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ABSTRACT 
 

KINEMATIC DESIGN OF SCISSOR LINKAGES 
 

 The primary objective of this thesis is to propose a design method for linkages 

simulating the transformation of a planar curve from an initial form to a final form. 

First, the topologies of fundamental loops are examined using symmetry patterns. 

Design methodologies for the hence obtained mechanisms are formulated. The given 

curves are discretized initially, and the nodes are constructed. Then the side lengths of 

the loops are obtained in order to obtain the desired transformation between the given 

curves. Finally, different deployable and transformable linkage examples are presented.  



   

 v 
 

ÖZET 
 

MAKAS MEKANİZMALARININ KİNEMATİK TASARIMI 
 

Bu tezin temel amacı başlangıç ve son formu verilen bir düzlemsel eğrinin 

dönüşümünde kullanılacak kollar için bir tasarım metodu sunmaktır. İlk olarak, simetri 

kullanılarak temel döngülerin topolojileri incelenmiştir.  Böylece elde eldilen 

mekanizmalar için tasarım metodojileri elde edilmiştir. Verilen eğriler kesikli hale 

getirilmiş ve düğüm noktaları yerleştirilmiştir. Sonra, verilen eğriler için istenen 

dönüşümü sağlayacak olan döngülerin kenar uzunlukları elde edilmiştir. Son olarak, 

farklı katlanabilir ve dönüştürülebilir eklem örnekleri sunulmuştur. 
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CHAPTER 1  

INTRODUCTION  

Mobility and adaptability are frequently demanded for today’s engineering 

structures. Deployable designs are required for compact transportation or storage in 

applications such as outer-space structures. Adaptability for different functions or 

changing environmental conditions is required in some architectural designs. 

Considering these conditions, mobile structures are finding wider area of application in 

different fields of study. Production methods, material types and design and analysis 

methods for mobile structures are still being developed today.  

The “mobile structure” expression seems to contain two contradicting terms, 

since in general a structure is assumed to be immobile. What is meant by a mobile 

structure is an assembly, which acts as an immobile structure at different configurations, 

but which is also has mobility in order to be able to be reconfigured between different 

forms. Mobile structures can be classified in two main sub-categories: deployable and 

transformable structures. Deployable structures have at least one compact and one 

deployed form, whereas transformable structures may attain arbitrary forms. Although 

usually deployable structures have similar geometry in the compact and deployed 

forms, otherwise is also possible. 

One of the oldest and most commonly used type mobile structures comprise 

scissor linkages. Scissor-like linkages (SLEs) have been used for tens of centuries in 

designing household goods such as deployable tables (Figure 1.1) and portable shelters. 

Scissor-like linkages may be a planar linkage such as the ones used for awnings (Figure 

1.2) or deployable gates (Figure 1.3). On the other hand, in several examples of 

structures comprising scissor linkages, the linkages lie on intersecting planes as sub-

assemblies. Nevertheless, in either case scissor linkages can be analyzed and designed 

by confining oneself to the plane. 
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Figure 1.1. Ancient roman tripods 
(Source: © Pinterest, 2018) 

 

Figure 1.2. Scissor awning 
(Source: Central Awnings, 2016) 
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Figure 1.3. Pair retail window gate  
(Source: Illinois Engineered Products, 2016) 

The main advantages of scissor mechanisms are compactness and modularity. A 

system of several scissor mechanisms has the properties of a single scissor unit 

multiplied as many times as the number of units. For example, a translational scissor 

unit has same expansion properties with a single unit, the expansion ratio is the same, 

but the amount of expansion is as many times as the number of units. The kinematic 

equations of a system of scissors is much simpler compared to a system of another 

mechanism type. The compactness is that the scissor mechanisms have the same 

expansion ratio within less space. 

This thesis aims to devise design methodologies for planar mobile structures 

comprising scissor mechanisms. Unlike many of the studies in the literature, the 

structural synthesis of the scissor linkages is performed by considering loops as 

modules. Alternative topologies of these loop assemblies are investigated mainly based 

on frieze groups (symmetric patterns on curves) by discretization of the desired forms of 

curves and the kinematic dimensions of the hence obtained scissor-like elements are 
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calculated by dimensional synthesis. Various deployable and transformable structure 

examples are worked out as case studies. 

1.1. Problem Definition 

This thesis study is part of the Horizon 2020 Marie Skłodowska-Curie Research 

and Innovation Staff Exchange 2015 project “Optimization Driven Architectural Design 

of Structures” (OptArch – H2020-MSCA-RISE-2015-689963) work package 

“Optimized Hybrid Kinetic and Adaptive Structures” leaded by İzmir Institute of 

Technology. The main purpose of the project is to develop an assistance optimization 

tool for the geometric and structural design of adaptive architectural structures. The 

optimization can be considered in different stages such as kinematic optimization and 

structural optimization. The required topologies for scissor linkage-based structures 

have already been classified by other researchers. This thesis is on the dimensional 

synthesis of these various topologies considering the desired motion of the structure. 

The essential problem in this thesis is how to obtain the kinematic dimensions of 

the SLEs of a scissor linkage that can provide the motion for a given curve with its 

initial and final form using some fundamental loops. For this reason, the first step of the 

problem is to examine the desired motion of the structure which is idealized as a curve. 

The second step of the problem is to determine the proper fundamental loops for the 

desired curve motion. The final stage is the dimensional synthesis of the scissor 

linkages. 

1.3. Literature Review 

This section presents the state-of-the-art, contributions to engineering and 

architecture and the deficiencies reported in the literature. The main characteristics and 

the geometric properties of the existing designs are examined. The examples are 

selected to show the most common, important and well-known designs. 
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1.3.1. Deployable Structures 

The structures that could be transformed from a pre-determined stowed 

configuration to a pre-determined expanded configuration are called deployable 

structures. These structures are stable and could carry external and internal loads 

(Hernández Merchan, 1987; Gantes, 2001) Deployable structures are mostly used in 

portable or temporary applications for easy storage and transportation. Additionally, 

they are also used to facilitate assemblies for large structures (Figure 1.4). 

