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Abstract. Assistive robots in surgical applications should be gravity balanced 

due to safety considerations. This study presents a gravity balancing solution 

for a 3-degree-of-freedom parallel manipulator to be used as an endoscope nav-

igation robot for transnasal minimal invasive surgery applications. The manipu-

lator has a rather simple structure that allows individual balancing of the three 

legs in their respective planes of motion. First, sole counter-mass balancing is 

investigated, but it is seen that the extra mass amount is too much. Sole spring 

balancing is not considered as an option due to constructional complexity. A 

hybrid solution as a combination of counter-mass and spring balancing is de-

vised. In the proposed solution, the masses on the distal links of a leg are bal-

anced with counter-masses so that all masses are lumped to the link connected 

to the base of the manipulator. Hence the problem is simplified into the balanc-

ing of a pendulum. The necessary formulations are derived and numerical cal-

culations demonstrate that the hybrid balancing yields a feasible solution. 
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1 Introduction 

In applications such as cutting or welding of circular objects, teleoperation, radiother-

apy, imaging, exoskeletons and minimal invasive surgery, manipulators with remote 

center of motion (RCM) are frequently utilized [Teichgräber, Müglitz, Berger, 2017; 

Schena, 2007]. RCM is a point where one or more rotational and translational move-

ments are pivoted outside the mechanism so that the mechanism needs no joint at that 

point. Geometrically, a motion with an RCM describes the motion of a line con-

strained to pass through a fixed point in space. For a manipulator with RCM, the end-

effector may have up to 4 degrees-of-freedom (dof) (3 rotational + 1 translational dof) 

through the RCM point: pitch, yaw, roll and heave motions (Fig. 1). If the end-

effector pivotted on the RCM is a cylindrical tool such as welding torch or endoscope, 

the roll motion may not be required. This study deals with a parallel manipulator with 

pitch, yaw and heave movements which define a 2R1T (R: rotation; T: translation) 

motion pattern where the translation direction is perpendicular to the plane defined by 

two orthogonally intersecting rotation axes. The intersection point of the rotation axes 
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is the RCM. In such an application the end-effector should purely have the 2R1T 

motion and parasitic motions are not allowed. 

The structural synthesis of 3-dof parallel manipulators with 2R1T motion pattern 

and RCM is recently presented by Yaşır and Kiper (2017). Among several manipula-

tor architecture alternatives, the 2URRR-URR parallel manipulator is selected as an 

endoscope holder for a minimally invasive transnasal pituitary gland surgery applica-

tion. The kinematic diagram of the mechanism is given in Fig. 1, where pitch, yaw 

and heave motions constituting a 2R1T motion pattern are indicated by red color. 

These three motions are sufficient for endoscope movements (Tanigucci et al., 2010). 

The kinematic and constructional design of the manipulator is described in (Yaşır, 

2018). The URR leg is the middle leg while the two URRR legs are the side legs. 

Except the R joints along endoscope axis along DE, all legs have the same kinematic 

structure as the URR structure, which contain 3 revolute joints with parallel axes. All 

legs move on a respective plane and the angle of each leg plane can be changed by a 

revolute joint whose axis is within that plane (axes along A0D, B0d and C0D). 

 

 
 

Fig. 1. Kinematic diagram of the 2URRR-URR parallel manipulator with remote center of 

motion D about which the platform has 2 rotations and 1 translation (Yaşır, 2018). 
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In applications where actuation due to gravitational forces is undesired, static balance 

techniques are applied.  This means that no actuation is needed to keep the manipula-

tor steady at any pose. Static balance can be achieved by applying counter-masses and 

springs (Wang, Gosselin, 1999-2000; Baradat et al., 2008; Van der Wijk, 2014; 

Herder, 2001). A common method for balancing a parallel manipulator is leg-by-leg 

balancing where each leg is considered individually as a serial chain and the mass of 

the platform is distributed mass equivalently among the legs [Wang, Gosselin, 1999-

2000; Van der Wijk, 2014]. One major problem with balancing serial chains is that 

the counter-masses generally become extremely heavy, especially the last one at the 

link with the base (Van der Wijk, 2009). Balancing with springs is a lightweight solu-

tion however implementing springs in serial chains results into complex constructions 

(Herder, 2001). Since for each spring a vertical reference link is needed, in a serial 

chain this leads to at least one parallelogram linkage per dof.      

The goal of this paper is to show a practical static balance solution for the 2URRR-

URR manipulator comprising a specific combination of counter-masses and springs. 

