusion map K → M

is an essential monomorphism. For example, in Z every non-zero submodule (=ideal) is

essential.

Definition 2.3 A submodule K of an R- module M is called superfluous or small in M,

written K � M, if for every submodule L ≤ M,the equality K + L = M implies L = M.

An epimorphism f : M → N is called superfluous if Ker f � M.

Obviously K � M if and only if the canonical projection M → M/K is a super-

fluous epimorphism.

It is easy to see that e.g. in Z there are no non-zero superfluous submodules.

Definition 2.4 A module M is called simple if it is non-zero and does not properly contain

any non-zero submodule.

Definition 2.5 An R-module N is (finitely) generated by M or (finitely) M-generated if

there exists an epimorphism M(I) → N for some (finite) index set I.
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Definition 2.6 An R-module N is (finitely) co-generated by M or (finitely) M-co-generated

if there exists a monomorphism N → M(I) for some (finite) index set I.

Definition 2.7 Let M be an R-module. As socle of M (= S oc(M), S ocM) we denote the

sum of all simple (minimal) submodules of M. If there is no minimal submodules in M we

put S oc(M) = 0.

S oc(M) is a semi-simple submodule of M. Clearly, M is semi-simple if and only

if M = S oc(M). An important multiple characterization of the socle is given in the

following proposition.

Proposition 2.1 If M is a left R-module, then

S oc (M) = Σ{K ≤ M | K is minimal in M }

=
⋂
{L ≤ M | L is essential in M }.

Properties of the Socle ( (Wisbauer, 1991), 21.2)

Let M be an R-module.

(1) For any morphism f : M → N, we have f (S oc(M)) ⊂ S oc(N).

(2) For any submodule K ≤ M, we have S oc(K) = K ∩ S oc(M).

(3) S oc(M) E M if and only S oc(K) , 0 for every non-zero submodule K ≤ M.

(4) S oc(M) is an EndR(M)-submodule, i.e. S oc(M) is fully invariant in M.

(5) S oc(
⊕

Λ
Mλ) =

⊕
Λ

S oc(Mλ).

Definition 2.8 Dual to the socle we define as radical of an R-module M (= Rad(M),RadM)

the intersection of all maximal submodules of M. If M has no maximal submodule we set

Rad(M) = M.

The characterization of the radical is given in the following proposition.

Proposition 2.2 Let M be a left R-module. Then

Rad (M) =
⋂
{K ≤ M | K is maximal in M }

= Σ{L ≤ M | L is super f luous in M }.

3



Properties of the radical ( (Wisbauer, 1991), 21.6)

Let M be an R-module.

(1) For a morphism f : M → N we have

(i) f (RadM) ⊂ RadN,

(ii) Rad(M/RadM) = 0, and

(iii) f (RadM) = Rad( f (M)), if Ker( f ) ⊂ RadM.

(2) RadM is an EndR(M)-submodule of M (fully invariant).

(3) If every proper submodule of M is contained in a maximal submodule, then RadM �

M (e.g. if M is finitely generated).

(4) M is finitely generated if and only if RadM � M and M/RadM is finitely generated.

(5) If M =
⊕

Λ
Mλ, then RadM =

⊕
Λ

RadMλ and M/RadM '
⊕

Λ
Mλ/RadMλ.

(6) If M is finitely cogenerated and RadM = 0, then M is semisimple and finitely gener-

ated.

(7) If M = M/RadM is semisimple and RadM � M, then every proper submodule of M

is contained in a maximal submodule.

Definition 2.9 The radical of RR is called the Jacabson radical of R, i.e.

Jac(R) = Rad(RR)

As a fully invariant submodule of the ring, Jac(R) is two-sided ideal in R.

Definition 2.10 An element x ∈ R is left quasi-regular in case 1− x has a left inverse in R.

Similarly x ∈ R is right quasi-regular (quasi-regular) in case 1− x has a right (two-sided)

inverse in R.

Proposition 2.3 Characterization of the Jacobson radical

In a ring R with unit, Jac(R) can be described as the

(a) intersection of the maximal left ideals in R (= definition);

(b) sum of all superfluous left ideals in R;

(c) sum of all left quasi-regular left ideals;

4



(d) largest (left) quasi-regular ideal;

(e) {r ∈ R | 1 − ar is invertible for any a ∈ R};

(f) intersection of the annihilators of the simple left R-modules;

(a?) intersection of the maximal right ideals.

Replacing ‘left‘ by ‘right‘ further characterizations (b?) - (f?) are possible.

2.2. Small Rings and Small Modules

Definition 2.11 A right R-module M is called a small module if it is a small submodule

in its injective hull E(M), i.e M � E(M).

The following characterization of small module is well-known

Proposition 2.4 ( (Wisbauer, 1991), Proposition 2.2)

For a right R-module M, the followings are equivalent:

(i) M is small.

(ii) M � E(M).

(iii) M � E for some injective right R-module E.

(iv) M � L for some right R-module L containing M.

Proposition 2.5 If M is small then M/N is small for every N ≤ M.

Proof Suppose M is small i.e. M � E(M). Let N ≤ M, then M/N ≤ E(M)/N. Let

L/N ≤ E(M)/N such that M/N +L/N = E(M)/N, then M +L = E(M). Since M � E(M),

L = E(M). Hence L/N = E(M)/N and M/L is small by Proposition 2.4. �

Definition 2.12 A ring R is called left small if RR is a small module; e.g. Z is a small ring

as it is small in ZQ.

Proposition 2.6 ( (Ramamurthi, 1982), 3.3), ( (Pareigis, 1966), 4.8)

Let R be a ring and let E(R) be the injective hull of RR. Then the following conditions are

equivalent:

(i) R is a left small ring.

5



(ii) Rad(M) = M for every injective left R-module M.

(iii) Rad(E(R)) = E(R).

2.3. Exact Sequences

Definition 2.13 A finite or infinite sequence of R-maps and left R-modules

· · · // Mn+1
fn+1 // Mn

fn // Mn−1
// · · ·

is called an exact sequence if Im( fn+1) = ker( fn) for all n.

Proposition 2.7 ( (Anderson and Fuller, 1992), Proposition 2.18)

(i) A sequence 0 // A
f // B is exact if and only if f is injective.

(ii) A sequence B
g // C // 0 is exact if and only if g is surjective.

(iii) A sequence 0 // A h // B // 0 is exact if and only if h is an isomorphism.

2.4. Noetherian and Artinian Rings

Definition 2.14 A set P of submodules of M satisfies the ascending chain condition in

case for every chain

L1 ≤ L2 ≤ . . . ≤ Ln ≤ . . .

in P , there is a positive number n with Ln+i = Ln i = 1, 2, . . .

Definition 2.15 A set P of submodules of M satisfies the descending chain condition in

case for every chain

L1 ≥ L2 ≥ . . . ≥ Ln ≥ . . .

6



in P , there is a positive number n with Ln+i = Ln i = 1, 2, . . .

Definition 2.16 A module M is noetherian in case the lattice P(M) of all submodules

of M satisfies the ascending chain condition. It is artinian in case P(M) satisfies the

descending chain condition.

Proposition 2.8 ( (Anderson and Fuller, 1992) , Proposition 10.9)

For a module M the following statements are equivalent:

(a) M is noetherian;

(b) Every submodule of M is finitely generated;

(c) Every non-empty set of submodules of M has a maximal element.

Proposition 2.9 ( (Anderson and Fuller, 1992) , Proposition 10.10)

For a module M the following statements are equivalent:

(a) M is artinian;

(b) Every factor module of M is finitely co-generated;

(c) Every non-empty set of submodules of M has a minimal element.

Corollary 2.1 ( (Anderson and Fuller, 1992) , Corollary 10.11)

Let M be a non-zero module:

(1) If M is artinian , then M has simple submodule : in fact , S oc(M) is an essential

submodule;

(2) If M is noetherian , then M has maximal submodule : in fact , Rad(M) is a superfluous

submodule.

Proposition 2.10 ( (Anderson and Fuller, 1992), Proposition 10.12)

Let

0→ K → M → N → 0

be an exact sequence of left R-modules. Then M is artinian (noetherian) if and only if

both K and N are artinian (noetherian).

