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my colleagues Korhan ÇAKMAK, Ulaş ÖZDEMİR for valuable discussions. I would also

like to thank Assoc. Prof. Dr. Cem ÇELEBİ and Assoc. Prof. Dr. Hâldun SEVİNÇLİ to
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ness to me. And, we thank the Scientific and Technological Research Council of Turkey

TUBITAK for the support under the 1001 grant project number 116F152.

Finally, I express my deepest gratitude to my wife Elena for her constant support

and inspiration.



ABSTRACT

ELECTRONIC, MAGNETIC AND OPTICAL PROPERTIES OF

DISORDERED GRAPHENE QUANTUM DOTS

In this thesis, we theoretically investigate electronic, magnetic and optical prop-

erties of disordered graphene quantum dots. The numerical calculations are performed

using a combination of tight-binding, mean-field Hubbard and configuration interaction

methods. We focus on the effects of long-range disorder and electron-electron interactions

on the optical properties and the effects of atomic defect related short-range disorders and

electron-electron interactions on Anderson type localization and the magnetic properties

of hexagonal armchair graphene quantum dots. For the case of long-range disorder, we

show that, when the electron-hole puddles are present, tight-binding method gives a poor

description of the low-energy absorption spectra compared to meanfield and configuration

interaction calculation results. As the size of the graphene quantum dot is increased, the

universal optical conductivity limit can be observed in the absorption spectrum. When dis-

order is present, calculated absorption spectrum approaches the experimental results for

isolated monolayer of graphene sheet. On the other hand, for the case of short-range re-

lated disorder, we observe that randomly distributed defects with concentrations between

1-5% of the total number of atoms leads to electronic localization alongside magnetic

puddle-like structures. We show that localization length is not affected by magnetization

if there is an even distribution of defects between the two sublattices of the honeycomb

lattice. However, for an uneven distributions, localization is found to be significantly

enhanced.
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ÖZET

DÜZENSİZ GRAFEN KUANTUM NOKTALARININ ELEKTRONİK,

MANYETİK VE OPTİK ÖZELLİKLERİ

Bu tezde, düzensiz grafen kuantum noktalarının elektronik, manyetik ve optik

özelliklerini inceliyoruz. Nümerik hesaplar tight-binding, mean-field Hubbard ve kon-

figürasyon etkileşimi metodlarını kullanarak yapılmıştır. Grafen kuantum noktaları için,

uzun-mesafe etkili düzensizliklerin ve elektron-elektron etkileşimlerinin optik özellik-

leri üzerindeki etkisi ve atomik-boyutlu kısa mesafe etkili düzensizliklerin ve elektron-

elektron etkileşimlerinin Anderson tipi lokalizasyon ve manyetik özellikler üzerindeki

etkisine odaklanıyoruz. Uzun-mesafe etkili düzensizlikler durumu için, elektron-hole

puddlelları olduğu zaman tight-binding metodu, düşük enerjili emilim spektrumu için,

mean-field Hubbard ve konfigürasyon etkileşimi metodları ile kıyaslandığında yeterli

bir açıklama veremediğini gösteriyoruz. Grafen kuantum noktasının büyüklüğü arttıkça,

emilim spektrumunda evrensel optik iletim limiti gözlemlenebiliyor. Düzensizlikler olduğu

zaman, izole grafen tabakası için hesaplanan emilim spektrumu deneysel sonuçlarla uyumlu

hale geliyor. Diğer taraftan, kısa mesafe etkili düzensizlik durumları için, toplam atom

sayısının %1-5 oranı kadar olarak rasgele dağıtılan düzensizlik yoğunluğunun, elektronik

lokalizasyonun oluşması yanında manyetik puddle benzeri yapıların oluşmasına neden

oluyor. Eğer düzensizlikler alt örgüler arasında eşit bir şekilde dağıtılırsa lokalizasyon

uzunluğunun manyetikleşmeden etkilenmediğini gösteriyoruz. Tam tersine, eğer düzen-

sizlikler alt örgüler arasında eşit olmayan bir şekilde dağıtılırsa, lokalizasyonun daha fazla

olduğu gözlemleniyor.
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CHAPTER 1

INTRODUCTION

Throughout the history of humankind, search for functional materials have always

been hot topic and will likely continue to be in the future. Although the roles of functional

materials have been changing from stone age to smart materials age, the demands for those

materials have always been high due to needs of time eras as shown in Figure 1.1 (Gandhi

and Thompson, 1992).

Figure 1.1. Representative cartoon of evolution of human demands for functional ma-

terials in different time eras. (Source: Gandhi and Thompson, 1992).

After being studied theoretically by Wallace in 1947 and produced with mechani-

cal exfoliation by Novoselov et al. in 2004 , graphene was identified as a multi-functional

material due to its promising electrical conductivity, structural strength, thermal conduc-

tivity and striking optical characteristics (Wallace, 1947; Novoselov et al., 2004, 2005;
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Zhang et al., 2005; Rycerz et al., 2007; Lee et al., 2008; Dikin et al., 2007; Xin et al.,

2015; Mak et al., 2008; Zhang et al., 2009). Graphene, two dimensional hexagonal array

of carbon atoms (see upper left of Figure 1.2) offers variety of applications in electron-

ics, optics, medicine, construction, transportation etc. (Novoselov et al., 2012; Geim and

Novoselov, 2007; Zurutuza and Marinelli, 2014).

Figure 1.2. Graphene (upper left), stack of graphene layers (graphite, upper right),

rolled-up cylinder of graphene (carbon nano-tube, lower left) and rolled-

up ball of graphene (buckminsterfullerene, lower right). Corresponding

carbon atoms and bonds are represented by blue balls and red sticks, re-

spectively. (Source: Neto et al., 2006).

Graphene sheet can be shaped to have desired structure for a specific purpose as

can be seen in Figure 1.2 (Neto et al., 2006). On the other hand, electronic, magnetic

and optical properties of graphene can be manipulated at the nanoscale in the desired way

by controlling lateral size, shape, type of edge, doping level and the number of layers

in graphene nanostructures (Li et al., 2008; Cai et al., 2010; Treier et al., 2011; Mueller

et al., 2010; Morita et al., 2011; Wassmann et al., 2008).

Among those various graphene nanostructures, graphene quantum dots (GQDs)
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Figure 1.3. Graphene quantum dots. Carbon atoms and bonds are represented by blue

balls and sticks, respectively. Hexagonal armchair edged GQD (left) and

triangular zigzag edged GQD (right).

(see Figure 1.3) offer a possibility to simultaneously control the electronic, magnetic and

optical functionalities in a single material and are classified according to their edge char-

acter since the edges play an important role in determining physical properties of GQDs.

(Altıntaş et al., 2017; Güçlü et al., 2011; Voznyy et al., 2011; Güçlü et al., 2016; Shen

et al., 2012; Ritter and Lyding, 2009; Peng et al., 2012; Trauzettel et al., 2007; Gerardot

et al., 2008; Zarenia et al., 2011; Potasz et al., 2012; Güçlü et al., 2009, 2010; Basak

et al., 2015; Sun et al., 2015; Li et al., 2015; Ozfidan et al., 2016). In particular, GQDs

with zigzag edges (see right part of Figure 1.3) are found to exhibit unusual magnetic and

optical properties due to the presence of a degenerate band of states at the Fermi level. On

the contrary, armchair edges (see left part of Figure 1.3) do not lead to degenerate band of

states at the Fermi level, hence, can be used as small model of bulk graphene which does

not have edge states (Altıntaş et al., 2017; Güçlü et al., 2011; Voznyy et al., 2011; Güçlü

et al., 2016).

A detailed theoretical investigation of combined effects of long-range disorder

and electron-electron interactions on the optical properties of graphene quantum dots

is still lacking. Hence, we investigate theoretically electronic and optical properties

of medium and large sized hexagonal armchair GQDs to understand the role of long-

ranged disorder on the optical properties. Our main contribution involves inclusion of
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electron-electron interactions within meanfield and many-body configuration interaction

approaches. We show that the electron-electron interactions play a significant role in re-

distributing electron-hole puddles, thus strongly affecting the optical properties. We also

investigate the large size limit of the GQDs as compared to optical properties of bulk

graphene Mak et al. (2011); Lee et al. (2011); Yuan et al. (2011) and show that UOC can

be observed in GQDs with a diameter of 18 nm.

In order to find out the role of atomic defects in both the localization of electronic

states and the magnetic behavior at the nanoscale, we perform meanfield Hubbard (MFH)

calculations for medium sized graphene quantum dots (GQD). More specifically, we focus

on hexagonal shaped GQDs with armchair edges which are, unlike zigzag edges, free of

magnetized edge effects. We show that localization of electronic states can occur due to

randomly created atomic defects, together with formation of magnetic puddles.

The text of this thesis is organized as follows:

Chapter 2 briefly describes and lists methods that are used conventionally to fab-

ricate graphene nanostructures.

Chapter 3 provides with theoretical background of models that are carried out to

understand physical properties of GQDs. Band structure of bulk graphene is constructed

and second quantization method and derivation of models such as tight binding, mean-

field Hubbard and configuration interaction are discussed.

Chapter 4 gives detailed analysis about understanding absorption properties of

GQDs by using tight-binding, mean-field Hubbard and configuration methods. We de-

scribe absorption properties of graphene nanostructures and effects of charge impurities

and electron-electron interaction on the optical properties of GQDs.

Chapter 5 analyses magnetic properties of GQDs which has short-range disorders

such as hydrogenation or vacancies. We explain magnetization caused by defects and try

to understand antiferromagnetic and ferromagnetic behavior of GQDs.

Chapter 6 focuses on the effects of randomly created disorders on the localiza-

tion of electronic waves. We show that randomly created short-range disorders leads to

Anderson-type localization of electronic waves in GQDs.

Finally, Chapter 7 provides with a brief conclusion.
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CHAPTER 2

GRAPHENE NANOSTRUCTURES

In this chapter, we briefly describe and list methods including mechanical ex-

foliation, chemical vapor deposition (CVD), epitaxial graphene formation on SiC and

bottom-up fabrication that are used conventionally to fabricate graphene nanostructures.

2.1. Graphene Nanostructures Fabrication Methods

Graphene fabrication attempts dates back to almost 60 years ago when Boehm et

al. produced graphite thin film (Boehm et al., 1962).

Figure 2.1. Fabrication of graphene by using mechanical exfoliation method. A

graphite piece is sticked to a scotch tape and layers of graphite are iso-

lated by repeatedly sticking the tape to the graphite to brake the van der

Waals bond between layers. (Source: Yi and Shen, 2015).

One layer of graphite has been produced since then (Van Bommel et al., 1975;
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Boehm et al., 1986; Lu et al., 1999) and was first isolated with method of mechanical

exfoliation by scientists in 2004 (Novoselov et al., 2004).

2.1.1. Mechanical Exfoliation

Exfoliation of graphene mechanically is low cost and relatively easy method to

obtain several layers or single layer of graphene (Dresselhaus and Dresselhaus, 2002;

Shenderova et al., 2002; Novoselov et al., 2004). A graphite piece is sticked to a scotch

tape and layers of graphite are isolated by repeatedly sticking the tape to the graphite

to brake the van der Waals bond between layers, hence, one can obtain single layer of

graphite (graphene) as shown in Figure 2.1 (Yi and Shen, 2015).

2.1.2. Chemical Vapor Deposition

Chemical vapor deposition has also been a common method to produce single or

several layers of graphene (Johansson et al., 1994; Reina et al., 2008; Wei et al., 2009; Li

et al., 2011).

Figure 2.2. Graphene fabrication by using CVD. Carbon atoms are precipitated on Ni

to produce desired layer of graphene. (Source: Gomez De Arco et al.,
2010).

Firstly, a transition metal such as Ni is evaporated on SiO2/Si substrate area which

is patterned by electron beam lithography (Reina et al., 2008). After annealing of Ni,
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Figure 2.3. It is possible to fabricate graphene quantum dots having width size 8 nm

fabricated by using CVD. (Source: Subramaniam et al., 2012).

hydrocarbons are introduced in ultra high vacuum (UHV) ambient and carbon atoms are

precipitated on Ni to produce desired layer of graphene. Then, graphene is transferred

from substrate with the help of poly(methyl methacrylate) (PMMA) to a targeted substrate

in order to be used in a specific manner(Gomez De Arco et al., 2010) as shown in Figure

2.2.

Figure 2.4. Graphene fabrication on SiC. One can produce single layer of graphene

and then apply epitaxial methods to fabricate desired device to be charac-

terized. (Source: Zaretski and Lipomi, 2015).

By using CVD, it is also possible to fabricate graphene quantum dots having width

size � 10 nm as shown in Figure 2.3 (Gomez De Arco et al., 2010; Subramaniam et al.,

2012).

2.1.3. Graphene Formation on SiC

Graphene formation on SiC is a commonly applied technique to produce single

layer of graphene (Kusdemir et al., 2015; Zaretski and Lipomi, 2015; Hass et al., 2008;
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Wu et al., 2009; Emtsev et al., 2009; Berger et al., 2004, 2006). SiC substrate is heated

to a temperature which brakes bonding of Si and C atoms and leads to desorption of Si

atoms from the surface by leaving surface for C atoms to rebond on surface as shown

in Figure 2.4 (Zaretski and Lipomi, 2015). By using this method, one can produce sin-

gle layer of graphene and then apply epitaxial methods to fabricate desired device to be

characterized (Kusdemir et al., 2015).

2.1.4. Bottom-up Fabrication Method of Graphene Quantum Dots

Apart from top-down fabrication, graphene nano-structures can be produced by

so called bottom-up method (Liu et al., 2011; Dong et al., 2012; Cai et al., 2010; Talirz

et al., 2013; Cai et al., 2014).

Figure 2.5. Bottom-up fabrication procedure of graphene quantum dots. Process relies

on chemically directed reactions with the help of precursors and atomically

precious structures can be built. (Source: Dong et al., 2012).

This fabrication process relies on chemically directed reactions with the help of

precursors and atomically precious structures can be built as shown in Figure 2.5 (Dong
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et al., 2012). In this procedure, citric acid gets decomposed through being heated to a

high temperature of 200 ◦C with introduction of carboxylic acid (COOH) which leads to

formation of GQDs and graphene oxides (GO) when exposed to incomplete and complete

carbonizations, respectively (Dong et al., 2012).
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CHAPTER 3

THEORETICAL MODELS

In this chapter, we start with obtaining band structure of bulk graphene by using pz

orbitals residing on honeycomb lattice structure. In order to get familiarized with notation

used in theoretical models for GQDs, we briefly describe second quantization method and

show derivation of models such as tight binding, mean-field Hubbard and configuration

interaction.

3.1. Graphene’s Electronic Band Structure

A carbon atom has 6 electrons and electronic configuration of ground state energy

level as 1s22s22p2, hence, it is expected to have one type of bonding due to its electronic

configuration.

Figure 3.1. Schematic of sp2 bonding of Carbon atoms. A small portion of graphene

bulk structure (left side of figure) and corresponding sp2 bonding (right

side of figure). pz orbitals pictured by red cones.

However, carbon atoms form different type bondings due to hybrid orbitals such

as sp, sp2 and sp3 when they are brought together under certain conditions (Pauling, 1941;
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Figure 3.2. a) Real and b) reciprocal lattice space structure of graphene. a) Carbon

atoms belonging to two different sublattices labeled by letter A (red ball)

and B (blue ball). a1 and a2 represent unit cell vectors and b represents

distance vector between two Carbon atoms. b) b1 and b2 represent recip-

rocal lattice vectors and corresponding symmetry points in Brillouin zone

(shaded area) are labeled by Γ, K and M.

McFeely et al., 1974; Muller et al., 1993; Gilkes et al., 1997, 2000; Jin et al., 2009). One

electron can be promoted from 2s2 to 2p orbital and leads to electronic configuration of

1s22s12p1x2p
1
y2p

1
z. Graphene obtains its honey-comb crystal structure (see Figure 3.1) and

mechanical stability when Carbon atoms bond in hybrid sp2 orbital configuration which

is an admixture of 2s, 2px and 2py orbitals. On the other hand, 2pz orbitals, which are

perpendicular to graphene sheet, are mainly responsible for electronic, optic and magnetic

properties of graphene (Wallace, 1947; Novoselov et al., 2004, 2005; Zhang et al., 2005;

Rycerz et al., 2007; Lee et al., 2008; Dikin et al., 2007; Xin et al., 2015; Mak et al., 2008;

Zhang et al., 2009) as can be seen in Figure 3.1.