This results in a relatively low mass and low complex solution. First the common way 

of balancing a leg with solely counter-masses is shown. Subsequently the function of 

one of the counter-masses is taken over by a spring for which the balance conditions 

are derived. Finally a numerical study is presented as an example.  

2  Common method to balance a leg with counter-masses 

First, the case in which only counter-masses are used for static balancing is investi-

gated in order to see whether it is feasible or not. The masses of the links are neglect-

ed and the end-effector payload is equally distributed to the three legs and the distrib-

uted masses are lumped at the end of the distal link in each leg.  

In Fig. 2, a diagram for counter-mass balancing of one of the legs in the mecha-

nism is given. All three legs have the same structure. The payload for the leg is mc, 

which is one-third of the mass of the end effector. Ma, Mb and Mc are the counter-

masses and ba, bb and bc are their extension lengths from the joints A0, A and C, re-

spectively. Parameters ra, rb and rc are the link lengths. is the angle of the base of the 

mechanism with respect to the ground horizontal level. 1 and 2 are the angle limits 

for the proximal link of the leg. For the specific problem at hand, the payload of the 

mechanism is 1,2 kg in total. The payload consists of a platform and an endoscope 

attached to the platform. So, for a leg, mc = 400 gr. Also, 1 = 57,2 and 2 = 209,7 

are taken from the kinematic design study according to the desired workspace specifi-

cations. The counter-masses can be found using the following equations: 

 𝑀𝑐𝑏𝑐 = 𝑚𝑐𝑟𝑐   ⇒ 𝑀𝑐 =
𝑚𝑐𝑟𝑐

𝑏𝑐
 (1) 

 𝑀𝑏𝑏𝑏 = (𝑚𝑐 + 𝑀𝑐)𝑟𝑏   ⇒ 𝑀𝑏 =
(𝑚𝑐+𝑀𝑐)𝑟𝑏

𝑏𝑏
 (2) 

 𝑀𝑎𝑏𝑎 = (𝑚𝑐 + 𝑀𝑐 + 𝑀𝑏)𝑟𝑎   ⇒ 𝑀𝑎 =
(𝑚𝑐+𝑀𝑐+𝑀𝑏)𝑟𝑎

𝑏𝑎
 (3) 
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Fig. 2. Common static force balance solution of a leg of three links in series with counter-

masses. The center of mass of the leg is stationary in base pivot A0 

Counter-mass distances ba, bb, bc are selected considering link collisions and the foot-

print of the mechanism. The link parameters are set according to the kinematic design 

and the counter-masses are calculated (see Table 1). 

Table 1. Mass balancing parameters for one leg (mc = 400gr) 

Link Length (mm) Extension Length (mm) Mass (gr) 

ra 135 ba 100 Ma 3712,5 

rb 195 bb 80 Mb 1950 

rc 200 bc 200 Mc 400 

Mtotal 6062,5 

 

As a result of this study, approximately 6 kg additional mass for one leg and totally 18 

kg additional mass is needed to balance 1,2 kg payload even though the masses of the 

links are neglected. A balancing with that amount of mass is not practical since the 

mechanism needs to be compact and lightweight. Also, due to the motion range of the 

proximal link, there may be some collisions with the manipulator’s base.  

3 Low mass and low complex solution by introducing a spring 

A hybrid static force balance solution is proposed by which function of the largest 

counter-mass (Ma) in Fig. 2 is taken over by a spring. This solution is illustrated in 

Fig.3, where this time, the link masses ma, mb and mc are also taken into account. The 

counter-mass Mc balances masses mpay and mc, whereas counter-mass Mb balances 
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masses mpay and the total mass Mc + mpay + mc. The equivalent mass Ma = ma + mb + 

mc + mpay + Mb + Mc is balanced by a linear spring. 