7



2.5. Composition Series

Definition 2.17 Let M be a non-zero module. A finite chain of n + 1 submodules of M

M = M0 > M1 > M2 > . . . > Mn = 0

is called a composition series of length n for M provided that Mi−1/Mi is simple (i =

1, 2, . . .); i.e. , provided each term in the chain is maximal in its predecessor.

Proposition 2.11 ( (Anderson and Fuller, 1992), Proposition 11.1)

A non-zero module M has a composition series if and only if M is both artinian and

noetherian.

Theorem 2.1 The Jordan-Hølder Theorem( (Anderson and Fuller, 1992),Theorem 11.3

)

If a module M has a composition series, then every pair of composition series for M are

equivalent.

Proof If M has a composition series, then denote by c(M) the minimum length of such

a series for M. We shall induct on c(M). Clearly, if c(M) = 1, there is no challenge.

So assume that c(M) = n > 1 and that any module with a composition series of smaller

length ha all of its composition series equivalent. Let

M = M0 > M1 > M2 > . . . > Mn = 0 (2.1)

be composition series of minimal length for M and let

M = N0 > N1 > N2 > . . . > Np = 0 (2.2)

be second composition series for M. If M1 = N1, then by the induction hypothesis, since

c(M) ≤ n − 1, the two series are equivalent. Suppose that M1 , N1. Since M1 is maximal

submodule of M , M1 + N1 = M. So

M/M1 = (M1 + N1)/M1 � N1/(M1 ∩ N1) (2.3)

8



and

M/N1 = (M1 + N1)/N1 � M1/(M1 ∩ N1) (2.4)

Thus M1 ∩ N1 is maximal in both M1 and N1. Since M has a composition series, M1 ∩ N1

also has composition series

M1 ∩ N1 = L0 > L1 > L2 > . . . > Lk = 0

So

M1 = L0 > L1 > L2 > . . . > Lk = 0

and

N1 = L0 > L1 > L2 > . . . > Lk = 0

are composition series for M1 and N1, respectively. Since c(M) < n, every two composi-

tion series for M1 are equivalent, so two series

M = M0 > M1 > M2 > . . . > Mn = 0

and

M = M0 > M1 > L0 > . . . > Lk = 0

are equivalent. In particular, n = k+2 and so k = n−2 < n. So c(N1) = k+1 < n. Thus by

our hypothesis, every two composition series for N1 are equivalent. Thus the two series

M = N0 > N1 > N2 > . . . > Np = 0

9



and

M = N0 > N1 > L0 > . . . > Lk = 0

are equivalent. But as we noted in 2.3 and 2.4

M/M1 � N1/L0

and

M/N1 � M1/L0

thus the series 2.1 and 2.2 are equivalent. �

Definition 2.18 Let M be non-zero module the composition length of M, c(M), is defined

unambiguously by

c(M) =


0, If M = 0

n, If M has a composition series of length n

If a module M is not of finite length, we say it is of infinite length and write

c(M) = ∞

Corollary 2.2 ( (Anderson and Fuller, 1992), Corollary 11.4)

Let K, M, and N be modules and suppose there is an exact sequence

0→ K → M → N → 0

10



of homomorphisms. Then

c(M) = c(N) + c(K)

Corollary 2.3 The Dimension Theorem( (Anderson and Fuller, 1992), Corollary 11.5)

Let M be a module of finite length and let K and N be submodules of M. Then

c(K + N) + c(K ∩ N) = c(K) + c(N)

Proof Clearly by the Second Isomorphism Theorem.

(K + N)/N � K/(K ∩ N). (2.5)

Then apply Corollary 2.2 to the two exact sequences

0→ N → K + N → (K + N)/N → 0

and

0→ K ∩ N → K → K/(K ∩ N)→ 0

to get

c(K + N) − c(N) = c(K) − c(K ∩ N)

�

Lemma 2.1 ( (Anderson and Fuller, 1992), Lemma 11.6)

Let M be a module and let f be an endomorphism of M.

(1) If M is an artinian, then Im f n+ker( f )n = M for some n, whence f is an automorphism

if and only if it is monic;

11



(2) If M is a noetherian, then Im f n ∩ ker( f )n = 0 for some n, whence f is an automor-

phism if and only if it is epic.

Proposition 2.12 (Fitting’s Lemma) ( (Anderson and Fuller, 1992), Proposition 11.7)

If M is a module of finite length n and if f is an endomorphism of M, then

M = Im f n ⊕ ker( f )n.

Proof From Proposition 2.11, M is both artinian and noetherian, so by Lemma 2.1,

there is an m with M = Im f n ⊕ ker( f )n. But since M has length n, both Im f n = Im f m and

ker( f )n = ker( f )m. �

2.6. Singular Submodule

Given any right module M, the singular submodule of M is the set

Z(M) = {m ∈ M : mI = 0 f or some essential right ideal I o f R}.

Equivalently, Z(M) is the set of those m ∈ M for which the right ideal annR(m) = {r ∈

R : mr = 0} is essential in R. An R-module M is called singular if Z(M) = M, and it is

called a nonsingular module if Z(M) = 0. A ring R is called a right nonsingular ring if R

is nonsingular as a right R-module. Zr(R) will be used for Z(RR). Similarly, we say that R

is left nonsingular ring if Zl(R) = 0.

Proposition 2.13 (Goodearl, 1976)

The following hold for any ring R.

(1) A module N is nonsingular if and only if Hom(M,N) = 0 for all singular modules

M.

(2) If R is a right semi-hereditary ring, then Zr(R) = 0.

(3) If Zr(R) = 0, then Z(M/Z(M)) = 0 for all right R-modules M.

(4) If N ≤ M, then Z(N) = N ∩ Z(M).

(5) Suppose that Zr(R) = 0. A right module M is singular if and only if Hom(M,N) = 0

for all nonsingular right modules N.

12



Let M be an R-module and N ≤ M. If N is an essential submodule of M, then

M/N is singular. Converse is not true in general. For example, let M = Z/2Z and N = 0.

M/N is singular but N is not an essential submodule of M. The following Proposition

shows that when the converse true.

Proposition 2.14 ( (Goodearl, 1976), Proposition 1.21)

Let M be a nonsingular module and N ≤ M. Then M/N is singular if and only if N is an

essential submodule of M.

The class of all singular right modules is closed under submodules, factor modules

and direct sums. On the other hand, the class of all nonsingular right modules is closed

under submodules, direct products, essential extensions, and module extensions.

Proposition 2.15 ( (Goodearl, 1976), Proposition 1.24)

If M is any simple right R-module, then M is either singular or projective, but not both.

2.7. Uniform Modules and Local Modules

Definition 2.19 A submodule K of a non-zero module M is said to be large or essential

if K ∩ L , 0 for every non-zero submodule L ≤ M. If all non-zero submodules of M are

large in M, then M is called uniform.

Proposition 2.16 ( (John Clark, Narayanaswani Vanaja, Cristian Lomp, Robert Wis-

bauer, 2006), 1.6)

For M the following are equivalent.

(a) M is uniform;

(b) Every non-zero submodule of M is indecomposable;

(c) For any module morphisms f : K → M, g : M → N , where f , 0, g f injective

implies that f and g are injective.

Proof

(a)⇔ (b) For any non-zero submodules N,K 6 M with N ∩ K = 0, the submodule

N + K = N ⊕ K is decomposable.

(a)⇒ (c) Let g f be injective. Then clearly f is injective. Suppose g is not injective.

Then Im f ∩ ker(g) , 0 and this implies ker(g f ) , 0, a contradiction.

13



(c)⇒ (a) Let N,K 6 M with N , 0 and N ∩ K = 0. Then the composition of the

canonical maps N → M → M/K is injective and now (c) implies that M → M/K

is injective, that is K = 0.

�

Definition 2.20 If a module M has a largest submodule, i.e. a proper submodule which

contains all other proper submodules, then M is called a local module.

Such a submodule has to be equal to the radical of M and in this case Rad(M) � M.

M is local if and only if it is cyclic and every non-zero factor submodule of M is

indecomposable.

A cyclic and self-projective module M is local if and only if End(M) is a local

ring( (Wisbauer, 1991), 41.4).

2.8. Closed Co-closed Submodules

Definition 2.21 Given a submodule K of M, a submodule L 6 M is called a complement

of K in M if it is maximal in the set of all submodules L
′

6 M with K ∩ L
′

= 0.