Graphene honeycomb crystal structure can be build up by triangular Bravais lattice

consists of two basis atoms labeled A and B as shown in Figure 3.2. Primitive unit cell

can be constructed by vectors a1 and a2. One can form all graphene lattice points by

taking integer multiple of unit vectors with basis atoms located at (0, 0) and (0, b) where

b=1.42 Å is the distance between two carbon atoms.
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We define primitive vectors for real space lattice as:

a1 = a

(√
3

2
,
1

2

)
(3.1)

a2 = a

(
−√

3

2
,
1

2

)
(3.2)

where a =
√
3b is the real space lattice constant and corresponding reciprocal space lattice

vectors are:

b1 = ar

(
1

2
,

√
3

2

)
(3.3)

b2 = ar

(
1

2
,
−√

3

2

)
(3.4)

where reciprocal space lattice constant ar = 4π/a
√
3 and relation between two spaces is

ai · bj = 2πδij .

Position vectors for A-type and B-type atoms are defined as:

RA = la1 +ma2 + b (3.5)

RB = la1 +ma2 (3.6)

where l and m are integers.

The state of an electron ΨA,B(k, r) on sublattice A,B can be written as a linear

combination of pz orbital wave function’s ψz(r−RA,B) which are localized on the related

sublattice site as:

ΨA(k, r) =
1√
Ncell

∑
RA

ψz(r−RA)e
ik·RA (3.7)

ΨB(k, r) =
1√
Ncell

∑
RB

ψz(r−RB)e
ik·RB (3.8)

where Ncell represents the number of unit cell in the structure.

Total state function of electron can be written as a linear combination of state in

sublattice A and B:

Ψ(k, r) = cAkΨ
A(k, r) + cBkΨ

B(k, r) (3.9)

and Hamiltonian of this state function:
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H =
p2

2m
+
∑
RA

U(r−RA) +
∑
RB

U(r−RB) (3.10)

where U(r − RA,B) are atomic potentials centered at RA,B. Then, Hamiltonian H(k)

matrix in the basis of ΨA,B(k, r) can be expressed as:

H(k) =

[
< ΨA(k, r) | H | ΨA(k, r) > < ΨA(k, r) | H | ΨB(k, r) >

< ΨB(k, r) | H | ΨA(k, r) > < ΨB(k, r) | H | ΨB(k, r) >

]
(3.11)

and we assume that ΨA(k, r) and ΨB(k, r) are orthogonal. As a next step, we need to

diagonalize 2x2 Hamiltonian matrix and find eigenvalue and eigenvectors. We will make

nearest neighbor approximation, hence, neglect next neighbor and further neighbor atomic

orbital interactions.

We write first matrix element as:

< ΨA(k, r) | H | ΨA(k, r) >=

1√
Ncell

∑
RA,RA′ ,RB

< ψz(r−RA′) | H(k) | ψz(r−RA) > eik·(RA−RA′ )

=
1√
Ncell

∑
RA,RA′

{< ψz(r−RA′) | p2

2m
+ U(r−RA) | ψz(r−RA) >

+ < ψz(r−RA′) | p2

2m
+
∑
RB

U(r−RB) | ψz(r−RA) >}eik·(RA−RA′ ) (3.12)

and additionally, equation for sub lattice A as:

(
p2

2m
+
∑
RA

U(r−RA)

)
| ψz(r−RA) >= εA | ψz(r−RA) > . (3.13)

We take εA = 0 and < ψz(r−RA′) | ψz(r−RA) >= 0.

Then, we obtain < ΨA(k, r) | H | ΨA(k, r) >= 0. Similarly, other matrix element

< ΨB(k, r) | H | ΨB(k, r) >= 0. We write off-diagonal matrix element as:

< ΨB(k, r) | H | ΨA(k, r) >=

1√
Ncell

∑
RA,RB′ ,RB

< ψz(r−RB) | U(r−RB′) | ψz(r−RA) > eik·(RA−RB) (3.14)

by neglecting RA = RB and taking RB = RB′ , we get:

< ΨB(k, r) | H | ΨA(k, r) >=

1√
Ncell

∑
<RA,RB>

< ψz(r−RB) | U(r−RB′) | ψz(r−RA) > eik·(RA−RB). (3.15)
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Figure 3.3. Band structure of graphene. Zoomed zero energy level shows that

graphene is a gap-less semi metal.

We define nearest neighbor hopping parameter t as:

t =< ψz(r−RB) | U(r−RB′) | ψz(r−RA) > . (3.16)

Then, we obtain

< ΨB(k, r) | H | ΨA(k, r) >= t
(
eik·b + eik·(b−a1) + eik·(b−a2)

)
(3.17)

and

< ΨA(k, r) | H | ΨB(k, r) >= t
(
e−ik·b + e−ik·(b−a1) + e−ik·(b−a2)

)
. (3.18)

By also defining:

f(k) = e−ik·b + e−ik·(b−a1) + e−ik·(b−a2), (3.19)

we get eigenvalue and vector equation for H(k) as:[
0 tf(k)

tf ∗(k) 0

][
cAk

cBk

]
= E(k)

[
cAk

cBk

]
. (3.20)

By solving this matrix equation, we get energy eigenvalues as:

E±(k) = ∓t|f(k)|. (3.21)
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We can write energy values explicitly as:

E±(kx, ky) = ∓
√

1 + 4cos2(kya/2) + 4cos(
√
3kxa/2)cos(kya/2). (3.22)

and obtain electronic band of graphene as shown in the Figure 3.3. Band structure of

graphene shows us that graphene is a gap-less semi metal at the Dirac points (zero energy

level) which are located at symmetric K points (see Figure 3.2b).

3.2. Second Quantization

By using second quantization formalism, one only works with algebraic manipu-

lation of quantum mechanical operators instead of working with complicated properties

of determinants made up of orbitals (Doi, 1976; Runge et al., 1991; Berazin, 2012; Sz-

abo and Ostlund, 2012). We start with generic orbitals associated with annihilation a and

creation a† operators. We define a slater determinant acted upon by a†l as:

a†l | φm, · · · , φz >=| φlφm, · · · , φz > . (3.23)

where a†l creates an electron in the orbital φl. Order of acting of creation operators are

important. For example, we can write:

a†ka
†
l | φm, · · · , φz > = a†k | φlφm, · · · , φz >

=| φkφlφm, · · · , φz > (3.24)

and by changing the order we obtain:

a†la
†
k | φm, · · · , φz > = a†l | φkφm, · · · , φz >

=| φlφkφm, · · · , φz >

= − | φkφlφm, · · · , φz > (3.25)

where Slater determinant alters the sign when order of its components changes. By adding

equations ( 3.24) and ( 3.25), we get:

(a†ka
†
l + a†la

†
k) | φm, · · · , φz >= 0. (3.26)

Since we have used an arbitrary determinant | φm, · · · , φz >, we have verified creation

operator relations as:

a†ka
†
l + a†la

†
k = {a†k, a†l} = 0 (3.27)
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We can take k = l and get :

a†la
†
l = −a†la

†
l

= 0 (3.28)

which means that two electrons can not occupy the same orbital. Hence, when we choose

two electrons to occupy two arbitrary orbitals φm and φn and try to create two electrons

occupying φl orbital, we obtain null state as:

a†la
†
l | φmφn > = a†l | φlφmφn >

=| φlφlφmφn >

= 0 (3.29)

In general terms,

a†l | φl, · · · , φz >= 0 (3.30)

if l ∈ {l, · · · , z} which claims that no more than one electron can be created in the same

orbital. It is a manifestation of Pauli exclusion principle in second quantized form.

On the other hand, annihilation operator al which is defined as adjoint of the cre-

ation operator a†l acts on state vector or Slater determinant (Slater, 1929) as:

al | φlφm, · · · , φz >=| φm, · · · , φz > . (3.31)

and annihilate an electron in orbital φl. By following similar procedure of creation op-

erator and taking adjoint of equation ( 3.27), we obtain anti-commutation relation for

annihilation operators as:

akal + alak = {ak, al}
= 0. (3.32)

We also define a condition such that an electron can not be removed from orbital in which

it is not available, that is,

al | φm, · · · , φz >= 0. (3.33)

if l /∈ {m, · · · , z}. In order to obtain anti-commutation relation of creation and annihila-

tion operator, we write:

(ala
†
l + a†lal) | φm, · · · , φz > = ala

†
l | φm, · · · , φz >

= al | φlφm, · · · , φz >

=| φm, · · · , φz > . (3.34)

16



where we have assumed that determinant | φm, · · · , φz > did not include an electron in

orbital φl.

On the contrary, we can define Slater determinant which includes an electron in

orbital φl and write equation as:

(ala
†
l + a†lal) | φlφm, · · · , φz > = a†lal | φm, · · · , φz >

= al | φlφm, · · · , φz >

=| φm, · · · , φz > . (3.35)

and we obtain anti-commutation relation relation of creation and annihilation operator for

both case as:

ala
†
l + a†lal = {al, a†l}

= 1. (3.36)

To generalize anti-commutation relation, we write condition when k ∈ {k,m, · · · , z}
and l /∈ {k,m, · · · , z} as:

(aka
†
l + a†lak) | φkφm, · · · , φz > = −(aka

†
l + a†lak) | φmφk, · · · , φz >

= −ak | φlφkφm, · · · , φz > −a†l | φm, · · · , φz >

= ak | φkφlφm, · · · , φz > − | φlφm, · · · , φz >

=| φlφm, · · · , φz > − | φlφm, · · · , φz >

= 0 (3.37)

where we have used | φkφlφm, · · · , φz >= − | φlφkφm, · · · , φz > property. Hence, we

obtain:

(aka
†
l + a†lak) = {ak, a†l}

= 0 (3.38)

when k �= l. Finally, we can generalize anti-commutation relation by combining equations

( 3.36) and ( 3.38) as:

{ak, a†l} = δkl (3.39)

After defining creation a† and annihilation a operators with corresponding anti-

commutation relations, we are ready to create generic operators such as one electron Op1

and coulomb repulsion operator Op2 with corresponding matrix elements as:

Op1 =
∑
k,l

< k | t | l > a†kal (3.40)
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Op2 =
1

2

∑
k,l,m,n

< kl | V | mn > a†ka
†
laman (3.41)

where < k | t | l > and < kl | V | mn > are matrix elements.

To see the effect of generic operators on an arbitrary wave function and express

simplicity of second quantization method, we use Hartree-Fock ground state wave func-

tion | ΨGS > (Hartree, 1928; Fock, 1930) as:

< ΨGS | Op1 | ΨGS >=
∑
k,l

< k | t | l >< ΨGS | a†kal | ΨGS > (3.42)

and by using anti-commutation relation, we can write:

< ΨGS | a†kal | ΨGS >= δkl < ΨGS | ΨGS > − < ΨGS | ala†k | ΨGS > (3.43)

second term is zero since an electron can not be created twice in the same orbital and we

are left with only first term which is equal to δkl. We can write final expression as:

< ΨGS | Op1 | ΨGS > =
∑
k,l

< k | t | l > δkl

=
∑
k

< k | t | k > . (3.44)

For the case of two electron operator, we can proceed as:

< ΨGS | Op2 | ΨGS >=
1

2

∑
k,l,m,n

< kl | V | mn >< ΨGS | a†ka†laman | ΨGS > (3.45)

and using anti-commutation relation and changing the order of creation and annihilation

operators, we obtain:

< ΨGS | a†ka†laman | ΨGS >=

δln < ΨGS | a†ka†m | ΨGS > − < ΨGS | a†kana†lam | ΨGS >

= δlnδkm < ΨGS | ΨGS > −δln < ΨGS | ama†k | ΨGS >

− δlm < ΨGS | a†kan | ΨGS > + < ΨGS | a†kanama†l | ΨGS >= δlnδkm − δlmδkn

(3.46)

and we get:

< ΨGS | Op2 | ΨGS >=
1

2

∑
k,l

[< kl | V | kl > − < kl | V | lk >] (3.47)
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3.3. Mean-Field Hubbard Model

Armed with second quantization technique, we can proceed to construct mean-

field Hubbard model. We will start with general many-body Hamiltonian which includes

one and two electron operator as:

H =
∑
pq

< p | t | q > a†paq +
1

2

∑
pqrs

< pq | V | rs > a†pa
†
qaras. (3.48)

By using general Hamiltonian above, we can write new Hamiltonian in order to show

spin degrees explicitly. We will change indices as p = (kσ1), q = (lσ2), r = (mσ3) and

s = (nσ4) where σi’s indicate spin degrees. Then, we can rewrite matrix elements as:

tpq =< p | t | q >
=< kσ1 | t | lσ2 >

=< k | t | l >< σ1 | σ2 > here, t is assumed to be spin-free

=< k | t | l > δσ1σ2

=< k | t | l >= tkl (3.49)

and

< pq | V | rs > =< kσ1lσ2 | V | mσ3nσ4 >

=< kl | V | mn >< σ1 | σ4 >< σ2 | σ3 > here, V is spin-free

=< kl | V | mn > δσ1σ4δσ2σ3

=< kl | V | mn > . (3.50)

Finally, our general Hamiltonian which is including spin explicitly can be written as:

H =
∑
klσ

tkla
†
kσalσ +

1

2

∑
klmn,σσ′

< kl | V | mn > a†kσa
†
lσ′amσ′anσ. (3.51)

In order to continue our derivation to mean-field Hubbard, we will try to keep

specific terms of 2 electron operator such as < kk | V | kk >= U and < lk | V | kl >=

Vkl and neglect other terms. Hence, we write:

U

2

∑
k,σσ′

a†kσa
†
kσ′akσ′akσ =

1

2

∑
k,σσ′

< kk | V | kk > a†kσa
†
kσ′akσ′akσ (3.52)

and then, by using anti-commutation relations and defining number operator nkσ = a†kσakσ,
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we can rearrange the terms in eqn. (3.52) as:

U

2

∑
k,σσ′

[a†kσa
†
kσ′akσ′akσ] =

U

2

∑
k,σσ′

[a†kσa
†
kσ′(−akσakσ′)]

=
U

2

∑
k,σσ′

[−a†kσ(δσσ′ − akσa
†
kσ′)akσ′ ]

=
U

2

∑
k,σσ′

[−a†kσakσ′δσσ′ + a†kσakσa
†
kσ′akσ′ ]

=
U

2

∑
k,σσ′

[−a†kσakσ + a†kσakσa
†
kσ′akσ′ ]

=
U

2

∑
k,σσ′

[a†kσakσ(−1 + a†kσ′akσ′)]

=
U

2

∑
k,σ′

[nk↑(nkσ′ − 1) + nk↓(nkσ′ − 1)]

=
U

2

∑
k

[nk↑(nk↑ + nk↓ − 1) + nk↓(nk↑ + nk↓ − 1)]

=
U

2

∑
k

[nk↑(nk↑ − 1) + nk↓(nk↓ − 1) + nk↑nk↓ + nk↓nk↑]

=
U

2

∑
k,σ

nkσnkσ̄ where σ̄ refers to opposite spin (3.53)

and 1
2

∑
kl,σσ′

< lk | V | kl > a†kσa
†
lσ′alσ′akσ can be rearranged as:

1

2

∑
kl,σσ′

< lk | V | kl > a†kσa
†
lσ′alσ′akσ =

1

2

∑
kl,σσ′

Vkla
†
kσa

†
lσ′(−akσalσ′)

=
1

2

∑
kl,σσ′

Vkla
†
kσakσa

†
lσ′alσ =

1

2

∑
kl,σσ′

Vklnkσnlσ′ . (3.54)

and we rewrite eqn. ( 3.51) as:

H =

Hubbard model︷ ︸︸ ︷∑
klσ

tkla
†
kσalσ +

U

2

∑
k,σ

nkσnkσ̄ +
1

2

∑
kl,σσ′

Vklnkσnlσ′

︸ ︷︷ ︸
Extended Hubbard model

. (3.55)

