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ABSTRACT

KINEMATIC DESIGN OF SCISSOR LINKAGES

The primary objective of this thesis is to propose a design method for linkages
simulating the transformation of a planar curve from an initial form to a final form.
First, the topologies of fundamental loops are examined using symmetry patterns.
Design methodologies for the hence obtained mechanisms are formulated. The given
curves are discretized initially, and the nodes are constructed. Then the side lengths of
the loops are obtained in order to obtain the desired transformation between the given

curves. Finally, different deployable and transformable linkage examples are presented.
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OZET

MAKAS MEKANIZMALARININ KINEMATIK TASARIMI

Bu tezin temel amaci baslangic ve son formu verilen bir diizlemsel egrinin
déniisiimiinde kullanilacak kollar icin bir tasarim metodu sunmaktir. ilk olarak, simetri
kullanilarak temel dongiilerin topolojileri incelenmistir.  Bdylece elde eldilen
mekanizmalar i¢in tasarim metodojileri elde edilmistir. Verilen egriler kesikli hale
getirilmis ve diglim noktalar1 yerlestirilmistir. Sonra, verilen egriler i¢in istenen
doniisiimii saglayacak olan dongiilerin kenar uzunluklar1 elde edilmistir. Son olarak,

farkli katlanabilir ve doniistiiriilebilir eklem 6rnekleri sunulmustur.
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CHAPTER 1

INTRODUCTION

Mobility and adaptability are frequently demanded for today’s engineering
structures. Deployable designs are required for compact transportation or storage in
applications such as outer-space structures. Adaptability for different functions or
changing environmental conditions is required in some architectural designs.
Considering these conditions, mobile structures are finding wider area of application in
different fields of study. Production methods, material types and design and analysis
methods for mobile structures are still being developed today.

The “mobile structure” expression seems to contain two contradicting terms,
since in general a structure is assumed to be immobile. What is meant by a mobile
structure is an assembly, which acts as an immobile structure at different configurations,
but which is also has mobility in order to be able to be reconfigured between different
forms. Mobile structures can be classified in two main sub-categories: deployable and
transformable structures. Deployable structures have at least one compact and one
deployed form, whereas transformable structures may attain arbitrary forms. Although
usually deployable structures have similar geometry in the compact and deployed
forms, otherwise is also possible.

One of the oldest and most commonly used type mobile structures comprise
scissor linkages. Scissor-like linkages (SLEs) have been used for tens of centuries in
designing household goods such as deployable tables (Figure 1.1) and portable shelters.
Scissor-like linkages may be a planar linkage such as the ones used for awnings (Figure
1.2) or deployable gates (Figure 1.3). On the other hand, in several examples of
structures comprising scissor linkages, the linkages lie on intersecting planes as sub-
assemblies. Nevertheless, in either case scissor linkages can be analyzed and designed

by confining oneself to the plane.



Figure 1.1. Ancient roman tripods
(Source: © Pinterest, 2018)

Figure 1.2. Scissor awning
(Source: Central Awnings, 2016)



Figure 1.3. Pair retail window gate
(Source: Illinois Engineered Products, 2016)

The main advantages of scissor mechanisms are compactness and modularity. A
system of several scissor mechanisms has the properties of a single scissor unit
multiplied as many times as the number of units. For example, a translational scissor
unit has same expansion properties with a single unit, the expansion ratio is the same,
but the amount of expansion is as many times as the number of units. The kinematic
equations of a system of scissors is much simpler compared to a system of another
mechanism type. The compactness is that the scissor mechanisms have the same
expansion ratio within less space.

This thesis aims to devise design methodologies for planar mobile structures
comprising scissor mechanisms. Unlike many of the studies in the literature, the
structural synthesis of the scissor linkages is performed by considering loops as
modules. Alternative topologies of these loop assemblies are investigated mainly based
on frieze groups (symmetric patterns on curves) by discretization of the desired forms of

curves and the kinematic dimensions of the hence obtained scissor-like elements are



calculated by dimensional synthesis. Various deployable and transformable structure

examples are worked out as case studies.

1.1. Problem Definition

This thesis study is part of the Horizon 2020 Marie Sklodowska-Curie Research
and Innovation Staff Exchange 2015 project “Optimization Driven Architectural Design
of Structures” (OptArch — H2020-MSCA-RISE-2015-689963) work package
“Optimized Hybrid Kinetic and Adaptive Structures” leaded by Izmir Institute of
Technology. The main purpose of the project is to develop an assistance optimization
tool for the geometric and structural design of adaptive architectural structures. The
optimization can be considered in different stages such as kinematic optimization and
structural optimization. The required topologies for scissor linkage-based structures
have already been classified by other researchers. This thesis is on the dimensional
synthesis of these various topologies considering the desired motion of the structure.

