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Abstract. Although the kinematic synthesis of planar function, point-path and 

motion generators are vastly studied in the literature, surprisingly synthesis of 

line-path generators is not formulized in detail. This study presents the formuli-

zation of the planar 4-bar line-path generator synthesis problem for up to 5 ho-

mologous positions. Numerical examples for 3 and 4 line positions are present-

ed for the illustration of the formulations. 

Keywords: Kinematic Synthesis, 4-Bar Mechanism, Line-Path Generation. 

1 Introduction 

Kinematic synthesis of planar linkages are classically studied under three main cate-

gories: motion generation, function generation, and point-path generation and path 

generation with prescribed timing [1-2]. There are some studies on kinematic synthe-

sis of spatial line-path generator linkages [3-8]. Homologous lines passing through a 

point or tangent to a circle in plane are issued in [5]. However according to the au-

thors’ knowledge, there is no study on synthesis of planar line-path generator 4-bar 

linkages. 

In some applications such as grinding, filing and packaging it is necessary to de-

sign a linkage, end-effector of which needs to be enveloping a given planar curve or a 

surface with no torsion. In other words, a line is sought on the end-effector which 

remains tangent to a given planar curve. If the envelope of lines can be approximately 

represented by finitely many lines, the problem can be cast into the design of a planar 

linkage, end-effector of which passes through finitely many lines. That is, a line on 

the coupler link instantaneously coincides with some lines attached to the fixed link at 

different instants. This paper presents the derivations of the necessary formulation for 

the kinematic synthesis of planar 4-bar linkages for specified three and four line posi-

tions. It is shown that the line generation problem can be mathematically converted 

into a motion generation problem and solved similarly. Numerical examples are pre-

sented to illustrate the formulations. 
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2 Problem Definition and Formulation 

 

Fig. 1. Kinematic diagram for the synthesis 

 

The homologous positions #1, #2, …, #n of a line are represented by their distance to 

the origin r1, r2, …, rn and angles 1, 2, …, n with respect to a selected reference 

frame as shown in Fig. 1. When a 4-bar linkage A0ABB0 is used for the task, dyads 

A0AC and B0BC can be designed separately. ABC represents the coupler link of the 

linkage. Point C is chosen to be a coupler point which is instantaneously coincident 

with the foot of the perpendicular drawn from the origin to the line at position #1. For 

dyad A0AC at position #1 of the line: 
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For simplifying the solution, let the coordinate frame be set such that the first line is 

on the y-axis, i.e. r1 = 0 and 1 = 0. Let link A0A be rotated by an angle j from posi-

tion #1 to position #j. Then for j = 2, …, n 
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rj and j are given. If j values are assumed, W, Z and cj’s can be solved linearly. 

However, note that cj’s will appear in diad B0BC equations as well. Let rotations of 

link B0B be j fromposition #1 to position #j. Then 
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If j values are assumed, W*, Z* and cj’s can be solved linearly. Keeping all the un-

knowns, the number of scalar equations versus the number of unknowns for different 

number of finite positions are listed in Table 1. 

Table 1. Number of scalar equations v.s. the number of unknowns 

n 
Number of 

equations 
Unknowns 

Number of free 

parameters: 

2 4 Wx, Wy, Zx, Zy, c2, 2, W*
x, W*

y, Z*
x, Z*

y, 2 7 

3 8 Wx, Wy, Zx, Zy, c2, c3, 2, 3, W*
x, W*

y, Z*
x, Z*

y, 2, 3 6 

4 12 
Wx, Wy, Zx, Zy, c2, c3, c4, 2, 3, 4, 

W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4 
5 

5 16 
Wx, Wy, Zx, Zy, c2, c3, c4, c5, 2, 3, 4, 5, 

W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4, 5 
4 

6 20 
Wx, Wy, Zx, Zy, c2, c3, c4, c5, c6, 2, 3, 4, 5, 6, 

W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4, 5, 6 
3 

7 24 
Wx, Wy, Zx, Zy, c2, c3, c4, c5, c6, c7, 2, 3, 4, 5, 6, 7, 

W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4, 5, 6, 7 
2 

8 28 
Wx, Wy, Zx, Zy, c2, c3, c4, c5, c6, c7, c8, 2, 3, 4, 5, 6, 7, 

8, W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4, 5, 6, 7, 8 
1 

9 32 
Wx, Wy, Zx, Zy, c2, c3, c4, c5, c6, c7, c8, c9, 2, 3, 4, 5, 6, 

7, 8, 9, W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4, 5, 6, 7, 8, 9 
0 

If cj’s are freely selected, the problem becomes equivalent to motion generation prob-

lem. For 2 line positions, In addition to c2, 2, 2, any two of Wx, Wy, Zx, Zy for dyad 

A0AC and any two of W*
x, W*

y, Z*
x, Z*

y for dyad B0BC can be freely chosen. Ground 

pivot specification (specification of –W – Z and –W* – Z*) is also possible. For 3 line 

positions once c2, c3, 2, 3, 2, 3 are assumed, W, Z, W* and Z* can be solved linear-

ly. The 2- and 3-line position problems can also be solved graphically.  