 

 

Figure 1.4. Rapidly Deployable engineered membrane structures 
(Source: © Sprung Instant Structures, 2018) 

In many areas which may have changing requirements such as weather, load or 

size conditions, these structures could be utilized. Deployable structures could be 

integrated either into a space shuttle as a deployable solar panel or a deployable space 

antenna to minimize its volume (Figure 1.5), an environment friendly building as a 

deployable roof for changing solar energy conditions or a deployable bridge in order to 

respond changing transportation requirements (Figure 1.6). 
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Figure 1.5. Nuclear Spectroscopic Telescope Array with Deployable Mast 
(Source: © NASA/JPL-Caltech 2017) 

 

 

Figure 1.6. Opening steps of Rolling Bridge 
(Source: Heatherwick Studio, 2018) 

Well-known researchers in deployable structures area such as Pinero, 

Hoberman, Escrig, Valcarcel, Gantes and Pellegrino have proposed differents systems 
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using scissors-hinge structures. In the design and application of deployable structures in 

architecture, Emilio Perez Pinero is distinguished as one of the first publishers. A 

deployable structure comprising SLEs to construct a movable theatre is presented by 

Pinero (Figure 1.7). Pinero designed a scissor mechanism, but the mechanism is not 

stable by itself after the deployment and it needs cables to be stable (Pinero, 1961a). 

 

 

Figure 1.7. Movable Theatre 
(Source: Yar, 2016) 

Later works of Pinero such pavilions, temporary enclosure and retractable 

domes all depend on SLEs (Pinero, 1961b; Pinero, 1965). Another work is the foldable 

reticular dome which contains 7 modules expanding from compact bundles (Figure 1.8).  

 

 

Figure 1.8. Foldable Reticular Dome 
(Source: Yar, 2016) 
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Another pioneer in this field, Felix Escrig, worked on deployable bar structures 

in detail. Escrig presented not only SLE’s geometric and deployability conditions but 

also the relation between the elements and the span of the structure (Escrig, 1985). In 

these studies, he focused on obtaining different geometries by using the same type of 

struts and different connection elements (Figure 1.9). 

 

 

Figure 1.9. Different Geometries of Deployable Structures 
(Source: Akgün, 2010) 

Escrig also explained how to generate three-dimensional structures which 

contain planar translational SLEs in multiple directions on a grid (Figure 1.10). 

 

 

Figure 1.10. Multiway Grid Composed of Translational Scissor Unit 
(Source: Gür, 2017) 

 Another work presented by Escrig depends on curved grids (Figure 1.11). This 

structure contains polar units which deploy along an arc and these units could form 

curved surfaces that can be stowed (Escrig, 1985). 
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Figure 1.11. Perfect Hemispherical Dome 
(Source: Escrig, 1985) 

 In later studies of Escrig with Valcarcel, new spherical grid structures using two-

way and three-way scissors are developed (Escrig and Valcarcel, 1986a; Escrig and 

Valcarcel, 1986b; Escrig and Valcarcel, 1987).  The other works developed by Escrig 

and Valcarcel are spherical and geodesic structures, quadrilateral expandable umbrella, 

deployable polyhedral and compact folded cylinder (Escrig and Valcarcel, 1993).  

 Another valuable work of Escrig and Valcarcel is the rigid plate roofing 

element. Deployable structures have been covered with a thin fabric roof which does 

not contribute to structural strength in general. Escrig designed deployable structures 

which contained rigid plates using as part of the mechanism (Figure 1.12). In this 

design, the plates overlap with each other (Robbin, 1996). 
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Figure 1.12. Deployable Plate Structures 
(Source: Akgün, 2010) 

 Deployable roof structure for a swimming pool in San Pablo Sports Centre in 

Seville, Spain by Escrig (1996) is one of real-life application of scissors units applied. 

This roof structure is based on two identical rhomboid grid structures covered with 

fabric (Figure 1.13, Figure 1.14). 

 

 

Figure 1.13. Swimming pool in Seville 
(Source: Kassabian et al., 1999) 

Langbecker (1999) developed the foldability conditions of SLEs and work on 

the deployability and kinematics of translational, cylindrical and spherical 

configurations of scissor structures. Langbecker also developed barrel vaults 

(Langbecker and Albermani, 2001). Many models of singly-curved foldable barrel 

vaults and doubly-curved synclastic and anticlastic structures (Figure 1.15) (Langbecker 

and Albermani,2000). 



   

 11 
 

 

Figure 1.14. Deployable swimming pool 
(Source: © Grupo Estran, 2018) 

 

Figure 1.15. Synclastic and Anticlastic structures 
(Source: Akgün, 2010) 

In all examples presented so far, the basic unit of the assembly can be 

considered as a pair of ternary links with revolute joints only for which the joint axes 

are coplanar, or to say, hinge points are collinear as in the so-called translational or 

polar units shown in Figure 1.16 as the left and mid figures. Besides these two well-

known types of scissor pairs in the literature, Chuck Hoberman discovered a new type 

of SLE: the angulated element, where the three hinge points on a link are not collinear, 
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but rather form a triangle (right figure in Figure 1.16). With his work on angulated 

scissors, Hoberman developed many structures. Some well-known structures are the 

Hoberman sphere (Hoberman, 1990) (Figure 1.17), Iris Dome (Hoberman, 1991) 

(Figure 1.18) and Hoberman Arch at 2002 Winter Olympics (Figure 1.19). 