The essential problem in this thesis is how to obtain the kinematic dimensions of
the SLEs of a scissor linkage that can provide the motion for a given curve with its
initial and final form using some fundamental loops. For this reason, the first step of the
problem is to examine the desired motion of the structure which is idealized as a curve.
The second step of the problem is to determine the proper fundamental loops for the
desired curve motion. The final stage is the dimensional synthesis of the scissor

linkages.

1.3. Literature Review

This section presents the state-of-the-art, contributions to engineering and
architecture and the deficiencies reported in the literature. The main characteristics and
the geometric properties of the existing designs are examined. The examples are

selected to show the most common, important and well-known designs.



1.3.1. Deployable Structures

The structures that could be transformed from a pre-determined stowed
configuration to a pre-determined expanded configuration are called deployable
structures. These structures are stable and could carry external and internal loads
(Hernandez Merchan, 1987; Gantes, 2001) Deployable structures are mostly used in
portable or temporary applications for easy storage and transportation. Additionally,

they are also used to facilitate assemblies for large structures (Figure 1.4).

Figure 1.4. Rapidly Deployable engineered membrane structures
(Source: © Sprung Instant Structures, 2018)

In many areas which may have changing requirements such as weather, load or
size conditions, these structures could be utilized. Deployable structures could be
integrated either into a space shuttle as a deployable solar panel or a deployable space
antenna to minimize its volume (Figure 1.5), an environment friendly building as a
deployable roof for changing solar energy conditions or a deployable bridge in order to

respond changing transportation requirements (Figure 1.6).



Figure 1.5. Nuclear Spectroscopic Telescope Array with Deployable Mast
(Source: © NASA/JPL-Caltech 2017)

Figure 1.6. Opening steps of Rolling Bridge
(Source: Heatherwick Studio, 2018)

Well-known researchers in deployable structures area such as Pinero,

Hoberman, Escrig, Valcarcel, Gantes and Pellegrino have proposed differents systems



using scissors-hinge structures. In the design and application of deployable structures in
architecture, Emilio Perez Pinero is distinguished as one of the first publishers. A
deployable structure comprising SLEs to construct a movable theatre is presented by

Pinero (Figure 1.7). Pinero designed a scissor mechanism, but the mechanism is not

stable by itself after the deployment and it needs cables to be stable (Pinero, 1961a).

Figure 1.7. Movable Theatre
(Source: Yar, 2016)

Later works of Pinero such pavilions, temporary enclosure and retractable
domes all depend on SLEs (Pinero, 1961b; Pinero, 1965). Another work is the foldable

reticular dome which contains 7 modules expanding from compact bundles (Figure 1.8).

Figure 1.8. Foldable Reticular Dome
(Source: Yar, 2016)



Another pioneer in this field, Felix Escrig, worked on deployable bar structures
in detail. Escrig presented not only SLE’s geometric and deployability conditions but
also the relation between the elements and the span of the structure (Escrig, 1985). In
these studies, he focused on obtaining different geometries by using the same type of

struts and different connection elements (Figure 1.9).
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Figure 1.9. Different Geometries of Deployable Structures
(Source: Akgiin, 2010)

Escrig also explained how to generate three-dimensional structures which

contain planar translational SLEs in multiple directions on a grid (Figure 1.10).
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Figure 1.10. Multiway Grid Composed of Translational Scissor Unit
(Source: Giir, 2017)

Another work presented by Escrig depends on curved grids (Figure 1.11). This
structure contains polar units which deploy along an arc and these units could form

curved surfaces that can be stowed (Escrig, 1985).



Figure 1.11. Perfect Hemispherical Dome
(Source: Escrig, 1985)

In later studies of Escrig with Valcarcel, new spherical grid structures using two-
way and three-way scissors are developed (Escrig and Valcarcel, 1986a; Escrig and
Valcarcel, 1986b; Escrig and Valcarcel, 1987). The other works developed by Escrig
and Valcarcel are spherical and geodesic structures, quadrilateral expandable umbrella,
deployable polyhedral and compact folded cylinder (Escrig and Valcarcel, 1993).