We can continue by using nkσ = nk↑ + nk↓ and nk↑nk↓ | >= nk↓nk↑ | > as:

U

2

∑
k,σ

nkσnkσ̄ =
U

2

∑
k,σ

(nk↑nk↓ + nk↓nk↑)

=
U

2

∑
k

2(nk↑nk↓)

= U
∑
k

nk↑nk↓ (3.56)
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and

1

2

∑
kl,σσ′

Vklnkσnlσ′ =
1

2

∑
kl

Vkl[nk↑nl↑ + nk↓nl↓ + nk↑nl↓ + nk↓nl↑]

=
1

2

∑
kl

Vkl[nk↑(nl↑ + nk↓) + nk↓(nl↑ + nk↓)]

=
1

2

∑
kl

Vkl[(nk↑ + nk↓)(nl↑ + nl↓)]

=
1

2

∑
kl

Vklnknl (3.57)

and we rewrite eqn. ( 3.55) as:

H =
∑
klσ

tkla
†
kσalσ + U

∑
k

nk↑nk↓ +
1

2

∑
kl
k �=l

Vklnknl (3.58)

Afterwards, we take nk↑ =< nk↑ > +(nk↑− < nk↑ >) and assume Δnkσ = (nkσ− <

nkσ >) is negligibly small and rewrite each term of eqn. ( 3.58) as:

U
∑
k

nk↑nk↓ = U
∑
k

(< nk↑ > +Δnk↓)(< nk↓ > +Δnk↓)

= U
∑
k

[< nk↑ >< nk↓ >

+ < nk↑ > Δnk↓+ < nk↓ > Δnk↑ +Δnk↑Δnk↓]

= U
∑
k

[< nk↑ >< nk↓ >

+ < nk↑ > nk↓− < nk↑ >< nk↓ > + < nk↓ > nk↑ −< nk↑ >< nk↓ >]

= U
∑
k

[< nk↑ > nk↓+ < nk↓ > nk↑− < nk↑ >< nk↓ >] (3.59)

and

1

2

∑
kl
k �=l

Vklnknl =
1

2

∑
kl
k �=l

Vkl(< nk > +Δnk)(< nl > +Δnl)

=
1

2

∑
kl
k �=l

Vkl[< nk >< nl > + < nk > Δnl+ < nl > Δnk +ΔnkΔnl]

=
1

2

∑
kl
k �=l

Vkl[< nk >< nl >+ < nk > nl− < nk >< nl > + < nl > nk

−< nl >< nk >]

=
1

2

∑
kl
k �=l

Vkl[< nk > nl+ < nl > nk− < nk >< nl >] (3.60)
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and we rewrite eqn. (3.58) as:

H =
∑
klσ

tkla
†
kσalσ

+ U
∑
k

[< nk↑ > nk↓+ < nk↓ > nk↑− < nk↑ >< nk↓ >]

+
1

2

∑
kl
k �=l

Vkl[< nk > nl+ < nl > nk− < nk >< nl >]. (3.61)

Before proceeding to mean-field Hamiltonian, we need to make some assumptions with

charge and spin densities as < nk >= 1 and < nkσ >= 1/2, respectively. Hence, eqn.

( 3.61) can be rewritten with this assumptions as:

Hb
MF =

∑
klσ

tkla
†
kσalσ + U

∑
k

[
nk↓
2

+
nk↑
2

− 1

4
] +

1

2

∑
kl
k �=l

Vkl[nl + nk − 1] (3.62)

and we write:

H = H +Hb
MF −Hb

MF

=
∑
klσ

tkla
†
kσalσ + U

∑
k

[< nk↑ > nk↓+ < nk↓ > nk↑− < nk↑ >< nk↓ >]

+
1

2

∑
kl
k �=l

Vkl[< nk > nl+ < nl > nk− < nk >< nl >]

+
∑
klσ

tkla
†
kσalσ + U

∑
k

[
nk↓
2

+
nk↑
2

− 1

4
] +

1

2

∑
kl
k �=l

Vkl[nl + nk − 1]

−
∑
klσ

tkla
†
kσalσ − U

∑
k

[
nk↓
2

+
nk↑
2

− 1

4
]− 1

2

∑
kl
k �=l

Vkl[nl + nk − 1]. (3.63)

After rearranging eqn. ( 3.63), we get:

H =
∑
klσ

t′kla
†
kσalσ + U

∑
k,σ

[(< nkσ > −1

2
)nkσ̄] +

∑
kl,σ
k �=l

Vkl[(< nk > −1)nlσ] +K

(3.64)

where t′ =
∑
klσ

tkla
†
kσalσ+U

∑
k

[
nk↓
2
+

nk↑
2
]+ 1

2

∑
kl
k �=l

Vkl[nl+nk] and K = −U
∑
k

[< nk↑ ><

nk↓ >] − 1
2

∑
kl
k �=l

Vkl[< nl >< nk >]. From now on we will rewrite t′ as t which is a

conventional notation for hopping parameter in the literature and we will neglect constant

term K which has no effect on Hamiltonian. Hence, we can write our mean-field Hubbard

Hamiltonian as:

HMF =
∑
klσ

tkla
†
kσalσ + U

∑
k,σ

[(< nkσ > −1

2
)nkσ̄] +

∑
kl,σ
k �=l

Vkl[(< nk > −1)nlσ]. (3.65)
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HMF is a single-body Hamiltonian which is computationally much more easy to deal with

compared to many-body Hamiltonian in eqn. (3.48).

3.4. Configuration Interaction Method

The many-body Hamiltonian written in eqn. (3.48) can not be solved for more

than several particles and orbitals due to computational limits. Hence, we have made

mean-field approximation to convert eqn. (3.48) into computable structure. By doing

mean-field approximation, however, one ignores exchange-correlation effects of particles.

We use many-body configuration interaction method in order to include all interaction of

different configurations (see Figure 3.4) while studying optical transitions. We start with

defining Hamiltonian which includes several parts as :

HMB = H0 −HHF
MF +Hint (3.66)

where H0 is Hartree-Fock (HF) self energy, HHF
MF is HF mean-field interaction and Hint

represents full interaction. HF self energy Hamiltonian is defined as:

H0 =
∑
pσ

εpa
†
pσapσ +

∑
p′σ

εp′a
†
p′σap′σ (3.67)

and HF mean-field interaction Hamiltonian as:

HHF
MF =

∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ

+
∑
p′qs′
σσ′

{< p′q | V | qs′ > −δσσ′ < p′q | V | s′q >}a†p′σas′σ (3.68)

and full interaction Hamiltonian as:

Hint =
1

2

∑
pqrs
σσ′

< pq | V | rs > a†pσa
†
qσ′arσ′asσ

+
1

2

∑
p′q′r′s′
σσ′

< p′q′ | V | r′s′ > a†p′σa
†
q′σ′ar′σ′as′σ

+
∑
pq′r′s
σσ′

{< pq′ | V | r′s > −δσσ′ < pq′ | V | sr′ >}a†pσa†q′σ′ar′σ′asσ (3.69)

where p− p′ interaction have been neglected due to the gap between valance and conduc-

tion band. Additionally, one can rewrite eqn. (3.66) as:

HMB = H0 +Hee +Hhh +Heh (3.70)
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where Hee, Hhh and Heh are electron-electron, hole-hole and electron-hole interaction

terms, respectively. Hence, Hee, Hhh and Heh are defined as:

Hee =
1

2

∑
p′q′r′s′
σσ′

< p′q′ | V | r′s′ > a†p′σa
†
q′σ′ar′σ′as′σ, (3.71)

Hhh =
1

2

∑
pqrs
σσ′

< pq | V | rs > a†pσa
†
qσ′arσ′asσ

−
∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ (3.72)

and

Heh =
∑
pq′r′s
σσ′

{< pq′ | V | r′s > −δσσ′ < pq′ | V | sr′ >}a†pσa†q′σ′ar′σ′asσ

−
∑
p′qs′
σσ′

{< p′q | V | qs′ > −δσσ′ < p′q | V | s′q >}a†p′σas′σ. (3.73)

By using anti-commutation relations, one can rewrite eqn. ( 3.72) as:

Hhh =
1

2

∑
pqrs
σσ′

< pq | V | rs > a†pσ(δqr − arσ′a†qσ′)asσ

−
∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ

=
1

2

∑
pqs
σσ′

< pq | V | qs > a†pσasσ

− 1

2

∑
pqrs
σσ′

< pq | V | rs > (δprδσσ′ − arσ′a†pσ)(δqsδσσ′ − asσa
†
qσ′)

−
∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ

=
1

2

∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ + constants

− 1

2

∑
pqrs
σσ′

< pq | V | rs > arσ′a†pσasσ′a†qσ′ +
1

2

∑
pqrs
σσ′

< pq | V | rq > arσ′a†pσδσσ′

−
∑
pqs
σσ′

{< pq | V | qs > −δσσ′ < pq | V | sq >}a†pσasσ (3.74)

and ignoring the constant term, we get:

Hhh =
1

2

∑
pqrs
σσ′

< pq | V | rs > arσ′asσa
†
pσa

†
qσ′ . (3.75)
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If we reorganize indicies and using hole representation hpσ̄ = a†pσ, the eqn. ( 3.75) be-

comes:

Hhh =
1

2

∑
pqrs
σσ′

< pq | V | rs > h†
rσ′h

†
sσhpσhqσ′ . (3.76)

On the other hand, electron-hole interaction Hamiltonian can be rewritten as:

Figure 3.4. Cartoon of different configurations of excitation of particles to various

molecular orbital levels. Primed states corresponds to conduction states

and unprimed states corresponds to valance states.

Heh =
∑
pq′r′s
σσ′

{< pq′ | V | r′s > −δσσ′ < pq′ | V | sr′ >}a†pσa†q′σ′ar′σ′asσ

−
∑
p′qs′
σσ′

{< p′q | V | qs′ > −δσσ′ < p′q | V | s′q >}a†p′σas′σ

=
∑
p′qs′
σσ′

{< p′q | V | qs′ > −δσσ′ < p′q | V | s′q >}a†p′σas′σ

−
∑
pq′r′s
σσ′

{< pq′ | V | r′s > −δσσ′ < pq′ | V | sr′ >}a†q′σasσ′a†pσ′ar′σ

−
∑
p′qs′
σσ′

{< p′q | V | qs′ > −δσσ′ < p′q | V | s′q >}a†p′σas′σ (3.77)
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and switching to hole representation as:

Heh = −
∑
p′qrs′
σσ′

{< rp′ | V | s′q > −δσσ′ < rp′ | V | qs′ >}a†p′σh†
qσ̄′hrσ̄′as′σ (3.78)

and reorganizing all terms, one get final electron-hole interaction Hamiltonian as:

Heh = −
∑
p′qrs′
σσ′

{< rp′ | V | s′q > −(1− δσσ′) < rp′ | V | qs′ >}a†p′σh†
qσ′hrσ′as′σ

+
∑

p′,q,r,s′
σ,σ̄

< rp′ | V | qs′ > a†p′σ̄h
†
qσhrσ̄as′σ. (3.79)

Lastly, eqn. ( 3.66) can be rewritten as:

HMB =
∑
pσ

εp +
∑
p′σ

εp′a
†
p′σap′σ −

∑
pσ

εph
†
pσhpσ

+
1

2

∑
p′q′r′s′
σσ′

< p′q′ | V | r′s′ > a†p′σa
†
q′σ′ar′σ′as′σ

+
1

2

∑
pqrs
σσ′

< pq | V | rs > h†
rσ′h

†
sσhpσhqσ′

−
∑
p′qrs′
σσ′

{< rp′ | V | s′q > −(1− δσσ′) < rp′ | V | qs′ >}a†p′σh†
qσ′hrσ′as′σ

+
∑

p′,q,r,s′
σ,σ̄

< rp′ | V | qs′ > a†p′σ̄h
†
qσhrσ̄as′σ. (3.80)

where first term is vacuum energy, second and third terms are electron and hole self ener-

gies, fourth and fifth terms are electron-electron and hole-hole interaction terms, respec-

tively, and sixth and seventh terms are electron-hole interaction terms.

After defining each component of MFH and CI Hamiltonian, one can continue to

calculate corresponding matrix elements of one particle or two particle operators. As an

example, we show matrix element calculation for the sixth term of CI Hamiltonian which

has components as:

∑
p′qrs′
σσ′

{< rp′ | V | s′q > −(1− δσσ′) < rp′ | V | qs′ >}a†p′σh†
qσ′hrσ′as′σ. (3.81)

We define two particle state | μ′
σνσ > where μ′

σ and νσ represents spin orbitals of

electron and hole, respectively. Then, corresponding matrix elements of eqn. (3.81) can
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<kl | V | mn> E (eV)
<11 | V | 11> 16.522
<12 | V | 21> 8.640
<13 | V | 31> 5.333
<11 | V | 12> 3.157
<12 | V | 31> 1.735
<12 | V | 12> 0.873
<11 | V | 22> 0.873
<22 | V | 13> 0.606

Table 3.1. Calculated matrix elements between electrons which resides on the corre-

sponding lattice sites in graphene. Indicated numbers 1,2 and 3 refers to

electrons on-sites, first nearest-neighbours and second nearest-neighbours,

respectively.

be obtained as: ∑
p′qrs′
σσ′

{...} < ασ1β
′
σ2

| a†p′σh†
qσ′hrσ′as′σ | μ′

σ3
νσ4 >

=
∑
p′qrs′
σσ′

{...} < ασ1β
′
σ2

| a†p′σh†
qσ′hrσ′ | μ′

σ3
νσ4 > δs′μ′δσσ3

=
∑
p′qrs′
σσ′

{...} < ασ1β
′
σ2

| a†p′σh†
qσ′ | 0 > δrνδσ′σ4δs′μ′δσσ3

=
∑
p′qrs′
σσ′

{...} < ασ1β
′
σ2

| a†p′σ | qσ′ > δrνδσ′σ4δs′μ′δσσ3

=
∑
p′qrs′
σσ′

{...} < ασ1β
′
σ2

| p′σqσ′ > δrνδσ′σ4δs′μ′δσσ3

=
∑
p′qrs′
σσ′

{...}δp′β′δσσ2δqαδσ2σ1δrνδσ′σ4δs′μ′δσσ3

={< νβ′ | V | μ′α > − < νβ′ | V | αμ′ >} (3.82)

and the two-body electron-hole scattering matrix elements are calculated from two-body

on-site and long-range Coulomb matrix elements (see Table ??) (Güçlü et al., 2009;

Potasz et al., 2010; Güçlü et al., 2016) from which one can continue to construct Hamil-

tonian matrix to be diagonalized. The programming language which has been used to

diagonalize Hamiltonian matrices is MATLAB and detailed information about codes can

be seen in Appendix.
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CHAPTER 4

OPTICAL PROPERTIES

In this chapter, we try to understand absorption properties of GQDs by using tight-

binding, mean-field Hubbard and configuration methods.

Figure 4.1. Picture of a graphene sample. The value 2.3% is an indication of universal

optical conductivity observed in graphene. (Source: Nair et al., 2008).

We describe absorption properties of graphene nanostructures and effects of charge

impurities and electron-electron interaction on the optical properties of GQDs.

4.1. Absorption

Graphene shows explicit manifestation of light and matter interaction by having

universal optical conductivity (UOC) (π/2)e2/� = 0.023 which provides graphene with

striking optical characteristics as can bee seen in Figure 4.1 (Nair et al., 2008; Kuzmenko

et al., 2008; Yuan et al., 2011).

The experimental observation of UOC for a graphene sheet seems to indicate that
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Figure 4.2. Impurity Potential Landscape. Positive potential hills shown by red color

and negative potential hills by blue color.

optical properties are robust against imperfections, although significant deviations from

UOC at lower energies was observed (Mak et al., 2011; Lee et al., 2011).

