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Department of Mathematics, İzmir Institute of Technology
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Department of Mathematics, İzmir Institute of Technology

Prof. Dr. Emine MISIRLI
Department of Mathematics, Ege University

Asst. Prof. Dr. Olha Ivanyshyn YAMAN
Department of Mathematics, İzmir Institute of Technology
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ABSTRACT

NUMERICAL METHODS FOR NONLOCAL PROBLEMS

In this thesis, numerical methods for nonlocal problems with local boundary con-

ditions from the area of peridynamics are studied. The novel operators that satisfy local

boundary conditions were proposed as an alternative to the original nonlocal problems

which uses nonlocal boundaries. Peridynamic theory is reformulation of continuum me-

chanics by integral equations for which it has some advantages over traditional partial

differential equations. In peridynamic theory, a point can interact with other points within

a certain distance which is called horizon and indicated by the parameter δ. In this thesis,

we are particularly interested in role of the parameter δ in numerical methods for the novel

problems. More precisely, we aim to show its role in condition number, discretization er-

ror and convergence factor of multigrid method.
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ÖZET

YEREL OLMAYAN PROBLEMLER İÇİN SAYISAL YÖNTEMLER

Bu tezde, peridinamik alanında geçen yerel sınır şartlarını sağlayan yerel olmayan

problemler için sayısal yöntemler çalışılmıştır. Yerel sınır şartlarını sağlayan bu yeni o-

peratörler, yerel olmayan sınır şartlarını kullanan orjinal yerel olmayan operatörlere bir

alternatif olarak tasarlanmıştır. Peridinamik teori sürekli ortamlar mekaniğinin integral

denklemleri ile yeniden formülüze edilmesidir ve bu sayede kısmi diferansiyel denklem-

lere göre bazı avantajları vardır. Peridinamik teoride, bir nokta belirli bir uzaklık içindeki

noktalar ile etkileşim içerisindedir. Bu uzaklığa horizon (ufuk) denir ve δ ile gösterilir.

Bu tezde, özellikle δ parametresinin yerel olmayan problemler için sayısal yöntemlerdeki

rolleriyle ilgileneceğiz. Daha kesin bir ifadeyle, δ parametresinin kondisyon sayısındaki,

ayrıklaştırma hatasındaki ve multigrid metodunun yakınsaklık faktöründeki rollerini göste-

receğiz.
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CHAPTER 1

INTRODUCTION

Traditional partial differential equations (PDEs) consist of combinations of the

unknown function and different orders of its derivatives. It is sufficient to know only

values of the function in an arbitrarily small neighborhood of a point to check whether

a PDE holds at that point. This information is not sufficient for a nonlocal equation

to check whether it satisfies at that point because information about the values of the

function far from that point is needed. Most of the time, this is because the equation

involves integral operators Web (2014). Nonlocal equations are used, for instance, in

peridynamics (PD) Silling (2000), nonlocal diffusion Andreu-Vaillo et al. (2010); Du

et al. (2012), image processing Gilboa and Osher (2009), population models, particle

systems, phase transition, and coagulation Du et al. (2012); Du and Lipton (2014); Silling

and Lehoucq (2010); Madenci and Oterkus (2014).

PD theory aims to remodel the equations of continuum mechanics by replacing

the PDEs of the classical theory with integral or integro-differential equations. The clas-

sical theory of solid mechanics assumes continuous distribution of mass within a body.

It relies on PDEs and assumes sufficient smoothness of the deformation for the PDEs.

The PDEs of the classical theory do not apply directly on a crack or dislocation because

the deformation is discontinuous on these features. These considerations motivated the

development of the PD theory which attempts to treat the evolution of discontinuities to

the same field of equations as for continuous deformation. PD theory aims to relax the

assumptions of classical theory of solid mechanics such as continuity, modeling of dis-

crete particles and allowing the explicit modeling of nonlocal forces Silling and Lehoucq

(2010). In literature, PD has been studied from different perspectives. The works Aksoylu

and Mengesha (2010); Aksoylu and Parks (2011); Alali and Lipton (2012); Emmrich

and Weckner (2007a,b); Mengesha and Du (2014b,a); Zhou and Du (2010) address the

well-posedness for various forms, the works Aksoylu and Mengesha (2010); Aksoylu and

Parks (2011); Aksoylu and Unlu (2014) address conditioning and variational theory and

Aksoy and Senocak (2011); Aksoylu and Unlu (2014); Emmrich and Weckner (2007c);

Tian and Du (2013); Seleson et al. (2013); Du et al. (2013) address the discretization and

1



numerical methods.

In nonlocal equations, a point can interact with other points within a certain dis-

tance which is called horizon and indicated by δ (see Figure 1.1). It is embedded in the

support of the micromodulus function. The works by Aksoylu and Parks (2011); Aksoylu

and Unlu (2014); Alali and Lipton (2012); Du and Zhou (2011); Emmrich and Weckner

(2007b); Mengesha and Du (2014b,a); Silling and Lehoucq (2008); Zhou and Du (2010)

aim to show connections between the nonlocal operator and the classical differential op-

erator in the limit case δ → 0. Due to this interaction, nonlocal boundaries are used in

nonlocal equations. We show the nonlocal boundaries BΩ and bulk of the domain in 1D

for Ω = [−1, 1] in Figure 1.2. Nonlocal boundary conditions cause problems in the

Figure 1.1. Horizon of the point x in 2D.

Figure 1.2. Nonlocal boundaries BΩ and bulk of the domain in 1D for Ω = [−1, 1].

numerical solution of the nonlocal equations, which is called boundary effects. In order

to mitigate boundary effects a lot of efforts are needed. For more informations related

boundary effects, please refer to Madenci and Oterkus (2014); Kilic (2008). In order to
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avoid nonlocal interactions at the boundaries and to handle problems that require local

boundary conditions, authors in Beyer et al. (2016); Aksoylu et al. (2017a,b); Aksoylu

and Celiker (2016, 2017); Aksoylu et al. (2018) recently discovered a way to incorporate

local BC into nonlocal theories, in particular, into PD. In the unbounded domain case,

authors discovered that the governing nonlocal operator is a function of a multiple of the

classical governing operator Beyer et al. (2016). This opened a gateway to incorporate

local boundary conditions into nonlocal theories Aksoylu et al. (2017b). These novel

operators agree with the original PD operators proposed by Silling (2000) in the bulk

of the domain in 1D. In other words, local boundary conditions are enforced by doing

modifications to the original PD operator outside of the bulk of the domain.

In this thesis, numerical methods for nonlocal problems that satisfy local bound-

ary conditions; periodic, antiperiodic, Dirichlet and Neumann, proposed in Aksoylu et al.

(2017a); Aksoylu and Celiker (2017) are studied. We are particularly interested in the role

of nonlocal parameter δ in numerical methods, such as condition number, discretization

error and convergence rates of multigrid method. The rest of this thesis is structured as

follows. In Chapter 2, we introduce novel nonlocal operators that satisfy local boundary

conditions; periodic, antiperiodic, Dirichlet and Neumann, respectively and show how

they satisfy these boundary conditions. In Chapter 3, we perform conditioning analysis.

To accomplish this, we resort to the original continuous operators and present explicit ex-

pression of their eigenvalues in terms of δ. With the aid of some techniques from calculus,

we find sharp bounds for the condition numbers for each problem and compare them with

condition number of the corresponding system matrices. Corresponding system matrices

are obtained by Nyström method with trapezoidal rule. We compare our results with the

results in literature obtained for original PD operator. We also carry out error analysis

under regularity assumptions and justify our result with numerical tests. Chapter 4 is

devoted to convergence analysis of a multigrid method. To do this, we find eigenvalues

of the resulting system matrices in terms of mesh size h and δ. We carry out a detailed

smoother analysis. By finding the eigenvalues of the iteration matrix of the two-grid ex-

plicitly, we obtain a strict upper bound for the convergence factor. We numerically verify

the upper bound. In Chapter 5, we summarize our results.

3



CHAPTER 2

NONLOCAL PROBLEMS WITH LOCAL BOUNDARIES

The original operator used in PD theory is given by

cu(x)−
∫
Ω

C(x− x′)u(x′)dx′ = f(x), x ∈ Ω (2.1)

where C, u ∈ L2(Ω), c =
∫
Ω
C(x′)dx′. In this formulation, nonlocal boundaries are used.

Nonlocal boundaries cause surface effects in numerical solutions and some problems in

nature require local boundary conditions. So, it is important to develop nonlocal operators

that use local boundary conditions that share almost the same characteristics with the

original PD operator in (2.1). For this purpose, a series of papers Beyer et al. (2016);

Aksoylu et al. (2017a,b); Aksoylu and Celiker (2016, 2017); Aksoylu et al. (2018) was

published. In the unbounded domain case, authors discovered that the governing nonlocal

operator is a function of multiple of the classical governing operator Beyer et al. (2016).

This opened a gateway to incorporate local boundary conditions into nonlocal theories

Aksoylu et al. (2017b). These novel operators agree with the original PD operator in the

bulk of the domain in 1D. Furthermore, in the following chapter, we will show that their

condition numbers have the same characteristic. Now, we introduce these novel operators

in 1D, respectively. We choose Ω = [−1, 1] throughout the thesis just for simplicity. We

show its extension to [−2, 2] by Ω̂.

2.1. Periodic Problem

We consider the following nonlocal equation

Mpu(x) = cu(x)− Cpu(x) = f(x) (2.2)

4



which is convolution Fredholm second kind, where

Cpu(x) =
∫
Ω

Ĉp(x− x′)u(x′)dx′

and

c =

∫
Ω

C(x′)dx′.

In above equation, Ĉp is the periodic extension of the function C(x). The function C(x)

we will consider throughout the thesis for all kinds of boundary conditions is in the fol-

lowing form

C(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if − δ < x < δ,

0, otherwise

(2.3)

on [−1, 1], where 0 < δ < 1. δ is the horizon of the problem. It is specific to the problem.

Ĉp is represented in Figure 2.1. This choice of C(x) aligns with the construction given in

Aksoylu et al. (2017a), that is, C(x) ∈ L2(Ω), and hence,

Ĉp(x) ∈ L2(Ω̂).

Furthermore, we assume that

u(x), f(x) ∈ L2(Ω) ∩ C1(∂Ω).

Equation (2.2) is obtained from the following equation

cu(x)− C ∗p u(x) = f(x),

5



Figure 2.1. Periodic extension of C(x) on [−2, 2].

where

C ∗p u :=
∑
k

〈epk|C〉 〈epk|u〉 epk.

Here, 〈·|·〉 denotes the inner product in L2(Ω) and is defined by

〈epk|u〉 :=
∫
Ω

epk(x
′)u(x′)dx′.

The functions epk are eigenfunctions of Cp and defined as epk = eikπx, k ∈ N. We call C∗p
as abstract convolution. For more details, we refer to Aksoylu et al. (2017a).

We know from Aksoylu et al. (2017a) that the operator Cp is Hilbert-Schmidt

and hence it is self-adjoint and compact. f(x) is a specified function satisfying periodic

boundary conditions (compatibility condition) and
∫
Ω
f(x)dx = 0 (Fredholm condition).

With the above conditions on f(x), Equation (2.2) satisfies Fredholm alternative that is

it is solvable. However, since spectrum of Mp has 0 eigenvalue, it has infinitely many

solutions. To get a unique solution, one has to put a restriction on the solution u.

With simple algebraic manipulations, it is possible to write Cpu(x) as follows:

6



Cpu(x) := −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x+δ

−1
u(x′)dx′ +

∫ 1

2+x−δ
u(x′)dx′, x ∈ [−1,−1 + δ),

∫ x+δ

x−δ
u(x′)dx′, x ∈ [−1 + δ, 1− δ],

∫ x−2+δ

−1
u(x′)dx′ +

∫ 1

x−δ
u(x′)dx′, x ∈ (1− δ, 1].

(2.4)

Solution of Equation (2.2) satisfies periodic boundary conditions. In order to verify this,

we substitute the boundary points into Equation (2.2) and get

cu(−1)−
∫ −1+δ

−1

u(x′)dx′ −
∫ 1

1−δ

u(x′)dx′ = f(−1) (2.5)

and

cu(1)−
∫ −1+δ

−1

u(x′)dx′ −
∫ 1

1−δ

u(x′)dx′ = f(1). (2.6)

Subtracting Equation (2.6) from Equation (2.5), we get

c (u(−1)− u(1)) = f(−1)− f(1).

From the assumption on f(x), f(−1) = f(1). So, we arrive at u(−1) = u(1). Tak-

ing the derivative of Equation (2.2), using the definition of Cp in (2.4) and employing

Fundamental Theorem of Calculus, we can show that u′(−1) = u′(1).

2.2. Antiperiodic Problem

The antiperiodic problem we consider is the following convolution Fredholm sec-

ond kind

Mau(x) = cu(x)− Cau(x) = f(x), (2.7)
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where

Cau(x) =
∫
Ω

Ĉa(x− x′)u(x′)dx′ = f(x) (2.8)

and

c =

∫
Ω

C(x′)dx′.

Here, Ĉa is the antiperiodic extension of the function C(x) in (2.3) (see Figure 2.2). As

in the case of the periodic problem,

Ĉa(x) ∈ L2(Ω̂)

and we assume that

u(x), f(x) ∈ L2(Ω) ∩ C1(∂Ω).

Equation (2.7) is obtained from the following abstract convolution

cu(x)− C ∗a u(x) = f(x),

where

C ∗a u :=
∑
k

〈eak|C〉 〈eak|u〉 eak.