By the Zorn’s lemma, every submodule has a complement in M. A submodule L 6 M is

called a complement submodule provided it is the complement of some submodule of M.

If L is a complement of K in M, then there is a complement H of L in M that contains K.

By construction, K EH and H has no proper essential extension in M; thus H is called an

essential closure of K in M.

Definition 2.22 Let M be any module. A module K of M is closed in M if K has no proper

essential extension in M, i.e. whenever L is a submodule of M such that K is essential in

L then K = L.

Proposition 2.17 ( (John Clark, Narayanaswani Vanaja, Cristian Lomp, Robert Wis-

bauer, 2006), 1.10)

For a submodule K of M the following are equivalent.

(a) K is a closed submodule;

(b) K is a complement submodule ;

(c) K = H ∩ M, where H is a maximal essential extension of K in M.
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Proposition 2.18 ( (John Clark, Narayanaswani Vanaja, Cristian Lomp, Robert Wis-

bauer, 2006), 1.11)

Let the submodule K of M be a complement of L 6 M. Then,

(1) (K + L)/K E M/K and K + L E M.

(2) If U E M and K ≤ U, then U/K E M/K.

Definition 2.23 A submodule L of M is called co-closed in M if L has no proper submod-

ule K for which K ≤ L is co-small in M.

Thus L is co-closed in M if and only if for any proper submodule K of L, there is

a submodule N of M such that L + N = M but K + N , M.

Proposition 2.19 ( (John Clark, Narayanaswani Vanaja, Cristian Lomp, Robert Wis-

bauer, 2006), 3.7)

Let K 6 L 6 M be submodules.

(1) If L is co-closed in M, then L/K is co-closed in M/K.

(2) If K � L and L/K is co-closed in M/K, then L is co-closed in M.

(3) If L 6 M is co-closed, then K � M implies K � L; hence Rad(L) = L ∩ Rad(M).

(4) If L is hallow, then either L 6 M is co-closed in M or L � M.

(5) If f : M → N is a small epimorphism and L is co-closed in M, then (L) f is co-closed

in N.

(6) If K is co-closed in M, then K is co-closed in L and the converse is true if L is co-

closed in M.

Definition 2.24 A commutative ring R is called distributive if

A ∩ (B + C) = A ∩ B + A ∩C

for all ideals A, B,C of R.

In general closed submodules need not be co-closed and a co-closed submodules

need not be closed.
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Lemma 2.2 ( (Helmut Zöschinger), Lemma)

For a commutative noetherian ring R, the followings are equivalent:

(i) In every R-module M every closed submodule is co-closed.

(ii) In every R-module M every co-closed submodule is closed.

(iii) R is distributive.

2.9. V-Rings

In this section we introduce a class of rings called right V-rings. A ring R is a right

V-ring if every simple right R-module is injective.

Theorem 2.2 ( (Lam, 1999), Theorem 3.75)

For any ring R, the following are equivalent:

(1) R is a right V-ring;

(2) any right ideal A  R is an intersection of maximal right ideals;

(3) for any right R-module M, Rad(M) = 0.

Proof

(3)⇒ (2) Follows by applying (3) to the module M = R/A.

(2)⇒ (1) We shall show that any simple right R-module S is injective by applying Baer’s

Test to S . Thus, consider any homomorphism f : B→ S , where B ⊆ R is any right

ideal. In order to extend f to R, we may assume that f , 0. Fix an element

x < A := ker( f ). By (2), there exists a maximal right ideal m ⊇ A not containing x.

Since B/A � S is simple, we have m ∩ B = A, and clearly, B + m = R. We can then

extend f to g : R→ S by defining g(b + m) = f (b) for any b ∈ B and any m ∈ M.

(1)⇒ (3) We are supposed to show here that any x ∈ M is excluded by some maximal

submodule. The cyclic module xR certainly has a maximal submodule, so there

exists a surjection h : xR→ S for some simple module S . Since S is assumed to be

injective, h extends to some homomorphism h
′

: M → S . Now ker(h
′

) is a maximal

submodule of M excluding x.

�
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CHAPTER 3

INJECTIVE, PROJECTIVE AND QUASI-PROJECTIVE

MODULES

In this chapter we give the definitions and main properties and characterization of

projective, injective and quasi-projective modules.

3.1. Injective Modules

Definition 3.1 A left R-module E is injective if, whenever i is an injection, a dashed arrow

exists making the following diagram commute.

0 // A i //

f
��

B

g��
E

Proposition 3.1 ( (Rotman, 2009), Proposition 3.28)

(i) If (Ek)k∈K is a family of injective left R-modules, then
∏

k∈K Ek is also an injective left

R-module.

(ii) Every direct summand of an injective left R-module E is injective.

Proof

(i) Consider the diagram in which E =
∏

Ek.

0 // A i //

f
��

B

g��
E

Let pk : E → Ek be the kth projection, so that pk f : A → Ek. Since Ek is an

injective module, there is gk : B → Ek with gki = pk f . Now define g : B → E by
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g : b 7→ (gk(b)). The map g does extend f , for if b = i(a), then

g(i(a)) = (gk(i(a))) = (pk f (a)) = f (a),

because x = (pk(x)) for every x in the product.

(ii) Assume that E = E1 ⊕ E2, let i : E1 → E be the inclusion, and let p : E → E1 be the

projection ( so that pi = 1E1).

0 // B
j //

f
��

C
g0

��
E1

i //
E1 ⊕ E2

p
oo

Then, the proof can be completed easily using the diagram .

�

Corollary 3.1 Any finite direct sum of injective left R-modules is injective.

Proof The direct sum of finitely many modules coincides with the direct product. �

Theorem 3.1 (Baer Criterion) ( (Rotman, 2009), Theorem 3.30)

A left R-module E is injective if and only if every map f : I → E, where I is an ideal in

R, can be extended to R.

0 // I i //

f
��

R

g��
E

Proof Since any left ideal I is a submodule of R, the existence of an extension g of f is

just special case of the definition of injectivity of E.

Suppose we have the diagram

0 // A i //

f
��

B

E
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where A is a submodule of a left R-module B. For notational convenience, let us assume

i is the inclusion [ this assumption amounts to permitting us to write a instead of i(a)

whenever a ∈ A ]. We are going to use Zorn‘s lemma. Let X be the set of all ordered pairs

(A′, g′), where A ⊆ A′ ⊆ B and g′ : A′ → E extends f ; that is g′|A = f . Note that X , ∅,

because (A, f ) ∈ X. Partially order X by defining

(A
′

, g
′

) � (A
′′

, g
′′

)

to mean A
′

⊆ A
′′

and g
′′

extends g
′

. We may think that chains in X have upper bounds

in X; hence, Zorn‘s lemma applies, and there exists a maximal element (A0, g0) in X. If

A0 = B, we are done, and so we may assume that there is some b ∈ B with b < (A0).

Define

I = {r ∈ R : rb ∈ A0}.

It easy to see that I is a left ideal in R. Define h : I → E by

h(r) = g0(rb).

By hypothesis, there is a map h∗ : R −→ E extending h. Finally, define A1 = A0+ < b >

and g1 : A1 −→ E by

g1(a0 + rb) = g0(a0) + rh∗(1),

where a0 ∈ A0 and r ∈ R.

Let us show that g1 is well defined. If a0 + rb = a′0 + r′b, then (r − r′)b = a′0 − a0 ∈ A0; it

follows that r − r′ ∈ I. Therefore, g0((r − r′)b) and h(r − r′) are defined, and we have

g0(a′0 − a0) = g0((r − r′)b) = h(r − r′) = h∗(r − r′) = (r − r′)h∗(1).
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Thus g0(a′0) − g0(a0) = rh∗(1) − r′h∗(1) and g0(a′0) + r′h∗(1) = g0(a0) + rh∗(1), as desired.

Clearly g1a0 = g0a0 for all a0 ∈ A0, so that the map g1 extends g0. We conclude that

(A0, g0) � (A1, g1), contradicting the maximality of (A0, g0). Therefore A0 = B, the map

g0 is lifting of f , and E is injective. �

Definition 3.2 Let M be an R-module over a domain R. If r ∈ R and m ∈ M, then we say

that m is divisible by r if there is some m′ ∈ M with m = rm′. We say that M is a divisible

module if each case m ∈ M is divisible by every nonzero r ∈ R.