The interaction of light and matter can be quite well understood by perturbation

theory of quantum mechanics (Dirac, 1927; Saqurai, 1994). Hamiltonian of a particle

interacted with a radiation field can be approximated as:

H =
p2

2me

+ eφ(r)− e

mec
A · p (4.1)

where e, me, p, φ(r), c and A indicate charge, mass, momentum of the electron, electric

potential, speed of light and vector potential of the field, respectively, and we have ne-

glected higher order terms. By considering monochromatic field of plane wave, one can

write:

A = 2A0n cos
(w
c
l · r− wt

)
(4.2)
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Figure 4.3. (a) Lattice structure of hexagonal armchair edged GQD. (b) Impurity po-

tential landscape. (c) Electron-hole puddle formation achieved by MFH

model where local charge accumulation is indicated as n and p puddles.

where n, l, r, w and t refer to unit vector of polarization, unit vector of propagation,

position vector, frequency and time, respectively. We rewrite eqn. ( 4.2) by using Euler

relation for trigonometric functions as:

A = A0n
[
ei(

w
c
l·r−wt) + e−i(w

c
l·r−wt)

]
. (4.3)

The term ei(
w
c
l·r−wt) is responsible for absorption, whereas, the other term e−i(w

c
l·r−wt)

brings about stimulated emission. Hence, we can define absorption energy part as:

Ti→f =
2π

�

e2

m2
ec

2
|A0|2| < f |ei(wc l·r−wt)n · p|i > |2δ(Ef − Ei − �w) (4.4)

where δ has been inserted to account for continuous distribution of states. Lastly, absorp-

tion cross section is defined as:

Energy absorbed by the atom per unit time

Energy flux due to electromagnetic wave
. (4.5)

We can obtain energy flux and and energy densities by using classical electromagnetic

theory (Jackson, 1975; Griffiths, 1962) and write absorption cross section as:

a(w) =
4π2e2

m2
ecw(Area)

| < f |ei(wc l·r−wt)n · p|i > |2δ(Ef − Ei − �w) (4.6)

where Area is the area of the structure exposed to radiation. We will make an electric

dipole approximation as:

ei(
w
c
l·r−wt) ≈ 1 (4.7)
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Figure 4.4. (a) Impurity potential landscape. TB results of (b) conduction and (c)

valance states of clean sample made up of 5514 atoms. Corresponding

puddle formation of (d) electron and (e) hole states of disordered sample.

since electromagnetic wavelength is much longer than the atomic dimensions and we are

left with:

a(w) =
4π2e2

m2
ecw(Area)

|n· < f |p|i > |2δ(Ef − Ei − �w). (4.8)

The x component of the term | < f |p|i > | can be written as:

< f |px|i > (4.9)

and by using commutation relation:

[x,H0] =
i�px
m

, (4.10)
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Figure 4.5. (a) Impurity potential landscape. TB results of (b) conduction and (c)

valance states of clean sample made up of 10806 atoms. Corresponding

puddle formation of (d) electron and (e) hole states of disordered sample.

one can write the x component of the term | < f |p|i > | as:

< f |px|i > =
m

i�
< f |[x,H0]|i >

= imEfi < j|x|i > (4.11)

where Efi is energy difference between final and initial states obtained by TB or MFH

model. As a result, we obtain total absorption for two dimensional material as:

A(ω) =
∑
f

4π2αEfi|< f | r | i >|2δ(�ω − Efi)

Area
(4.12)

where α is the fine structure which corresponds to e2/�c ≈ 1/137. On the other hand, we
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Figure 4.6. MFH results of (a, c, e and g) conduction and (b, d, f and h) valance states

of (a, b and e, f) clean sample and (c, d and g, h ) disordered sample made

up of 5514 atoms. Corresponding puddle formation of (c,g) electron and

(d,h) hole states of disordered sample. Figures a, b, c and d are for κ = 3
and e,f, g and h are for κ = 6. Potential landscape added as a smaller size

picture to show corresponding potential hills and valleys.

define absorption spectrum which includes many-body correlations as:

A(ω) =
∑
f

4π2αEfi|< f | P† | gs >|2δ(�ω − Efi)

Area
(4.13)

where Efi is the energy difference between initial (ground state) and final energies of

exciton, P† annihilates a photon and adds an exciton to the ground state of the GQD. The

final excitonic state | f > is obtained from CI calculations, and | gs > represents the

ground state.
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Figure 4.7. MFH results of (a, c, e and g) conduction and (b, d, f and h) valance states

of (a, b and e, f) clean sample and (c, d and g, h ) disordered sample made

up of 10806 atoms. Corresponding puddle formation of (c,g) electron and

(d,h) hole states of disordered sample. Figures a, b, c and d are for κ = 3
and e,f, g and h are for κ = 6. Potential landscape added as a smaller size

picture to show corresponding potential hills and valleys.

4.2. Environment Related Charge Impurities

Properties of graphene nanostructures fabricated and observed upon substrates

(Morpurgo and Guinea, 2006; Tan et al., 2007; Morozov et al., 2008; Jang et al., 2008;

Liao et al., 2010; Lin et al., 2010) may become affected by imperfections due to the envi-

ronment and become disordered. In particular, if the disorder has a long-range character,

it can lead to charge localizations as electron-hole puddles (Tan et al., 2007; Zhang et al.,

2009; Lin et al., 2010; Zhang et al., 2009; Martin et al., 2008; Gibertini et al., 2012). For

instance, magnetic properties of graphene nanoribbons are found to be strongly dependent
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Figure 4.8. Electronic density corresponding to the 20 highest valence states (left pan-

els), and the 20 lowest conduction states (right panels), obtained from TB

(upper panels) and MFH (lower panels) model of the structure 18 nm width

size. Electron-electron interactions wash out abnormal localized states

near Fermi level as indicated by white circles.

of long-range impurities (Özdemir et al., 2016). Additionally, the role of electron-hole

puddles on the formation of Landau levels in a graphene double quantum dot was investi-

gated experimentally by K. L. Chiu et al.(Chiu et al., 2015). We use long-range disorders,

in order to have reliable theoretical models for charge impurity effects on GQDs.

4.2.1. Long-Range Disorders

In order to model the long-range disorder due to charge impurities caused by sub-

strate effects, we use a superposition of Gaussian electrostatic potentials Vimp which are
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Figure 4.9. (a) Impurity potential for the structure containing 5514 atoms. (b-g) show

corresponding electron and hole densities weighted with absorption proba-

bilities in the energy range between 0 eV and 0.3 eV obtained by TB, MFH

and CI models, respectively.

determined randomly to have a smooth potential landscape (see Figure 4.2) on the GQD.

Impurity potential is written as:

Vimp(ri) =
∑
k

Vk exp
[
−(
ri − 
Rk)

2

2σ2

]
(4.14)

where Vk is chosen to be the potential peak value which is randomly generated

between −Vmax < Vk < Vmax values for an impurity at Rk, characterizing the strength

of the disorder. For most of the calculations, we take Vmax = tnn/3 giving a medium

disorder strength. However, the effect of strong (Vmax = tnn) and weak (Vmax = tnn/5)

disorder is also investigated (see Figure 4.14). The width of the potential, σ, is deter-

mined to be 10 times the lattice constant in order to simulate long-range lattice scatterers
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Figure 4.10. Absorption of GQD containing 5514 atoms. a) Clean dot (blue line) and

disordered dot (green line) are obtained by obtained TB model and bulk

graphene (red line) and UOC (dashed line) are shown, respectively. b)

MFH model with κ = 3, d) with κ = 6. c) excitonic effect without corre-

lation with κ = 3, d) with κ = 6.

(Zhang et al., 2009; Altıntaş et al., 2017). For 5 nm (1014 atoms), 13 nm (5514 atoms)

and 18 (10806 atoms) nm wide GQDs, respectively 4, 20 and 40 source point of impurities

are randomly created to have approximately similar source point densities (but different

form of distribution of source points) for each GQD. The main effect of long-range dis-

order on the electronic densities is the formation of electron-hole puddles (Zhang et al.,

2009; Özdemir et al., 2016; Altıntaş et al., 2017), as seen from Figure ??, obtained by

subtraction of the positive background charge from MFH electronic density. The effect

of the electron-hole puddles on the optical properties will be investigated in Section 4.3

using TB, MFH and CI approaches.
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Figure 4.11. Absorption of GQD containing 10806 atoms. a) Clean dot (blue line) and

disordered dot (green line) are obtained by obtained TB model and bulk

graphene (red line) and UOC (dashed line) are shown, respectively. b)

MFH model with κ = 3, d) with κ = 6. c) excitonic effect without corre-

lation with κ = 3, d) with κ = 6.

4.3. Results and Discussion

In Figure 4.4 and 4.5, we investigate electronic densities corresponding to 20

lowest conduction and 20 highest valence states obtained from TB for the GQDs struc-

ture that we studied, which has 5514 and 10806 atoms giving a width of 13 nm and 18

nm with corresponding potential landscape. We note that we repeated all the calculations

for 5 different random potential landscape (for each QD size) and observed similar be-

haviors. In the TB results, in addition to valance states accumulated around peaks and

conduction states around troughs as expected, we also observe abnormal valance states

38



Figure 4.12. Energy spectra for clean (upper panels) and disordered (lower panels)

GQDs obtained by TB and MFH. Fermi energy level EF is determined

to be in the mid-point between valance and conduction band.

around troughs and conduction states around peaks. In fact, those abnormal states are an

artifact of the TB method which is better suited for systems with homogeneous and neutral

charge distributions. In our system, the charge density fluctuates strongly due to random

disorder and the energy gap between valence and conduction states is not large enough to

protect hole states from mixing with electron states. Thus, a mean-field correction to the

TB method must be included

In Figure 4.6 and 4.7, we investigate electronic densities corresponding to 20

lowest conduction and 20 highest valence states obtained from MFH for the GQDs hav-

ing similar disorder structures that we studied for TB model. When electron-electron

interactions are included through MFH calculations, electronic density fluctuations are

reduced in almost all area of the QD and the abnormal localized states are washed out

(Altıntaş et al., 2017) (see Figure 4.8). Similar behavior was also observed in graphene
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Figure 4.13. Absorption Spectrum for clean (upper panels) and disordered (lower pan-

els) GQDs obtained by TB, MFH and excitonic effect with CI model. UOC

is indicated by black line. In clean GQDs, as the size of GQDs increase,

a plateau develops near the UOC at low energies, before a sudden drop

occurs due to finite size effects.

nanoribbons (Özdemir et al., 2016). The rearrangement of electron-hole puddles through

electronic interactions has an important effect on optical properties. Additionally, we

don’t see dramatic change in effects of interaction strength on distribution of electronic

states in QDs for κ = 3 and κ = 6 as can be seen in Figure 4.6 and 4.7.

In order to investigate the effect of configuration interactions, in Figure 4.9 we

plot the electron and hole densities weighted with absorption probabilities in the energy

range between 0 eV and 0.3 eV for the 5514 atom GQD, obtained from TB , MFH and

CI calculations. As discussed earlier, mean-field interactions smooth the puddles so that

excitonic hole states are now localized only on peaks, and the electron states are localized

on troughs as seen in Figure 4.9. On the other hand, the correlations have a less dramatic

effect on the density distribution, but the electron states are now slightly more localized
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Figure 4.14. Average absorption spectrum curves (each curve corresponds to average of

5 different configurations) for three different impurity potential peaks ob-

tained by TB (upper panel) and MFH (lower panel) method with estimated

error bars for the structure containing 10806 atoms. UOC is indicated by

black line.

on a potential trough that is closer to the hole puddle (Figures 4.9 f and g). Indeed, the

electron-hole attraction is favoured in the CI calculations minimizing the average distance

between the electron and the hole, thus increasing the electric dipole strength and the

absorption at lower energies (see Figure 4.13).

Energy spectra of clean (upper panels) and disordered (lower panels) GQDs hav-

ing width size of 5 nm (1014 atoms), 13 nm (5514 atoms) and 18 nm (10806 atoms)

obtained by TB and MFH model are shown in Figure 4.12. For each case, the energy gap

Egap between between lowest unoccupied conduction state and highest occupied valence

state obtained from the MFH calculations is indicated as well. As expected, Egap de-

creases more rapidly as a function of size when impurities are present. More interestingly

however, for larger size disordered GQDs the difference between TB and MFH spectra
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become pronounced indicating that when charge inhomogeneities (due to electron-puddle

formation) are present it is important to include the effects of electronic interactions. Sim-

ilar behavior was also observed for other random potential configurations that we have

tested.

Figure 4.13 shows absorption spectra curves corresponding to the GQDs consid-

ered in Figure 4.12 for energies up to 3 eV. The absorption spectra are calculated using

equations (4) and (5) with a Gaussian broadening (0.1 eV) of delta functions in order to

obtain continuous curves, within TB (line doted curve, red color online), MFH (line plus

signed curve, green color online) and CI (line cross signed curve, blue color online) ap-

proaches. The UOC is indicated by black line as a reference. For clean GQDs, there is

no noticeable difference between the TB and MFH results, consistent with the results in

Figure 4.12. We note that, as the system size increases, absorption curves approach the

UOC value at low energies, until a sudden drop occurs due to finite size effects. For the

CI calculations, 100 highest valence and 100 lowest conduction states were included to

form a many-body basis set of 10000 excitonic states, to ensure convergence for energies

up to 0.75 eV. As seen from Fig.4a and Fig.4b, the main effect of excitonic correlations is

to red shift the absorption spectrum (Ozfidan et al., 2016) followed by a slight decrease in

the peak value. For GQDs larger than 13 nm (5514 atoms), it was not possible to calculate

the CI absorption spectrum due to computational limits.

When disorder is present, we observe a dramatic difference between the TB and

MFH results, shown in Figure 4.13 b,d,f. This is mainly due to the redistribution of

electron-hole puddles discussed in Figure 4.8. For the medium and large size GQDs

without electronic interactions, in TB calculations, both electrons and hole puddles may

be present at the same locations, giving rise to stronger electric dipole coupling, thus

higher absorption values in average at lower energies. Note that the situation is different

for the GQD with 1014 atoms, since the puddle formation is much less well defined

as the size of the QD is reduced, and the specific form of the disorder landscape has a

bigger role. For medium size GQD, however, a disorder peak reappears at low energies

when excitonic correlations are taken into account. This is due to the fact that excitonic

interactions rearranges the electron and hole distributions within the disorder troughs and

peaks, as we discuss in Figure 4.9. We note that the CI results obtained for the disordered

GQD with 5514 atoms is consistent with the experimental results for graphene sheet (Mak

et al., 2008, 2011; Lee et al., 2011).

To see effects of various impurity potential strength on absorption spectrum ob-

tained by TB and MFH methods (see Figure 4.14 a-b), we compare spectrum curves
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(each spectrum curve corresponds to average of five different samples shown with error-

bars having width of twice the standard error) containing three different impurity potential

strength peak values of tnn (line squared curve, red color online), tnn/3 (line cross signed

curve, green color online) and tnn/5 (line doted curve, blue color online), for the largest

QD structure. For the strong impurity potential strength (|Vk| < tnn), both TB and MFH

results deviate significantly from UOC line indicating that the system is in a strongly

non-perturbative regime, and meanfield electron interactions are not sufficiently strong

to wash out the impurity peak. However, for medium potential strength (|Vk| < tnn/3)

and small potential strength |Vk| < tnn/5, the low energy absorption obtained from MFH

remains always below the UOC line within our error bars.

4.4. Conclusion

In conclusion, we have investigated electronic and optical properties of three dif-

ferent sizes of clean and disordered hexagonal armchair-edged GQDs by applying tight-

binding, mean-field Hubbard and configuration interaction models. Long-ranged disorder

give rise to formation of electron-hole puddles, which are, however poorly described by

the tight-binding model alone. Electronic interactions in the mean-field picture reorganize

the electron-hole puddles, strongly affecting the dipole moments between the low-energy

states in the electronic spectrum. Hence, inclusion of electronic interactions are found

to be important in order to correctly describe the optical properties. As the system size

is increased to 18 nm, absorption spectra obtained from configuration interaction method

approach the experimental results leading to observation of universal optical conductivity

(Mak et al., 2008, 2011; Lee et al., 2011).
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CHAPTER 5

MAGNETIC PROPERTIES

In this chapter, we focus on magnetic properties of GQDs which has short-range

disorders such as hydrogenation or vacancies. We explain magnetization caused by de-

fects and try to understand antiferromagnetic and ferromagnetic behavior of GQDs.