The eigenfunctions of Ca are defined by eak = ei(k+
1
2
)πx, k ∈ N. Please, see Aksoylu et al.

(2017a) for the details.

We know from Aksoylu et al. (2017a) that operator Ca is Hilbrt-Schmidt and hence
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it is self-adjoint and compact. f(x) is a specified function satisfying antiperiodic bound-

ary conditions (compatibility condition). We will show in Chapter 3 that the antiperiodic

operator Ma is positive definite. It satisfies Fredholm alternative that is, it has unique

solution. It is same with the original PD operator in (2.1) in the bulk of the domain.

Figure 2.2. Antiperiodic extension of C(x) on [−2, 2].

One can write Cau(x) as follows:

Cau(x) := −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x+δ

−1
u(x′)dx′ − ∫ 1

2+x−δ
u(x′)dx′, x ∈ [−1,−1 + δ),

∫ x+δ

x−δ
u(x′)dx′, x ∈ [−1 + δ, 1− δ],

− ∫ x−2+δ

−1
u(x′)dx′ +

∫ 1

x−δ
u(x′)dx′, x ∈ (1− δ, 1].

(2.9)

Solution of Equation (2.7) satisfies antiperiodic boundary conditions. To see this, we

substitute the boundary points into Equation (2.7) and get

cu(−1)−
∫ −1+δ

−1

u(x′)dx′ +
∫ 1−δ

1

u(x′)dx′ = f(−1) (2.10)

9



and

cu(1) +

∫ −1+δ

−1

u(x′)dx′ −
∫ 1−δ

1

u(x′)dx′ = f(1). (2.11)

Adding equations in (2.10) and (2.11), we get

c (u(−1) + u(1)) = f(−1) + f(1).

From the compatibility condition, f(−1) = −f(1). Hence, we end up with u(−1) =

−u(1). Taking the derivative of Equation (2.7) and using the Fundamental Theorem of

Calculus, we can show that u′(−1) = −u′(1).

2.3. Neumann Problem

The Neumann problem we consider was proposed in Aksoylu and Celiker (2017)

and is of the form

MNu(x) = cu(x)− CNu(x) = f(x), (2.12)

where

CNu(x) =
∫
Ω

(
Ĉp(x− x′)Pe + Ĉa(x− x′)Po

)
u(x′)dx′.

Here, c, Ĉp, Ĉa are defined as before. Pe and Po are the even and odd projections, respec-

tively and they are defined by

Peu(x
′) =

u(x′) + u(−x′)
2

, Pou(x
′) =

u(x′)− u(−x′)
2

.

Equation (2.12) is equivalent to
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cu(x)− (C ∗p Pe + C ∗a Po) u(x) = f(x).

Since the operator CN is a linear combination of Cp and Ca, it is also self-adjoint and

compact. From Chapter 3, MN has zero eigenvalue with the corresponding eigenfunc-

tion 1. From the Fredholm alternative, Equation (2.12) is solvable on condition that∫
Ω
f(x)dx = 0 (Fredholm condition). Under this condition it has infinitely many so-

lutions. To get a unique solution one has to put a restriction on the solution u. The

Neumann operator MN is same with the original PD operator in (2.1) in the bulk of the

domain. We will show in Chapter 3 that it is positive semidefinite. Again, we assume that

u(x), f(x) ∈ L2(Ω) ∩ C1(∂Ω).

CNu(x) can be written as

CNu(x) := −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x+δ

−1
u(x′)dx′ +

∫ −2−x+δ

−1
u(x′)dx′, x ∈ [−1,−1 + δ),

∫ x+δ

x−δ
u(x′)dx′, x ∈ [−1 + δ, 1− δ],

∫ 1

x−δ
u(x′)dx′ +

∫ 1

−x+2−δ
u(x′)dx′, x ∈ (1− δ, 1].

(2.13)

At the boundaries, solution of Equation (2.12) satisfies u′(−1) = f ′(−1)/c and u′(1) =

f ′(1)/c. To verify these, first, we differentiate both sides of Equation (2.12) at x = −1.

Using the definition of CN in (2.13) and Fundamental Theorem of Calculus, we obtain

cu′(x)− u(x+ δ) + u(−2− x+ δ) = f ′(x).

Substituting −1 into the above equation we get

cu′(−1) = f ′(−1).
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Now, differentiating both sides of Equation (2.12) at x = 1 and using Fundamental The-

orem of Calculus, we get

cu′(x)− u(x− δ) + u(−x+ 2− δ) = f ′(x).

Substituting 1 into the above equation, we arrive at

cu′(1) = f ′(1).

2.4. Dirichlet Problem

For Dirichlet problem, we consider

MDu(x) = cu(x)− CDu(x) = f(x), (2.14)

where

CDu(x) :=
∫
Ω

(
Ĉp(x− x′)Po + Ĉa(x− x′)Pe

)
u(x′)dx′. (2.15)

It was proposed in Aksoylu and Celiker (2017). In the above equation, c, Ĉp, Ĉa, Pe and

Po are defined as before. Equation (2.14) is equivalent to the following equation

cu(x)− C ∗a Peu(x)− C ∗p Pou(x) = f(x).

Since the operator CD is a linear combination of Cp and Ca, it is also self-adjoint and

compact. By the Fredholm alternative, Equation (2.14) has unique solution. The Dirichlet

operator MD is same with the original PD operator in (2.1) in the bulk of the domain. We
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will show in Chapter 3 that it is positive definite. In this case, we assume that

u(x), f(x) ∈ L2(Ω).

It is possible to write CDu(x) as

CDu(x) := −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x+δ

−1
u(x′)dx′ − ∫ −2−x+δ

−1
u(x′)dx′, x ∈ [−1,−1 + δ),

∫ x+δ

x−δ
u(x′)dx′, x ∈ [−1 + δ, 1− δ],

∫ 1

x−δ
u(x′)dx′ − ∫ 1

−x+2−δ
u(x′)dx′, x ∈ (1− δ, 1].

(2.16)

Substituting boundary nodes into Equation (2.14) and using the definition of CD in (2.16),

one can easily verify that Equation (2.14) satisfies u(−1) = f(−1)/c and u(1) = f(1)/c

at x = −1 and x = 1, respectively.
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CHAPTER 3

CONDITIONING AND ERROR ANALYSES

In this chapter, we carry out conditioning and error analyses for the novel opera-

tors. We find sharp bounds for the condition numbers of the original continuous operators

in terms of δ and numerically compare them with the condition numbers of the corre-

sponding discrete problems. Under regularity assumption, we carry out error analysis for

Nyström method with trapezoidal rule. Results of Chapter 3 has already been published

in Aksoylu and Kaya (2018a).

3.1. The Periodic and Antiperiodic Operators and Their Eigenvalues

In Aksoylu and Celiker (2017), for u, C ∈ L2(Ω), it is proved that the operators

CBC, BC = {p, a} has the following integral representations

Cpu(x) =
∫
Ω

Ĉp(x
′ − x)u(x′)dx′, Cau(x) =

∫
Ω

Ĉa(x
′ − x)u(x′)dx′. (3.1)

However, for our purposes, we turn to the series representation to obtain the eigenvalues

of the operators Mp and Ma. First, note that both operators Δp and Δa have a purely

discrete spectrum consisting of the following eigenvalues

σ(Δp) =
{
k2 : k ∈ N

}
, σ(Δa) =

{
(k +

1

2
) 2 : k ∈ N

}

with the corresponding eigenfunctions

epk(x) := eiπkx, eak(x) := eiπ(k+
1
2
)x, k ∈ N.

Furthermore, the operators Mp and Ma are self-adjoint. Hence, the condition number

calculation reduces to finding
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κe(Mp) =
λp
max

λp
min,2

and κ(Ma) =
λa
max

λa
min

. (3.2)

Throughout the paper, we use the canonical kernel in (2.3), i.e., C(x) = χδ(x). One can

easily find the eigenvalues of the operators Mp and Ma, given, respectively, as follows:

λp
k =2δ − 〈epk|C〉 =

⎧⎨⎩ 2δ − 2 sin(kπδ)

kπ
, k ∈ N

∗

0, k = 0,
(3.3)

λa
k =2δ − 〈eak|C〉 = 2δ − 2 sin((k + 1

2
)πδ)

(k + 1
2
)π

, k ∈ N. (3.4)

Using continuous extension, we utilize the well-known cardinal sine function defined by

sinc(θ) :=
sin(θ)

θ
, θ ≥ 0.

See Figure 3.1. The following function is utilized in the expression of eigenvalues of the

operators Mp and Ma.

λ(θ) = 2δ
(
1− sinc(θ)

)
(3.5)

Notice that the expressions of λp
k and λa

k both contain the same function in (3.5), but

evaluated at different points:

λp
k = λ(θpk), λa

k = λ(θak),

where θpk = kπδ, k ∈ N and θak =
1
2
(πδ + 2kπδ), k ∈ N. We immediately see that

0 ≤ λp
k, 0 < λa

k.

15



Figure 3.1. Graph of sinc(θ) =
sin(θ)

θ
(solid line) and

±1

θ
(dashed lines).

Furthermore, using basic calculus, for θ > 0 , it is easy to prove that

0 < 1− sinc(θ) <
3

2
. (3.6)

Hence, it is more suitable to work with the expression in (3.5).

3.2. Sharp Bounds for the Condition Number

3.2.1. The Periodic Operator

It is easy to see that λp
min occurs when sinc(θ) is at its maximum, which occurs

when k = 0. This leads to λp
min = 0. It means that for the condition number estimate, we

have to utilize the effective condition number, which requires the next positive minimum

eigenvalue λmin,2. We prepare for finding the exact expression of λmin,2.

Lemma 3.2.1 For δ ∈ (0, 1), the following inequality holds.

sin(kπδ)

kπ
<

sin(πδ)

π
, k = 2, 3, . . . . (3.7)
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Proof The inequality (3.7) is equivalent to

sin(kδπ) < k sin(πδ), k = 2, 3, . . . .

We have two cases: If sin(kπδ) ≤ sin(πδ), then the proof is straightforward. Now, we

consider the case

sin(πδ) < sin(kπδ). (3.8)

We proceed by induction.

• Induction step 1: For k = 2, we want to prove that

sin(2πδ) < 2 sin(πδ).

To do so, we define the function

f(δ) := 2 sin(πδ)− sin(2πδ),

and aim to show that f(δ) > 0. We start by finding the extremal values of f . Note

that f(δ) has only one critical point in the interval (0, 1), i.e., δ = 2
3
, for which we have

f(2
3
) = 3

√
3

2
. After some simple calculation, we obtain that f is monotone increasing

and decreasing on (0, 2
3
) and (2

3
, 1), respectively. Using the fact f(0) = f(1) = 0 and

combining the monotonicity information, we obtain 0 < f(δ) ≤ 3
√
3

2
, δ ∈ (0, 1), which

leads to the desired result.

• Induction step 2: We start with the following induction assumption for arbitrary k > 2.

sin(kπδ) < k sin(πδ). (3.9)
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We aim to show that (3.9) holds for k + 1. Using 0 < sin(πδ) and (3.8), we obtain

0 < sin(kπδ). (3.10)

Using cos(πδ) < 1 and (3.10), we obtain

cos(πδ) sin(kπδ) < sin(kπδ). (3.11)

Using (3.11) and the induction assumption (3.9), we arrive at

cos(πδ) sin(kπδ) < k sin(πδ). (3.12)

Using cos(kπδ) ≤ 1, we have

sin(πδ) cos(kπδ) ≤ sin(πδ). (3.13)

Combining (3.12) and (3.13), we arrive at

sin((k + 1)πδ) < (k + 1) sin(πδ).

�

From (3.3), the positive minimum eigenvalue occurs when k ≥ 1 and by

Lemma 3.2.1, it occurs when k = 1. More precisely,

λp
min,2 = 2δ − 2 sin(πδ)

π
. (3.14)

On the other hand, the maximum eigenvalue occurs when sin(kπδ) < 0 for some k ≥ 2.

Using (3.6), we immediately conclude that
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2δ < λp
max < 3δ. (3.15)

In fact, it is possible to find an approximate upper bound smaller than the one given in

(3.15). Let’s define

sincmin := min
θ≥0

sinc(θ).

One can compute that sincmin ≈ sinc(4.493) ≈ −0.217; see Figure 3.1. Hence, the

improved upper bound in (3.15) is approximately 2.434 δ. For rigorous treatment, we

work with the analytic upper bound in (3.15).

Rather than working with λp
min,2 and λp

max, we find it more convenient working

directly with the effective condition number κe(Mp) given in (3.2) whose bounds are

obtained by combining (3.14) and (3.15) as follows:

2δ

2δ − 2 sin(πδ)

π

< κe(Mp) <
3δ

2δ − 2 sin(πδ)

π

. (3.16)

We find bounds which have simpler form than the ones given in (3.16).

Lemma 3.2.2 For δ ∈ (0, 1), the following bounds hold.

(Periodic-Lower Bound)
6

π2
δ−2 <

2δ

2δ − 2 sin(πδ)

π

, (3.17)

(Periodic-Upper Bound)
3δ

2δ − 2 sin(πδ)

π

<
24

π2
δ−2. (3.18)

Proof (Periodic-Lower Bound): The inequality (3.17) is equivalent to proving

6

x2
<

1

1− sinc(x)
,

for x = δπ with 0 < x < π. Hence, we aim to show that
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0 < f(x) = x3 − 6x+ 6 sin(x).