 

 
Fig. 3. Diagram for the hybrid static force balancing of a leg with three links in series and with 

two counter-masses and a spring 

The counter-masses Mc and Mb in Fig. 3 are computed by formulations similar to (1) 

and (2), but also considering the link masses and locations. However the counter-mass 

Ma is not the same mass as Ma in Fig. 2. It is the total leg mass and ga,t = |A0Ba| is the 

total CoM location of the whole leg. Also, mpay is the payload for a leg. Let |A0Ga| = 

ga, |AGb| = gb, |CGc| = gc and |CGp| = gpay denote the locations of the masses of links a, 

b, c and payload. So, 

 𝑀𝑎 = 𝑚𝑎 + 𝑚𝑏 + 𝑚𝑐 + 𝑚𝑝𝑎𝑦 + 𝑀𝑏 + 𝑀𝑐 (4) 

 𝑔𝑎,𝑡 =
(𝑚𝑏+ 𝑚𝑐+𝑚𝑝𝑎𝑦+𝑀𝑐+𝑀𝑏)𝑟𝑎+𝑚𝑎+𝑔𝑎

𝑏𝑎
 (5) 
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Fig. 4. Diagram for a basic gravity equilibrator using a zero-free length spring and a pulley 

(Herder, 2001) 

When all masses in Fig. 3 are reduced to the A0A link, the problem simplifies to bal-

ancing of a pendulum also known as a basic gravity equilibrator as in Fig. 4. In Fig. 4, 

also an angle  is introduced, which enables constructional simplicity. This angle has 

no effect in the calculations and without loss of generality it can be assumed  = 0 

(Herder, 2001). Let |A0D0| = |A0C| = f, where D0 is a fixed point for the string attached 

to the spring. Using sine theorem in triangle A0CD0:  

 
𝑓

sin 𝛼
=

|CD0|

sin 𝜃
  ⇒ |CD0| =

𝑓sin 𝜃

sin 𝑎
 (6) 

|D0E0| length and length of the string attached to the spring depend on the free length 

l0 of the spring and should be evaluated such that the spring is load-free when Ba is on 

the y-axis, i.e. when the pendulum is in vertical position. Also, balancing error due to 

the wire wrapped around pulley is neglected since the size of the pulley is relatively 

small. Examples for reducing this error is given by Barents et al. (2009). Let k be the 

spring constant, and s = |CD0| is the effective spring displacement. Then,  

 𝐹𝑠 = 𝑘𝑠 (7) 

Using Eqs. (6), (7) and moment equilibrium for Ma about A0: 

 𝑔𝑎,𝑡𝑀𝑎𝑔 sin 𝜃 = 𝑓𝐹𝑠 sin 𝛼 = 𝑓𝑘𝑠 sin 𝛼 = 𝑓2𝑘 sin 𝜃 (8) 

 ⇒ 𝑘 =
𝑔𝑎,𝑡𝑀𝑎𝑔

𝑓2   (9) 
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After these formulations, a numerical study is carried out and results are tabulated in 

Table. 2. In this study, the values of the link masses and their distances to the proxi-

mal links are taken from a CAD model. Most of the mass of the platform is carried by 

the distal link of the link 3. The remaining payload (i.e. endoscope group), mpay
tot is 

distributed to legs in various ratios such that the same spring can be used for the 

whole legs. Therefore, for the distribution ratios of 0,4206 and 0,1588 for the side 

legs and the middle leg, respectively, and f = 78 mm, a spring with k = 0,5161 N/mm 

is determined to be used for each leg. As a result, hybrid balancing method reduced 

the total mass approximately from 18 kg to 7 kg. When compared to complete mass 

balancing case, the hybrid balancing solution is more practical to implement. 

Table 2. Hybrid balancing parameters 

 

  
gr 

 
mm 

 
mm 

 
gr 

S
id

e 
L

eg
s 

ma 43,5 ga 79,5 ga, t 134 Ma 2388,9 

mb 47,4 gb 117,8 bb 80 Mb 1649,8 

mc 63,2 gc 90,7 bc 200 Mc 293,8 

mpay 291,2  gpay 182,1     
mc,t 354,4 gc,t 165,8     

M
id

d
le

 L
eg

 ma 53 ga 69,1 ga,t 133,5 Ma 2397,0 

mb 54,1 gb 112,7 bb 80 Mb 1568,0 

mc 314 gc 126,0 bc 200 Mc 298,0 

mpay 109,9  gpay 182,1 
    

mc,t 423,9 gc,t 140,6 
    

 
Ma

tot 7174,8 

 

 

4 Conclusions 

A gravity balancing solution for a 3-dof parallel manipulator is presented. Due to high 

additional amount of masses, solely counter-mass balancing is not feasible, whereas 

solely spring balancing is not feasible due to constructional complexity. Instead, a 

hybrid solution is devised as a combination of counter-mass and spring balancing. 

Calculations demonstrate that the hybrid solution yields much less extra mass, where-

as construction seems feasible. The solution devised in this paper will be applied first 

in constructional design level and then via a prototype as soon as several other design 

issues about the related application are addressed. 
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