5.1. Magnetization

Graphene nanostructures can acquire ferromagnetic or anti-ferromagnetic behav-

ior if they have populated unbalanced or balanced sublattice sites at the edges (Güçlü

et al., 2011; Voznyy et al., 2011; Carvalho et al., 2014; Özdemir et al., 2016; Güçlü et al.,

2016; Friedman et al., 2017) in the structure as can be seen in Figure 5.1 (Magda et al.,

2014). On the other hand, introducing adatoms(Balog, 2009; Šljivančanin et al., 2009;

Elias et al., 2009; Balakrishnan et al., 2013; González-Herrero et al., 2016; McCreary

et al., 2012) or vacancies(Mao et al., 2016; Ugeda et al., 2010; Nair et al., 2012; Zhang

et al., 2016; Nair et al., 2013) can also significantly affect magnetic behavior of graphene

nanostructures. For example, local or global magnetic moment induction which led to

spin split state at the Fermi energy were observed in several experimental works by in-

troducing hydrogen adatoms on graphene (Elias et al., 2009; González-Herrero et al.,

2016). Additionally, local magnetism due to vacancies created by irradiation of graphene

samples were also detected(Ugeda et al., 2010; Nair et al., 2013).

5.2. Short-Range Disorders

There have been many theoretical attempts to explain induction of magnetism

brought about by adatom or vacancy related disorders in graphene structures (Sevinçli

et al., 2008; Yazyev and Helm, 2007; Palacios et al., 2008; Uchoa et al., 2008; Peres et al.,

2006; Boukhvalov et al., 2008; Soriano et al., 2010; Liang et al., 2011; Soriano et al.,

2011; Leconte et al., 2011; Güçlü and Bulut, 2015; Safari et al., 2017). For instance,

ferromagnetic or antiferromagnetic behavior of quasilocalized states can be induced by
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Figure 5.1. Room temperature magnetization in graphene ribbons. a) shows band gap

of armchair graphene ribbon and b) shows band gap and spin orientation

of zigzag ribbon. (Source: Magda et al., 2014).

introducing two atomic defects on the same or opposite sublattices of the honeycomb

lattice. Furthermore, it was found that vacancy related sublattice imbalance which leads

to total spin S �= 0 can induce global magnetism predicted by Lieb and sublattice balance

which leads to total spin S = 0 can induce local magnetism by using mean-field Hubbard

model for graphene ribbons (Lieb, 2002; Palacios et al., 2008)

In order to account for short-range disorder effects (which may be due to vacancies

or hydrogen adatoms, see Fig. 5.2), we simply remove corresponding pz orbital sites. This

model assumes that sp2 hybridization of atoms neighboring the defect is not distorted.

5.3. Results and Discussion

A critical step in the numerical calculations is the initial guess state used for the

self-consistent diagonalization of the MFH Hamiltonian, as there is a high risk of getting

stuck in a local energy minimum for systems with several thousands of atoms. Local ver-

sion of Lieb’s theorem provides a convenient way to generate the initial state. According

to Lieb’s theorem (Lieb, 2002), if there is an overall imbalance between the number of A

and B sublattice atoms, a finite magnetic moment (NA − NB)/2 arises at zero tempera-

ture. Locally, such imbalance occurs in the vicinity of atomic defects. Therefore, in our

initial density matrices, we assume a surplus of spin up (down) density around type-A (B)
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Figure 5.2. Hydrogenation or vacancies as a short-range disorder model on a hexago-

nal armchair edged GQD

vacancies, leading to our lowest energy solution.

Figure 5.3 shows the spin resolved DOS for defects concentrations of 1% (upper

panels), 2% (middle panels) and 5% (lower panels). On the left panels, we consider equal

number of randomly distributed defects on A and B sublattices (50-50 %). Even though

the total spin of such a system is zero as predicted by Lieb’s theorem (Lieb, 2002), a slight

asymmetry can be observed between spin up and down impurity peaks in the vicinity of

Fermi level, due to broken sublattice symmetry. On the other extreme, if all defects are

placed on sublattice A (right panel), total spin is equal to half of the total number of de-

fects, and a clear spin splitting is observed in DOS, a signature of ferromagnetic coupling.

As expected, as the concentration of defects is increased from 1% to 5%, impurity peaks

become more pronounced.

In Fig. 5.4, we plot the spin densities ni↑−ni↓ (upper panels) and defect positions

(lower panel) for different concentration and sublattice distributions. When the system is

antiferromagnetic (for even number of sublattice A and B defects), statistical distribution
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Figure 5.3. (Color online) Density of states for spin down (red solid line) and spin up

(dashed blue line). 1% (upper panels), 2% (middle panels) and 5% (lower

panels) disorders are randomly distributed among each sublattice as 50%

(50%) (left panels) and 100% (0%) (right panels) for sub lattice A (B).

Big black dots show incoming electrons with specific energy and Fermi

energy indicated by arrow. As the amount of impurity increases, a peak

in DOS near the Fermi level (left panels) is observed and DOS splitting

of spin up and down states occurred (right panels). One configuration is

shown for each disorder amount since other 19 configurations show similar

behaviors.

of defects gives rise to formation of magnetic puddles with opposite signs (shown in red

and blue colors online). On the other hand, a formation of electron-hole puddles due to

atomic defects was previously observed in a TB study of LDOS in large graphene ribbon

structures (Schubert and Fehske, 2012). It was found that as the defect concentration

increases from 0.1% to 1%, the spatial extent of electronic puddles is reduced below 1

nm from 5-10 nm. Although the scale of our magnetic puddle size is consistent with

the findings of Ref. (Schubert and Fehske, 2012) for 1% impurity concentration, we do

not observe clear change in puddle size as we increase the defect concentrations. The

formation of magnetic puddles observed in our calculations is presumably mainly due

to the statistical distribution of defect-induced spins rather than more subtle quantum

interference or interaction effects. We observed similar magnetic puddle-like structures
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Figure 5.4. Magnetic puddle formation in anti-ferromagnetic (AF) and ferromagnetic

(FM) GQDs. Disorders are randomly distributed among each sublattice

as 50% (50%) (first three panels) and 100% (0%) (last panel) for sub lat-

tice A (B) . Upper panels show spin density profile and red (blue) regions

represent either spin up or down electrons. The corresponding disorder

sites are pictured by lower panels and blue circles (red crosses) represent

corresponding disorder sites.

for other 19 different disorder configurations.

Finally, we try to observe staggered magnetization per impurity (see Fig. 5.5)

and we will discuss interplay between magnetization and localization in the chapter 6. A

useful quantity that describes the magnetic properties is staggered magnetization defined

as :

M stag =
∑
i

(−1)x(ni↑ − ni↓)/2 (5.1)

where x is even for A and odd for B sublattice sites. In Fig. 8, we plot the staggered

magnetization per impurity, M stag/Nimp as a function of defects concentration of 0.3 - 5

% for the AFM and FM configurations, averaged over 20 disorder samples. For each case,

the localization length λ is also shown. Several interesting observations can be made from

Figure 5.5. First, magnetization of AFM configurations (same-sublattice defect distribu-

tion) is considerably lower than the FM configurations (even distribution). This reflects

the suppression of antiferromagnetic coupling whenever two impurities are close to each

other (Leconte et al., 2011), as discussed above (see Figure5.4). Also, the AFM error bars

are much larger than the FM error bars, showing that the AFM magnetization is more sen-
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Figure 5.5. Staggered magnetization per impurity vs total impurity percent. Staggered

magnetization slightly increases with localization length both for evenly

(50-50%, dashed blue curve) and unevenly (100-0%, dotted red curve) and

randomly distributed defects among each sublattice. Each data of impurity

represents average of 20 different configurations containing 5514 atoms

with corresponding error bars.

sitive to the specific distribution of the defect sites. Indeed, for some of the samples, large

regions dominated by same-sublattice type defects may be present, causing weaker AFM

suppression. However the net AFM magnetization is never completely suppressed.

5.4. Conclusions

We observed magnetic puddle-like formations induced by random distribution of

defects with concentrations between 1% and 5%.We showed that, if the disorder sites

are distributed on a same sublattice of the honey-comb lattice, significantly enhanced

magnetism occurs compared to the evenly distributed antiferromagnetic case.
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CHAPTER 6

ANDERSON LOCALIZATION

In this chapter, we try to figure out the effects of randomly created disorders on

the localization of electronic waves. We show that randomly created short-range disorders

leads to Anderson-type localization of electronic waves in GQDs.

6.1. Propagation of electronic waves

Figure 6.1. Cartoon of propagation of waves corresponding to an electron injected

from one corner of the QD.

Impurity may halt transport and waves become localized when disorders are dis-

tributed randomly with enough concentrations as claimed by Anderson in 1958 (Ander-
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Figure 6.2. Density of states obtained by TB model for clean (solid blue line),%1 (dot-

ted and dashed purple line), %2 (dotted green line) and %5 (dashed red

line) disordered dot. Big black dots show incoming electrons with spe-

cific energy. One configuration is shown for each percent of disorder since

other 19 configurations show similar behavior. As the amount of impurity

increases, a peak in DOS near the Fermi level (E ∼ 0.38 eV) is observed,

as expected.

son, 1958). This type of localization of waves are so called Anderson localization since

the time it has been predicted. A conductive material may become insulator when it

has randomly distributed disorders on it. For example, a dramatic increase in resistivity

of graphene, metal-to-insulator (localization) behavior were observed in several exper-

imental works by randomly introducing hydrogen adatoms on graphene nanostructures

(Ponomarenko et al., 2011; Elias et al., 2009; Bostwick et al., 2009). In several studies,

it has been attempted to explain induction of metal-to-insulator transition (localization)

theoretically (Soriano et al., 2010; Liang et al., 2011; Khajetoorians et al., 2013; Schu-

bert et al., 2009; González-Santander et al., 2013; Schubert and Fehske, 2012; Leconte

et al., 2011; Cresti et al., 2013). For instance, Schubert et al. used a tight-binding (TB)

model ignoring magnetic effects to show that low concentrations of randomly distributed
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Figure 6.3. Time evolution of local particle density obtained by TB model for dis-

ordered GQD. Each column panels show the snapshot of propagation of

waves at the specific time. From left to right, time is taken to be t=0 sec.,

t=30 femto sec. and t=1 nano sec. and from top to bottom, disorders are

distributed as 2% and 5%, respectively. Color bar shows relative density

of waves. Relative density increases from blue to red color.

hydrogen adatoms lead to metal-to-insulator transition in graphene, although alongside

formation of electron-hole puddles that tend to suppress Anderson localization (Schubert

et al., 2009).

Our approach is to obtain time-dependent wave functions by assuming an initial

wave packet of the electron injected through one corner of the hexagonal QD (See Figure

6.1) as ψ(t = 0) with average energy 〈Ei〉 of width δEi ∼ tnn/2, the evolution is given

by Ψ(t) =
∑
n

〈ψnσ|ψ(t = 0)〉 e−iEnt/�ψnσ(xi). When the time scale is sufficiently large,

t 
 t0 = tnn/�, (where t0 ∼ femto second) the system reaches a quasi-stationary state

from which it is possible to deduce the localization propertiesSchubert et al. (2009).

6.2. Results and Discussions

In this part, we focus on defect concentrations of 1%, 2% and 5%, randomly

distributed on clean hexagonal armchair GQD’s containing 5514, 10806 and 21426 (∼13,

18 and 25 nm QD size, respectively) atoms. Figure 6.2 shows the density of states (DOS)
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Figure 6.4. Localization of electronic states for 5514, 10806 and 21426 atoms obtained

by TB method. Each column corresponds to different sizes of GQDs and

row corresponds to 1%, 2% and 5% percent of randomly created disorder

(evenly distributed between sublattice A and B) in GQDs. Axis-y rep-

resents electronic wave density of electrons having specific energies and

x-axis represents propagation of wave along the length which starts from

the contacted edge of the QD to the opposite edge (see Figure 6.1). Each

curve represents average of 20 different configurations with corresponding

error bars. Localization lengths of GQD containing 5514 atoms are only

shown since localization lengths of bigger QDs have similar value for the

same rows.

of a 5514 atoms QD for defect-free and disordered cases obtained from TB calculations.

Black dots represent energies of interest at which an electron will be injected from the

lead. In particular, as the defect concentration increases, a peak in DOS near the Fermi

level (E ∼ 0.38eV ) is observed, as expected. Corresponding time evolution density plots

for a E = 0.38eV wave packet are shown in Figure 6.3, at t = 0, t/t0 = 30 and

t/t0 = 106 (from left to right), for defects concentrations of 2% (upper panels) and 5%

(lower panels). Initially, at t = 0, we assume that the injected wave packet occupies a

small, defect-free region of the QD. As t is increased, the density propagates slower for

higher defect concentrations, before reaching a quasi-stationary state above t/t0 = 104.

At higher time scales, t/t0 = 106 (1 ns), the wave packet is still localized around the
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Figure 6.5. Localized particle density for spin up and down electrons. 1% (upper pan-

els), 2% (middle panels) and 5% (lower panels) disorders are randomly

distributed among each sublattice as 50% (50%) (left panels) and 100%

(0%) (right panels) for sub lattice A (B). Spin up and down electrons show

similar localization behavior. Each curve represents average of 20 different

configurations with corresponding error bars.

corner of the QD, especially visible at the higher defect concentration.

In order to investigate the localization more systematically including size depen-

dence, in Figure 6.4 we plot the injected electron’s probability density as a function of

distance to the lead corner, integrated over an angle of π/3 (see Figure 6.1), and averaged

over 20 randomly generated defect configurations (evenly distributed between sublattice

A (50%) and B (50%) for the main frames but unevenly as A (100%) and B (0%) for the

inset figure), obtained from TB calculations. Moreover, time averages over 36 samples

between t/t0 = 5×105 and 4×106 were performed. Here, each column corresponds to a

different size GQD while each row corresponds to a different defect concentration. Local-

ization lengths denoted by λ were estimated for different injected electron’s energies (one

near the Fermi level, other two in deep conduction and valence bands), by logarithmic
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curve fitting. At 1% defect concentration, size effects dominate the densities. Estimated

localization length is larger than the system size even for the largest QD (25 nm in width

size) and the energy dependence is weak. As the defect concentration is increased to 2%,

we find λ ∼ 12 nm for 0.38 eV (Fermi level energy) for all QD sizes. At -1.6 and 2.4

eV, λ exceeds the system size. Finally, increasing defect concentration to 5% decreases

localization length to λ ∼ 3.5 nm for at 0.38 eV for all QD sizes. Additionally, we start to

observe localization (λ ∼ 6.5 nm) for the energies -1.6 and 2.4 eV. The calculated local-

ization lengths here are consistent with the TB results by Schubert et al. (Schubert et al.,

2009) obtained for ribbon geometries. Furthermore, localization is more enhanced when

disorders are distributed unevenly between sublattice A (100%) and B (0%) consistent

with Cresti Cresti et al. (2013).

In the following, we focus on meanfield Hubbard results for the 13 nm wide QD to

investigate the interplay between localization and magnetic properties. Figure 5.3 shows

the spin resolved DOS for defects concentrations of 1% (upper panels), 2% (middle pan-

els) and 5% (lower panels). On the left panels, we consider equal number of randomly

distributed defects on A and B sublattices (50-50 %). A slight asymmetry can be observed

between spin up and down impurity peaks in the vicinity of Fermi level, due to broken

sublattice symmetry. On the other extreme, if all defects are placed on sublattice A (right

panel), total spin is equal to half of the total number of defects, and a clear spin splitting

is observed in DOS, a signature of ferromagnetic coupling. As expected, as the concen-

tration of defects is increased from 1% to 5%, impurity peaks become more pronounced.