Since

lim
x→0

f(x) = 0,

proving that f(x) > 0 follows from showing that f(x) is strictly increasing. Namely,

0 < f ′(x) = 3x2 − 6 + 6 cos(x).

Hence, we need to consider the second and third derivatives of f(x) given as

f ′′(x) = 6x− 6 sin(x), f (3)(x) = 6(1− cos(x)).

We also have

lim
x→0

f ′(x) = lim
x→0

f ′′(x) = lim
x→0

f (3)(x) = 0.

It is clear that f (3)(x) > 0. This implies that f ′′(x) is strictly increasing and from the limit

value of f ′′(x) at x = 0, f ′′(x) > 0. Similarly, this implies f ′(x) is strictly increasing and

from the limit value of f ′(x) at x = 0, f ′(x) > 0.

(Periodic-Upper Bound): The inequality (3.18) is equivalent to proving

3/2

1− sinc(x)
<

24

x2
,

for x = δπ with 0 < x < π. Hence, we aim to show that

0 < f(x) = −3x3 + 48x− 48 sin(x).
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Since

lim
x→0

f(x) = 0,

proving that f(x) > 0 follows from showing that f(x) is strictly increasing. Namely,

0 < f ′(x) = −9x2 + 48− 48 cos(x).

Hence, we need to consider the second derivative of f(x) given as

f ′′(x) = −18x+ 48 sin(x).

We also have

lim
x→0

f ′′(x) = 0.

By the roots of f ′′(x), we immediately see that

sinc(x) =
3

8
. (3.19)

The function sinc(x) is one-to-one for 0 < x < π and 3
8

is in the range of the function.

Hence, Equation (3.19) has only one solution. So, f ′′(x) has only one root and denote it

by x∗. Since

lim
x→π

f ′′(x) = −18π < 0,

it follows that f ′′(x) > 0 for 0 < x < x∗ and f ′′(x) < 0 for x∗ < x < π. Combining

the above calculations, the function f ′′(x) leads to the fact that f ′(x) has only one critical
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point at x = x∗ and f ′(x) is increasing for 0 < x < x∗ and decreasing for x∗ < x < π.

Since

lim
x→0

f ′(x) = 0, lim
x→π

f ′(x) = 96− 9π2 > 0,

finally, we arrive at f ′(x) > 0 for 0 < x < π.

�

Combining (3.17) and (3.18), finally, we arrive at the sharp condition number bounds

6

π2
δ−2 < κe(Mp) <

24

π2
δ−2. (3.20)

for the periodic operator Mp.

3.2.2. The Antiperiodic Operator

Similar to λp
min, λa

min occurs when sinc(θ) is at its maximum, which occurs when

θ = (k + 1
2
)πδ is closest to 0 for k ∈ N. Then, we get k = [−1

2
] = 0. Hence, using (3.4),

we obtain

λa
min = 2δ − 2 sin(π/2 δ)

π/2
. (3.21)

On the other hand, since the eigenvalues λa
k sweep the values of the function for λp

k in

(3.5), the same bounds in (3.6) are also valid for λa
k. More precisely,

2δ < λa
max < 3δ. (3.22)

Similar to (3.16), combining (3.21) and (3.22), we arrive at the following bounds
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2δ

2δ − 2 sin(π/2 δ)

π/2

< κ(Ma) <
3δ

2δ − 2 sin(π/2 δ)

π/2

. (3.23)

We find bounds which have simpler form than the ones given in (3.23).

Lemma 3.2.3 For δ ∈ (0, 1), the following bounds hold.

(Antiperiodic-Lower Bound)
24

π2
δ−2 <

2δ

2δ − 2 sin(π/2 δ)

π/2

, (3.24)

(Antiperiodic-Upper Bound)
3δ

2δ − 2 sin(π/2 δ)

π/2

<
96

π2
δ−2. (3.25)

Proof (Antiperiodic-Lower Bound): The inequality (3.24) is equivalent to proving

6

x2
<

1

1− sinc(x)
,

for x = δπ
2

with 0 < x < π
2
, which has already been proved in Lemma 3.2.2 for 0 < x <

π.

(Antiperiodic-Upper Bound): The inequality (3.25) is equivalent to proving

3/2

1− sinc(x)
<

24

x2
,

for x = δπ
2

with 0 < x < π
2
, which has already been proved in Lemma 3.2.2 for 0 < x <

π.

�

Combining (3.24) and (3.25), finally, we arrive at the sharp condition number bounds

24

π2
δ−2 < κ(Ma) <

96

π2
δ−2. (3.26)

for the antiperiodic operator Ma.
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3.2.3. The Neumann and Dirichlet Operators

We can express the operators MN and MD using the operators Cp and Ca as fol-

lows:

(MN − c
)
u(x) = −(CaPo + CpPe

)
u(x),

(MD − c
)
u(x) = −(CaPe + CpPo

)
u(x).

Note that the orthogonal projections Pe and Po have the following properties

P 2
e = Pe, P 2

o = Po, PePo = PoPe = 0. (3.27)

We present a commutativity property that will help us in finding σ(MN) and σ(MD).

Lemma 3.2.4

CaPe = PeCa, CaPo = PoCa, CpPe = PeCp, CpPo = PoCp. (3.28)

Proof We present the proof for CaPe = PeCa. The other results easily follow. We recall

the definition of Cau(x) in (3.1). We explicitly write PeCau(x). The result follows by a

change of variable.

PeCau(x) =
1

2

( ∫
Ω

Ĉa(x
′ − x)u(x′)dx′ +

∫
Ω

Ĉa(x
′ + x)u(x′)dx′)

=
1

2

( ∫
Ω

Ĉa(x
′ − x)u(x′)dx′ +

∫
Ω

Ĉa(x
′ − x)u(−x′)dx′)

=

∫
Ω

Ĉa(x
′ − x)Peu(x

′)dx′ = CaPeu(x)

�
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We are now in a position to present the main spectral results for the operators MN and

MD.

Lemma 3.2.5 The spectra of the operators MN and MD are as follows:

σ(MN) = σ(Ma) ∪ σ(Mp) and σ(MD) = σ(Ma) ∪ σ(Mp) \ {0}. (3.29)

Proof We present the result for MD only. The result for the case of MN follows in a

similar way. It is obvious that σ(MD) = σ(MD − c) + c and is more convenient to work

with σ(MD − c).

• σ(Mp − c) ∪ σ(Ma − c) ⊂ σ(MD − c):

Let λa ∈ σ(Ma − c). Namely, there exists an eigenfunction ua satisfying
(Ma − c

)
ua =

λaua. Define va := Peu
a. Then, using the properties P 2

e = Pe and PoPe = 0 given in

(3.27), we obtain

(MD − c
)
va = −(CaPe + CpPo

)
Peu

a = −CaPeu
a

= −PeCaua = Pe

(Ma − c
)
ua = λaPeu

a = λava. (3.30)

Hence, σ(Ma − c) ⊂ σ(MD − c).

Similarly, let λp ∈ σ(Mp − c). Namely, there exists an eigenfunction up
(Mp −

c
)
up = λpup. Define vp := Pou

p. Note that 0 ∈ σ(Mp−c) = σ(Cp) with the correspond-

ing eigenfunction up = 1. Since vp = Po1 = 0, we cannot utilize it as an eigenfunction,

hence, the value 0 needs to be excluded. Then, using P 2
o = Po and PePo = 0, we obtain

(MD − c
)
vp = −(CaPe + CpPo

)
Pou

p = −CpPou
p

= −PoCpup = Po

(Mp − c
)
up = λpPou

p = λpvp. (3.31)
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Hence, σ(Mp − c) ⊂ σ(MD − c). Combining (3.30) and (3.31), the result follows:

• σ(MD − c) ⊂ σ(Mp − c) ∪ σ(Ma − c):

Let λD ∈ σ(MD − c). Namely,
(MD − c

)
uD = λDuD. Then, decompose uD as follows:

−(CaPe + CpPo

)
(Pe + Po)u

D = λD(Pe + Po)u
D.

Collecting the terms with Pe and Po on each side and using commutativity in (3.28), we

obtain

Pe

(− Ca − λD
)
uD + Po

(− Cp − λD
)
uD = 0. (3.32)

Since the operators Pe and Po are orthogonal projections, each term in (3.32) must be

equal to the zero function. Hence, we arrive at

(Ma − c
)
Peu

D = −CaPeu
D = λDPeu

D,

(Mp − c
)
Pou

D = −CpPou
D = λDPou

D.

Consequently, λD ∈ σ(Ma − c) ∪ σ(Mp − c).

�

The condition numbers of the operators MD and MN easily follow from the spec-

tral result in (3.29).

Corollary 3.2.6

κe(MN) = κ(MD) =
max{λp

max, λ
a
max}

min{λp
min,2, λ

a
min}

.

Recalling the values of λp
min,2 in (3.14) and λa

min in (3.21), we immediately see that
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0 < λa
min ≤ λp

min,2.

Hence, the condition numbers reduce to

κe(MN) = κ(MD) =
max{λp

max, λ
a
max}

λa
min

. (3.33)

On the other hand, we have the same bounds for λp
max and λa

max using (3.15) and

(3.22), respectively. Consequently, combining this fact with (3.33), the bounds for the

condition numbers κ(MD) and κe(MN) are identical to those of the antiperiodic operator

Ma given in (3.23). Hence, the bounds provided in Lemma 3.2.3 are valid for κe(MN)

and κ(MD).

3.3. The Discretization and the Quadrature Rule

Our governing operators fall into the class of Fredholm integral equations of the

second kind. The projection and the Nyström methods are the well-known types of dis-

cretization for this class (Atkinson, 1997, Chap. 3,4). We employ the Nyström method.

We are dealing with integral equations, so, one has to pay special attention to the quadra-

ture rule. Since the overarching goal of this study is to accommodate local BC, it is

essential to use values at boundary nodes in the quadrature rule. The Gaussian quadrature

rule is not suitable because it does not use boundary nodes. However, both the trapezoidal

and the Simpson rules use boundary nodes, and hence, are plausible for such a task.

Furthermore, since the governing operator is self-adjoint, a discretization that pro-

duces symmetric matrices is desirable. Since the Simpson rule is more involved, obtain-

ing symmetric matrices seems more cumbersome than that from the trapezoidal rule. The

trapezoidal rule allows us to obtain symmetric matrices by simple algebraic manipula-

tions; see Sec. 3.3.1. Consequently, we employ the trapezoidal rule. We choose the

following uniformly distributed set of points xi, i = 1, ..., n in [−1, 1]. To discretize the

equation

cu(x)− CBCu(x) = f(x),
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BC = {p, a, N, D}, we let x run through points xi. This yields

cu(xi)− CBCu(xi) = f(xi), i = 1, ..., n.

Then, apply trapezoidal rule setting the set of points xi, i = 1, ..., n as quadrature points to

the integrals in (2.4,2.9,2.13,2.16). After the discretization, we get the following system

of equation

ABCuh = fh,

BC = {p, a, N, D}. Here, the system matrices ABC, BC = {p, a, N, D} are nonsymmetric.

Note that, in our discretization, the ratio δ/h is always a positive integer and n is odd. In

the rest of the thesis, d stands for δ/h.

3.3.1. Obtaining Symmetric System Matrices and Their Structures

The governing operator is self-adjoint, hence it is natural to expect the discretiza-

tion to produce symmetric matrices. Direct application of the trapezoidal rule leads to

nonsymmetric matrices. We can rectify the symmetry issue by simple algebraic manipu-

lations. Obtaining symmetric matrices brings an additional advantage. For example, when

the matrices are symmetric, the condition number reduces to the ratio of the maximum

and minimum eigenvalues.

We present an instance of the system matrix for each BC considered. For con-

venience of comparison, we utilize the same kernel function C(x) given in (2.3) with

δ = 0.5. In order to demonstrate the algebraic operations needed to obtain a symmetric

matrix, we choose h = 1
2

so that we have small sized system matrices. We start with the

periodic BC and see that the corresponding system matrix is not symmetric as seen in the

following.
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Ap =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c− h
2

−h
2

0 −h
2

−h
2

−h
2

c− h −h
2

0 0

0 −h
2

c− h −h
2

0

0 0 −h
2

c− h −h
2

−h
2

−h
2

0 −h
2

c− h
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
5×5.

We can easily obtain a symmetric matrix by applying the BC to the system equa-

tions. Namely, by setting (up)1 = (up)n and (fp)1 = (fp)n. When we add the last column

to the first one, we see that the first and last rows are identical. Using (fp)1 = (fp)n,

we can eliminate the last row because it is identical to the first row. This gives rise to a

reduced system matrix of size (n− 1)× (n− 1) and the resulting matrix is symmetric.

For the antiperiodic BC, we obtain the following system matrix.

Aa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c− h
2

−h
2

0 h
2

h
2

−h
2

c− h −h
2

0 0

0 −h
2

c− h −h
2

0

0 0 −h
2

c− h −h
2

h
2

h
2

0 −h
2

c− h
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
5×5.

Similar to the periodic BC case, we can obtain a symmetric matrix by applying the BC to

the system equations. Namely, by setting (up)1 = −(ua)n and (fa)1 = −(fa)n. When we

subtract the last column from the first one, we see that the first and last rows are identical.

Using (fa)1 = −(fa)n, we can eliminate the last row because it is identical to the first

one. This gives rise to a reduced system matrix of size (n− 1)× (n− 1) and the resulting

matrix is symmetric.