 

 

Figure 1.16. Translational, polar and angulated units 
(Source: Maden, Korkmaz and Akgün, 2011) 

 

Figure 1.17. Hoberman sphere 
(Source: Wikipedia, 2018) 



   

 13 
 

 

Figure 1.18. Open and Closed Form of Iris Dome 
(Source: Google Images, 2018) 

 

 

Figure 1.19. Hoberman Arch in 2002 Winter Olympics 
(Source: Google Images, 2018) 

Sergio Pellegrino and Zhong You examined angulated scissors in detail. They 

investigated not only pairs of identical links, but also different link pairs and they 

discovered equilateral and similar generalized angulated elements (GAEs) (Figure 1.20) 

(You and Pellegrino, 1997). Reducing the number of components of the structure and 

the complexity of joints, multi-angulated element (multi-AE) was discovered by You 

and Pellegrino (Figure 1.21). 

Van Mele (2010) covered a tennis arena by using scissors arches composed of 

angulated elements. Two angulated scissor arches carried by pin connected arches make 

a barrel vault (Figure 1.22). 
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Figure 1.20. Equilateral GAE (AE = DE, BE = CE,  ≠ ) and similar GAE 
(Source: You and Pellegrino, 1997) 

 

  

Figure 1.21. A multi-AE and a ring-like structure with multi-AEs 
(Source: You and Pellegrino, 1997) 

The study of Rippmann is a little different from the previous studies mentioned 

above. He presented a transformable structure design with high deployable ratio. 

Rippmann obtained the curved structures using non-identical scissor units (ROK, 2018). 

He used a scissor unit design with adjustable intermediate hinge point locations (Figure 

1.23) (Figure 1.24). 
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Figure 1.22. A scissor-hinged retractable membrane roof 
(Source: Van Mele et al., 2010) 

 

 

Figure 1.23. Scissor unit with adjustable hinge location 
(Source: ROK, 2018) 
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Figure 1.24. Rippmann’s scissor structure 
(Source: Akgün, 2010) 

Liao and Li (2005) (Figure 1.25) and Kiper and Söylemez (2010) (Figure 1.26) 

have devised methodologies for scaling planar graphs or loops. Both approach results in 

linkages with rhombus loops 

 

 

Figure 1.25. Liao and Li’s scaling linkages 
(Source: Liao et al., 2005) 

A recent study on design of scissor linkages by Zhang et al. (2016) presents a 

design methodology for transformation between arbitrary curve shapes (Figure 1.27). 

Their design is based on scissor units with preserved or varied subtended angles. 

Instead of using scissor units for designing scissor linkages, an alternative 

approach is using loops as modules and assembling the loops. Such a method can be 

called as loop assembly method. Although it is not explicitly specified in the patent, the 

loop assembly method is first implemented by Hoberman (1990). Later on, Hoberman 

(2013) explains his methodology in detail in an invite4d lecture at MIT (Figure 1.28). 

What he simply does is to install rhombi on the sides of a polyline. 
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Figure 1.26. Kiper and Söylemez’s polygon scaling linkages 
(Source: Kiper et al., 2010) 

 

Figure 1.27. Zhang et al.’s design methodology 
(Source: Zhang et al., 2016) 

 

 

Figure 1.28. Hoberman’s design methodology 
(Source: Hoberman, 2013) 
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The loop assembly method is later further generalized for other loop types by 

Bai et al. (2014) using kite, parallelogram and general tetragon loops (Figure 1.29). 

 

 

Figure 1.29. Bai et al.’s scaling linkages 
(Source: Bail et al., 2014) 

Recently, the loop assembly method is used with dart (concave kite) and anti-

parallelogram loops by Yar et al. (2017) and Gür et al. (2017, 2018), respectively 

(Figures 1.30-1.31). This thesis is a result of the research conducted by this research 

group as well. 

1.4. Methodology 

In this thesis, the dimensional design method is devised for approximating the 

motion of a curve transforming between an initial and final form using scissor linkages 

comprising some fundamental loops. First, the topology of the fundamental loops are 

examined using symmetry groups on curves. The joints of the obtained mechanisms are 

located in the nodes obtained by discretizing the curves. This placement is done by 

inserting suitable fundamental loops on the curve. Finally, the dimensional design of the 

SLEs is performed. 
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Figure 1.30. Concave kite loop assembly 
(Source: Yar et al., 2017) 

 

Figure 1.31. Antiparallelogram loop assembly 
(Source: Gür et. al., 2017) 
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1.5. Summary of the Chapters 

In Chapter 2, first an introduction to the fundamental loops in the literature is 

presented (Section 2.1) and a classification of alternative mechanism topologies is 

presented using the symmetry groups on a curve (Section 2.2). The introduction part of 

Chapter 3 contains the discretization of the given curves. A scaling deployable structure 

example is given in Section 3.1. An angular deployable structure example is given in 

Section 3.2 and a transformable structure example is given in Section 3.3. Conclusions 

are presented in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

  



   

 21 
 

CHAPTER 2  

STRUCTURAL DESIGN 

This Chapter first presents the fundamental loops and their assemblies (patterns). 

These assemblies are produced by using symmetry groups on curves. Then link 

geometries are decided based on the patterns. The hence-obtained linkages are also 

tabulated. 

2.1. Loops 

When the assemblies of scissor-like elements in the literature are examined, the 

following loops are dominant: kite, parallelogram and rhombus. Kite is a convex 

quadrilateral with two pairs of equal lengths where the long (b) and short (a) sides are 

adjacent (Figure 2.1). 

 

 

Figure 2.1. Kite Loop 

Parallelogram is also a convex quadrilateral with two pairs of equal lengths 

where opposite sides are equal (Figure 2.2). 
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Figure 2.2. Parallelogram Loop 

Rhombus is the special case of both of these two loops with four equal sides. 