In order to study the interplay between localization and magnetic properties, in

Figure 6.5 we plot the angle integrated electronic densities, similar to Figure 6.4, but

obtained using spin-resolved MFH quasiparticle states. As before, the densities are aver-

aged over 20 configurations and the plots include corresponding error bars. Upper, middle

and lower panels correspond to 1%, 2% and 5% defect concentrations, respectively, while

left and right panels correspond to evenly (50-50%) and unevenly (100-0%) distributed

defects among the two sublattices. Although both spin up and down densities are plot-

ted in each subfigure, to our surprise no noticeable difference was found between them,

within the statistical error based on 20 randomly distributed configurations. For evenly

distributed defects, the estimated localization lengths from MFH calculations are similar

to those obtained from TB calculations of Figure 6.4. As can be seen in Figure 6.5, local-

ization is not observed for 1% concentration and evenly (50-50%) and unevenly (100-0%)

distributed defects do not change localization behavior. However, if the defect concen-

tration increases and defects are distributed unevenly among the sublattices, localization
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lengths in the vicinity of Fermi level decreases considerably from λ ∼ 15 nm to λ ∼ 12

nm for 2% concentration and from λ ∼ 3.5 nm to λ ∼ 2 nm for 5% concentration of

defects. This is due to the fact that an even distribution of defects causes more impurity-

level hybridization around the Fermi level compared to uneven distribution that gives rise

to sharper and stronger peak in DOS as seen in Figure 6.5. Away from Fermi level, no

significant sublattice effect is observed, as expected.

To observe interplay between localization and magnetization we we try to observe

staggered magnetization per impurity (see Figure 5.5). One of the important observation

is that the localization is consistently stronger for the FM configuration than for the AFM

configurations. This results is consistent with the conductivity calculations based on tight-

binding results of Cresti et al. (2013), where compensated distribution of defects in a

graphene sheet leads to more localization than the same sublattice distribution. Finally,

we see that as the defect concentration increases, the localization length decreases as

expected, and the staggered magnetization per impurity slightly decreases. Net staggered

magnetization of course increases with increasing number of defects.

6.3. Conclusions

To conclude, we studied localization induced by atomic defects, using tight-binding

and meanfield Hubbard approaches, for medium sized hexagonal armchair graphene quan-

tum dots. For QD sizes above 12 nm, defect concentrations of 2% is needed in order to

observe localization effects. We show that localization length is not affected by mag-

netization if there is an even distribution of defects between the two sublattices of the

honeycomb lattice. For an uneven distribution that heavily breaks the symmetry between

the two sublattices, although no noticeable difference was found between the spin up and

down states, their localization is found to be significantly enhanced as compared to evenly

distributed defects.
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CHAPTER 7

CONCLUSION

Detailed theoretical investigation of combined effects of long-range disorder and

electron-electron interactions on the optical properties of graphene quantum dots has been

carried out. We studied both electronic and optical properties of medium and large sized

hexagonal armchair GQDs to understand the role of long-ranged disorder on the optical

properties. Our main contribution involved inclusion of electron-electron interactions

within meanfield and many-body configuration interaction approaches. We show that

the electron-electron interactions play a significant role in redistributing electron-hole

puddles, thus strongly affecting the optical properties. We also investigated the large size

limit of the GQDs as compared to optical properties of bulk graphene and show that UOC

can be observed in GQDs with a diameter of 18 nm.

On the other hand, we also tried to find out the role of atomic defects in both

the localization of electronic states and the magnetic behavior at the nanoscale, we per-

formed meanfield Hubbard (MFH) calculations for medium sized graphene quantum dots

(GQD). More specifically, we focused on hexagonal shaped GQDs with armchair edges

which are, unlike zigzag edges, free of magnetized edge effects. We showed that localiza-

tion of electronic states can occur due to randomly created atomic defects, together with

formation of magnetic puddles.
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APPENDIX A

MATLAB CODES

%The program computes e f f e c t s o f l ong r a n g e d i s o r d e r

%and e l e c t r o n −e l e c t r o n i n t e r a c t i o n s

%on t h e o p t i c a l p r o p e r t i e s o f

%h e x a g o n a l a r m c h a i r g r a p h e n e quantum d o t s .

%Shor t−r a n g e d i s o r d e r can be b u i l t s i m i l a r l y

%Shor t−r a n g e d i s o r d e r has been n o t i n c l u d e d h e r e !

%The model H a m i l l t o n i a n s a r e T igh t−Binding ,

%Mean−F i e l d Hubbard and

%Many−body c o n f i g u r a t i o n i n t e r a c t i o n s

% Author : Abdulmenaf ALTINTAS

%%%−−−−−−−−−−−−−LONG−RANGE DISORDER−−−−−−−−%%

%%%−−−−−−−−ELECTRON−ELECTRON INTERACTIONS−−−%%

c l e a r a l l ;

c l o s e a l l ;

t i c ;% shows e l a p s e d t ime

S i z e o f D o t =2;% a p a r a m e t e r t o d e t e r m i n e s i z e o f quantum d o t

%f p r i n t f ( ’ \ n \ n S i z e o f t h e d o t p a r a m e t e r=%d i s d e t e r m i n e d !

. . . ! ! \ n \ n ’ , S i z e o f D o t ) ; %D i s p l a y s s i z e o f quantum d o t

e p s i l o n =0.0001;% e p s i l o n i s needed f o r a c c u r a c y t h a t

%program needs

a =2 .683410904 ; % a which i s t h e d i s t a n c e between two

%c a r bo n atoms i s i n a tom ic u n i t

t n n = 2 . 8 ; % t = t n n which i s t h e n e a r e s t n e i g h b o u r

%hopping i n t e g r a l i s i n eV

tnnn = 0 . 2 ; % t = tnnn which i s t h e n e x t n e a r e s t

%n e i g h b o u r hopping i n t e g r a l i s i n eV
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n l i m i t =1000; % a upper l i m i t o f f o r loop

c o u n t =0 ; % used as an i n d e x number

s q r t 3 =1.732050807568877;% d e f i n i n g s q u a r e r o o t s

%improves program p e r f o r m a n c e

s l o p e =1/ s q r t 3 ; % d e c r e a s e c o m p u t a t i o n t ime

a1_x=a ∗0 .5∗ s q r t 3 ; a2_x=−a ∗0 .5∗ s q r t 3 ; b_x =0;

a1_y=a ∗ 1 . 5 ; a2_y=a ∗ 1 . 5 ; b_y=a ; % u n i t c e l l v e c t o r s

%% D e t e r m i n i n g c o o r d i n a t e s c o o r d i n a t e s o f quantum d o t%%%

f o r n=−n l i m i t : n l i m i t

f o r m=−n l i m i t : n l i m i t

xtemp=n∗ a1_x+m∗ a2_x+b_x ;

ytemp=n∗ a1_y+m∗ a2_y+b_y ;

i f ytemp<=− s l o p e ∗xtemp +(3+3∗ S i z e o f D o t )∗ a+ e p s i l o n

i f ytemp <= s l o p e ∗xtemp +(3+3∗ S i z e o f D o t )∗ a+ e p s i l o n

i f xtemp >=−(2+( S izeo fDo t −1)∗1 .5 )∗ s q r t 3 ∗a−e p s i l o n

i f ytemp>=− s l o p e ∗xtemp −(3∗ Sizeo fDo t −1)∗a−e p s i l o n

i f ytemp >= s l o p e ∗xtemp −(3∗ Sizeo fDo t −1)∗a−e p s i l o n

i f xtemp <=(2+( S izeo fDo t −1)∗1 .5 )∗ s q r t 3 ∗a+ e p s i l o n

c o u n t = c o u n t +1 ;

xcoor ( c o u n t )= xtemp ;

ycoor ( c o u n t )= ytemp ;

end

end

end

end

end

end

xtemp=n∗ a1_x+m∗ a2_x ;

ytemp=n∗ a1_y+m∗ a2_y ;

i f ytemp<=− s l o p e ∗xtemp +(3+3∗ S i z e o f D o t )∗ a+ e p s i l o n

i f ytemp <= s l o p e ∗xtemp +(3+3∗ S i z e o f D o t )∗ a+ e p s i l o n

i f xtemp >=−(2+( S izeo fDo t −1)∗1 .5 )∗ s q r t 3 ∗a−e p s i l o n

i f ytemp>=− s l o p e ∗xtemp −(3∗ Sizeo fDo t −1)∗a−e p s i l o n

i f ytemp >= s l o p e ∗xtemp −(3∗ Sizeo fDo t −1)∗a−e p s i l o n
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i f xtemp <=(2+( S izeo fDo t −1)∗1 .5 )∗ s q r t 3 ∗a+ e p s i l o n

c o u n t = c o u n t +1 ;

xcoor ( c o u n t )= xtemp ;

ycoor ( c o u n t )= ytemp ;

end

end

end

end

end

end

end

end

%% D e t e r m i n i n g o f f−d i a g o n a l and d i a g o n a l m a t r i x e l e m e n t s

%of any m a t r i x

Natom= s i z e ( xcoor ,2)% Number o f atoms

Nmatr ix = z e r o s ( Natom ) ;

f o r i =1 : Natom

f o r j =1 : Natom

d= s q r t ( ( xcoor ( i )−xcoor ( j ) ) ^ 2 + ( ycoor ( i )−ycoor ( j ) ) ^ 2 ) ;

i f d>a−e p s i l o n && d<a+ e p s i l o n% n e a r e s t n e i g h b o u r s

Nmatr ix ( i , j ) = 2 ;

e l s e i f d>a∗ s q r t 3 −e p s i l o n && d<a∗ s q r t 3 + e p s i l o n% next−n e a r e s t

%n e i g h b u r s

Nmatr ix ( i , j ) = 3 ;

e l s e i f i == j

Nmatr ix ( i , j )=1;% on−s i t e

end

end

end

%% C r e a t i n g long−r a n g e ramdomly d i s t r i b u t e d i m p u r i t y

Vimp= z e r o s ( Natom , 1 ) ;

sigmaimp =10∗ a;% d e t e r m i n e s r a n g e o f i m p u r i t y

n i m p u r i t y =20; % d e t e r m i n e s number o f i m p u r i t y

f p r i n t f ( ’ \ n \ n Number o f i m p u r i t y =%d ! ! ! \ n \ n ’ , n i m p u r i t y ) ;

%D i s p l a y s i m p u r i t y

rand impxcoor =(max ( xcoor )−min ( xcoor ) ) . ∗ . . .
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r and ( n i m p u r i t y , 1 ) + min ( xcoor ) ;

% x− c o o r d i n a t e s o f i m p u r i t i e s

r and impycoor =(max ( ycoor )−min ( ycoor ) ) . ∗ . . .

r and ( n i m p u r i t y , 1 ) + min ( ycoor ) ;

% y− c o o r d i n a t e s o f i m p u r i t i e s

p u d d l e t o p = t n n / 3 ; % High l e v e l o f i m p u r i t y p o t e n t i a l i n eV

p u d d l e b o t t=− t n n / 3 ; % Low l e v e l o f i m p u r i t y p o t e n t i a l i n eV

Vimpheight = ( ( p u d d l e t o p−p u d d l e b o t t ) ) . ∗ . . .

r and ( n i m p u r i t y , 1 ) + p u d d l e b o t t ;

% I m p u r i t y p o t e n t i a l

f o r i =1 : Natom ;

f o r j =1 : n i m p u r i t y ;

Vimp ( i )=Vimp ( i ) + ( Vimpheight ( j ) ) ∗ gaussmf ( xcoor ( i ) , . . .

[ s igmaimp rand impxcoor ( j ) ] ) ’ ∗ . . .

gaussmf ( ycoor ( i ) , [ s igmaimp rand impycoor ( j ) ] ) ;

end

end

%f p r i n t f ( ’ \ n \ n I m p u r i t y p o t e n t i a l c r e a t e d f o r number

%of i m p u r i t y=%d ! ! ! \ n \ n ’ , n i m p u r i t y ) ; %D i s p l a y s i m p u r i t y

%% Compute and D i a g o n a l i z e TB and MFH H a m i l t o n i a n s

Nup=Natom / 2 ; % number o f up e l e c t r o n s

Ndown=Natom / 2 ; %number o f down e l e c t r o n s

N t o t a l =Nup+Ndown ; %t o t a l number o f e l e c t r o n s

mix = 0 . 4 ; % a s s i g n we i gh t o f f i r s t d e t e r m i n e d d e n s i t y m a t r i x

%c o n t r i b u t i o n

Kapa=6;% Kapa i s m a t e r i a l p r o p e r t i y and u n i t l e s s

f p r i n t f ( ’ \ n \ nKapa=%d ! ! ! \ n \ n ’ , Kapa );% D i s p l a y s Kapa v a l u e

Htb= z e r o s ( Natom ) ; %t i g h t −b i n d i n g h a m i l t o n i a n c o n s t r u c t i o n

f o r i =1 : Natom

f o r j =1 : Natom

i f Nmatr ix ( i , j ) = = 2 ;

Htb ( i , j )=− t n n ;

e l s e i f Nmatr ix ( i , j ) = = 3 ;
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Htb ( i , j )=− t nnn ;

e l s e i f Nmatr ix ( i , j ) = = 1 ;

Htb ( i , j )=Vimp ( i ) ;

end

end

end

[ E i g e n v e c t o r _ t b , E i g e n v a l u e _ t b ] = e i g ( Htb ) ;

%d i a g o n a l i z a t i o n o f t i g h t −b i n d i n g h a m i l t o n i a n

H_down=Htb;% i n i t i a l down e l e c t r o n h a m i l t o n i a n

H_up=Htb;% i n t i a l up e l e c t r o n

Ucoulomb = 1 6 . 5 2 2 / Kapa ; %i n eV−o n s i t e coulomb

%r e p u l s i o n t a k e n from graphenebook

%D e t e r m i n i n g o f f−s i t e l o n g r a n g e coulomb i n t e r a c t i o n

Vcoulomb= z e r o s ( Natom ) ;

f o r i =1 : Natom

f o r j =1 : Natom

i f Nmatr ix ( i , j ) = = 2 ;

Vcoulomb ( i , j ) = 8 . 6 4 0 / Kapa ; % i n eV−nn

%o f f−s i t e coulomb r e p u l s i o n

e l s e i f Nmatr ix ( i , j ) = = 3 ;

Vcoulomb ( i , j ) = 5 . 3 3 / Kapa ; % i n eV−nnn

%o f f−s i t e coulomb r e p u l s i o n

e l s e i f i ~= j

Vcoulomb ( i , j ) = 2 7 . 2 1 1 3 8 / ( Kapa∗ s q r t ( ( xcoor ( i ) − . . .

xcoor ( j ) ) ^ 2 + ( ycoor ( i )−ycoor ( j ) ) ^ 2 ) ) ;

% 1 au = 27 .21138 eV d i s t a n c e i s i n au .

end

end

end

%f p r i n t f ( ’ \ n \ n I n t e r a c t i o n m a t r i x i s c r e a t e d f o r

%Kapa=%d ! ! ! \ n \ n \ n \ n ’ , Kapa );% D i s p l a y s Kapa v a l u e

Hrandom= rand ( Natom );% I n t i a l Random m a t r i x

[ E i g e n v e c t o r _ s e l f c o n s , E i g e n v a l u e _ s e l f c o n s ] = . . .

e i g ( Htb+Hrandom+Hrandom ’ ) ;
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%i m i t i a l d i a g o n a l i z a t i o n f o r s e l f −c o n s i s t e n loop

c l e a r Hrandom ;

d e n s i t y m a t r i x _ u p = c o n j ( E i g e n v e c t o r _ s e l f c o n s ( : , 1 : Nup ) ) ∗ . . .

E i g e n v e c t o r _ s e l f c o n s ( : , 1 : Nup ) ’ ;

%i n i t a l d e n s i t y m a t r i x f o r up e l e c t r o n s

d e n s i t y m a t r i x _ d o w n = c o n j ( E i g e n v e c t o r _ s e l f c o n s ( : , 1 : Ndown ) ) ∗ . . .