For the Neumann BC, we obtain the following system matrix.

AN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c− h −h 0 0 0

−h
2

c− h −h
2

0 0

0 −h
2

c− h −h
2

0

0 0 −h
2

c− h −h
2

0 0 0 −h c− h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
5×5.
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We multiply the first and last rows by 1/2 as well the entries (fN)1 and (fN)n. This multi-

plication operation gives an equivalent system matrix which is symmetric.

For the Dirichlet BC, we obtain the following system matrix.

AD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c− h 0 0 0 0

−h
2

c− h −h
2

0 0

0 −h
2

c− h −h
2

0

0 0 −h
2

c− h −h
2

0 0 0 0 c− h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
5×5.

The values (uD)1 and (uD)n are known because they are part of the BC. Hence, by deleting

the first and last columns as well the first and last rows, we obtain a symmetric system

matrix of size (n− 2)× (n− 2).

We present the structure of the system matrices. The matrix As
p is symmetric

positive semidefinite, whereas the matrix As
a is symmetric positive definite. Both matrices

are of size (n−1)× (n−1), diagonally dominant, and Toeplitz. For the matrix definition,

it is sufficient to provide only the first row due to the Toeplitz property. Assuming h ≤ δ,

we present the first rows of As
p and As

a in Figures 3.3 and 3.2, respectively.

The matrix As
N is symmetric positive semidefinite and is of size n × n. Whereas

the matrix As
D is symmetric positive definite and is of size (n−2)×(n−2). Both matrices

are diagonally dominant. Assuming h ≤ δ, we present the matrix As
N − cI in Figure 3.4

and assuming 2h ≤ δ, we present the matrix As
D − cI in Figure 3.5. In addition, both As

p

and As
N have the zero row sum property.

Figure 3.2. The first row of the matrix As
p.
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Figure 3.3. The first row of the matrix As
a.

3.4. Error Analysis

For error analysis, we start with rewriting our operators

−CBCu :=
(MBC − c

)
u,

where BC = {p, a, N, D}. The explicit expression of CBC is

CBCu(x) =
∫
Ω

KBC(x, x
′)u(x′)dx′.

Since error analysis calls for differentiation, we assume that u, f ∈ C2(Ω). Furthermore,

our analysis assumes invertible operators. Since the spectra of the operators Mp and MN

contain zero eigenvalues, the error analysis we carry out covers the operators Ma and MD.

The exact expressions of Ca and CD can be obtained from (2.8) and (2.15), respectively.

The operators Cp and Ca are self-adjoint and compact. Since the operators CN and

CD are linear combinations of Cp and Ca, they are also self-adjoint and compact. We prefer

to work with the scaled operators given in the following.

MBCu =
(
I − CBC

)
u = f,

where I is the identity operator, CBC :=
1
c
CBC, and f := 1

c
f for BC = {a, D}. From (3.21),
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Figure 3.4. Structure of the matrix As
N − cI .

we have

‖Ca‖ =
sin(πδ/2)

πδ/2
.

On the other hand, from (3.29), we also have

‖CD‖ =
sin(πδ/2)

πδ/2
.

Consequently, for BC = {a, D}, we have

‖CBC‖ < 1,

which indicates that the operators CBC are contractions. We can conclude that the operators
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Figure 3.5. Structure of the matrix As
D − cI .

I − CBC are invertible. It is well known that

‖(I − CBC)
−1‖ ≤ 1

1− ‖CBC‖
. (3.34)

From (3.25), we have

1

1− sin(δπ/2)
δπ/2

<
64

π2
δ−2. (3.35)

Hence, combining (3.34) and (3.35), we arrive at

‖(I − CBC)
−1‖ ≤ 64

π2
δ−2. (3.36)
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3.4.1. Bounds for the Error

Let us define the sequence of operators

Cn

BCu(x) :=
n∑

i=1

αiKBC(xi, x)u(xi),

where αi denotes the quadrature weight. The operators CBC are compact. Since the trape-

zoidal rule is convergent, the sequence Cn

BC is collectively compact and pointwise conver-

gent, i.e., Cn

BCu → CBCu. A bound for the error can be obtained in the following fashion;

see (Kress, 1989, Thm.10.8). For sufficiently large n, more precisely, for all n with

‖(I − CBC)
−1(Cn

BC − CBC)Cn

BC‖ < 1,

the solutions to the equations

u− CBCu = f, un − Cn

BCun = f

satisfy the following error bound.

‖u− un‖ ≤ ‖(I − CBC)
−1‖‖(C

n

BC − CBC)f‖+ ‖(Cn

BC − CBC)Cn

BCu‖
1− ‖(I − CBC)−1(Cn

BC − CBC)Cn

BC‖
. (3.37)

A bound for the term ‖(Cn

BC − CBC)Cn

BC‖ can be given as follows (Atkinson, 1997,

(4.1.21)).

‖(Cn

BC − CBC)Cn

BC‖ ≤ cl max
t,s∈Ω

|En(t, s)|,

where cl is a constant and
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En(t, s) :=

∫
Ω

KBC(t, v)KBC(v, s)dv −
n∑

j=1

αjKBC(t, tj)KBC(tj, s)

Since the kernel functions under consideration are piecewise constant, the quadrature rule

is exact, and hence, En(t, s) = 0.

The remaining terms in (3.37) are ‖(I − CBC)
−1‖ and ‖(Cn

BC − CBC)f‖. The term

‖(Cn

BC − CBC)f‖ is the quadrature error in the L2(Ω)-norm. We connect it to the L∞(Ω)-

norm by using the well-known embedding

L∞(Ω) ↪→ L2(Ω).

Hence,

‖(Cn

BC − CBC)f‖ ≤ |Ω|1/2‖(Cn

BC − CBC)f‖∞. (3.38)

We can quantify the error with the L∞(Ω)-norm

‖(Cn

BC − CBC)f‖∞ =
23h2

12
max
x∈Ω

|f ′′(x)|. (3.39)

Consequently, combining (3.38) and (3.39), we obtain

‖(Cn

BC − CBC)f‖ = O(h2).

To the best of the author’s knowledge, the term ‖(I − CBC)
−1‖ can be quantified only by

resorting to a discretized form. However, we have an advantage, namely, we have the

bound (3.36) at our disposal. Putting all pieces together, we arrive at the error bound

‖u− un‖ = O(h2δ−2).
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3.4.2. Numerical Tests Verifying the Error Bound

We report the relative error in L2(Ω) for varying values of δ when h is fixed and

for varying values of h when δ is fixed. We choose the functions u = cos(πx/2) and

u = sin(x) for the antiperiodic and Dirichlet problem, respectively, as the exact solution.

We compute the right hand side function f according to given exact solutions. We report

the error in Tables 3.1 and 3.2. We observe that the convergence rates are in agreement

with our theoretical result.

Table 3.1. Relative errors in L2-norm for varying h when δ = 2−4.

Ma Ratio Ma MD Ratio MD

h = 2−4 0.333655 ... 0.027641 ...
h = 2−5 0.111183 3.00 0.009184 3.00
h = 2−6 0.030319 3.66 0.002502 3.64
h = 2−7 0.007756 3.93 0.000640 3.90
h = 2−8 0.001950 3.97 0.000161 3.97
h = 2−9 0.000488 3.99 0.000040 4.02

Table 3.2. Relative errors in L2-norm for varying δ when h = 2−5.

Ma Ratio Ma MD Ratio MD

δ = 2−5 0.333414 ... 0.027506 ...
δ = 2−4 0.111183 2.99 0.009184 2.99
δ = 2−3 0.030367 3.66 0.002521 3.64
δ = 2−2 0.007814 3.88 0.000662 3.81

3.5. Numerical Experiments

For each BC considered, we compare the condition number of the original contin-

uous operator MBC against the discretized operator As
BC in the form of a symmetric system

matrix. This reduces the condition number of the discretized operator to the ratio of the

maximum and minimum eigenvalues.
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Table 3.3. Condition number of the periodic operator Mp.

κe(Mp)
7.303
π2 δ−2 κe(A

s
p) κe(A

s
p) rate

δ = 2−1 3.3359 2.9596 3.3358 -
δ = 2−2 12.1609 11.8384 12.1582 3.64
δ = 2−3 47.5941 47.3536 47.5588 3.91
δ = 2−4 190.1750 189.4144 189.2012 3.97
δ = 2−5 760.7300 757.6576 748.6265 3.96

We show the quantifications in Tables 3.3, 3.4, 3.5, and 3.6 for the periodic,

antiperiodic, Neumann, and Dirichlet BC, respectively. We use varying values of δ;

δ = 2−j, j = 1, . . . , 5. We report the condition number values as a function of the δ

values.

We know the eigenvalues λp
min and λa

min exactly; see (3.14) and (3.21). In fact,

for a fixed δ, we can also compute the maximal eigenvalue exactly. Due to the decay of

the sinc(x) function, it is sufficient to check only a certain number of k values to find out

λp
max and λa

max. From (3.3), (3.4), and (3.29), we report the exact value κ(MBC) for fixed

δ and report this in the first column in the related tables.

We report the condition number of the matrices As
p, A

s
a, A

s
N, and As

D (the third

column in the related tables) and these figures are computed with the value of h = 2−9. In

the last column, we report the the growth rate of κ(As
BC) (the fourth column in the related

tables) with decreasing δ and clearly see the δ−2 behavior with varying δ.

For the case of periodic BC, from (3.17) and (3.18), we know that the coefficient

of δ−2 lies in interval of ( 6
π2 ,

24
π2 ). We want to identify this coefficient approximately.

Using the improved upper bound we found for (3.15), which is approximately 2.434 δ,

we obtain an improved approximate coefficient by employing a perturbation expansion of

2.434 δ

2δ− 2 sin(πδ)
π

. We conclude that the coefficient is approximately 7.303
π2 δ−2 and report it (the

second column in the related tables) in Table 3.3. In the case of antiperiodic BC, from

(3.24) and (3.25), we know that the coefficient of δ−2 lies in interval of ( 24
π2 ,

96
π2 ). In the

same way, we conclude that the coefficient is approximately 29.212
π2 δ−2 and report it in

Table 3.4.

For all BC, we see that the condition number of the original continuous operator

MBC and its discretized counterpart As
BC are in good agreement. The condition number

clearly depends only on δ and behaves like δ−2.

In Table 3.7, we report the quantification of the condition number of the matrices
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Table 3.4. Condition number of the antiperiodic operator Ma.

κ(Ma)
29.212
π2 δ−2 κ(As

a) κ(As
a) rate

δ = 2−1 11.8384 11.8392 11.8376 -
δ = 2−2 47.6029 47.3568 47.5854 4.02
δ = 2−3 190.1843 189.4272 189.6458 3.99
δ = 2−4 760.3800 757.7088 755.3921 3.98
δ = 2−5 3042.8800 3030.8352 2993.6655 3.96

Table 3.5. Condition number of the Neumann operator MN.

κe(MN)
29.212
π2 δ−2 κe(A

s
N) κe(A

s
N) rate

δ = 2−1 12.1610 11.8392 12.2061 -
δ = 2−2 47.6029 47.3568 47.7478 3.91
δ = 2−3 190.1843 189.4272 190.2889 3.99
δ = 2−4 760.7000 757.7088 758.3742 3.99
δ = 2−5 3042.9200 3030.8352 3004.8940 3.96

for different values of h when δ = 2−2. In the last column where we indicate h → 0,

we report the exact value κ(MBC) for the choice of δ = 2−2. We observe that of κ(As
BC)

approaches to κ(MBC) as h → 0. In addition, when 4h ≤ δ, there is a mild dependence

of κ(As
BC) on h and but the figures are getting closer to κ(MBC) as h → 0.

3.6. Comparison to the Original Peridynamics Operator

We are in a position to make comparison to sharp bounds given in Aksoylu and

Unlu (2014). The authors used the discretized form of operator of Lorig, Lh
orig, with non-

local homogeneous Dirichlet BC. Linear and constant finite element discretizations were

used. The sharp lower bound for λmin(Lh
orig) was more demanding than the upper one.

The authors had to exploit sophisticated analysis to find the sharp lower bound. Namely,

the nonlocal characterization of Sobolev spaces Bourgain et al. (2001); Ponce (2004) was

used to obtain the following bound:

α δ3h ≤ λmin(Lh
orig).
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Table 3.6. Condition number of the Dirichlet operator MD.

κ(MD)
29.212
π2 δ−2 κ(As

D) κ(As
D) rate

δ = 2−1 12.1610 11.8392 12.1599 -
δ = 2−2 47.6029 47.3568 47.5854 3.91
δ = 2−3 190.1843 189.4272 189.6457 3.99
δ = 2−4 760.7000 757.7088 755.7062 3.98
δ = 2−5 3042.9200 3030.8352 2993.6655 3.96

Table 3.7. Condition number for various h when δ = 2−2.

h = δ
2

h = δ
4

h = δ
8

h = δ
16

h = δ
32

h = δ
64

h → 0

κe(A
s
p) 6.8284 10.0474 11.5724 12.0114 12.1231 12.1511 12.1609

κ(As
a) 25.2741 39.2302 45.3704 47.0287 47.4523 47.5587 47.6029

κe(A
s
N) 32.1634 43.8623 47.9481 48.3441 48.1095 47.8864 47.6029

κ(As
D) 26.2741 39.2302 45.3704 47.0287 47.4523 47.5587 47.6029

For the upper bound, a special function was used together with a Rayleigh quotient argu-

ment and the authors obtained

λmin(Lh
orig) ≤ α δ3h.