For 4-line positions if c2, c3, c4, 2, and 2 are assumed, solution of W, Z, W*, Z*, 

3, 4, 3, 4 is the same as the 4-position motion generation problem. For dyad A0AC 
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These equations have a solution provided that the augmented matrix is singular:  
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where 
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The solution to this problem is well known. However, with a different set of freely 

chosen parameters, the problem is varied from the classical motion generation prob-

lem. Let 2, 3, 4, 2 and either one of c2, c3 and c4 be specified. Then, the remaining 

two can be linearly solved from Eq. (5). Then, W and Z are solved linearly from any 

of the three complex equations in Eq. (4). Once c2, c3 and c4 are either specified or 

solved from the first dyad, for the second dyad, the solution of W*, Z*, 3 and 4 for 

given 2 is the same as solving the 4-position motion generation problem. There will 

be two sets of solutions. 

For 5 line positions we can assume c2, c3, c4, c5 and solve for Wx, Wy, Zx, Zy, 2, 3, 

4, 5, W*
x, W*

y, Z*
x, Z*

y, 2, 3, 4 and 5 in the same way of solving the 5-position 

motion generation problem. An alternative solution is to assume 2, 3, 4, 5 in the 

first dyad and linearly solve for c2, c3, c4, c5 from the following complex singular 

determinant equations:  
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These singular determinants yield two complex equations which are linear in c2, c3, c4, 

c5. Once c2, c3, c4, c5 are solved, the second dyad can be determined as in the 5-

position motion generation problem. 

For n > 5 line positions, there are 9–n free parameters to choose, 2(n+1) unknowns 

for each dyad, where n–1 many cj’s are common for both dyads. Since there are    

2(n–1) equations for each dyad, once 9–n < 4 parameters are specified, the remaining 

parameters cannot be solved for a dyad without taking the other dyad into considera-

tions. That is, the dyad equations become coupled and are highly nonlinear. An ana-

lytical solution is unlikely.  

3 Examples 

As an example, three and four positions of a line enveloping a parabola is worked out. 

Consider the parabola y = x2 + x/2 and three tangent lines at points (0, 0), (1, 1.5) and 

(3, 10.5) (all units are mm). The corresponding distance rj and angle j values for        

j = 2, 3 are listed in Table 2. An Excel simulation environment is created. After sever-

al trials c2, c3, 2, 3, 2, 3 values are chosen as listed in Table 2. Using Eqs. (2) and 

(3), W, Z, W*, Z* vector coordinates and link lengths a1 = |W + Z – W* – Z*|,        
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a2 = |W|, a3 = |Z – Z*|, a4 = |W*|, b3 = |Z| and c3 = |Z*| are determined and listed in 

Table 2. The resulting 4- bar linkage and the family of coupler lines are depicted in 

Fig. 2.  

Table 2. Parameters for the 3-line positions example 

r2 r3 2 3 c2 c3 2 3 2 3 
0.371 1.369 41.64 54.69 0.6 1 70 140 30 60 

W Z W* Z* a1 a2 a3 a4 b3 c3 

–1.405 

–i1.969 

1.431 

+i0.367 

–0.878 

–i0.321 

1.768 

–i1.112 
1.186 0.935 1.516 2.419 2.088 1.477 

 

 

Fig. 2. The designed 4-bar linkage for 3-line positions and the family of coupler lines 

Next, let’s consider the same parabola and four tangent lines at points (0, 0), (1, 1.5), 

(3, 10.5) and (4, 18). In addition to the rj and j values in Table 2, r4 and 4 are given 

in Table 3. This time, a Mathcad simulation environment is created. After several 

trials c2, 2, 3, 4, 2 values are chosen as listed in Table 2. Using Eqs. (4) and (5), c3, 

c4, 3, 4, W, Z, W*, Z* vector coordinates and link lengths a1 = |W + Z – W* – Z*|, 

a2 = |W|, a3 = |Z – Z*|, a4 = |W*|, b3 = |Z|, c3 = |Z*| are determined and listed in Table 

3. The resulting 4-bar linkage is presented in Fig. 3.  

Table 3. Specif|ied, chosen and computed parameters for the 4-line positions example 

r4 4 2 3 4 c2 2 c3 c4 3 4

0.371 54.69 30 70 100 0.8 90 0.444 0.279 142.03 176.22 

W Z W* Z* a1 a2 a3 a4 b3 c3 

–0.910 

–i0.500 

1.096 

–i1.583 

0.331 

+i0.790 

0.518 

–i2.852 
1.190 1.043 1.394 0.858 1.926 2.899 
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

Fig. 3. The designed 4-bar linkage for 4-line positions 

4 Conclusions 

In this study the planar 4-bar line-path generator synthesis problem is formulized for 

up to 5 homologous positions. As in function and point-path generation problems, the 

line-path generation problem also can be mathematically cast into motion generation 

problem. Numerical examples for 3 and 4 line positions are provided. 
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