Rhombus can be regarded as a kite or a parallelogram with equal short and long sides 

(Figure 2.3). 

 

 

Figure 2.3. Rhombus Loop 

Although a random quadrilateral has four different side lengths, a kite or a 

parallelogram has only two different side lengths. This condition of the side lengths 

provides a special geometric constraint in the design of deployable structures. Actually, 

this is the prominent over-constraint condition for these linkages. At this point, two 

other loops with two identical long sides and two identical short sides could be detected. 



   

 23 
 

Although the first three examples are convex, the two other loops are concave. These 

are the dart loop which could be considered as a concave kite (Figure 2.4) and anti-

parallelogram which could be also considered as a concave parallelogram (Figure 2.5). 

Unlike kite and parallelogram loops, dart and anti-parallelogram loops do not have the 

special case as rhombus loops. 

 

 

Figure 2.4. Dart Loop 

 

Figure 2.5. Antiparallelogram Loop 

If quadrilaterals are simply considered as a 4-bar loop, the kite loop and dart 

loop could be perceived as different assembly modes of the same 4-bar loop. In the 

singular configuration where two short links are inline, the assembly mode of a kite 

loop could change to a dart loop (Figure 2.6). 
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Figure 2.6. Assembly mode change of a kite loop (left) into a dart loop (right) through 
the singular configuration (middle)  

  Similarly, a parallelogram also has two assembly modes where the assembly 

mode change occurs when all links are collinear at the singular configuration (Figure 

2.7). 

 

 

Figure 2.7. Assembly mode change of a parallelogram (left) into an anti-parallelogram 
(right) through the singular configuration (middle) 

In a multi-loop assembly, loops could constrain each other. Hence, the assembly 

mode change may not occur even though some loops are in singular configurations. 

Also, assembly changes may not be possible due to link collisions in real applications. 

2.2. Loops Assemblies and Linkage Topologies 

A frieze pattern is a design on two dimensional surfaces that are repetitive in one 

direction. These patterns are frequently encountered in architecture and decorative arts. 

A frieze group is basically the symmetry set of these frieze patterns. Mathematical 

studies on frieze pattern have shown that these patterns can be classified into 7 types. 
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These patterns are based on 4 main symmetry operations. Translation, rotation, 

reflection and glide reflection (Figure 2.8) (Gür, 2017). 

 

 

Figure 2.8. Main symmetry operations 
(Source: Gür, 2017) 

 

These 7 types are Hop (Figure 2.9), Step (Figure 2.10), Sidle (Figure 2.11), 

Dizzy Sidle (Figure 2.12), Dizzy Jump (Figure 2.13), Jump (Figure 2.14) and Spinning 

Jump (Figure 2.15) (Conway et al., 2008). 

 

 
 

Figure 2.9. Hop (F1) 
(Source: Gür, 2017) 
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Figure 2.10. Step (F2) 
(Source: Gür, 2017) 

 
 

Figure 2.11. Sidle (F3) 
(Source: Gür, 2017) 

 

Figure 2.12. Dizzy Sidle (F4) 
(Source: Gür, 2017) 
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Figure 2.13. Dizzy Jump (F5) 
(Source: Gür, 2017) 

 
 

Figure 2.14. Jump (F6) 
(Source: Gür, 2017) 
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Figure 2.15. Dizzy Jump (F7) 
(Source: Gür, 2017) 

 

In a scissor linkage, there are no two rows on top of each other. Therefore Jump 

(F6) and Spinning Jump (F7) patterns are unrelated to this study. 

Using these frieze patterns, Gür and Yar (2018) have created several scissor 

linkage assemblies for dart (Figure 2.16), kite (Figure 2.17), parallelogram, rhombus 

and anti-parallelogram loops. Motion studies have been conducted by examining the 

movements of these assemblies. Although the patterns are obtained for identical loops, 

non-identical loops may be multiplied on a curve as well. 

 In this study, the observed movements are evaluated to detect general and 

specific cases. The detected motions can be classified under 3 fundamental types: 

Scaling Type Deployment (up figure in Figure 2.18), Angular Deployment (middle 

figure in Figure 2.18) and Transformability (down figure in Figure 2.18) (Kiper, 2018). 

Unclassified movements are also investigated and some of these movements are 

structurally similar. These similarities are attributed to the complex behavior of the 

loops being placed on one of their side. The investigated structures not also have 

unclassified complexity but also have some links which have more than three joints 

(Figure 2.19). 

Besides using the frieze patterns, it is also possible to connect the short and long 

diagonals of a loop to obtain a pattern on a curve. Using two different connection types, 

different linkages are obtained (Figure 2.20). 
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Figure 2.16. Dart Loop Frieze Patterns 
(Source: Yar, 2018) 
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Figure 2.17. Kite Loop Frieze Patterns 
(Source: Yar, 2018) 
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Figure 2.18. Transformation type classifications 

 

 

Figure 2.19. Quaternary links (black) in a rhombus assembly 
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Figure 2.20. Two different linkages obtained by connecting short and long diagonals of 
rhombi 

 When a loop has vertical symmetry (Figure 2.21), Step (F2) and Dizzy Sidle 

(F4) patterns and Hop (F1) and Sidle (F3) patterns are indistinguishable. 

 

 

Figure 2.21. Vertical symmetric loops 

By applying these various symmetry operations methods, several scissor 

linkages comprising different type of loops are obtained. The motions of these linkages 

are classified according to the change in the diagonal of the second loop (S2) and the 

angle between the diagonals (α) as the diagonal of the first loop (S1) increases (Figure 

2.22). 
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Figure 2.22. Coordinate system for the loop assemblies 

Over 100 assemblies are simulated and examined using a CAD software. This 

analysis not only provides new assemblies, but also ideas about how to make assemblies 

for more complex cases. These motions can be classified under 6 types (Tables 1 and 2). 