On the other hand, the sharp upper bound for λmax(Lh
orig) was more demanding

than the lower one. The authors had to find out explicit expressions of the stiffness matrix

entries. Then, an application of the Gershgorin circle theorem was used. Assuming 3h ≤
δ, the following bound was obtained:

λmax(Lh
orig) ≤ β (5δh− 6h2).

For the lower bound, a special function was used together with a Rayleigh quotient argu-

ment and the authors obtained the same lower bound quantification of

β (5δh− 6h2) ≤ λmax(Lh
orig).
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Here the constants α, α, β, and β are all absolute constants, meaning that they do not have

dependence on δ and h. Furthermore, by using numerical linear algebra techniques related

to characterization of the minimal eigenvalue of Toeplitz matrices Böttcher and Widom

(2007); Kac et al. (1953), the authors identified an asymptotic statement regarding the

constant α. More precisely, as h → 0,

α → 3π2

2
. (3.40)

Now, we state our bounds in this thesis from a different perspective. We want to

translate the bounds for the condition number into bounds for the extremal eigenvalues.

For λp
max and λa

max, we already have (3.15) and (3.22), respectively. Combining (3.15)

with (3.20) and (3.22) with (3.26), we arrive at the following bounds.

π2

12
δ3 < λp

min,2 <
π2

2
δ3,

π2

48
δ3 < λa

min, λ
N
min,2, λ

D
min <

π2

8
δ3.

Note that the factor π2 appears in (3.40). The same factor appears in all minimal eigen-

value bounds for the original continuous operator. This can be interpreted as an indication

that the operator Lh
orig is close to L when h is small.
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CHAPTER 4

CONVERGENCE ANALYSIS OF A MULTIGRID METHOD

We carried out conditioning analysis in Chapter 3 and showed that the original

continuous operators have ill-conditioning indicated by δ−2. We numerically showed that

as long as the ratio δ/h is big enough (≥ 4), corresponding discrete problems have the

same δ−2 ill-conditioning. So, it is important to find efficient preconditioners. In this

chapter, we propose a multigrid method for systems of equations obtained by discretizing

with Nyström method with Trapezoidal rule. We carry out spectral convergence analyses

for a two-grid and a multigrid method. We also analyze smoothers. Results of this chapter

and more can be found in Aksoylu and Kaya (2018b).

Smoothers are one of the building blocks for multigrid methods. Jacobi methods

have been frequently used probably due to their ease of use. Convergence speed of a

multigrid method highly depends on the smoother used. So, it is important to obtain

effective smoothers for a given problem. In multigrid context, effective smoother means

that it enables a fast multigrid convergence. There exist guiding spectral analysis done

for 1D elliptic model problem in Briggs et al. (2000); Hackbusch (1985, 2016) to find

effective smoothers. The strategy used there is to damp the oscillatory modes effectively,

simultaneously. Multigrid method for Fredholm second kind systems (multigrid second

kind) dates back to 1970s Hackbusch (1979); Hemker and Schippers (1981); Schippers

(Schippers); Hackbusch (1981). However, to do the best of our knowledge, a guiding

spectral analysis is still not available for smoothers. Picards’ iteration is the most preferred

one for Fredholm second kind systems Hackbusch (1985). Because, the operators of the

second kind have the smoothing property. Jacobi-like relaxations have been considered

wrong choices so far.

In this thesis, we provide spectral analyses using weighted (damped)-Jacobi re-

laxation to find effective smoothers. We obtain spectrum of system matrices of periodic,

antiperiodic and Dirichlet problems using eigenfunctions of original continuous opera-

tors. We find the eigenvalues of the matrices in terms of mesh size h and nonlocality

parameter δ. Knowing spectrum of a matrix may bring some advantages such as design-

ing effective relaxation schemes. Similarly, one can construct effective smoothers using
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spectrum of the matrices which is done for 1D Poisson boundary value problem Briggs

et al. (2000); Hackbusch (2016). For a relaxation scheme to be a smoother, it must damp

the oscillatory modes effectively. In the light of this fact, we propose two strategies to

construct smoothers using weighted Jacobi relaxation. The first strategy depends on the

idea that damping the most oscillatory mode as quickly as possible. We find a parameter

that carry out this idea for antiperiodic problem for which weighted Jacobi is equivalent

to Picards’ iteration. This approach shed some light on working principle of Picards’ iter-

ation from spectral point of view. The second strategy depends on the idea that damping

the oscillatory modes as quickly as possible, simultaneously. This idea has already been

applied to 1D Poisson boundary value problem Hackbusch (2016); Briggs et al. (2000).

It is not easy to find the optimal parameter algebraicly for this strategy, but we provide a

way to find it numerically for given problem parameters. The smoother in the multigrid

context has only the purpose to enable a fast multigrid convergence. Based on this fact,

we compare relaxation schemes obtained from the two strategies.

4.1. Derivation of Eigenvalues of System Matrices

In this section, we derive eigenvalues of the system matrices As
BC, BC = {p, a, D}.

We know that the operators MBC, BC = {p, N} contain zero eigenvalue and hence they

are not invertible. Similarly, their corresponding system matrices As
BC, BC = {p, N} con-

tain zero eigenvalue and they are not invertible. So, we will not consider them to find

smoothers. However, since the matrix As
D assumes eigenvalues of the matrix As

p, we also

show how to derive spectrum of As
p. We start with the matrix As

p.

4.1.1. Periodic Matrix As
p

As
p is symmetric, positive semi-definite, Toeplitz matrix. It satisfies zero row sum

property and hence has zero eigenvalue. We give its spectrum in Lemma 4.1.1. We find

bounds for the spectrum in Lemma 4.1.2

42



Lemma 4.1.1 The matrix As
p assumes the eigenvectors

vj
k :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos

(
j(k−1)2π

n−1

)
, 0 ≤ j ≤ n− 2, 1 ≤ k ≤ n+1

2
,

sin
(

j(k−1)2π
n−1

)
, 0 ≤ j ≤ n− 2, n+1

2
< k ≤ n− 1

(4.1)

with the corresponding eigenvalues

λk(A
s
p) := 2δ + h cos (δ(k − 1)π) + h− 2h

∑d
l=0 cos (l(k − 1)πh)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, k = 1

2δ − h sin((k−1)πδ) sin((k−1)πh)

2 sin2(
(k−1)πh

2
)

, k = 2, ..., n− 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)

Recall that vj
k denotes the component of the vector vk.

Proof First, note that, the eigenvectors given in set (4.1) form an orthonormal basis for

IRn−1, since

vk.vl :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 1 ≤ k �= l ≤ n− 1,

n−1
2
, if 2 ≤ k = l ≤ n− 1,

n− 1, if k = l = 1.

So, the set of eigenvectors covers all eigenvalues. Now, we consider the matrix 2δI −As
p

which is simpler. To prove the lemma, we show for each k (k = 1, ..., n−1) that rj+1.vk =

λk(2δI − As
p)v

j
k for j = 0, ..., n− 2. Recall that rj is the jth row of the matrix 2δI −As

p.

Rows of the matrix originate from three different integral equations. First, we consider

the rows rj for δ/h < j < n − δ/h. These rows are obtained from the discretization of

the following integral equation
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∫ x+δ

x−δ

u(x′)dx′ = f, x ∈ [−1 + δ, 1− δ]

with Trapezoidal rule and imposing periodic boundary condition to the matrix Ap. For

our purpose, we introduce the operator Trp which is well known numerical integration

with Trapezoidal rule with uniformly distributed nodes. The function vk stands for the

continuous form (eigenfunction of the original continuous operator) of the discrete vector

vk which is defined as

vk :=

⎧⎪⎪⎨⎪⎪⎩
cos((x+ 1)(k − 1)π), 1 ≤ k ≤ n+1

2
,

sin((x+ 1)(k − 1)π), n+1
2

< k ≤ n− 1.

Note that, since epk(x) := eiπkx, k ∈ N are eigenfunctions of the operator Mp, sin(kπx)

and cos(kπx), k ∈ N are also eigenfunctions for Mp. For these rows, we have

rj+1.vk = Trp
(∫ x+δ

x−δ
vk(x

′)dx′
)
=

h
(

1
2
v
j−δ/h
k + v

j−δ/h+1
k + ...+ vj

k + ...+ v
j+δ/h−1
k + 1

2
v
j+δ/h
k

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.3)

k = 1, ..., n−1. Using simple trigonometric identities, one can easily show that rj+1.vk =

λk(2δI − As
p)v

j
k where

λk(2δI − As
p) = −h cos (δ(k − 1)π)− h+ 2h

d∑
l=0

cos (l(k − 1)πh) , k = 1, ..., n− 1.

(4.4)

Now, we consider the rows rj for 1 ≤ j ≤ δ/h. For these rows, we have

rj+1.vk = Trp

(∫ x+δ

−1

vk(x
′)dx′

)
+ Trp

(∫ 1

x+2−δ

vk(x
′)dx′

)
, x ∈ [−1,−1 + δ).

Since vk(x) = vk(x + 2), the change of variable y′ = x′ − 2 in the second integral in
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above equation leads to

rj+1.vk = Trp

(∫ x+δ

−1

vk(x
′)dx′

)
+ Trp

(∫ −1

x−δ

vk(x
′)dx′

)
= Trp

(∫ x+δ

x−δ

vk(x
′)dx′

)

which is equivalent to Equation (4.3). Hence, we have rj+1.vk = λk(2δI − As
p)v

j
k with

λk(2δI − As
p) defined in (4.4). Finally, we consider the rows rj , n − δ/h < j ≤ n − 1.

For these rows, we have

rj+1.vk = Trp

(∫ x−2+δ

−1

vk(x
′)dx′

)
+ Trp

(∫ 1

x−δ

vk(x
′)dx′

)
, x ∈ (1− δ, 1].

Since vk(x) = vk(x+ 2), the change of variable y′ = x′ + 2 in the first integral in above

equation leads to

rj+1.vk = Trp

(∫ x+δ

1

vk(x
′)dx′

)
+ Trp

(∫ 1

x−δ

vk(x
′)dx′

)
= Trp

(∫ x+δ

x−δ

vk(x
′)dx′

)

which is equivalent to Equation (4.3). Hence, we have rj+1.vk = λk(2δI − As
p)v

j
k with

λk(2δI − As
p) defined in (4.4).

Hence, we can conclude that, the matrix As
p assumes the eigenvectors in (4.1) with

the corresponding eigenvalues in (4.2).

�

Lemma 4.1.2 The bounds

0 ≤ λk(A
s
p) < 4δ − 2h

hold for k = 1, 2, ..., n− 1.

Proof It is clear that λ1(A
s
p) = 0. Since cos (l(k − 1)πh) ≤ 1 for all l, k and h, from

definition of λk(A
s
p) in (4.2), it follows that λk(A

s
p) ≥ 0 for k = 1, ..., n − 1. We show

the upper bound by induction. For k = 1, it is clear. Let δ = dh where d ≥ 1. Then, We

show that
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λk(A
s
p) = 2δ − h sin(kπδ) cot(kπh/2) < 4δ − 2h, k = 2, ..., n− 1.

The above inequality is equivalent to showing that

sin(kπdh) cot(kπh/2) > 2− 2d.

First, we show for d = 1, i.e.

sin(kπh) cot(kπh/2) > 0. (4.5)

It is clear that sin(kπh) > 0 and cot(kπh/2) > 0 for k = 2, ..., n − 1. Hence, it is true

for d = 1. Now, assume that

sin(kπmh) cot(kπh/2) > 2− 2m, k = 2, ..., n− 1. (4.6)

holds for m > 1. We will show that it is true for d = m+ 1. Using the inequalities (4.5),

(4.6) and the fact that cos(x) ≤ 1, we arrive at

sin(kπ(m+ 1)h) cot(kπh/2) = sin(kπhm) cos(kπh) cot(kπh/2)

+ sin(kπh) cos(kπhm) cot(kπh/2) ≥ sin(kπhm) cot(kπh/2)

+ sin(kπh) cot(kπh/2) > 2− 2m+ 0 > 2− 2(m+ 1).

This completes the proof. �

4.1.2. Antiperiodic Matrix As
a

As
a is symmetric, positive definite, Toeplitz matrix. We give the eigenvalues in

Lemma 4.1.3. We find bounds for the spectrum in Lemma 4.1.4.
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Lemma 4.1.3 The matrix As
a assumes the eigenvectors

vj
k :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos

(
j(k− 1

2
)2π

n−1

)
, 0 ≤ j ≤ n− 2, 1 ≤ k < n+1

2
,

sin
(

j(k− 1
2
)2π

n−1

)
, 0 ≤ j ≤ n− 2, n+1

2
≤ k ≤ n− 1

(4.7)

with the corresponding eigenvalues

λk(A
s
a) = 2δ + h cos

(
δ
(
k − 1

2

)
π
)
+ h− 2h

∑d
l=0 cos

(
l
(
k − 1

2

)
πh

)
= 2δ − h

sin((k− 1
2)πδ) sin((k− 1

2)πh)

2 sin2

(
(k− 1

2)πh

2

) , k = 1, ..., n− 1.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.8)

Recall that vj
k denotes the component of the vector vk.