If R is a domain, r ∈ R and M is an R-module, then the function ϕr : M → M, defined

by ϕr : m 7→ rm, is an R-map. It is clear that M is divisible module if and only if ϕr is

surjective for every r , 0.

Lemma 3.1 Let G be an abelian group. Then the followings are equivalent:

(i) G is an injective.

(ii) G is a divisible.

(iii) Rad(G) = G.

Lemma 3.2 ( (Rotman, 2009), Lemma 3.33)

If R is a domain, then every injective R-module E is a divisible module.

Corollary 3.2 Let R be a principal ideal domain.

(i) An R-module E is injective if and only if it is divisible.

(ii) Every quotient of an injective R-module E is itself injective.

Corollary 3.3 ( (Rotman, 2009), Corollary 3.36)

Every abelian group M can be imbedded as a subgroup of some injective abelian group.

Theorem 3.2 ( (Rotman, 2009), Theorem 3.38)

For every ring R, every left R-module M can be imbedded as a submodule of an injective

left R-module.

Theorem 3.3 ( (Rotman, 2009), Theorem 3.39)

If R is a ring for which every direct sum of injective left R-modules is an injective module,

then R is left Noetherian.
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Definition 3.3 Let M and E be left R-modules. Then E is an essential extension of M if

there is an injective R-map α : M → E with S ∩α(M) , {0} for every nonzero submodule

S ⊆ E. If also α(M) ( E is called a proper essential extension of M.

Lemma 3.3 ( (Rotman, 2009), 3.44)

Given a left R-module M, the following conditions are equivalent for a module E ⊇ M.

(i) E is a maximal essential extension of M; that is, no proper extension of E is an

essential extension of M.

(ii) E is an injective module and E is an essential extension of M.

(iii) E is an injective module and there is no proper injective intermediate submodule E′;

that is, there is no injective E′ with M ⊆ E′ ( E.

Definition 3.4 If M is a left R-module, then a left R-module E containing M is an injective

envelope of M, denoted by E(M) if any of equivalent conditions in Lemma 3.3 hold.

3.2. Projective Modules

Definition 3.5 A left R-module P is projective if, whenever p is surjective and h is any

map, there exists a lifting g; that is, there exists a map g making the following diagram

commute:

B

h
��g

~~
C p

// A
′′ // 0

Proposition 3.2 ( (Anderson and Fuller, 1992) , Proposition 17.2)

The following statements about a left R-module P are equivalent;

(a) P is projective;

(b) Every epimorphism M → P→ 0 splits;

(c) P is isomorphic to a direct-summand of a free left R-module.
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3.3. Quasi-Projective Modules

In this section we outline some properties of quasi-projective modules. Most of

the results of this section can be found in ( (L.Fuchs and K.M.Rangaswamy , 1970)).

Definition 3.6 A module M over a ring R is called quasi-projective if for every submodule

N of M and for every R-module homomorphism ϕ : M → M/N, then there is an R-

endomorphism ψ of M making the diagram

M
ψ

��
ϕ
��

M
η // M

N

commute where η denotes the natural map.

Lemma 3.4 ( (L.Fuchs and K.M.Rangaswamy , 1970), Lemma 1)

Every direct summand of a quasi-projective module is quasi-projective.

Lemma 3.5 ( (L.Fuchs and K.M.Rangaswamy , 1970), Lemma 2)

If M is quasi-projective and N is fully invariant submodule of M, then M/N is likewise

quasi-projective.

Lemma 3.6 ( (L.Fuchs and K.M.Rangaswamy , 1970), Lemma 3)

If Mi(i ∈ I) are quasi-projective R-module such that, for very submodule N of the direct

sum M =
⊕

i∈I Mi, Ni =
⊕

(N ∩ Mi) hold, then M is again quasi-projective.

Proof Hypothesis implies that every quotient module M/N of M is of the form
⊕

(Mi/Ni)

with Ni ⊆ Mi. Every homomorphism Mi → M j/N j with i , j must be trivial, because

otherwise there exist submodules N′i and N′j such that Mi/N′i � N′j/N j are non-zero sub-

modules and so there is a sub-direct sum of Mi and N! j which is not their direct sum.

Thus every ψ :
⊕

(Mi)→
⊕

(Mi/Ni) acts coordinate-wise whence the quasi-projectivity

of M is obvious. �

Lemma 3.7 ( (L.Fuchs and K.M.Rangaswamy , 1970), Lemma 4)

If N is submodule of quasi-projective module M such that M/N is isomorphic to a direct

summand of M, then N itself is a summand of M.
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Proof Let A be a summand of M with π : M → A, ρ : A → M as projection and

injection maps and let α : A → M/N be an isomorphism. For the natural map η : M →

M/N, there exists a φ : M → M rendering

M π //

φ

��

A

α
��

M
η // M/N

commutative, i.e. ηφ = απ. Define M/N → M as φρα−1; then ηφρα−1 = απρα−1 is the

identity map of M/N. Hence the sequence 0→ N → M → M/N → 0 splits. �

Lemma 3.8 ( (L.Fuchs and K.M.Rangaswamy , 1970), Lemma 5)

Let N be a submodule of the quasi-projective module M such that there exists an epimor-

phism ε : N → M, then M is isomorphic to a direct summand of N.

Proof Let K = Kerε and let ψ : N/K → M be the isomorphism induced by ε , clearly

ϕ : M → M/K is a monomorphism, then ψϕ : N/K → M/K is an identity on N/K.

Since M is quasi-projective module, there exists β : M → M such that ηβ = ϕ where

β(M) ⊂ η−1(N/K) = N and η : M → M/K is natural map. For βψ : N/K → N,

ηβψ = ϕψ acts identically on N/K. Hence 0→ K → N → N/K → 0 is splitting, implies

N = K ⊕ N/K. Since N/K � M, M is isomorphic to a direct summand of N. �

Lemma 3.9 ( (L.Fuchs and K.M.Rangaswamy , 1970) , Lemma 6)

If N is a submodule in a quasi-projective module M, then cardinality of E(M/N) does not

exceed that of E(M).

The structure of quasi-projective abelian groups is given in the following theorem.

Theorem 3.4 ( (L.Fuchs and K.M.Rangaswamy , 1970), Theorem)

An abelian group A is quasi-projective if, and only if it is;

(1) free or

(2) a torsion group such that every p-component Ap is a direct sum of cyclic groups of

the same order pn where p is prime.

Proof Clearly free groups F are quasi-projective, then pnF is fully invariant submodule

of F so from Lemma 3.5, the groups F/pnF are quasi-projective. From Lemma 3.6,

a direct sum of groups F/pnF with different primes p is quasi-projective. Hence the

sufficiency holds because F/pnF is a direct sum of cyclic groups of order pn.
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Conversely, suppose A is quasi-projective. If A is torsion, then from Lemma 3.4,

every Ap is quasi-projective. If Ap is not reduced, then it includes a summand of Zp∞ .

From Lemma 3.4 and Lemma 3.7, every proper subgroup of Zp∞ have to be summand

of Zp∞ which is impossible, thus Ap is reduced. It cannot have a summand of the form

Zpa ⊕Zpb with a < b, because this cannot be quasi-projective as a result of the existence of

an epimorphism Zpa → Zpb whose kernel is not a summand. Hence the basic subgroups

Cp of Ap are direct sums of cyclic groups of the same orders pn, and Cp is now a direct

sum of Ap but Ap is reduced ,so Cp = Ap.

If A is torsion-free, we divide two parts whether A has finite or infinite rank. If A

has finite rank, then let F be a free subgroup of rank k in A. Now E(A) is countable, thus

from Lemma 3.9 E(A/F) is nearly countable. Since A/F is torsion, this holds only if A/F

is finite in which case A is free. If A have infinite rank, then let F be a free subgroup of

A of the same rank as A. So there exists an epimorphism F → A. From Lemma 3.8, we

conclude that A is isomorphic to summand of F and therefore A is free.