Table 1. Motion Classification 

Types 

Extraction Contraction 

S1 S2 S1 S2  

Type-1 Increasing Increasing Increasing Decreasing Decreasing Decreasing 

Type-2 Increasing Increasing Decreasing Decreasing Decreasing Increasing 

Type-3 Increasing Decreasing Increasing Decreasing Increasing Decreasing 

Type-4 Increasing Decreasing Decreasing Decreasing Increasing Increasing 

Type-5 Increasing Increasing No Change Decreasing Increasing No Change 

Type-6 Increasing Decreasing No Change Decreasing Decreasing No Change 
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Table 2. The number of possibilities 

Types The Number of Possibilities 

Type-1 13 Assemblies 

Type-2 7 Assemblies 

Type-3 18 Assemblies 

Type-4 6 Assemblies 

Type-5 7 Assemblies 

Type-6 2 Assemblies 

 

Only one assembly of Type-2 could be used for Angular Deployment. Type 1 

results in linkages with a well-structured transformable motion. Type 3 and Type-4 

cannot be used for Angular or Scaling Deployment - such complex motions could just 

be considered in Transformability cases.  However, Type-5 and Type-6 have 

importance since angle  does not change. Type-6 does not result in Scaling 

Deployment, but Type-5 does. Type-5 assemblies have Scaling Deployment ratio if the 

link lengths ratio is constant for all loops. 

For Scaling Deployment, 7 different assemblies including same type and similar 

geometric dimensions with different ratio are found. The first one is the well-known 

rhombus assembly (Figure 2.23) (Hoberman, 1991). 

The second one is with the parallelogram assemblies. During the construction, 

geometrically similar loops should be located on each segment (Figure 2.24). The third 

and fourth cases are 2 different kite assemblies. All kites should be similar. One of these 

assemblies is depicted in Figure 2.25 (Bai et al., 2014). The other alternative is 

explained in detail in a latter Section. 
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Figure 2.23. Rhombus assemblies for scaling deployment  
(Source: Hoberman, 1991) 

 

Figure 2.24. Parallelogram assemblies for scaling deployment  
(Source: Bai et al., 2014) 

 

Figure 2.25. Kite assemblies for scaling deployment 
(Source: Bai et al., 2014) 
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The fifth assembly is an anti-parallelograms assembly. Again, similar anti-

parallelograms are used (Figure 2.26) (Gür et al., 2017, 2018). 

 

 

Figure 2.26. Deployment anti-parallelogram linkage on an arbitrary curve 
(Source: Gür et al., 2018) 

 This approach introduces 2 new type scaling deployment linkages as the sixth 

and seventh assemblies comprising dart (Figure 2.27) and parallelogram (Figure 2.28) 

loops. As in the previous scaling assemblies, these assemblies also have geometrically 

similar loops. 

For the Angular Deployment, only kite assembly can be used (Figure 2.29). The 

radius slightly changes during the motion, but the major change is in the angle. Also, it 

is possible to have the same radius in the initial and final configuration. 
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Figure 2.27. Scaling Deployment parallelogram mechanism  

 

Figure 2.28. Scaling Deployment dart mechanism 
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Figure 2.29. Kite angular deployment assemblies 

 In some dart (Figure 2.30) and anti-parallelogram (Figure 2.31) assemblies with 

identical loops, although the nodes remain on a circle, the radius change is extremely 

much, so these assemblies cannot be considered to have angular deployment. 

 

 

Figure 2.30. Dart angular deployment assemblies 



   

 39 
 

 

Figure 2.31. Antiparallelogram angular deployment assemblies 
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CHAPTER 3  

DIMENSIONAL DESIGN 

   

 In this Chapter, examples for scaling deployment, angular deployment and 

transformability are mathematically modelled for synthesis. The given curves are 

discretized to polylines and dimensional design is performed. 

3.1. Discretization of the Curves 

 The given initial and final form of the curve are discretized to n line segments. 

For n-line segments, there are n nodes for a closed curve and n + 1 nodes for an open 

curve. This discretization causes an error between the curves and the polylines. This 

error could be minimized. Preferably the given curves are discretized according the 

changing radius of curvature along the curve. The lengths between adjacent nodes are 

longer for larger radius. Otherwise, more are located more frequently when the radius is 

smaller (Figure 3.1) (Hamann et al., 1994). 

 

 

Figure 3.1. Data point selection for a selected curve 
(Source: Hamann, 1994) 
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In scaling deployment, the lengths between nodes can change. The radius should 

be at least approximately constant along the path in angular deployment, so the 

discretization method of Hamann (1994) locates the nodes equally. 

3.2. Scaling Deployable Linkages 

In scaling deployment, the length of the line segments of a polyline can be 

presented by Sn for each segment n. Figure 3.2 illustrates an anti-parallelogram 

assembly, but the forthcoming formulations and discussions are valid for all type of 

assemblies with scaling deployment. 

 

 

Figure 3.2. Parameters of the linkage 
(Source: Gür et al., 2018) 

One of the segments is selected as the primary segment. The ratio of the nth 

segment length to the primary can be denoted as kn: 

 

 32 n
2 3 n

1 1 1

SS Sk   ,   k   ...   k
S S S

  (3.1) 

  

In scaling deployment, all loop types except rhombus type have a short (a1) and 

a long edge (b1). The link lengths for each loop are determined using the ratio between 

the link length ratio R of the loop associated with the primary segment. The ratio R 
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should be equal for all loops on all segments. The resulting links are in Type II, i.e. 

similar GAEs: 

 

 1 2 n

1 2 n

b b bR ...
a a a

  (3.2) 

 

 At the fully deployed form, the sum of the link lengths (ai + bi) is equal to 

segment 

lengths. The kink angle i,i+1 of an angulated SLE meeting at the vertex 

of a polyline is simply the angle between the segments meeting at the vertex. The 

kink angle at a vertex is supplementary of the summation of halves of subtended angles 

of the neighboring segments:  i,i+1 + ( i,i+1 + i+1,i)/2 = 180  in Figure 3.2. Since the 

kink angles of a pair of angulated SLEs meeting at a vertex are equal to each other, all 

loops deploy with the same ratio during the motion, hence resulting in a scaling linkage. 