Proof First, note that, the eigenvectors given in set (4.7) form an orthonormal basis for

IRn−1, since

vk.vl :=

⎧⎪⎪⎨⎪⎪⎩
0, if 1 ≤ k �= l ≤ n− 1,

n−1
2
, if 1 ≤ k = l ≤ n− 1.

So, the set covers all eigenvalues. For simplicity, we consider the matrix 2δI − As
a. As

in the periodic case, rows of the matrix 2δI − As
a originates from three different integral

equations which are given in (2.9). We apply the same procedure in Lemma 4.1.1.

�

Lemma 4.1.4 The following bounds

0 < λk(A
s
a) < 4δ − 2h

hold for k = 1, ..., n− 1.
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Proof Since 0 < (k − 1
2
)πh < 2π for k = 1, 2, ..., n − 1, the terms cos

(
l
(
k − 1

2

)
πh

)
,

k = 1, ..., n− 1 in (4.8) can not be equal to 1 for a fixed k, simultaneously. So,

λk(A
s
a) > 2δ + h+ h− 2h(

δ

h
+ 1) = 0.

Applying the same steps in Lemma 4.1.2, we can show that

λk(A
s
a) < 4δ − 2h.

�

4.1.3. Dirichlet Matrix As
D

As
D is symmetric, positive definite matrix. Unlike the matrices As

p and As
a, it is not

Toeplitz. We give its eigenvalues in Lemma 4.1.5.

Lemma 4.1.5 The matrix As
D assumes the eigenvectors

vj
k :=

⎧⎪⎪⎨⎪⎪⎩
sin

(
jk2π
n−1

)
, 1 ≤ j ≤ n− 2, 1 ≤ k < n−1

2
,

sin
(

j(k+ 1
2
)2π

n−1

)
, 1 ≤ j ≤ n− 2, n−1

2
≤ k ≤ n− 2

(4.9)

with the corresponding eigenvalues

λk(A
s
D) :=

⎧⎪⎪⎨⎪⎪⎩
2δ + h cos (δkπ) + h− 2h

∑d
l=0 cos (lkπh) , 1 ≤ k < n−1

2

2δ + h cos
(
δ
(
k + 1

2

)
π
)
+ h− 2h

∑d
l=0 cos

(
l
(
k + 1

2

)
πh

)
, n−1

2
≤ k ≤ n− 2.
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2δ − h sin(kπδ) sin(kπh)

2 sin2( kπh
2

)
, 1 ≤ k < n−1

2

2δ − h
sin((k+ 1

2)πδ) sin((k+
1
2)πh)

2 sin2

(
(k+1

2)πh

2

) , n−1
2

≤ k ≤ n− 2.
(4.10)

Proof First, note that, the eigenvectors given in set (4.9) form an orthonormal basis for

IRn−2, since

vk.vl :=

⎧⎪⎪⎨⎪⎪⎩
0, if 1 ≤ k �= l ≤ n− 2,

n−1
2
, if 1 ≤ k = l ≤ n− 2.

So, the set covers all eigenvalues. We consider the matrix 2δI − As
D. As before, rows of

the matrix 2δI − As
D originates from three different integral equation which are given in

(2.16). The rows rj ,
δ
h
< j < n−2− δ

h
correspond to bulk of the domain and all operators

are same there. In this case,

vk :=

⎧⎪⎪⎨⎪⎪⎩
sin((x+ 1)kπ), 1 ≤ k < n−1

2
,

sin((x+ 1)(k + 1
2
)π), n−1

2
≤ k ≤ n− 2.

Since vk(0) = vk(2) = 0, we have

rj+1.vk = Trp

(∫ x+δ

x−δ

vk(x
′)dx′

)
, k = 1, ..., n− 2. (4.11)

We know from periodic and antiperiodic matrices that rj+1.vk = (2δ − λk)v
j
k where λk

is defined in (4.10). We consider the first δ/h rows which are obtained by discretization

of the integrals in the first line of equation (2.16). Since vk(0) = vk(2) = 0, we have

rj+1.vk = Trp

(∫ x+δ

−1

vk(x
′)dx′

)
− Trp

(∫ −x+δ−2

−1

vk(x
′)dx′

)
, x ∈ [−1,−1 + δ).
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Using the equality vk(−x) = −vk(x) and doing the change of variable x
′
= −y − 2 in

the second integral in above equation we get

rj+1.vk = Trp

(∫ x+δ

−1

vk(x
′)dx′

)
+ Trp

(∫ −1

x−δ

vk(x
′)dx′

)
= Trp

(∫ x+δ

x−δ

vk(x
′)dx′

)
.

The above equation is same with Equation (4.11). Hence, rj+1.vk = (2δ − λk)v
j
k where

λk is defined in (4.10).

The last δ/h rows are obtained by discretization of the integrals in the third line

of equation (2.16). Since vk(0) = vk(2) = 0, we have

rj+1.vk = −Trp

(∫ 1

−x−δ+2

vk(x
′)dx′

)
+ Trp

(∫ 1

x−δ

vk(x
′)dx′

)
, x ∈ (1− δ, 1].

Using the equality vk(−x) = −vk(x) and doing the change of variable x
′
= 2− y in the

first integral in the above equation, we get

rj+1.vk = Trp

(∫ x+δ

1

vk(x
′)dx′

)
+ Trp

(∫ 1

x−δ

vk(x
′)dx′

)
= Trp

(∫ x+δ

x−δ

vk(x
′)dx′

)
.

The above equation is same with Equation (4.11). Hence, rj+1.vk = (2δ − λk)v
j
k where

λk is defined in (4.10).

�

4.2. Construction of Smoothers for Nonlocal Problems

We start this section by reviewing some basic concepts from Briggs et al. (2000).

We consider the linear system of equation

As
BCu = f (4.12)

where BC = {a, D}. These systems have unique solutions. u always denotes the exact

solution of this system and v denotes an approximation to the exact solution. There are
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two ways to measure how well v approximates u. One is the error (or algebraic error)

which is simply

e = u− v.

Unfortunately, the error can be computed only when the exact solution is known. The

second way is to compute residual which is simply given by

r = f − As
BCv.

By the uniqueness of the solution, r = 0 if and only if e = 0. Using the definitions of r

and e, we can derive the following relation

As
BCe = r

between the error and the residual. The above equation is called residual equation. In

multigrid methods, the residual equation is very important.

We now examine the stationary relaxation schemes for our model problems (4.12).

Stationary relaxation methods are not used to approximate the solution of Fredholm sec-

ond kind systems because the system matrices are generally far from being diagonally

dominant. However, they can be used as smoothers for multigrid methods.

As in Briggs et al. (2000), we start with Jacobi relaxation. Since the matrix As
a

is diagonally constant, we continue with this. Because, this property allows us to obtain

eigenvalues of the iteration matrix, explicitly. We express the Jacobi relaxation in matrix

form. To do this, we split the matrix As
a in the following form

As
a = Da − La − Ua,

where Da corresponds to diagonal of As
a and −La and −Ua are strictly lower triangular

and upper triangular parts of As
a, respectively. With some algebraic manipulations, As

au =
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f becomes

u = D−1
a (Da − As

a)u+D−1
a f = (I −D−1

a As
a)u+D−1

a f .

We define the Jacobi iteration matrix by

Rj
a = (I −D−1

a As
a).

Then, we can define the Jacobi relaxation in matrix form as

v1 = Rj
av

0 +D−1
a f .

A slight modification of Jacobi relaxation gives weighted (damped) Jacobi relaxation in

the matrix form as

v1 = [(1− w)I + wRj
a]v

0 + wD−1
a f .

If we introduce the weighted Jacobi iteration matrix as

Rw
a = (1− w)I + wRj

a

then the method becomes

v1 = Rw
a v

0 + wD−1
a f .

Since the main diagonal of the matrix As
a consists of 2δ − h, we give the eigenvalues of

the iteration matrices Rj
a and Rw

a by
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λk(R
j
a) =

(
1− 1

2δ − h
λk(A

s
a)

)
,

λk(R
w
a ) = 1− w + wλk(R

j
a).

It follows from the Lemma 4.1.4 that ρ(Rj
a) < 1 and ρ(Rw

a ) < 1. Hence, Jacobi and

weighted Jacobi relaxations converge for 0 < w ≤ 1.

Let e0 be the initial error in the inital guess. Then, we can represent e0 in terms of

eigenvectors of As
a in the form

e0 =
n−1∑
k=1

ckvk.

The eigenvectors are also called Fourier modes. We know that after m sweeps, the error

becomes

em = (Rw
a )

me0.

From the eigenvector expansion of e0, we get

em = Rw
a e

0 =
n−1∑
k=1

ck(R
w
a )

mvk =
n−1∑
k=1

ckλ
m
k (R

w
a )vk.

Here, we note that eigenvectors of As
a are also eigenvectors for the iteration matrix Rw

a .

This expansion says that after m iterations, the kth mode of the initial error has been

reduced by a factor of λm
k (R

w
a ).

The Fourier modes in the first quarter and last quarter of the spectrum, with

wavenumbers in the ranges 1 ≤ k ≤ n−1
4

,
3(n−1)

4
< k ≤ n−1 are called low-frequency or

smooth modes. The modes at the center of the spectrum , with wavenumbers in the range

n−1
4

< k ≤ 3(n−1)
4

are called high-frequency or oscillatory modes.

Having said these, we start analyzing weighted Jacobi relaxation. We aim to find
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best choice of w. Notice that

Figure 4.1. Eigenvalues of the iteration matrix Rw
a for w = 1, 2/3, 1/2, 1/3 for n = 33

and δ = 0.25. We assume that eigenvalues are continuous in k.

Figure 4.2. Eigenvalues of the iteration matrix Rw
a for w = 1, 2/3, 1/2, 1/3 for n = 33

and δ = 0.125. We assume that eigenvalues are continuous in k.

λ1(A
s
a) = λn−1(A

s
a) =

π2δ3

6
+

π2δh2

12
+O(hδ4) +O(h4).

Since δ > h, the term π2δ3

6
dominates and λ1(A

s
a) and λn−1(A

s
a) behaves like π2δ3

6
. It

follows from these observations that for all values of w satisfying 0 < w ≤ 1, λ1(R
w
a )

and λn−1(R
w
a ) behaves like
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1− w
π2δ3

6(2δ − h)
.

We infer that δ is the determinant in these eigenvalues. Furthermore, the smaller δ and h

are, the closer λ1(R
w
a ) and λn−1(R

w
a ) are to 1. These show that eigenvalues λ1(R

w
a ) and

λn−1(R
w
a ) which are associated with smoothest modes are always close to 1. This means

that, no value of w will damp the smooth components of the error quickly. In Figure 4.1

and 4.2, we present the eigenvalues of the iteration matrix Rw
a for w = 1, 2/3, 1/2, 1/3

when δ = 0.25 and δ = 0.125, respectively.

Having observed that no value of w reduces the smooth components effectively,

we try to find values of w that reduces oscillatory modes effectively. To accomplish this,

we propose two strategies.

4.2.1. The First Strategy

In the first strategy, we just focus on the most oscillatory mode. We aim to damp

it as quickly as possible. To do so, we try to minimize the absolute value of eigenvalue of

Rw
a corresponding to the most oscillatory mode. We could do this by imposing

λn−1
2

+ 1
2
(Rw

a ) = 0.

In order to do this, we assume that λk(R
w
a ) is continuous in k. Lemma 4.2.1 leads to the

value

w = 1− h

c
= 1− h

2δ
.

Lemma 4.2.1 Assume that λk(R
w
a ) is continuous in k. Then, λn

2
(Rw

a ) = 0 implies

w = 1− h

2δ
.

Proof We have two cases. First, we assume that δ/h is an odd integer. Then,
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λn
2
(Rw

a ) = 1− w + w

(
1− 2δ + h cos

(
δπ
h

)
+ h− 2h

∑d
l=0 cos(lπ)

2δ − h

)

= 1− w + w

(
2δ − h− 2δ − h cos

(
δπ
h

)− h

2δ − h

)
= 0.

Solving for w, we get

w =
1

1 +
2h+h cos( δπ

h )
2δ−h

= 1− h

2δ
.

Now, assume that δ/h is an even integer. Then

λn
2
(Rw

a ) = 1− w + w

(
−h cos

(
δπ
h

)
2δ − h

)
= 0.

This implies that

w =
1

1 +
h cos( δπ

h )
2δ−h

= 1− h

2δ
.

�

We present the eigenvalues of Rw
a for δ = 0.5, 0.25, 0.125 when w = 1 − h

2δ

and n = 33 in Figure 4.3. The results show that the eigenvalue associated to the most

oscillatory mode is very close to 0. Beside this, eigenvalues associated to oscillatory

modes (those with n−1
4

< k ≤ 3(n−1)
4

) are also close to 0. This says that for w =

1 − h
2δ

, although smooth component of the error reduced slowly, oscillatory components

are damped rapidly for any δ satisfying 0 < δ < 1. At this point, we remind the weighted

Jacobi relaxation:

v1 = Rw
a v

0 + wD−1
a f =

(
(1− w)I + w(I −D−1

a As
a)
)
v0 + wD−1

a f .
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Figure 4.3. Eigenvalues of the iteration matrix Rw
a for δ = 0.5, 0.25, 0.125 when w =

1− h
2δ

and n = 33. We assume that eigenvalues are continuous in k.

Substituting w = 1− h
2δ

into the above equation, weighted Jacobi relaxation turns into

v1 =

(
(1− 1 +

h

2δ
)I + (1− h

2δ
)(I −D−1

a As
a)

)
v0 + (1− h

2δ
)D−1

a f

=

(
I − 1

2δ
As

a

)
v0 +

1

2δ
f .