Finally, we indicate that A can not be mixed. If T is torsion part of A, then from

Lemma 3.5 A/T is quasi-projective and so free by what has been proved,i.e. A = T ⊕ F

where quasi-projective T and free F. If neither T = 0 nor F = 0, then there is a cyclic

direct summand Zpn of T and an epimorphism ψ : F → Zpn whose kernel is not a direct

sum of F, contradict with Lemma 3.7 �
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CHAPTER 4

DUAL AUTOMORPHISM-INVARIANT MODULES AND

DEDEKIND FINITE MODULES

In this chapter we outline some properties of dual automorphism-invariant mod-

ules and Dedekind finite modules. We give the main properties and characterization of

dual automorphism-invariant modules and dedekind finite modules.

4.1. Dual Automorphism-Invariant Modules

Definition 4.1 A right R-module M is called a dual-automorphism-invariant module if

whenever K1 and K2 are small submodules of M , then any epimorphism η : M/K1 →

M/K2 with small kernel lifts to an endomorphism ϕ of M.

M
ϕ //

��

M

��
M/K1

η // M/K2

Lemma 4.1 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Lemma 1)

Let M be a dual-automorphism-invariant module. If ϕ : M → M is an epimorphism with

small kernel, then ϕ is an automorphism.

Proof Suppose ϕ : M → M is an epimorphism with small kernel. Write K = Ker(ϕ).

Then ψ : M/K → M is an isomorphism. Consider ψ−1 : M → M/K. Since M is a dual

automorphism-invariant module, by definition, ψ−1 lifts to an endomorphism β : M → M.

We have β(M) + K = M. Since K � M, we get β(M) = M. This implies β is an

epimorphism. Then for every m ∈ M, ψ−1(m) = β(m) + K. Now m = ψψ−1(m) =

ψ(β(m) + K) = ϕβ(m). This shows that ϕβ = 1M. Hence ϕ−1 = β. �
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Proposition 4.1 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Proposition 3)

Let R be a right V-ring. Then every right R-module is a dual automorphism-invariant.

Proof Suppose R is V-ring. Let M be a right R-module. We wish to show that M has

no small submodule. Let 0 , x ∈ M, set Ω = {N 6 M : x < N}. Then take a chain

Ni ∈ Ω such that n < Ni. Let
⋃

Ni = K 6 M. Then K ∈ Ω. Clearly K is upper-bound

for Ni. By the Zorn’s Lemma Ω has a maximal submodule say N. Let N � L < M, then

x ∈ L⇒ xR ∈ L.

(xR + N)/N 6 L/N 6 M/N.

Then (xR + N)/N 6 M/N. Therefore,

Ω = {N 6 M : x < N} = (xR + N)/N.

Clearly (xR + N)/N is a simple. Since R is V-ring, (xR + N)/N is injective. Then

0→ (xR + N)/N → M/N → (M/N)/((xR + N)/N)→ 0

splits. So (xR + N)/N is direct summand of M/N,

(xR + N)/N ⊕ (M/N)/((xR + N)/N) = M/N.

Thus M = xR + N. This implies that M has no small submodule and consequently M is

dual automorphism-invariant module. �

Lemma 4.2 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Lemma 4)

Let M1,M2 be right R-modules. If M = M1 ⊕ M2 is dual automorphism-invariant, then

any homomorphism f : M1 → M2/K2 with K2 small in M2 and ker f small in M1 lifts to a

homomorphism g : M1 → M2.

Theorem 4.1 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Theorem 5)

A ring R is a right V-ring if and only if every finitely generated right R-module is dual

automorphism-invariant.
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Proof Suppose every finitely generated right R-module is dual automorphism-invariant.

We wish to show that R is a right V-ring. Assume to the contrary that R is not a V-ring.

Then there exists a simple right R-module S such that S is not injective. Let E(S ) be

the injective hull of S . Then E(S ) , S . Choose any X ∈ E(S ) S . Then S is small in

xR and xR is uniform. Let A = annr(x). As S is a submodule of xR � R/A, we may

take S = B/A for some A ⊂ B ⊂ RR. Consider M = R
A ×

R
B . As M is finitely generated,

by hypothesis M is dual automorphism-invariant. We have the identity homomorphism

1R/B : R/B → R/A � R/A
R/B where ker(1R/B) = 0 is small in R/B and B/A small in R/A. By

Lemma 4.2, the identity map on R/B can be lifted to a homomorphism η : R
B →

R
A . Thus

Im(η) is summand of R/A which is a contradiction to the fact that R/A(� xR) is uniform.

Hence R is a right V-ring.

The converse is obvious from Proposition 4.1. �

Definition 4.2 A module M is called a pseudo-projective module if for every submodule

N of M, any homomorphism ϕ : M → M/N can be lifted to a homomorphism ψ : M → M,

that is the diagram below commutes.

M
ψ

��
ϕ
��

M
η // M

N

Proposition 4.2 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Proposition 7)

Any pseudo-projective module is a dual automorphism-invariant.

Proof Suppose M is a pseudo-projective module. Let L1, L2 be two small submodules

of M and φ : M/L1 → M/L2 be an epimorphism. Let π1 : M → M/L1 be a natural

mapping. As M is pseudo-projective, φπ1 lifts to an endomorphism η of M. Let π2 : M →

M/L2 be a natural mapping. Then π2η = φπ1. Therefore π2η(L1) = φπ1(L1) = 0 gives

η(L1) ⊆ L2. Hence η is lifting of φ. So M is a dual automorphism-invariant module. �

Proposition 4.3 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Proposition 11)

Any direct summand of a dual automorphism-invariant module is dual automorphism-

invariant.

Proof Let M be a dual automorphism-invariant right R-module and let M = A ⊕ B. Let

K1,K2 be two small submodules of A and σ : A/K1 → A/K2 be an epimorphism with

ker(σ) � A/K1. Clearly, K1,K2 are small in M and σ′ = σ ⊕ 1B : M/K1 → M/K2 is
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an epimorphism with ker(σ′) � M/K1. Since M is a dual automorphism-invariant, σ′

lifts to an endomorphism η of M. For the inclusion map i1 : A → M and the projection

π1 : M → A, the map π1ηi1 : A → A lifts σ. Hence A is dual automorphism-invariant.

This shows that any direct summand of a dual automorphism-invariant module is a dual

automorphism-invariant module. �

Lemma 4.3 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Lemma 18)

Let G be a torsion abelian group such that G is dual automorphism-invariant. Then G is

reduced.

Proof Assume the contrary that G is not reduced. Then we have G �
⊕

mp
Zp∞ for

some prime number p. Consider H = Zp∞ . Its every proper subgroup is small. Let A  B

be two proper subgroups of H. There exists an isomorphism σ : H/A → H/B. Since

every summand of dual automorphism-invariant module is dual automorphism-invariant,

H is dual automorphism-invariant. Therefore σ lifts to an endomorphism η of H. Then

σ(A) = B. This gives a contradiction as order of A is less than order of B. Hence G is

reduced. �

Theorem 4.2 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Theorem 20)

Let G be a torsion abelian group. Then the followings are equivalent:

(i) G is dual-automorphism-invariant;

(ii) G is quasi-projective.

Proof

(i)⇒ (ii) Since any abelian group is a direct sum of a divisible group and a reduced

group, in view of Lemma 4.3, it follows that G is reduced. Let p be prime number.

Consider the p-component Gp of G. Suppose Gp , 0. As Gp is reduced, Gp = A1⊕L

where A1 is a non-zero cyclic p-group. Now o(A1) = pn for some n > 0. If L = 0,

we get that Gp is quasi-projective. Suppose L , 0. Then L = A2 ⊕ L1 where A2

is a non-zero cyclic p-group. By Proposition 4.3, A1 ⊕ A2 is dual automorphism-

invariant. As every subgroup of A1 or A2 is small, it follows that A1 is A2-projective

and A2 is A1-projective. Hence A1 ⊕ A2 is quasi-projective. This gives A1 � A2.

Hence we get Gp is a direct sum of copies of A1. So Gp is quasi-projective. This

proves that G itself is quasi-projective.

(ii)⇒ (i) This follows from Theorem 4.2.

�
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Theorem 4.3 ( (Surjeet Singh and Ashish K.Srivastava, 2012), Theorem 22)

Let G be a subgroup of Q containing Z . Then the following conditions are equivalent:

(i) G is dual-automorphism-invariant;

(ii) The number of primes p for which Gp = {x ∈ G : pnx ∈ Z} = Z is not finite;

(iii) J(G) = 0.