 Maximum deployed to compact form ratio can be found for all scaling 

deployment assemblies. These ratios depend on which loop assembly is preferred. 

These ratios can be found for the anti-parallelogram assembly, one of the kite 

assemblies and both parallelogram assemblies as 

 

 n n

n n

b a R 1Compactness ratio: 100 100
b a R 1

  (3.3) 

 

 When the other scaling deployment assemblies are fully deployed, these ratios 

are zero neglecting the link length collisions. The ratio R and compactness ratio can be 

utilized as design measures. Once the link lengths are decided, kinematic analysis of the 

resulting linkage can be performed. Derivation of the kinematic analysis formulations 

are straightforward (see for ex. (Söylemez, 2008)). The formulations are implemented 

in Microsoft Office Excel (Figures 3.3-6). 
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Figure 3.3. Kinematic Analysis in Excel 
(Source: Gür et al., 2018) 
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Figure 3.4. Deployment of an antiparallelogram linkages 
(Source: Gür et al., 2018) 

 

Figure 3.5. Deployment of a parallelogram linkages 
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Figure 3.6. Deployment of a dart linkages 

3.3. Angular Deployable Linkages 

 In general, angular deployable linkage is designed for the angular deployment 

from an arbitrary initial angle to another with minimum possible radius change. 

Although this linkage is classically designed by assembling polar scissor units, it can 

also be designed using kite assemblies such that the links will not be angulated. In this 

Section, the dimensional design of angular deployable linkages is presented for given 

number of loops (n), span length (2R) and the wall thickness (t) in the deployed 

configuration. (Figure 3.7). 

  



   

 46 
 

 

Figure 3.7. Design inputs for angular deployment mechanism 

 First, the circular arcs are divided into n equal segments of length S to construct 

an n-segmented polyline (Figure 3.8). 

 

 

Figure 3.8. Design parameters for angular deployment mechanisms 

 A kink angle ( ) of the polyline and number of units (n) of the loop are 

governed by the following equation: 

 (n 1)
n n

 (3.4) 
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 To obtain collinear links, the summation of following angles can be written: 

 

 1 2 2 1 1      
n

 (3.5) 

 The length of a line segment of a polyline at deployed configuration can be 

found for each segment: 

 S 2R sin
2n

 (3.6) 

 From the geometry, the design parameters thickness (t) can be expressed: 

 2 1
St tan tan
2

 (3.7) 

 Using trigonometric identities, the following expression can be found such as: 

 1

1 1

sin(2 )2t
S cos cos( )

 (3.8) 

Using tangent of the half-angle substitution v = tan( /2) : 

 
2 2 2 2

2 2

4 v(1 v )cos (1 v ) 4 v sin 2t
S(1 v ) (1 v )cos 2 vsin

 (3.9) 

 Equation 3.9 is a 4th order polynomial equation which can be solved analytically: 

 4 3 2Av Bv Cv Dv E 0 (3.10) 

 where 2tA cos sin
S

, 4tB 4cos sin
S

, 4tC cos 6sin
S

, 

4tD sin 4cos
S

 and 2t cos sin
S

. The lengths of the short (a) and long (b) 

links can be expressed as: 

 1

2

Sa
2cos

Sb
2cos

 (3.11) 

 The inner and outer radius could be found as following: 

 
outer 2

inner 1

R R cos sin tan
2n 2n

R R cos sin tan
2n 2n

 (3.12) 
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 As an example, the angular deployment linkage for the parameters in Tables 3-6 

can be seen in Figure 3.9. 

 

Table 3. Angular deployment inputs 

Inputs 
Given radius R 120 
# of segments n 15 

Thickness t 50 
 

Table 4. Coefficient of equation 

Coefficient of Equation 
A B C D E 

-3.691 -5.570 6.551 5.570 -3.691 
 

Table 5. Roots of the equations 

Solution 
v1 v2 v3 v4 

0.533 0.920 -1.088 -1.875 
 

Table 6. Results for the root v1 

Results 
ψ1 0,980 
ψ2 1,190 

Router 150,636 
Rinner 100,636 

a 22,523 
b 33,713 
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Figure 3.9. Kinematic Analysis in Excel 

3.4. Transformable Linkages – Case Studies 

 The transformable linkages are designed for the transformation from an initial 

curve to some other curve with a different form. The transformable linkages noted in the 

literature generally require either nonsymmetrical loops or composition of different 

types of loops (see (Rippmann, 2007); (Zhang et al., 2016)). Since the scope of this 

thesis is on modular design of scissor linkages, only the transformable linkages with the 

same type of loops are analyzed. Various such modular designs can be constructed and 

the dimensional design of each and every type is different. In this Section, the 

dimensional designs of three selected transformable linkages are presented as case 

studies. The selected type of transformation for all three linkages is in between two 

circular arcs with different radii and subtended angles. It is assumed that the curve form 

remains as a circular arc at any configuration during the motion of the linkage. 

 First, the circular arcs are segmented into n equal segments to construct an n-

segmented polyline. The length of a line segment of a polyline at an arbitrary 

configuration can be presented by S for each segment (Figure 3.10). S changes during 

the motion. Let S = S1 at the initial form and S = S2 at the final form. 
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Figure 3.10. Parameter of the linkages for the anti-parallelogram assembly 

 The angular change  = 2 – 1 of segmented poly-line is assumed as given. 