The above iteration is nothing but Picards’ iteration. That is, for w = 1− h
2δ

, the weighted

Jacobi is equivalent to Picards’ iteration. Picards’ iteration is proposed as smoother by

Hackbusch for Fredolm second kind systems in his books Hackbusch (1985, 2016).

Now, we examine the Dirichlet matrix As
D. Notice that the main diagonal of As

D is

not constant. So, it is difficult to apply a direct method as we did for As
a. But, if we set the

diagonal matrix to DD = (2δ−h)I in the splitting As
D = DD+LD+UD, everthing works we

did for As
a. Instead, we examine Picards’ iteration because it would be interesting to show

that the eigenvalue distribution is consistent with the aim of the first strategy. Picards’

iteration is given by

v1 =

(
I − 1

2δ
As

D

)
v0 +

1

2δ
f .
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Eigenfunctions of the matrix As
D behave similarly with the eigenfunctions of the matrix

As
a. That is the modes in the range 1 ≤ k ≤ n−1

4
and

3(n−1)
4

≤ k ≤ n − 2 are smooth

modes. The modes in the range n−1
4

< k < 3(n−1)
4

are oscillatory modes.

Having said this, we define the iteration matrix by Rp
D = I − 1

2δ
As

D. It is clear that

λk(R
p
D) = 1− 1

2δ
λk(A

s
D), k = 1, 2, ..., n− 2.

The matrix As
D assumes all eigenvalues of the matrix As

a and As
p except λ1(A

s
p) = 0. From

Lemma 4.1.4, 4.1.2, it follows that

ρ(Rp
D) < 1.

This says that Picards’ iteration converges. Notice that λ1(A
s
D) behaves like π2δ3

3
and

λn−2(A
s
D) = λn−1(A

s
a) behaves like π2δ3

6
. It follows that λ1(R

p
D) behaves like 1 − π2δ2

6

and λn−2(R
p
D) behaves like 1 − π2δ2

12
. It is easy to show that λn−1

2
(As

p) = 2δ. From the

definitions of As
D, we can infer that λn−1

2
−1(A

s
D) and λn−1

2
(As

D) are close to 2δ. Hence,

λn−1
2
(Rp

D) and λn−1
2

−1(R
p
D) are close to 0. These observations show that eigenvalues as-

sociated to smooth modes are always close to 1. Eigenvalues which correspond to two

most oscillatory modes are very close to 0. We show eigenvalues of Rp
D in Figure 4.4 for

δ = 0.5, 0.25, 0.125 when n = 33. This verifies that the working principle behind Pi-

cards’ iteration is same with the idea of the first strategy. That is, Picards’ iteration focus

on the most oscillatory mode and aims to damp it effectively.

4.2.2. The Second Strategy

In this strategy, we focus on the oscillatory modes of the iteration matrix of the

weighted Jacobi relaxation. Our aim is to damp them effectively, simultaneously. Eigen-

values corresponding to oscillatory modes take place at the center of the spectrum. Actu-

ally, this is the strategy applied for 1D Poisson equation Briggs et al. (2000); Hackbusch

(1985). For this strategy, it is difficult to find a parameter for the weighted Joacobi, alge-

braicly, but we provide a way to find an optimal parameter numerically for given problem
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Figure 4.4. Eigenvalues of the iteration matrix Rp
D for δ = 0.5, 0.25, 0.125 when n =

33. We assume that eigenvalues are continuous in k.

parameters.

Assume that λk(A
s
a), λk(A

s
D), λk(R

w
a ) and λk(R

w
D ) are continuous in k. It is easy

to see that critical points of λk(R
w
a ) and λk(R

w
D ) do not change with respect to w and

are same with of λk(A
s
a) and λk(A

s
D), respectively. After this point, we continue with the

matrix As
a. Recall that modes with wavenumbers in the range n−1

4
< k ≤ 3(n−1)

4
are

oscillatory modes. Let

λ∗
k(A

s
a) = max

n−1
4

<k≤ 3(n−1)
4

{λk(A
s
a)}, λ∗∗

k (As
a) = min

n−1
4

<k≤ 3(n−1)
4

{λk(A
s
a)}.

In order to find the optimal value of w, we set λ∗
k(R

w
a ) = −λ∗∗

k (Rw
a ), i.e.,

1− w

2δ − h
λ∗
k(A

s
a) = −1 +

w

2δ − h
λ∗∗
k (As

a).

Solving the above equation for w, we get
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w =
2(2δ − h)

λ∗
k(A

s
a) + λ∗∗

k (As
a)
.

Main diagonal of the matrix As
D is not constant but if we choose DD = (2δ − h)I in the

following splitting

As
D = DD + LD + UD

where LD is lower triangular and UD is upper triangular, then everything which is done

for As
a works for As

D. We show the eigenvalues of Rw
a and Rw

D in Figure 4.5 for different

values of δ (δ = 0.5, 0.25, 0.125) when n = 33. We give the corresponding values of w

on the graphs. Graphs show that the algorithm we propose is working properly.

Figure 4.5. Eigenvalues of the iteration matrix Rw
a (above) and Rw

D (below) for δ =
0.5, 0.25, 0.125 when n = 33. We assume that eigenvalues are continuous

in k.

60



4.2.3. Numerical Test 1

Now, we are in a position to make comparisons between two strategies. We only

consider the matrix As
D. The results for As

a are similar. The smoother in the multigrid con-

text has only the purpose to enable a fast multigrid convergence. We do our comparisons

based on this fact. To carry out this, we set up the following two-grid iteration matrix and

calculate the spectral norms

RTG
D = (I − Ih2h(A

s,2h
D )−1I2hh As,h

D )Rp
D.

In the above definition, the prolongation (interpolation) operator Ih2h is the linear interpo-

lation which is given in matrix form as

Ih2h =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

1 1

2

1 1

2
. . .

1
. . .

1

2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(n−2)×(n−3)/2

and restriction operator I2hh is the transpose of the prolongation operator

I2hh =
(
Ih2h

)T
.

Coarse grid matrix As,2h
D is defined by Galerkin projection

As,2h
D = I2hh As,h

D Ih2h.
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In Table 4.1, we report spectral norms of the matrix RTG
D for varying mesh size h =

2l, l = 3, ...9. when δ = 2−2. Although as h → 0 the convergence rates for the two

strategies seem equivalent, for bigger mesh sizes convergence rates for the second strategy

are smaller. In any case, the second strategy is not worse than the first one. In Table 4.2,

we report spectral norms of the matrix RTG
D for varying mesh size h = 2−l, l = 3, ...9.

when the ratio δ/h is fixed i.e, δ/h = 2. This situation may occur when δ is very small.

In this case, for all values of h convergence rates for the second strategy are smaller than

the first one’s.

Table 4.1. Spectral norm of two-grid iteration matrix RTG
D for the two strategies for

varying h when δ = 2−2.

||RTG
D ||2 (the first strategy) ||RTG

D ||2 (the second strategy)

h = 2−3 0.5000 0.3951
h = 2−3 0.1727 0.1423
h = 2−4 0.1083 0.1054
h = 2−5 0.0603 0.0597
h = 2−6 0.0310 0.0309
h = 2−7 0.0156 0.0156
h = 2−8 0.0078 0.0078
h = 2−9 0.0039 0.0039
h = 2−10 0.0020 0.0020

Table 4.2. Spectral norm of two-grid iteration matrix RTG
D for the two strategies when

δ/h = 2.

||RTG
D ||2 (the first strategy) ||RTG

D ||2 (the second strategy)

h = 2−3 0.1549 0.1360
h = 2−3 0.1727 0.1423
h = 2−4 0.1727 0.1443
h = 2−5 0.1727 0.1450
h = 2−6 0.1729 0.1451
h = 2−7 0.1729 0.1451
h = 2−8 0.1729 0.1451
h = 2−9 0.1729 0.1451
h = 2−10 0.1729 0.1451
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4.3. Convergence Analyses

4.3.1. Two-Grid Method

We consider a grid with size h and the corresponding linear system of equations

As,h
D uh = fh.

The eigenvalues and the eigenvectors of As
D are more involved than of As

a. The analysis

we will do can be easily applied to the system As,h
a uh = fh by following the same steps.

However, due to the Toeplitz property of As
a, it may have some superiority in operation

count when applying multigrid method.

We consider the prolongation (interpolation), restriction operators and coarse grid

matrix defined before in Section 4.2.3. We give the algorithm of two-grid method in Al-

gorithm 1. We apply only one pre-smoothing step and do not apply post-smoothing.

———————————————————————————–

Step 1: Smooth As,h
D uh = fh with Picards’ iteration with one step on Ωh

to get an approximation vh to uh .

Step 2: Compute the residual rh = fh − As,h
D vh.

Step 3: Restrict the residual rh to the coarse grid Ω2h using the restriction

operator I2hh .

Step 4: Solve the coarse grid equation

As,2h
D e2h = I2hh (rh)

on Ω2h.

Step 5: Prolongate e2h to Ωh using the prolongation operator Ih2h and

update vh := vh + Ih2h(e
2h).

Algorithm 1: Two-Grid method without post-smoothing
———————————————————————————–
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4.3.2. Convergence Analysis of the Two-Grid Method

It is well known that a necessary and sufficient condition for the convergence of

the two-grid method is that spectral radius of the iteration matrix is less than 1. But, even

for simple model problems, finding the spectral radius of the iteration matrix is rather

difficult. In order to find upper bound for the spectral radius, generally norm estimates

are used. This approach may cause loss of some information and may give rough estimate

for the spectral radius.

In order to show the roles of δ and h in convergence, we aim to find eigenvalues

of the iteration matrix, explicitly. The iteration matrix is given by

RTG
D = (I − Ih2h(A

s,2h
D )−1I2hh As,h

D )Rp
D.

In the above equation, Rp
D stands for the iteration matrix of Picards’ iteration with one step.

We have already analyzed its spectral properties in Section 4.2. To find the eigenvalues of

RTG
D , we start examining the properties of the restriction and the prolongation operators

defined before. One can show that the prolongation operator satisfies

Ih2hv
2h
k = cos2(

kπ

n− 1
)vhk − sin2(

kπ

n− 1
)vhn−1

2
−k

for 1 ≤ k <
n− 1

4

and

Ih2hv
2h
k = cos2

(
(k + 1/2)π

n− 1

)
vhk − sin2

(
(k + 1/2)π

n− 1

)
vh3n−5

2
−k

for n−1
2

≤ k ≤ 3(n−1)
4

. Notice that, v2hk = −v2hn−2−k for n−1
2

≤ k ≤ 3(n−1)
4

.

The restriction operator we consider which is the transpose of the prolongation

operator has the following properties

I2hh vhk = 2 cos2(
kπ

n− 1
)v2hk for 1 ≤ k <

n− 1

2
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and

I2hh vhn−1
2

−k
= −2 sin2(

kπ

n− 1
)v2hk 1 ≤ k <

n− 1

2

in the first half of the spectrum. In the second half of the spectrum, it satisfies

I2hh vhk = 2 cos2
(
(k + 1/2)π

n− 1

)
v2hk for

n− 1

2
≤ k ≤ n− 2

and

I2hh vh3n−5
2

= −2 sin2

(
(k + 1/2)π

n− 1

)
v2hk

n− 1

2
≤ k ≤ n− 2.

As we said before, the coarse grid matrix is obtained by Galerkin projection. That is,

As,2h
D = I2hh As,h

D Ih2h.

Using this definition and properties of the restriction and prolongation operators men-

tioned above, we arrive at

As,2h
D v2hik =

(
2λk(A

s,h
D ) cos4(

kπ

n− 1
) + 2λn−1

2
−k(A

s,h
D ) sin4(

kπ

n− 1
)

)
v2hik

for 1 ≤ k < n−1
2

and

As,2h
D v2hik =

(
2λk(A

s,h
D ) cos4

(
(k + 1/2)π

n− 1

)
+ 2λ 3n−5

2
−k(A

s,h
D ) sin4

(
(k + 1/2)π

n− 1

))
v2hik

for n−1
2

≤ k ≤ n− 2. Here,

λn−1
2

−k(A
s,h
D ) = 2δ + h

sin(kπδ) sin(kπh)

2 cos2(kπh
2
)

, 1 ≤ k <
n− 1

2
(4.13)
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and

λ 3n−5
2

−k(A
s,h
D ) = 2δ + h

sin
((
k + 1

2

)
πδ

)
sin

((
k + 1

2

)
πh

)
2 cos2

(
(k+ 1

2)πh
2

) ,
n− 1

2
≤ k ≤ n− 2.

(4.14)

From the definition of λk(A
s,h
D ) in (4.10), it is easy to show (4.13) and (4.14).

The iteration matrix RTG
D is not symmetric. So, to find ρ(RTG

D ), we need the

eigenvalues of of the matrix RTGT

D RTG
D . Nevertheless, we give the eigenvectors and the

eigenvalues of the matrix RTG
D in case it may shed some light for future works. Eigenvec-

tors of the iteration matrix RTG
D are of the form

vTG
ik

= vk − vn−1
2

−k for 1 ≤ k <
n− 1

4

and

vTG
ik

= vk − v 3n−5
2

−k for
n− 1

2
≤ k ≤ 3(n− 1)

4
.