4.2. Dedekind Finite Modules

Definition 4.3 A ring R is called dedekind finite ring if ba = 1 whenever ab = 1. Equiva-

lently, R is dedekind finite ring if whenever a is left or right invertible, then a is invertible.

Clearly ab = 1 implies that ba is non-zero idempotent, so R is dedekind finite if

and only if R is not isomorphic to any proper left or right ideal direct summand.

We shall denote the class of dedekind finite rings by DF.

DF is closed under direct product, finite direct sums and sub-rings, but not under

homomorphic images.

Proposition 4.4 ( (Simion Breaz, Grigore Câlugârenu and Philip Schulyz, 2011), Propo-

sition 2.1)

If R has no right or left zero divisor, then R ∈ DF.

Proof Suppose R has no right or left zero divisor. Let a be not right zero divisor and

ab ∈ R. Then a(ab − ba) = 0, so ab = ba = 1. For left zero divisor proof is similar. �

Definition 4.4 Let R be any unital ring and M be a unital R-module. M is called DF-

module if its ring of endomorphism, then End(M) is a dedekind finite.

Consequently, M is DF-module if and only if M is not isomorphic to any proper direct

summand of itself.

Some properties of DF-modules are given in the following proposition.

Proposition 4.5 ( (Simion Breaz, Grigore Câlugârenu and Philip Schulyz, 2011), Propo-

sition 3.2)

Let M be an R-module.
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(1) There is a monomorphism f ∈ End(M) with Im f a proper direct summand if and

only if there is an epimorphism g ∈ End(M) with ker(g) a proper direct summand.

(2) If M is a DF-module, then so is any direct summand of M.

(3) If M is the direct sum of infinitely many copies of the same non-zero module, then M

is not DF-module.

(4) Let f ∈ End(M) be a monomorphism of M onto a direct summand, and let N be fully

invariant submodule which is a DF-module. Then f (N) = N.

(5) Let N be fully invariant submodule of M. If M and M/N are DF-modules, then M is

DF-module.

(6) M is the direct sum of fully invariant submodules Ni, then M is DF-module if and

only if every Ni is.

(7) If M is the direct product of (infinitely many) fully invariant submodules Ni, then M

is DF-module if and only if every Ni is.

Theorem 4.4 ( (Simion Breaz, Grigore Câlugârenu and Philip Schulyz, 2011), Theorem

3.4)

Let M be R-module and N be a fully invariant submodule of M.

(1) If N is essential DF-module, then M is DF.

(2) If N is superfluous and M/N is DF, then M is DF.

Proof

(1) Suppose N is essential DF-module. Let f , g be endomorphisms of M such that f g =

1. Then f : f |N and g : g|N are restriction of endomorphisms of N such that

f g = 1N . Since N is large and 0 = kerg = ker(g) ∩ N, kerg = 0, so M is DF.

(2) Suppose N is small and M/N is DF. Let f − and g− be the induced endomorphism of

M/N. Since M/N is DF, f −g− = 1M/N . Then we conclude that f − is an epimor-

phism, so f (M) + N = M. As N is small, hence f (M) = M. This implies that M is

DF.

�
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Corollary 4.1 ( (Simion Breaz, Grigore Câlugârenu and Philip Schulyz, 2011), Corollary

3,5)

Let M be an R-module.

(1) If S oc(M) is essential and DF, then M is DF.

(2) If Rad(M) is superfluous and M/Rad(M) is DF, then M is DF.
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CHAPTER 5

GENERALIZED HOPFIAN MODULES

Hopfian modules, Generalized Hopfian modules introduced in (A. Ghorbani and

A. Haghany, 2002). In this section, we outline some properties of Hopfian and general-

ized Hopfian modules. We give the relation between Hopfian and generalized Hopfian

modules.

Definition 5.1 Let R be a ring and M be a right R-module. If every surjective R-endomorphism

of M is an isomorphism, then M is called Hopfian.

Definition 5.2 Let R be a ring and M be a right R-module. If every surjective R-endomorphism

of M has a small kernel in M, then M is called generalized Hopfian (gH for short).

Every Hopfian modules is gH. But the converse is not true in general.

Example 5.1 Consider the prüfer group Zp∞ for some prime p. Then each epimorphism

of Zp∞ is small, so Zp∞ is gH. On the other hand, the map f : Zp∞ → Zp∞ given by

f (a) = pa is an epimorphism with ker( f ) = {a ∈ Zp∞ : pa = 0}. Since ker( f ) � Zp∞ , f is

an epimorphism which is not a isomorphism. So Zp∞ is not Hopfian.

Theorem 5.1 ( (A. Ghorbani and A. Haghany, 2002), Theorem 1.1)

The following are equivalent conditions on right R-module M.

(1) M is gH.

(2) For any surjective endomorphism f of M, if N � M, then f −1(N) � M.

(3) If N � M and there is an R-epimorphism M/N → M, then N � M.

(4) If N is a proper submodule of M and if f is a surjective endomorphism of M, then

f (N) , M.

(5) M is Dedekind finite and the kernel of any surjective endomorphism of M is either

small or direct summand.

(6) There exist a fully invariant submodule N of M such that M/N is gH.

(7) For any right R-module X, if there is an epimorphism M → M ⊕ X, then X = 0.
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Proof We wish prove (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1)⇔ (6) and (1)⇔ (7).

(1)⇒ (2) Suppose M is gH. Let f : M → M be an surjective endomorphism and

N � M. Assume L is submodule of M containing ker( f ) with f −1(N)/ker( f ) +

L/ker( f ) = M/ker( f ). Then f −1(N) + L = M, hence N + f (L) = M so f (L) = M.

This implies that f (L) = f (M) which also implies L = M because ker( f ) ⊆ L. Thus

f −1(N)/ker( f ) is small submodule of M/ker( f ). Since ker( f ) � M, f −1(N) � M.

(2)⇒ (3) Suppose (2) is hold. Assume that f : M/N → M is an epimorphism. Let

π : M → M/N be the canonical epimorphism. Then fπ : M → M is a surjective

endomorphism of M. From (2), ker( fπ) = ( fπ)−1(0) is superfluous submodule of

M. Since N � ker( fπ), N � M.

(3)⇒ (4) Suppose (3) is hold. Assume that N is a proper submodule of M and f :

M → M is an epimorphism with f (N) = M. Then M = ker( f ) + N; indeed

f − : M/ker( f ) → M is an epimorphism. From (3), ker( f ) � M. Hence M = N

which contradicting the assumption.

(4)⇒ (5) Suppose (4) is hold. Firstly we want to show that End(M) is a directly finite

ring, thus M will be a Dedekind finite module. Assume ηβ = 1 where η and β are

in End(M). Clearly β is an injective η is a surjective. Since η(Imβ) = M, from (4)

Imβ = M, and thus β is invertible. It implies that βη = 1. Then assume f : M → M

is an epimorphism. Let ker( f ) + N = M where N is any submodule of M. Then

f (N) = M and hence from (4), N = M. We proved that ker( f ) � M.

(5)⇒ (1) Suppose (5) is hold. Assume that M is not gH and f : M → M is an epi-

morphism whose kernel is not superfluous submodule of M. From (5) there is

L ≤ M with L ⊕ ker( f ) = M. Hence we get M � M/ker( f ) � L, and there-

fore M ⊕ ker f � M. Since M is dedekind finite the last isomorphism shows that

ker( f ) = 0 which contradicting the hypothesis. Hence ker( f ) � M.

(1)⇒ (6) Trivial, take N = 0.

(6)⇒ (1) Assume that N is fully invariant submodule such that N � M and M/N is gH.

Let f be an epimorphism of endomorphism of M. Then g : M/N → M/N defined

by g(m)+N = f (m)+N is a well defined epimorphism with ker(g) � M/N. Assume

that kerg = L/N for some submodule L of M. Then L/N � M/N and so N � M,

thus L � M Since ker( f ) 6 L, we get ker( f ) � M.
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(1)⇒ (7) Assume that M is gH and f : M → M⊕X is an epimorphism. Let π1 : M → M

denotes projection onto the first component and τ : X → X ⊕ M be the natural

injection. From (1), we get ker(π1 f ) = f −1(τ(X)) � M. Then

τ(X) = f [ f −1(τ(X))] = f (ker(π1 f )) � f (M) = M ⊕ X

so X = 0.