E i g e n v e c t o r _ s e l f c o n s ( : , 1 : Ndown ) ’

;% i n i t a l d e n s i t y m a t r i x f o r down e l e c t r o n s

d e n s i t y m a t r i x _ a l l = d e n s i t y m a t r i x _ u p + d e n s i t y m a t r i x _ d o w n ;

D e l t a _ E n e r g y =100;% i n i t i a l c o n d i t i o n f o r w h i l e loop

s e l f c o n s c o u n t =1;% c o u n t p a r a m e t e r

TBEnergy=sum ( d i a g ( Htb ’∗ d e n s i t y m a t r i x _ a l l ) ) ;

% Tigh t−b i n d i n g en e r g y

G r o u n d s t a t e E n e r g y =TBEnergy;% I n i t i a l ground s t a t e e n e r gy

G r o u n d s t a t e E n g ( s e l f c o n s c o u n t )= G r o u n d s t a t e E n e r g y ;

%%%%S e l f−c o n s i s t e n loop

% each v a r i a b l e name i n d i c a t e s i t s f u n c t i o n e x p l i c i t l y

w h i l e D e l t a _ E n e r g y >= 10^(−8) %eV ;

s e l f c o n s c o u n t = s e l f c o n s c o u n t +1;

[ E i g e n v e c t o r _ u p , E i g e n v a l u e _ u p ] = e i g ( H_up ) ;

D i a g e i g e n v a l u e _ u p = d i a g ( E i g e n v a l u e _ u p ) ;

d e n s i t y m a t r i x _ u p = c o n j ( E i g e n v e c t o r _ u p ( : , 1 : Nup ) ) ∗ . . .

E i g e n v e c t o r _ u p ( : , 1 : Nup) ’∗(1−mix )+ mix∗ d e n s i t y m a t r i x _ u p ;

[ Eigenvec tor_down , Eigenva lue_down ] = e i g ( H_down ) ;

Diage igenva lue_down = d i a g ( Eigenvalue_down ) ;

d e n s i t y m a t r i x _ d o w n = c o n j ( E igenvec to r_down ( : , 1 : Ndown ) ) ∗ . . .

E igenvec to r_down ( : , 1 : Ndown) ’∗(1−mix )+ mix∗ d e n s i t y m a t r i x _ d o w n ;

d e n s i t y m a t r i x _ a l l = d e n s i t y m a t r i x _ u p + d e n s i t y m a t r i x _ d o w n ;

n_up= d i a g ( d e n s i t y m a t r i x _ u p ) ;
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n_down= d i a g ( d e n s i t y m a t r i x _ d o w n ) ;

n _ a l l =n_up+n_down ;

H_in t_up = z e r o s ( Natom ) ;

H_int_down= z e r o s ( Natom ) ;

V_int_coulomb =Vcoulomb ∗ ( n _ a l l −1);

f o r i =1 : Natom ;

H_in t_up ( i , i )= Ucoulomb ∗ ( n_down ( i ) −0.5)+ V_int_coulomb ( i ) ;

H_int_down ( i , i )= Ucoulomb ∗ ( n_up ( i ) −0.5)+ V_int_coulomb ( i ) ;

end

H_up=Htb+ H_in t_up ;

H_down=Htb+H_int_down ;

TBEnergy=sum ( d i a g ( Htb ’∗ d e n s i t y m a t r i x _ a l l ) ) ;

o n s i t e E n e r g y =Ucoulomb ∗ . . .

d i a g ( d e n s i t y m a t r i x _ u p −0.5) ’∗ d i a g ( d e n s i t y m a t r i x _ d o w n −0 . 5 ) ;

l o n g r a n g e E n e r g y = ( 0 . 5 ) ∗ d i a g ( d e n s i t y m a t r i x _ a l l − 1 ) ’ ∗ . . .

Vcoulomb∗ d i a g ( d e n s i t y m a t r i x _ a l l −1);

G r o u n d s t a t e E n e r g y =TBEnergy+ o n s i t e E n e r g y + l o n g r a n g e E n e r g y ;

f o r m a t long g ;

G r o u n d s t a t e E n g ( s e l f c o n s c o u n t )= G r o u n d s t a t e E n e r g y ;

D e l t a _ E n e r g y = abs ( G r o u n d s t a t e E n g ( s e l f c o n s c o u n t ) − . . .

G r o u n d s t a t e E n g ( s e l f c o n s c o u n t −1 ) ) / N t o t a l ;

G r o u n d s t a t e E n e r g y P e r e l e c = G r o u n d s t a t e E n e r g y / N t o t a l ;

%P a r a m e t e r s 1 =[ s e l f c o n s c o u n t G r o u n d s t a t e E n e r g y

%G r o u n d s t a t e E n e r g y P e r e l e c D e l t a _ E n e r g y ] ;

%d i s p ( P a r a m e t e r s 1 )

end

% P a r a m e t e r s 2 = ’

% s e l f c o n s c o u n t T o t G r o u n d s t a t e E n e r g y

% G r o u n d s t a t e E n e r g y P e r e l e c D e l t a _ E n e r g y p e r e l e c ’ ;

% d i s p ( P a r a m e t e r s 2 )

% P a r a m e t e r s 3 =[ s e l f c o n s c o u n t G

%

% r o u n d s t a t e E n e r g y G r o u n d s t a t e E n e r g y P e r e l e c
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% D e l t a _ E n e r g y ] ;

% d i s p ( P a r a m e t e r s 3 )

%% Compute d i a g o n a l t e r m s of many−body i n t e r a c t i o n m a t r i x

%each v a r i a b l e name i n d i c a t e s i t s f u n c t i o n e x p l i c i t l y

%p l e a s e r e f e r t o c h a p t e r 3 . 4 o f t h e s i s t o u n d e r s t a n d

%t h e meaning of m a t r i x

%e l e m e n t s

Vcoulomb_matr ix=Vcoulomb ;

f o r i =1 : Natom ;

Vcoulomb_matr ix ( i , i )= Ucoulomb ;

end

c o u n t =0 ;

c o u n t r =0 ;

f o r r =Natom /2 : −1 :1

c o u n t r = c o u n t r +1 ;

f p r i n t f ( ’ \ n Number o f I t e r a t i o n =%d ! ! ! \ n ’ , c o u n t r ) ;

%D i s p l a y s I t e r a t i o n v a l u e

i f c o u n t r <2

%f p r i n t f ( ’ \ n I n t e r a c t i o n d i a g o n a l

%m a t r i x e l e m e n t s c a l c u l a t i o n s t a r t e d ! ! ! \ n ’ ) ;

end

c o u n t p _ p r i m e =0;

f o r p_pr ime =Natom / 2 + 1 : Natom

c o u n t p _ p r i m e = c o u n t p _ p r i m e +1;

r _ r e i n d e x e d = c o u n t r ;

p _ p r i m e _ r e i n d e x e d = c o u n t p _ p r i m e ;

V _ d i a g o n a l _ d i r e c t _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d ) = . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , r ) ) . ∗ E i g e n v e c t o r _ u p ( : , r ) ] ’ . . .

∗Vcoulomb_matr ix ∗ . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , p_pr ime ) ) . ∗ E i g e n v e c t o r _ u p ( : , p_pr ime ) ] ;

V _ d i a g o n a l _ e x c h a n g e _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d )= . . .
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[ c o n j ( E i g e n v e c t o r _ u p ( : , r ) ) . ∗ E i g e n v e c t o r _ u p ( : , p_pr ime ) ] ’ . . .

∗Vcoulomb_matr ix ∗ . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , p_pr ime ) ) . ∗ E i g e n v e c t o r _ u p ( : , r ) ] ;

end

end

%f p r i n t f ( ’ \ n \ n I n t e r a c t i o n d i a g o n a l

%m a t r i x e l e m e n t s c a l c u l a t i o n ended ! ! ! \ n \ n ’ ) ;

%% Compute d i r e c t and exchange t e r m s of many−body

%i n t e r a c t i o n m a t r i x

%each v a r i a b l e name i n d i c a t e s i t s f u n c t i o n e x p l i c i t l y

%p l e a s e r e f e r t o c h a p t e r 3 . 4 o f t h e s i s t o u n d e r s t a n d

%t h e meaning of m a t r i x

%e l e m e n t s

% In o r d e r t o i n c r e a s e c o m p u t a t i o n speed we add some

%r e d u c t i o n a l g o r a t i h m

% by u s i n g symmet r i c p r o p e r t i e s o f i n t e r a c t i o n m a t r i x

d e e p _ l e v e l _ i n d e x =10;% D e t e r m i n e s number

%of deep l e v e l i n t e r a c t i o n

%f p r i n t f ( ’ \ n \ n d e e p _ l e v e l _ i n d e x=%d

% ! ! ! \ n \ n ’ , d e e p _ l e v e l _ i n d e x ) ;

%D i s p l a y s d e e p _ l e v e l _ i n d e x v a l u e

Vcoulomb_matr ix=Vcoulomb ;

f o r i =1 : Natom ;

Vcoulomb_matr ix ( i , i )= Ucoulomb ;

%Here we r e a a r a n g e coulomb m a t r i x

%c r e a t e d b e f o r e code e i g e n v a l u e s and e i g e n v e c t o r s

end

V _ d i r e c t _ e x c i t o n i c _ m a t r i x = −10000∗ . . .

ones ( d e e p _ l e v e l _ i n d e x , d e e p _ l e v e l _ i n d e x , . . .

d e e p _ l e v e l _ i n d e x , d e e p _ l e v e l _ i n d e x ) ;

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x = − . . .

10000∗ ones ( d e e p _ l e v e l _ i n d e x , d e e p _ l e v e l _ i n d e x . . .

, d e e p _ l e v e l _ i n d e x , d e e p _ l e v e l _ i n d e x ) ;
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c o u n t =0 ;

c o u n t r =0 ;

f o r r =Natom /2 : −1 : Natom/2− d e e p _ l e v e l _ i n d e x +1

c o u n t r = c o u n t r +1 ;

f p r i n t f ( ’ \ n Number o f I t e r a t i o n =%d ! ! ! \ n ’ , c o u n t r ) ;

%D i s p l a y s I t e r a t i o n v a l u e

i f c o u n t r <2

t i c ;

%f p r i n t f ( ’ \ n I n t e r a c t i o n m a t r i x

%e l e m e n t s c a l c u l a t i o n s t a r t e d ! ! ! \ n ’ ) ;

end

c o u n t q =0;

f o r q=Natom /2 : −1 : Natom/2− d e e p _ l e v e l _ i n d e x +1

c o u n t q = c o u n t q +1;

c o u n t p _ p r i m e =0;

f o r p_pr ime =Natom / 2 + 1 : Natom /2+ d e e p _ l e v e l _ i n d e x

c o u n t p _ p r i m e = c o u n t p _ p r i m e +1;

c o u n t s _ p r i m e =0;

f o r s_p r ime =Natom / 2 + 1 : Natom /2+ d e e p _ l e v e l _ i n d e x

c o u n t s _ p r i m e = c o u n t s _ p r i m e +1;

r _ r e i n d e x e d = c o u n t r ;

q _ r e i n d e x e d = c ou n t q ;

p _ p r i m e _ r e i n d e x e d = c o u n t p _ p r i m e ;

s _ p r i m e _ r e i n d e x e d = c o u n t s _ p r i m e ;

i f V _ d i r e c t _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d )==−10000

V _ d i r e c t _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d )= . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , r ) ) . ∗ E i g e n v e c t o r _ u p ( : , q ) ] ’ . . .

∗Vcoulomb_matr ix ∗ . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , p_pr ime ) ) . ∗ . . .

E i g e n v e c t o r _ u p ( : , s_p r ime ) ] ;
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%R e d u c t i o n s t a r t s from below ! !

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d )= . . .

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d ) ;

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( q _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d , r _ r e i n d e x e d )= . . .

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d ) ;

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( q _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d , r _ r e i n d e x e d )= . . .

V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d ) ;

end

i f V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d )==−10000;

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d )= . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , r ) ) . ∗ E i g e n v e c t o r _ u p ( : , s_p r ime ) ] ’ . . .

∗Vcoulomb_matr ix ∗ . . .

[ c o n j ( E i g e n v e c t o r _ u p ( : , p_pr ime ) ) . ∗ . . .

E i g e n v e c t o r _ u p ( : , q ) ] ;

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( q _ r e i n d e x e d , . . .

s _ p r i m e _ r e i n d e x e d , r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d )= . . .

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( r _ r e i n d e x e d , . . .

p _ p r i m e _ r e i n d e x e d , q _ r e i n d e x e d , s _ p r i m e _ r e i n d e x e d ) ;

end

end

end

end

i f c o u n t r <2

t i m e _ f o r _ o n e _ l o o p = t o c ;

%f p r i n t f ( ’ \ n \ n Count Time=%0.6 f s e c o n d s For One
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%Loop i n I n t e r a c t i o n M at r i x ! ! ! \ n \ n ’ ,

%t i m e _ f o r _ o n e _ l o o p );% D i s p l a y s T o t a l t ime

end

end

%f p r i n t f ( ’ \ n \ n I n t e r a c t i o n m a t r i x

%e l e m e n t s c a l c u l a t i o n ended ! ! ! \ n \ n ’ ) ;

%% C o n s t r u c t many−body H a m i l t o n a i a n

O r b i t a l _ E x c = z e r o s (2∗ d e e p _ l e v e l _ i n d e x ^ 2 , 2 ) ;

c o u n t =0 ;

f o r i =1 : d e e p _ l e v e l _ i n d e x

f o r j =1 : d e e p _ l e v e l _ i n d e x

c o u n t = c o u n t +1 ;

O r b i t a l _ E x c ( count , 1 ) = i ;

O r b i t a l _ E x c ( count , 2 ) = j ;

end

end

O r b i t a l _ E x c ( d e e p _ l e v e l _ i n d e x ^ 2 + 1 : 2 ∗ . . .

d e e p _ l e v e l _ i n d e x ^2 ,1 )= O r b i t a l _ E x c ( 1 : d e e p _ l e v e l _ i n d e x ^ 2 , 1 ) ;

O r b i t a l _ E x c ( d e e p _ l e v e l _ i n d e x ^ 2 + 1 : 2 ∗ . . .

d e e p _ l e v e l _ i n d e x ^2 ,2 )= O r b i t a l _ E x c ( 1 : d e e p _ l e v e l _ i n d e x ^ 2 , 2 ) ;

%Num_of_MB_Basis= d e e p _ l e v e l _ i n d e x ^ 2 ;

H_MB_CI_Exc= z e r o s (2∗ d e e p _ l e v e l _ i n d e x ^ 2 ) ;

%f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n

%c o n s t r u c t i o n s t a r t e d ! ! ! \ n ’ ) ;

f o r J2 =1:2∗ d e e p _ l e v e l _ i n d e x ^2

i f J2 <= d e e p _ l e v e l _ i n d e x ^2

mu_prime_up= O r b i t a l _ E x c ( J2 , 2 ) ;

% I n d i c a t e s e l e c t r o n e ne r gy l e v e l i n c o n d u c t i o n s t a t e

nu_down= O r b i t a l _ E x c ( J2 , 1 ) ;

% I n d i c a t e s h o l e e ne r gy l e v e l i n v a l a n c e s t a t e

end

i f J2 > d e e p _ l e v e l _ i n d e x ^2
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mu_prime_down= O r b i t a l _ E x c ( J2 , 2 ) ;

% I n d i c a t e s e l e c t r o n e ne r gy l e v e l i n c o n d u c t i o n s t a t e

nu_up= O r b i t a l _ E x c ( J2 , 1 ) ;

% I n d i c a t e s h o l e e ne r gy l e v e l i n v a l a n c e s t a t e

end

f o r J1 =1:2∗ d e e p _ l e v e l _ i n d e x ^2

i f J1 <= d e e p _ l e v e l _ i n d e x ^2

b e t a _ p r i m e _ u p = O r b i t a l _ E x c ( J1 , 2 ) ;

% I n d i c a t e s e l e c t r o n e ne r gy l e v e l i n c o n d u c t i o n s t a t e

alpha_down= O r b i t a l _ E x c ( J1 , 1 ) ;

% I n d i c a t e s h o l e e ne r gy l e v e l i n v a l a n c e s t a t e

end

i f J1 > d e e p _ l e v e l _ i n d e x ^2

beta_pr ime_down = O r b i t a l _ E x c ( J2 , 2 ) ;

% I n d i c a t e s e l e c t r o n e ne r gy l e v e l i n c o n d u c t i o n s t a t e

a l p h a _ u p = O r b i t a l _ E x c ( J2 , 1 ) ;

% I n d i c a t e s h o l e e ne r gy l e v e l i n v a l a n c e s t a t e

end

i f J2 <= d e e p _ l e v e l _ i n d e x ^2 && J1 <= d e e p _ l e v e l _ i n d e x ^2

i f J2 == J1

H_MB_CI_Exc ( J1 , J2 )= D i a g e i g e n v a l u e _ u p ( Natom /2+ mu_prime_up ) − . . .