Their corresponding eigenvalues are all 0. Furthermore, we have the following eigenvec-

tors

vTG
ik

= vk + cvn−1
2

−k for 1 ≤ k ≤ n− 1

4

and

vTG
ik

= vk + cv 3n−5
2

−k for
n− 1

2
≤ k ≤ 3(n− 1)

4
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where

c =
cos2( kπ

n−1
)λk(A

s,h
D )

sin2( kπ
n−1

)λn−1
2

−k(A
s,h
D )

for 1 ≤ k ≤ n− 1

4

and

c =
cos2

(
(k+1/2)π

n−1

)
λk(A

s,h
D )

sin2
(

(k+1/2)π
n−1

)
λ 3n−5

2
−k(A

s,h
D )

for
n− 1

2
≤ k ≤ 3(n− 1)

4
.

The corresponding nonzero eigenvalues are found as

λk(R
TG
D ) = 1−

λk(A
s,h
D )λn−1

2
−k(A

s,h
D )

(
cos4( kπ

n−1
) + sin4( kπ

n−1
)
)

δλk(A
s,2h
D )

for 1 ≤ k ≤ n−1
4

and

λk(R
TG
D ) = 1−

λk(A
s,h
D )λ 3n−5

2
−k(A

s,h
D )

(
cos4

(
(k+1/2)π

n−1

)
+ sin4

(
(k+1/2)π

n−1

))
δλk(A

s,2h
D )

for n−1
2

≤ k ≤ 3(n−1)
4

. In finding the above eigenvalues, the equalities in Lemma 4.3.1

are used.

Lemma 4.3.1 The following equalities hold.

sin2

(
kπ

n− 1

)
λk(A

s,h
D ) + cos2

(
kπ

n− 1

)
λn−1

2
−k(A

s,h
D ) = 2δ,

for 1 ≤ k < n−1
2

and

sin2

(
(k + 1/2)π

n− 1

)
λk(A

s,h
D ) + cos2

(
(k + 1/2)π

n− 1

)
λ 3n−5

2
−k(A

s,h
D ) = 2δ,
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for n−1
2

≤ k ≤ n− 2.

Proof The proofs follow from the definitions of λk(A
s,h
D ), λn−1

2
−k(A

s,h
D ) and λ 3n−5

2
−k(A

s,h
D )

given in (4.10), (4.13) and (4.14), respectively.

�

Since the iteration matrix RTG
D is not symmetric, to find ρ

(
RTG

D

)
or an approxi-

mate upper bound to it, we have to find the eigenvalues of the matrix RTG,T
D RTG

D where

RTG,T
D is the transpose of the matrix RTG

D . Here, just for notational simplicity, we set

RTG,m
D = RTG,T

D RTG
D . We found that

RTG,m
D = Rp

D(I − As
DI

h
2h(A

s,2h
D )−1I2hh )(I − Ih2h(A

s,2h
D )−1I2hh As

D)R
p
D.

Eigenvectors of the matrix RTG,m
D are of the form

vTG,m
ik

= vk − vn−1
2

−k for 1 ≤ k <
n− 1

4

and

vTG,m
ik

= vk − v 3n−5
2

−k for
n− 1

2
≤ k ≤ 3(n− 1)

4
.

Their corresponding eigenvalues are all 0. Furthermore, we have the following eigenvec-

tors

vTG,m
ik

= vk + vn−1
2

−k for 1 ≤ k ≤ n− 1

4

and

vTG,m
ik

= vk + v 3n−5
2

−k for
n− 1

2
≤ k ≤ 3(n− 1)

4
.

Their corresponding eigenvalues are found as
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λk(R
TG,m
D ) =

4h2l1(k, δ, h)h1(k, δ, h)

2δ2g1(k, δ, h)
for 1 < k <

n− 1

4
(4.15)

and

λk(R
TG,m
D ) =

4h2l2(k, δ, h)h2(k, δ, h)

2δ2g2(k, δ, h)
for

n− 1

2
≤ k ≤ 3(n− 1)

4
(4.16)

where

l1(k, δ, h) =
sin4( kπ

n−1
) (λk(A

s
D)− 2δ)2

h2
, (4.17)

h1(k, δ, h) = λ2
n−1
2

−k
(As

D) sin
4(

kπ

n− 1
) + λ2

k(A
s
D) cos

4(
kπ

n− 1
), (4.18)

g1(k, δ, h) = 4

(
λn−1

2
−k(A

s
D) sin

4(
kπ

n− 1
) + λk(A

s
D) cos

4(
kπ

n− 1
)

)2

, (4.19)

l2(k, δ, h) =
sin4( (k+1/2)π

n−1
) (λk(A

s
D)− 2δ)2

h2
, (4.20)

h2(k, δ, h) = λ2
n−1
2

−k
(As

D) sin
4

(
(k + 1/2)π

n− 1

)
+ λ2

k(A
s
D) cos

4

(
(k + 1/2)π

n− 1

)
(4.21)

and

g2(k, δ, h) = 4

(
λn−1

2
−k(A

s
D) sin

4

(
(k + 1/2)π

n− 1

)
+ λk(A

s
D) cos

4

(
(k + 1/2)π

n− 1

))2

.

(4.22)

In obtaining the above eigenvalues, equalities in Lemma 4.3.1 are used. Now, we try to

find upper bounds for eigenvalues given above. We find for the eigenvalues defined in
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(4.15). Applying the same steps, the same upper bound can be found for the eigenvalues

defined in (4.16). Using Lemma 4.3.2 and Lemma 4.3.3 for δ ≥ 2h, we arrive at

λk(R
TG,m
D ) <

h2

2δ2
.

Since δ ≥ 2h, we have

ρ
(
RTG

D

)
<

h√
2δ

≤ 1

2
√
2
= 0.3536.

We have found the upper bound for δ ≥ 2h, but, our numerical tests showed that the

bound is also valid for δ = h. We see that the 2-norm is always less than 1 and strongly

depends on the ratio δ/h. The bigger the ratio δ/h is, the smaller the convergence rate

becomes. Finally, we numerically verify the upper bound we have found. In Figure 4.6,

we present ρ
(
RTG

D

)
and the upper bound h√

2δ
for various δ and h.

Lemma 4.3.2 The following inequalities hold under the assumption δ/h > 1.

g1(k, δ, h) ≥ h1(k, δ, h), for k <
n− 1

2

and

g2(k, δ, h) ≥ h2(k, δ, h), for k ≥ n− 1

2

where h1, g1, h2 and g2 are defined in (4.18), (4.19), (4.21) and (4.22), respectively.

Proof We prove for k < n−1
2

. For the case k ≥ n−1
2

, the proof follows the same way. It is

enough to show that g1(k, δ, h)− h1(k, δ, h) ≥ 0. Using trigonometric identities we get

g1(k, δ, h)− h1(k, δ, h) =
1
2
(13δ2 + 10δ2 cos(2hkπ) + δ2 cos(4hkπ)

+4δh sin(2hkπ) sin(δkπ) + δh sin(4hkπ) sin(δkπ)
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+h2 sin2(hkπ) sin2(δkπ) cos(2hkπ)).

When cos(2hkπ) = −1, cos(4hkπ) = 1. Using the fact that δ = dh, where d is a positive

integer greater than 1, we arrive at

g1(k, δ, h)− h1(k, δ, h) ≥ 1
2
(13d2h2 + d2h2 − 10d2h2 − 4dh2 − dh2 − h2)

= h2

2
(4d2 − 5d− 1) > 0.

This completes the proof.

�

Lemma 4.3.3 The following inequalities hold.

l1(k, δ, h) ≤ 1

4
for k <

n− 1

2

and

l2(k, δ, h) ≤ 1

4
for k ≥ n− 1

2
.

where l1 and l2 are defined in (4.17) and (4.20), respectively.

Proof From the definitions of l1 and l2, it is enough to show that

−1

2
≤ sin2( kπ

n−1
) (λk(A

s
D)− 2δ)

h
≤ 1

2
, k <

n− 1

2

and

−1

2
≤ sin2( (k+1/2)π

n−1
) (λk(A

s
D)− 2δ)

h
≤ 1

2
k ≥ n− 1

2
.

Doing simple algebraic manipulations in the expression of λk(A
s
D) in (4.10), the inequal-
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ities are obtained.

�

4.4. Multigrid Iteration

4.4.1. Convergence Analysis

We prove the convergence of γ-cycle for γ ≥ 2. To do this, we study the iteration

matrix. The levels of the multigrid hierarchy are numbered by 0, ..., l, where level 0 is the

finest grid. The iteration matrix of the of the multigrid γ-cycle without post-smoothing,

is given by

⎧⎪⎪⎨⎪⎪⎩
RMG

l = Rl, l = 1,

RMG
l = Rl + I l−1

l (RMG
l+1 )

γA−1
l+1I

l+1
l AlR

p, l ≥ 2

where Rl is the iteration matrix of the two-level method on level l and given by

Rl = (I − I ll+1A
−1
l+1I

l+1
l )Rp.

We will find an upper bound for the spectral radius of RMG
l by the triangle inequality, i.e.

||RMG
l ||2 ≤ ||Rl||2 + ||I l−1

l (RMG
l+1 )

γA−1
l+1I

l+1
l AlR

p||2.

We can further majorise the right hand side of the above inequality by the rule for norm

of the product of the matrices, i.e.

||RMG
l ||2 ≤ ||Rl||2 + ||I l−1

l ||2||(RMG
l+1 )||γ2 ||A−1

l+1I
l+1
l AlR

p||2. (4.23)
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One can prove that ||I ll+1||2 < 2. It is clear that ||ul+1||2 ≤ ||I ll+1ul+1||2 for all ul+1

defined on level l + 1. Using this, we can majorise the last term in (4.23) as follows;

||A−1
l+1I

l+1
l AlR

pul||2 ≤ ||I ll+1A
−1
l+1I

l+1
l AlR

pul||2

for all ul. Using the definition of an operator norm, we have

||A−1
l+1I

l+1
l AlR

p||2 ≤ ||I ll+1A
−1
l+1I

l+1
l AlR

p||2 = ||Rp −Rl||2 ≤ ||Rp||2 + ||Rl||2

We have already proved that ||Rp||2 < 1 and ||Rl||2 < h√
2δ

. Hence, we get

||A−1
l+1I

l+1
l AlR

p||2 < 1 +
h√
2δ

.

Inserting the upper bounds into the right hand side of inequality (4.23), we arrive at

||RMG
l ||2 < h√

2δ
+ 2

(
1 +

h√
2δ

)
||(RMG

l+1 )||γ2 .

The above inequality is of the recursive form

x1 =
h√
2δ

, xl <
h√
2δ

+ 2

(
1 +

h√
2δ

)
xγ
l+1, l ≥ 2. (4.24)

Every iterate of (4.24) is bounded by

xl <
γ

γ − 1

h√
2δ

< 1.

The proof of above inequality can be done by induction and available in John (2013) at

page 43. This proves the convergence of multigrid γ-cycle for γ ≥ 2.
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4.4.2. Operation Count

The work of one multigrid iteration is dominated by the multiplication of Alul. So,

we can neglect the works done by I ll+1, I
l+1
l and vector additions as stated in (Hackbusch

(1985), Section: 16.2.1.2). Hence, the total operation count is O(dn). Same result also

was stated in (Chen and Deng (2017), Sec.: 4.1) for multigrid method applied to the

original peridynamic operator.
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Figure 4.6. ρ(RTG
D ) and upper bounds for ρ(RTG

D ). In the figure above , h is set to

h = 0.0039 and in the figure below, δ is set to δ = 0.125.
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CHAPTER 5

CONCLUSION

In this thesis, the numerical solution of nonlocal problems with local boundary

conditions is considered. Particularly, we aimed to show the role of the horizon param-

eter δ in numerical solution. Instead of analyzing system matrices, we analyzed original

continuous operators and showed that they have ill-conditioning indicated by δ−2. In nu-

merical tests, we showed that the system matrices of discretized problems have the same

ill-conditioning as long as the ratio δ/h is big enough (δ ≥ 4h). These results are com-

patible with the results obtained for original peridynamic operator in Aksoylu and Unlu

(2014). So, from conditioning point of view, we can conclude that the novel operators that

satisfy local boundary conditions are not far from original peridynamic operator. With the

regularity assumption on u and f , we proved rigorously and computationally that the er-

ror of Nyström method with trapezoidal rule for Dirichlet and antiperiodic problems is

O(h2/δ2). Here, h2 comes from numerical integration that is error of trapezoidal rule and

1/δ2 comes from norm of the inverse operators. In order to decrease the error, one can

choose either higher order numerical integration or increase the ratio δ/h. We proposed

a multigrid method to approximate to the solution of the system of equations. In order

to analyze the convergence of the multigrid, we found the spectrum of system matrices

in terms of h and δ. We carried out a detailed smoother analysis and our analysis shed

some light on working principle of Picards’ iteration. We found the spectrum of iteration

matrix of two-grid without post-smoothing and thus we obtained a strict upper bound for

the spectral norm of the matrix which is h√
2δ

. That is, the bigger the ratio δ
h

is, the faster

the multigrid convergence is.

In conclusion, the horizon parameter δ plays crucial roles in numerical solutions

of nonlocal problems. The problems have ill-conditioning indicated by δ−2. The ratio δ
h

is critical to obtain more accurate and faster approximations. The bigger the ratio δ
h

is,

the closer the discrete problem is to the original continuous problem in terms of condition

number, the smaller the error is, the faster multigrid convergence is. This should be the

case for the original peridynamic problems because our novel operators are not far from

it.
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