(7)⇒ (1) Suppose (7) is hold. Assume that f : M → M is an epimorphism and ker( f ) +

L = M for some submodule M. Then

M/L ∩ ker( f ) = ker( f )/L ∩ ker( f ) ⊕ L/L ∩ ker( f ) � M/L ⊕ M/ker( f )

� M/L ⊕ M

Hence an epimorphism M → M/L ⊕ M is defined by m → (m + L, f (m)), so by

hypothesis M/L = 0. This means L = M.

�

Corollary 5.1 ( (A. Ghorbani and A. Haghany, 2002), Corollary 1.2)

Let M be a gH module and f be a surjective endomorphism of M.

(i) If N 6 M, we have N � M iff f (N) � M.

(ii) Jac(M) =
∑

f (N) =
∑

f −1 where N runs through the set of all small submodules of

M.

Corollary 5.2 ( (A. Ghorbani and A. Haghany, 2002), Corollary 1.3)

A direct summand of a gH module is a gH.

Corollary 5.3 ( (A. Ghorbani and A. Haghany, 2002), Corollary 1.4)

For a right R-module M consider the following statements.

(i) M is Hopfian.

(ii) M is gH.

(iii) M is Dedekind finite.
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Proof The proof of (i) ⇒ (ii) ⇒ (iii) comes from Theorem 5.1. Now to complete the

proof we need to show (iii) → (i). Suppose that M is Dedekind finite and f : M → M is

an epimorphism. Then there is an endomorphism g of M such that f g = 1. Since End(M)

is a directly finite ring, we get g f = 1. Hence f is an isomorphism, and M is a Hopfian. �

Proposition 5.1 ( (A. Ghorbani and A. Haghany, 2002), Proposition 1.8)

If M is a quasi-projective module, then M is gH iff so is M/N for any small submodule N

of M.

Proof The "If" part is trivial, just take N = 0. Now we will show that the other part.

Suppose that M is gH and N � M. Let f : M/N → M/N be an epimorphism and

π : M → M/N be the canonical epimorphism. Then we get fπ : M → M/N. Since M

is quasi-projective, there exists an endomorphism g of M such that πg = fπ. From this

inequality we get g is epic, as π is small. From Corollary 5.3, M is Hopfian, thus g is an

isomorphism. We get

f (x + N) = fπ(x) = πg(x) = g(x) + N

so g(N) ≤ N, and ker f = L/N where L = {x ∈ M : g(z) ∈ N} = g−1(N). Since g−1 is a

homomorphism and N � M, g−1(N) � M, in the end ker f = g−1(N)/N � M/N. Hence

M/N is gH. �

Proposition 5.2 ( (A. Ghorbani and A. Haghany, 2002), Proposition 1.11)

Suppose that M/N is gH whenever N is non-zero submodule of M. Then M is gH.

Proposition 5.3 ( (A. Ghorbani and A. Haghany, 2002), Proposition 1.15)

A non-zero module that satisfies d.c.c on small submodules is gH.

Proposition 5.4 ( (A. Ghorbani and A. Haghany, 2002), Proposition 1.16)

Let N be a fully invariant submodule of M such that M/N is Hopfian. If N is Hopfian

(respectively gH) then so is M.

Proof Let N be a fully invariant submodule of M with M/N is Hopfian. Suppose N is

Hopfian. Then let f : M → M be an epimorphism and g : M/N → M/N be the induced

map which is surjective. Since N is Hopfian, g is an isomorphism, thus N = f −1(N).

Therefore f |N: N → N is an epimorphism. Thus ker f ∩ N = 0. Since ker f ≤ N, M is

gH. �
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Proposition 5.5 ( (A. Ghorbani and A. Haghany, 2002), Proposition 1.17)

Let P be a property of modules preserves under isomorphism. If a module M has the

property P satisfies a.c.c on non-zero (respectively non-small) submodules N such that

M/N has the property P, then M is Hopfian (respectively gH).

Proof Assume that M is not Hopfian. Then there is a submodule K1 with K1 , 0 and

M/K1 � M. Thus M/K1 is not Hopfian but satisfies P. Thus there is a submodule K2 ⊆ K1

with K2 , K1 and M/K2 � M/K1. Hence we have 0 ⊂ K1 ⊂ K2 with M/Ki � M for

i = 1, 2. Repeating the process until a chain of submodules of structure which contradicts

our assumption. Thats why M is Hopfian. �

Corollary 5.4 ( (A. Ghorbani and A. Haghany, 2002), Corollary 1.18)

If a module M satisfies a.c.c on small submodules, then it is generalized Hopfian.

Corollary 5.5 ( (A. Ghorbani and A. Haghany, 2002), Corollary 1.21)

If M has a a.c.c on its non-zero submodules N such that M/N is not Hopfian, then M is

Hopfian.
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CHAPTER 6

WEAKLY HOPFIAN MODULES

In this section we study weakly Hopfian modules.

Definition 6.1 Let M be a module. M is called weakly Hopfian module (for short WH-

module) if any small surjection of M is an isomorphism.

Proposition 6.1 For a non-zero module M, The following statements are equivalent:

(i) M is a WH-module.

(ii) M
K � M for any small submodule K of M if and only if K = 0.

Proof

(i)⇒ (ii) Suppose M � M
K for some K � M. Let ψ : M

K → M and π : M → M
K be two

isomorphisms. Then the map

M π // M
K

ψ // M .

is an epimorphism with ker(ψπ) = K. Then ψπ is a small epimorphism. So ψπ is

an isomorphism by (i), and so K = 0.

(ii)⇒ (i) Suppose (ii) hold. Let f : M → M be small epimorphism. Then M � M
ker( f )

by first isomorphism theorem. From (ii), we get ker( f ) = 0. This shows f is an

isomorphism. Hence M is a WH.

�

Theorem 6.1 ( (Youngduo Wang, 2005), Theorem 3,1)

Let M be a module. If M satisfies condition that M/N is WH for every small submodule,

0 , N ≤ M, then M is WH.

Proof Suppose that M satisfies the condition given in theorem and M is not weekly

Hopfian. Then there exists a small epimorphism of M which is not isomorphism. Let

K = ker f . Then ker f , 0 and g : M/K → M is an isomorphism. Thus ηg : M/N → M/N

is a small epimorphism which is not an isomorphism where η : M → M/N is a canonical

epimorphism. This contradicts with our assumption. Hence M is WH. �
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Lemma 6.1 ( (Wisbauer, 1991), Lemma 19.3)

Let K, L, N and M be R-modules. If f : M → N and g : N → L are two epimorphisms,

then f g is superfluous if and only if f and g are superfluous.

Theorem 6.2 ( (Youngduo Wang, 2005), Theorem 3.5)

Let M be a module with a.c.c on small submodules. Then M is a WH.

Proof Let f be small epimorphism of endomorphism of M. Let M satisfies a.c.c on

small submodules. Then ker( f ) ≤ ker( f )2 ≤ ker( f )3 ≤ . . . is an ascending chain of small

submodules of M by Lemma 6.1. Since M satisfies a.c.c, there exists a positive number n

such that ker( f )n = ker( f )n+1. Now we wish to show that ker( f ) = 0. Let take x ∈ ker( f ),

then ker( f (x)) = 0. Since f is an epimorphism, there exists m1 ∈ M such that f (m1) = x.

Then again f is an epimorphism, there exists m2 ∈ M such that f (m2) = m1. Repeating

the process, we get mn−1 ∈ M such that f (mn) = mn−1. Hence f (m1) = f 2(m2) = f 3(m3) =

. . . = f n(mn) = x. Since x ∈ ker( f ), f (x) = f ( f n(mn)) = 0. This implies that f n+1(mn) = 0.

Hence mn ∈ ker( f )n+1 = ker( f )n. Therefore f n(mn) = 0 = x. �

Proposition 6.2 Dual automorphism-invariant modules are WH.