All loop types except the rhombus have a short (a) and a long side (b). The link lengths 

of this type of loops are determined using the link length ratios. For identical line 

segments, the ratio R should be equal for all loops: 

 
bR
a

  (3.13) 

 The ratio  of initial segment length to the final segment length could be defined 

as: 

 1

2

S
S

  (3.14) 

 The compact and deployed form of the anti-parallelogram assembly are 

illustrated in Figure 3.10. The parameters of a loop in compact form S1, ,  and in 

deployed form S2, , are governed by the following equations:  
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1

1 2 1 2

2
* * * *
1 2 1 2

Sa b
sin sin sin

Sa b
sin sin sin

  (3.15) 

 Therefore 

 

*
1 1 2 1

* *
1 2 1 2

*
1 1 2 2

* *
1 2 1 2

S sin S sina
sin( ) sin( )

S sin S sinb
sin( ) sin( )

  (3.16) 

, ,  angles can be represented in the following forms: 

 

2 2 2
* 2
1

2

2 2 2
* 2
2

2

2 2 2
1

1
1

2 2 2
1

2
1

S b aacos
2bS

S a bacos
2aS

S b aacos
2bS

S a bacos
2aS

  (3.17) 

 Since all loops are identical, the parameter ,  can be presented with 

Equation 3.18, where  and  are the amount of rotation of the links from initial to 

final configuration. 

 
*
1 1 2 1 1
*
2 2 1 2 2

  (3.18) 

from which  and  are found as: 

 
* *

1 1 1 2 2
* *

2 2 2 1 1

  (3.19) 

In terms of equations above  can be expressed as: 

 * *
1 2 1 1 2 2  (3.20) 

Using Equation 3.17 and 3.20  can be derived as 

 
2 2 2 2 2 2

* *1 1
1 2

1 1

S b a S a bacos acos
2bS 2aS

 (3.21) 
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 Assuming that at fully deployed form the links are on the polyline, =  = 

0,   a + b = (1 + R)a = S2 and the kink angle of the angulated SLEs are equal to 2  – 2. 

Then Equation 3.21 becomes 

 
2 22 2 2 2

1 2
1 R R 1 1 R 1 Racos acos
2 R 1 R 2 1 R

 (3.22) 

 In Equation 3.22,  and are known from the initial and final curve forms, 

hence R can be calculated using Equation 3.23. 

 2 2 2
1S a b 2abcos  (3.23) 

Equation 3.23 can be rearranged as 

 22 2 2 2 2R 1 a (R 1)a 2Ra cos  (3.24) 

Rearranging Equation 3.24, Equation 3.25 can be written as 

 2 2 2 2R 1 2R(cos ) 1 0  (3.25) 

Because of the two different solutions are reciprocals of each other, the only 

solution can be written as: 

 
2 22 2 2

2

cos cos 1 11 R
1 1

 (3.26)  

Once R is determined, a and b can be solved as 

 2Sa    and   b Ra
1 R

 (3.27) 

 The limit of Equation 3.22, as R goes to 
1
1

, is found as in Equation 3.29 

when the loop reaches it’s the deployed form.  

 
1R
1

lim 2acos( 1)  (3.29) 

 The limit of Equation 3.22, as R goes to 1, is found as in Equation 3.30 when the 

loop is at it’s the compact form.  

 
R 1
lim 2acos( )  (3.30)  
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Figure 3.11. Parameters of the linkages for dart assembly 

 The compact and deployed forms of the dart loop assembly are illustrated in 

Figure 3.11. The parameters of the loop in compact form S1, ,  and in deployed 

form S2, , are governed by the following equations: 

 1 2 1
* *
1 2 2

2cos a 2cos b S

2cos a 2cos b S
 (3.31) 

where  

 

1 2
*

1 1

1 2
*

2 2

S Sa
2cos 2cos

S Sb
2cos 2cos

 (3.32) 

 , ,  angles can be represented in the following forms: 
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* 2
1

* 2
2

1
1

1
2

Sacos
2a
Sacos
2b
Sacos
2a
Sacos
2b

 (3.33) 

 Because of the link connection, the parameter  can be presented with 

Equation 3.34 where is the change in the king angle of the polylines. 

 
*
1 1 2 1 1
*
2 2 1 2 2

 (3.34) 

where  and  can be found as: 

 
* *

1 1 1 2 2
* *

2 2 2 1 1

 (3.35) 

 In terms of equations above  can be expressed as: 

 1 2
* *

1 2 1 2

 (3.36) 

 Equation 3.33 can be rearranged as 

 

* 2 2
1

* 2 2
2

1 2
1

1 2
2

S S 2acos 1
2a 2a 2a

S S 2a 1cos
2b 2b 2aR R
S S 2 acos
2a 2a 2a
S S 2 acos
2b 2b 2aR R

 (3.37) 

 

 Assuming that at fully deployed form the links are on the polyline, = 0,             

S2 = 2a and the kink angle of the angulated SLEs are equal to 2  – 2. Then Equation 

3.36 becomes 

 

*
1 2 2

*
2 1 2

2
1cos cos acos acos
R

 (3.38) 
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 Using trigonometric identities Equation 3.38 can be rearranged as 

 
2cos acos R 1sin acos

R R R
 (3.39) 

Solving for R in Equation 3.39, the only solution can be written as:  

 
21 2 cos acos

R
sin acos

 (3.40) 

 The limit of Equation 3.36, as R goes to infinity, is found as in Equation 3.41 

when the loop reaches its deployed form.  

 
R
lim acos( ) acos(0) acos(0) acos( )  (3.41) 

 The limit of Equation 3.36, as R goes to 1, is found as in Equation 3.42 when the 

loop is at its compact form. 