D i a g e i g e n v a l u e _ u p ( Natom/2− alpha_down + 1 ) − . . .

( V _ d i r e c t _ e x c i t o n i c _ m a t r i x ( nu_down , b e t a _ p r i m e _ u p . . .

, mu_prime_up , alpha_down)− . . .

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( nu_down , be ta_pr ime_up , . . .

alpha_down , mu_prime_up ) ) ;

e l s e

H_MB_CI_Exc ( J1 , J2 )=( −1)∗ ( V _ d i r e c t _ e x c i t o n i c _ m a t r i x . . .

( nu_down , be ta_pr ime_up , mu_prime_up , alpha_down ) − . . .

V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x ( nu_down , be ta_pr ime_up , . . .

alpha_down , mu_prime_up ) ) ;

end

end

i f J2 > d e e p _ l e v e l _ i n d e x ^2 && J1 <= d e e p _ l e v e l _ i n d e x ^2

H_MB_CI_Exc ( J1 , J2 )= V _ e x c h a n g e _ e x c i t o n i c _ m a t r i x . . .

( nu_up , be ta_pr ime_up , alpha_down , mu_prime_down ) ;

end
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end

end

f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n c o n s t r u c t i o n ended ! ! ! \ n ’ ) ;

H_MB_CI_Exc ( d e e p _ l e v e l _ i n d e x ^ 2 + 1 : 2 ∗ . . .

d e e p _ l e v e l _ i n d e x ^2 , d e e p _ l e v e l _ i n d e x ^2+1:2∗ d e e p _ l e v e l _ i n d e x ^ 2 ) = . . .

H_MB_CI_Exc ( 1 : d e e p _ l e v e l _ i n d e x ^ 2 , . . .

1 : d e e p _ l e v e l _ i n d e x ^ 2 ) ;

H_MB_CI_Exc ( d e e p _ l e v e l _ i n d e x ^ 2 + 1 : 2 ∗ . . .

d e e p _ l e v e l _ i n d e x ^ 2 , 1 : d e e p _ l e v e l _ i n d e x ^ 2 ) = . . .

H_MB_CI_Exc ( 1 : d e e p _ l e v e l _ i n d e x ^ 2 , . . .

d e e p _ l e v e l _ i n d e x ^2+1:2∗ d e e p _ l e v e l _ i n d e x ^ 2 ) ;

%f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n

%d i a g o n a l i z a t i o n s t a r t e d ! ! ! \ n ’ ) ;

[ Eigenvector_MB_CI_Exc , Eigenvalue_MB_CI_Exc ] . . .

= e i g ( H_MB_CI_Exc ) ;

%f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n

%d i a g o n a l i z a t i o n ended ! ! ! \ n ’ ) ;

%f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n

%s o r t i n g s t a r t e d ! ! ! \ n ’ ) ;

i f ~ i s s o r t e d ( d i a g ( Eigenvalue_MB_CI_Exc ) ) ;

% C r e a t e s s o r t e d E i g e n v a l u e s i n

%a s c e n d i n g o r d e r wi th c o r r e s p o n d i n g E i g e n v e c t o r s

[ Eigenvalue_MB_CI_Exc , I ] = s o r t ( d i a g ( Eigenvalue_MB_CI_Exc ) ) ;

Eigenvector_MB_CI_Exc = Eigenvector_MB_CI_Exc ( : , I ) ;

end

f p r i n t f ( ’ \ nMany Body H a m i l t o n i a n s o r t i n g ended ! ! ! \ n ’ ) ;

%C r e a t e s d i a g o n a l m a t r i x

Diageigenvalue_MB_CI_Exc= d i a g ( Eigenvalue_MB_CI_Exc ) ;

%% Jo in−d e n s i t y o f s t a t e s o b t a i n e d by t i g h t −b i n d i n g

%f o r o p t i c a l p r o p e r t i e s

d i p o l e =0;

Abs_xdip= z e r o s ( Natom ) ;

Abs_ydip= z e r o s ( Natom ) ;

f o r i =1 : Natom
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f o r j =1 : Natom

i f Htb ( i , j )==− t n n

d i p o l e = 0 . 3 4 3 3 ;

Abs_xdip ( i , j )= d i p o l e ∗ ( xcoor ( j )−xcoor ( i ) ) / a ;

Abs_ydip ( i , j )= d i p o l e ∗ ( ycoor ( j )−ycoor ( i ) ) / a ;

e l s e i f Htb ( i , j )==− t nnn

d i p o l e = 0 . 0 8 7 3 ;

Abs_xdip ( i , j )= d i p o l e ∗ ( xcoor ( j )−xcoor ( i ) ) / ( a∗ s q r t 3 ) ;

Abs_ydip ( i , j )= d i p o l e ∗ ( ycoor ( j )−ycoor ( i ) ) / ( a∗ s q r t 3 ) ;

e l s e i f i == j

Abs_xdip ( i , j )= xcoor ( i ) ;

Abs_ydip ( i , j )= ycoor ( i ) ;

e l s e

d i p o l e =0;

Abs_xdip ( i , j ) = 0 ;

Abs_ydip ( i , j ) = 0 ;

end

end

end

[ E i g e n v e c t o r _ t b , E i g e n v a l u e _ t b ] = e i g ( Htb ) ;

D i a g e i g e n v a l u e _ t b = d i a g ( E i g e n v a l u e _ t b ) ;

Abs_x= E i g e n v e c t o r _ t b ’∗ Abs_xdip ∗ E i g e n v e c t o r _ t b ;

Abs_y= E i g e n v e c t o r _ t b ’∗ Abs_ydip ∗ E i g e n v e c t o r _ t b ;

Abs=Abs_x .^2+ Abs_y . ^ 2 ;

Engjdos = 0 : 0 . 0 1 : 2 0 ;

s i g m a j d o s = 0 . 1 ;

JDOS_tb= z e r o s ( s i z e ( Engjdos , 2 ) , 1 ) ;

% JDOS needs t o be d i v i d e d t o t o t a l a r e a o f

%t h e quantum d o t Area =( Natom∗3∗ a ^2∗ s q r t 3 / 4 )

Area =( Natom∗3∗ a ^2∗ s q r t 3 / 4 ) ;

f o r p =1: Natom / 2

f o r q=Natom / 2 + 1 : Natom

tempE= D i a g e i g e n v a l u e _ t b ( q)−D i a g e i g e n v a l u e _ t b ( p ) ;
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JDOS_tb=JDOS_tb+Abs ( p , q ) ∗ ( 1 / Area )∗ tempE ∗ 4 ∗ . . .

p i ^2 /137∗ gaussmf ( Engjdos , [ s i g m a j d o s tempE ] ) ’ . ∗ . . .

1 / ( s i g m a j d o s ∗ s q r t (2∗ p i ) ) ;

end

end

%% Jo in−d e n s i t y o f s t a t e s c a l c u l a t i o n s o b t a i n e d

%by mean− f i e l d Hubbard f o r o p t i c a l p r o p e r t i e s

Abs_x_up= E i g e n v e c t o r _ u p ’∗ Abs_xdip ∗ E i g e n v e c t o r _ u p ;

Abs_y_up= E i g e n v e c t o r _ u p ’∗ Abs_ydip ∗ E i g e n v e c t o r _ u p ;

Abs_up=Abs_x_up .^2+ Abs_y_up . ^ 2 ;

JDOS_up_MFH= z e r o s ( s i z e ( Engjdos , 2 ) , 1 ) ;

Area =( Natom∗3∗ a ^2∗ s q r t 3 / 4 ) ; % JDOS needs

%t o be d i v i d e d t o t o t a l a r e a o f t h e quantum d o t Area

f o r p =1: Natom / 2

f o r q=Natom / 2 + 1 : Natom

tempE_up= D i a g e i g e n v a l u e _ u p ( q)−D i a g e i g e n v a l u e _ u p ( p ) ;

JDOS_up_MFH=JDOS_up_MFH+Abs_up ( p , q ) ∗ ( 1 / Area ) ∗ . . .

tempE_up ∗4∗ p i ^2 /137∗ gaussmf . . .

( Engjdos , [ s i g m a j d o s tempE_up ] ) ’ . ∗ 1 / ( s i g m a j d o s ∗ s q r t (2∗ p i ) ) ;

end

end

%% Jo in−d e n s i t y o f s t a t e s c a l c u l a t i o n s o b t a i n e d by

%many−body i n t e r a c t i o n o f d i a g o n a l−t e r m s f o r

%o p t i c a l p r o p e r t i e s

JDOS_up_Exciton= z e r o s ( s i z e ( Engjdos , 2 ) , 1 ) ;

Area =( Natom∗3∗ a ^2∗ s q r t 3 / 4 ) ; % JDOS needs t o

%be d i v i d e d t o t o t a l a r e a o f t h e quantum d o t Area

c o u n t r =0 ;

f o r r =Natom / 2 : −1 : 1 ;

c o u n t r = c o u n t r +1 ;

c o u n t p _ p r i m e =0;

f o r p_pr ime =Natom / 2 + 1 : Natom ;

c o u n t p _ p r i m e = c o u n t p _ p r i m e +1;

r _ r e i n d e x e d = c o u n t r ;

p _ p r i m e _ r e i n d e x e d = c o u n t p _ p r i m e ;
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tempE_up= D i a g e i g e n v a l u e _ u p ( p_pr ime ) − . . .

D i a g e i g e n v a l u e _ u p ( r )− . . .

( V _ d i a g o n a l _ d i r e c t _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d )− . . .

V _ d i a g o n a l _ e x c h a n g e _ e x c i t o n i c _ m a t r i x . . .

( r _ r e i n d e x e d , p _ p r i m e _ r e i n d e x e d ) ) ;

JDOS_up_Exciton=JDOS_up_Exciton + . . .

Abs_up ( r , p_pr ime ) ∗ ( 1 / Area )∗ tempE_up ∗4∗ p i ^2 /137∗ . . .

gaussmf ( Engjdos , [ s i g m a j d o s tempE_up ] ) ’ . ∗ . . .

1 / ( s i g m a j d o s ∗ s q r t (2∗ p i ) ) ;

end

end

%% Jo in−d e n s i t y o f s t a t e s c a l c u l a t i o n s o b t a i n e d

%by many−body i n t e r a c t i o n o f d i r e c t

%and excahnge t e r m s f o r o p t i c a l p r o p e r t i e s

Abs_x_up_molecu la r = E i g e n v e c t o r _ u p ’∗ Abs_xdip ∗ E i g e n v e c t o r _ u p ;

Abs_y_up_molecu la r = E i g e n v e c t o r _ u p ’∗ Abs_ydip ∗ E i g e n v e c t o r _ u p ;

d i p _ J _ x = z e r o s (2∗ d e e p _ l e v e l _ i n d e x ^ 2 , 1 ) ’ ;

d i p _ J _ y = z e r o s (2∗ d e e p _ l e v e l _ i n d e x ^ 2 , 1 ) ’ ;

f o r J =1:2∗ d e e p _ l e v e l _ i n d e x ^2

b e t a _ p r i m e _ J = O r b i t a l _ E x c ( J , 1 ) ; % I n d i c a t e s e l e c t r o n

%e ne rg y l e v e l i n c o n d u c t i o n s t a t e

a l p h a _ J = O r b i t a l _ E x c ( J , 2 ) ; % I n d i c a t e s

%h o l e e ne rg y l e v e l i n v a l a n c e s t a t e

d i p _ J _ x ( J )= Abs_x_up_molecu la r . . .

( Natom /2+ b e t a _ p r i m e _ J , Natom/2− a l p h a _ J + 1 ) ;

d i p _ J _ y ( J )= Abs_y_up_molecu la r . . .

( Natom /2+ b e t a _ p r i m e _ J , Natom/2− a l p h a _ J + 1 ) ;

end

Abs_dip_CI_J_x = d i p _ J _ x ∗Eigenvector_MB_CI_Exc ;

Abs_dip_CI_J_y = d i p _ J _ y ∗Eigenvector_MB_CI_Exc ;
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Abs_CI_Exc= Abs_dip_CI_J_x .^2+ Abs_dip_CI_J_y . ^ 2 ;

Engjdos_CI_Exc = 0 : 0 . 0 1 : 3 ;

s igmajdos_CI_Add = 0 . 0 2 ;

JDOS_CI_Add= z e r o s ( s i z e ( Engjdos_CI_Exc , 2 ) , 1 ) ;

Area =( Natom∗3∗ a ^2∗ s q r t 3 / 4 ) ; % JDOS needs t o be

%d i v i d e d t o t o t a l a r e a o f t h e quantum d o t Area

f o r p =1:2∗ d e e p _ l e v e l _ i n d e x ^ 2 ;

JDOS_CI_Add=JDOS_CI_Add+Abs_CI_Exc ( p ) ∗ ( 1 / Area )∗ . . .

Diageigenvalue_MB_CI_Exc ( p )∗4∗ p i ^2 /137∗ . . .

gaussmf ( Engjdos_CI_Exc , . . .

[ s igmajdos_CI_Add Diageigenvalue_MB_CI_Exc ( p ) ] ) ’ . ∗ . . .

1 / ( s igmajdos_CI_Add ∗ s q r t (2∗ p i ) ) ;

end

%% Computes d e n s i t y o f s t a t e s (DOS)

Engdos = −10 :0 .01 :10 ;

s igmados = 0 . 1 ;

DOS_tb= z e r o s ( s i z e ( Engdos , 2 ) , 1 ) ;

%D i a g E i g e n v a l u e _ t b = d i a g ( E i g e n v a l u e _ t b ) ;

f o r i =1 : Natom

DOS_tb=DOS_tb+ gaussmf ( Engdos , . . .

[ s igmados D i a g e i g e n v a l u e _ t b ( i ) ] ) ’ . ∗ . . .

1 / ( s igmados ∗ s q r t (2∗ p i ) ) ∗ ( 4 / Natom ) ;

end

% We m u l t i p l i e d gaussmf wi th ( 1 / ( Natom / 2 ) ∗ 2 .

% ( Natom / 2 ) i s t h e number o f u n i t c e l l s

% ∗2 i s t h e s p i n c o n r i b u t i o n

%f i g u r e ;

ho ld on ;

p l o t ( Engdos , DOS_tb ) ;

%% P r o b a b i l i t y d e n s i t y p l o t s

f i g u r e ;% f o r down e l e c t r o n s

numPoin t s s =250;

x0= l i n s p a c e ( min ( xcoor )−5 ,max ( xcoor )+5 , numPoin t s s ) ;

y0= l i n s p a c e ( min ( ycoor )−5 ,max ( ycoor )+5 , numPoin t s s ) ;

s i g m a p r o b d e n s i t y =a / 2 ;

88



z1= z e r o s ( s i z e ( x0 , 2 ) ) ;

f o r i s =1 : Natom

z1=z1 +( sum ( Eigenvec to r_down ( i s , 1 : Ndown ) ’ . ^ 2 ) ) ∗ . . .

gaussmf ( x0 , [ s i g m a p r o b d e n s i t y xcoor ( i s ) ] ) ’ ∗ . . .

gaussmf ( y0 , [ s i g m a p r o b d e n s i t y ycoor ( i s ) ] ) . ∗ . . .

( 1 / ( s i g m a p r o b d e n s i t y ∗ s q r t (2∗ p i ) ) ) ^ 2 ;

end

[ x , y ]= meshgr id ( x0 , y0 ) ;

mesh ( x , y , z1 ’ ) ;

view (−90 ,−90);

a x i s o f f ;

%c o l o r b a r o f f ;

az =0;

e l =90;

c o l o r b a r ; view ( az , e l ) ;

%c a x i s ( [ 0 10^−2])
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