Proof Let M be a dual automorphism-invariant module and f : M → M small epi-

morphism. We wish to show that there is g such that f g = 1M. Let K = ker( f ). Then f

induces an isomorphism ϕ : M/K → M. Consider ϕ−1 : M → M/K. Since M is dual

automorphism, ϕ−1 lifts to an endomorphism g of M. We have g(M)+K = M. As K � M

, g(M) = M. Thus g is an epimorphism.Then for any x ∈ M, ϕ−1(x) = g(x) + K. Now

x = ϕϕ−1 = f (g(x)). This proves f g = 1M. �

Converse of this proposition is not true in general.

Example 6.1 Every non-zero endomorphism of Q is an isomorphism. Let f : Q → Q

be a non-zero endomorphism. For any a
b ∈ Q, b , 0. f (1) = f (b

b ) = b f ( 1
b ). That is

f (1
b ) = 1

b f (1). Thus f (a
b ) = a f (1

b ) = a
b f (1). This shows that f is a monomorphism and an

epimorphism. Hence f is an isomorphism.

The following example shows that Q is WH but not dual automorphism-invariant by The-

orem 4.3.

In order to show that quasi-projective modules are WH, we use the following lemma.

Lemma 6.2 ( (Anderson and Fuller, 1992), 5.1)
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Let f : M → N and f ′ : N → M be homomorphism such that

f f ′ = 1N

Then

M = ker( f ) ⊕ Im f ′.

Moreover f is an epimorphism and f ′ is a monomorphism.

Proof Let n ∈ N. Then f ( f ′(n)) = n. So f is epic.

f ′(n) = 0⇒ n = f ( f ′(n))⇒ f (0) = 0. So f ′ is a monomorphism.

Let x ∈ M, then

f (x − f ′ f (x)) = f (x) − f f ′ f (x) = f (x) − f (x) = 0

⇒ x − f ′ f (x) ∈ ker( f )

⇒ x = x − f ′ f (x) + f ′ f (x) ∈ ker( f ) + Im f

⇒ M = ker( f ) + Im f .

Let a ∈ ker( f ) ∩ Im f . Then f (a) = 0 and a = f ′(b) for some b ∈ N. Then

b = f ( f ′(b)) = f (a) = 0

and so

a = f ′(b) = f ′(0) = 0

Thus ker( f ) ∩ Im f = 0 and M = ker( f ) ⊕ Im f . �

Corollary 6.1 Quasi-projective modules are WH-modules.

Proof Let M be a quasi-projective module. Suppose M � M
K for some K � M. We

shall prove that K = 0, and so M is WH by Proposition 6.1. Let φ : M
K → M be an
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isomorphism. The map φπ : M → M, where π : M → M
K is canonical epimorphism has

kernel K i.e. ker(φπ) = K. Since M is quasi-projective, there is a g : M → M which

makes the following diagram commutative.

M
g

~~
1M
��

M
φπ // M

By Lemma 6.2, M = ker(φπ) ⊕ Im(g). Since ker(φπ) = K � M, we must have K = 0.

Hence M is a WH. �

Proposition 6.3 ( (Youngduo Wang, 2005), Proposition 3.3)

Let M be a WH and K is a direct summand of M. Then K is WH.

Proof Let M be a WH and M = K ⊕K
′

. Suppose that any small epimorphism f : M →

M is an isomorphism. Let α : K → K be small epimorphism and take 1K′ : K
′

→ K
′

.

Firstly we will show that α has a small kernel.

Define

α(k) = k

1K′ (k
′

) = k
′

Consider ψ : K ⊕ K
′

→ K ⊕ K
′

is defined by ψ(k, k
′

) = (α(k), k
′

). Thus

ker(ψ) = ker(α) ⊕ 0 � K ⊕ M.

Next we will show that α is a monomorphism.

ψ(k, k
′

) = 0 ⇒ (α(k), k
′

) = 0

⇒ (k, k
′

) = 0

thus α is monomorphism. Therefore α is an isomorphism. �
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Direct sum of WH-modules need not be WH, as it is shown in the following

example.

Example 6.2 Let p be prime number and

A = (
∞⊕

n=1

< an >) ⊕ (
∞⊕

k=1

< bk >)

where < ai >� Zp and < bi >� Zp2 for each i. Set A1 = (
⊕∞

n=1 < an >) and A2 =

(
⊕∞

k=1 < bk >). Since Rad(A1) = 0, A1 = (
⊕∞

n=1 < an >) is WH. By Theorem 3.4,

A2 = (
⊕∞

k=1 < bk >) is quasi-projective. Thus A2 is WH by Corollary 6.1. Consider the

map

f : A → A

f (ai) = ai+1, for each i ≥ 1

f (b1) = a1

f (bi) = bi−1, for each i ≥ 2

Then f is a well defined epimorphism. From the definition of f 0 , ker( f ) = p < b1 >.

Since Zp2 is local, < bi > is local for each i ≥ 1. So

0 , ker( f ) = p < b1 > � < bi > 6 A.

Thus f is a small epimorphism of A, which is not an isomorphism. Hence A is not WH.

Proposition 6.4 Let G be a module of finite length and H be a module with Rad(H) = 0,

Then M = G ⊕ H is WH.

Proof Let f : M → M be small epimorphism. Then ker( f ) � M ⇒ ker( f ) � G ⊕ 0.

G ⊕ H
ker( f )

�
G

ker( f )
⊕ H � G ⊕ H ⇒ G �

G
ker( f )

.
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Let consider 0 → ker f → G → G
ker f → 0 exact sequence. Then we have c(G) =

c(ker( f ))+c( G
ker( f ) ). Since G � G

ker( f ) , c(G) = c( G
ker( f ) ). Therefore c(ker( f )) = 0. This gives

f is an isomorphism. This shows M is a WH-module. �

Corollary 6.2 All finitely generated abelian groups are WH.

Proof

A = Zpn1 ⊕ Zpn2 ⊕ Zpn3 . . .Zpnn ⊕ ZI

For simplicity let A1 = Zpn1 ⊕ Zpn2 ⊕ Zpn3 . . .Zpnn and A2 = ZI . Then A1 is finite part and

Rad(A2) = 0 by Proposition 6.4 A is WH. �

Proposition 6.5 Every non-singular uniform right R-module is WH.

Proof Suppose M is non-singular uniform right R-module. Let f : M → M be an small

epimorphism. i.e. ker( f ) � M. Suppose ker( f ) , 0. Then ker( f ) E M because M is a

uniform module. So M
ker( f ) is singular by Proposition 2.14. Since f is an epimorphism, by

first isomorphism theorem M
ker( f ) � M. This is impossible because M

ker( f ) is singular and M

is non-singular. Therefore ker( f ) must be zero. So f is an isomorphism. Hence M is a

WH. �

Proposition 6.6 Every torsion free abelian group is WH.

Proof Let G be torsion free abelian group and f : G → G be a small epimorphism.

Firstly we will show that ker( f ) is closed in G.

Since f is an epimorphism, G � G
ker( f ) . Then G

ker( f ) is torsion free. Then ker( f ) is closed

submodule of G.

By Lemma 2.2, ker( f ) is a co-closed in G. Now we have ker( f ) � G and ker( f ) is co-

closed submodule of G. Therefore Rad(ker( f )) = ker( f ) by Proposition 2.19 (3). Then

ker( f ) is injective by Lemma 3.1. So ker( f ) is direct-summand of G. But ker( f ) � G.

Thus we must have ker( f ) = 0. This proves that G is a WH. �

Proposition 6.7 M is a Hopfian module if and only if M is both a generalized Hopfian

module and a WH-module.

Proof

⇒ Clear.
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⇐ Let f : M → M be an epimorphism. Since M is generalized Hopfian ker( f ) � M.

Then ker( f ) = 0 by the WH assumption. Hence f is an isomorphism. Therefore M

is Hopfian.

�
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CHAPTER 7

CONCLUSION

In these thesis the relation between the classes of generalized Hopfian, weak Hop-

fian and dual automorphism-invariant modules are given. Some new results about weak

Hopfian modules are proved.

For further studies we shall be interested in the following problems: (1) Characterize the

rings whose nonsingular right modules are weak Hopfian. Note that the ring of integers

is an example of such ring. (2) Characterize the rings whose right modules are weak

Hopfian. (3) Describe the weak Hopfian torsion abelian groups.
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