 
R 1
lim acos( ) acos( ) 2acos( )  (3.42) 

 

Figure 3.12. Parameters of the linkages for kite assembly 
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 The compact and deployed forms of the kite loop assembly are illustrated in 

Figure 3.12. The parameters of the loop in compact form S1, ,  and in deployed 

form S2, , are governed by the following equations: 

 1 2 1
* *
1 2 2

2cos a 2cos b S

2cos a 2cos b S
 (3.43) 

where  

 

1 2
*

1 1

1 2
*

2 2

S Sa
2cos 2cos

S Sb
2cos 2cos

 (3.44) 

 , ,  angles can be represented in the following forms: 

 

 

* 2
1

* 2
2

1
1

1
2

Sacos
2a
Sacos
2b
Sacos
2a
Sacos
2b

 (3.45) 

 Because of the link connection, the parameter  can be presented with 

Equation 3.45 where is the king angle. 

 
*
1 1 2 1 1
*
2 2 1 2 2

 (3.46) 

where  and  are found as: 

 
* *

1 1 1 2 2
* *

2 2 2 1 1

 (3.47) 

 In terms of equations above  can be expressed as: 

 1 2
* *

1 1 2 2

 (3.48) 

 Equation 3.45 can be rearranged as 
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* 2 2
1

* 2 2
2

1 2
1

1 2
2

S S 2acos 1
2a 2a 2a
S S 2a 1cos
2b 2b 2aR R
S S 2 acos
2a 2a 2a
S S 2 acos
2b 2b 2aR R

 (3.49) 

Assuming that at fully deployed form the links are on the polyline, = 0,             

2a = S2 and the kink angle of the angulated SLEs are equal to 2  – 2. Then Equation 

3.48 becomes 

 

*
1 2 2

*
2 1 2

2
1cos cos acos acos
R

 (3.49) 

 Equation 3.49 can be rearranged as 

 
2cos acos R 1sin acos

R R R
 (3.50) 

Solving for R in Equation 3.49, the only solution can be written as:  

 
21 2 cos acos

R
sin acos

 (3.51) 

 The limit of Equation 3.48 as R goes to infinity, is found as in Equation 3.52 

when the loop reaches its deployed form.  

 
R
lim acos( ) acos(0) acos(0) acos( )  (3.52) 

 The limit of Equation 3.48, as R goes to 1, is found as in Equation 3.53 when the 

loop is at its compact form. 

 
R 1
lim acos( ) acos( ) acos(1) 0  (3.53) 

The compactness ratio can be found for all transformable assemblies. For kite 

and dart assemblies, the theoretical compactness ratio is zero neglecting link collisions. 

These ratios depend on which loop assembly is preferred. These maximum compactness 

ratio for the anti-parallelogram loops can be found as 

 

 1

2

1
1

S b a R
S b a R

  (3.54) 
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 Once the link lengths are calculated, kinematic analysis of the resulting linkage 

can be performed. Derivation of the kinematic analysis formulations are straightforward 

(see for ex. (Söylemez, 2008)). The formulations are implemented in Microsoft Excel. 

 Three cases are presented as numerical examples. Table 7 presents the design 

requirement parameters for three case studies with different loop assemblies. The 

illustrations of the case studies are depicted in Figures 3.13-15, where anti-

parallelogram, dart and kite loop assemblies is transformed between two circular arc 

forms with different curvature characteristics. The resulting design parameters are listed 

in Table 8. 

Table 7. Design Requirement Parameters 

 Loop Type S1 S2 α1 α2 

Case 1 Antiparallelogram 80 100 135  210  

Case 2 Dart 60 100 135  210  

Case 3 Kite 50 100 160  190  

Table 8. Resulting design Parameters 

 Loop Type R a b Link Kink Angle 

Case 1 Antiparallelogram 1.407 41.548 58.452 135.000  

Case 2 Dart 1.332 50.000 66.624 176.368  

Case 3 Kite 1.239 50.000 61.966 123.794  
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Figure 3.13. Kinematic Analysis in Excel for antiparallelogram assembly 

 

 Figure 3.14. Kinematic Analysis in Excel for dart assembly  
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Figure 3.15. Kinematic Analysis in Excel for kite assembly 
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CHAPTER 4  

CONCLUSIONS 

The aim of this thesis study is to create kinematic design methods for different 

scissor linkages for different motions to satisfy today’s engineering structures demand.  

The linkages are designed for the transformation of planar curves from an initial form to 

a final form. The planar curves are approximated with poly-lines with nodes. 

The topological alternatives of possible scissor linkages are already listed by 

other researchers. In order to examine the transformations these linkages are capable of, 

first a classification of motion characteristics of possible linkage assemblies is 

performed. The classification resulted in six different type of motions, some of which 

can lead to deployable linkages and others lead to linkages for transformable motion. 

The six different motion types differ by increasing/decreasing polyline segment lengths 

and the kink angle of adjacent segments in the poly-line. The result of this classification 

reveals possible type of linkages that can be used for different transformations of 

curves. 

To perform the dimensional design of these linkages, first the given initial and 

final form of the approximated curve is represented by segment lengths and angles 

between the segments. The mathematical set of equations to design several different 

linkages are derived. Three assemblies for scaling deployment different from literature 

are analyzed and a generalized design approach for transformable assemblies are 

presented. Also, case studies for dimensional design are presented. 

The method introduced in this study can be used as an overall guideline to 

design deployable structures comprising scissor linkages. The derived formulations can 

be implemented in a design software that can be used by architects and engineers. 

As further studies, the linkages comprising different loop types should be 

examined to understand the behavior of their motion characteristics. The methodology 

in this thesis study can be used in addressing this problem as well. 
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