Another valuable work of Escrig and Valcarcel is the rigid plate roofing
element. Deployable structures have been covered with a thin fabric roof which does
not contribute to structural strength in general. Escrig designed deployable structures
which contained rigid plates using as part of the mechanism (Figure 1.12). In this

design, the plates overlap with each other (Robbin, 1996).



Figure 1.12. Deployable Plate Structures
(Source: Akgiin, 2010)

Deployable roof structure for a swimming pool in San Pablo Sports Centre in
Seville, Spain by Escrig (1996) is one of real-life application of scissors units applied.
This roof structure is based on two identical thomboid grid structures covered with

fabric (Figure 1.13, Figure 1.14).

Figure 1.13. Swimming pool in Seville
(Source: Kassabian et al., 1999)

Langbecker (1999) developed the foldability conditions of SLEs and work on
the deployability and kinematics of translational, cylindrical and spherical
configurations of scissor structures. Langbecker also developed barrel vaults
(Langbecker and Albermani, 2001). Many models of singly-curved foldable barrel
vaults and doubly-curved synclastic and anticlastic structures (Figure 1.15) (Langbecker

and Albermani,2000).

10
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Figure 1.14. Deployable swimming pool
(Source: © Grupo Estran, 2018)

Figure 1.15. Synclastic and Anticlastic structures
(Source: Akgiin, 2010)

In all examples presented so far, the basic unit of the assembly can be
considered as a pair of ternary links with revolute joints only for which the joint axes
are coplanar, or to say, hinge points are collinear as in the so-called translational or
polar units shown in Figure 1.16 as the left and mid figures. Besides these two well-
known types of scissor pairs in the literature, Chuck Hoberman discovered a new type

of SLE: the angulated element, where the three hinge points on a link are not collinear,

11



but rather form a triangle (right figure in Figure 1.16). With his work on angulated
scissors, Hoberman developed many structures. Some well-known structures are the
Hoberman sphere (Hoberman, 1990) (Figure 1.17), Iris Dome (Hoberman, 1991)
(Figure 1.18) and Hoberman Arch at 2002 Winter Olympics (Figure 1.19).

pivot
(scissor hinge)

(B, B2 and f§; arc deployment angles) N\ /! !

Translational Unit Polar Unit Angulz;ted Unit

Figure 1.16. Translational, polar and angulated units
(Source: Maden, Korkmaz and Akgiin, 2011)

Figure 1.17. Hoberman sphere
(Source: Wikipedia, 2018)

12



Figure 1.18. Open and Closed Form of Iris Dome
(Source: Google Images, 2018)

Figure 1.19. Hoberman Arch in 2002 Winter Olympics
(Source: Google Images, 2018)

Sergio Pellegrino and Zhong You examined angulated scissors in detail. They
investigated not only pairs of identical links, but also different link pairs and they
discovered equilateral and similar generalized angulated elements (GAEs) (Figure 1.20)
(You and Pellegrino, 1997). Reducing the number of components of the structure and
the complexity of joints, multi-angulated element (multi-AE) was discovered by You
and Pellegrino (Figure 1.21).

Van Mele (2010) covered a tennis arena by using scissors arches composed of
angulated elements. Two angulated scissor arches carried by pin connected arches make

a barrel vault (Figure 1.22).

13



Figure 1.20. Equilateral GAE (AE = DE, BE = CE, ¢ # y) and similar GAE
(Source: You and Pellegrino, 1997)

Figure 1.21. A multi-AE and a ring-like structure with multi-AEs
(Source: You and Pellegrino, 1997)

The study of Rippmann is a little different from the previous studies mentioned
above. He presented a transformable structure design with high deployable ratio.
Rippmann obtained the curved structures using non-identical scissor units (ROK, 2018).
He used a scissor unit design with adjustable intermediate hinge point locations (Figure

1.23) (Figure 1.24).

14
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Figure 1.22. A scissor-hinged retractable membrane roof
(Source: Van Mele et al., 2010)

Figure 1.23. Scissor unit with adjustable hinge location
(Source: ROK, 2018)
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Figure 1.24. Rippmann’s scissor structure
(Source: Akgiin, 2010)

Liao and Li (2005) (Figure 1.25) and Kiper and Soylemez (2010) (Figure 1.26)
have devised methodologies for scaling planar graphs or loops. Both approach results in

linkages with rhombus loops

Figure 1.25. Liao and Li’s scaling linkages
(Source: Liao et al., 2005)

A recent study on design of scissor linkages by Zhang et al. (2016) presents a
design methodology for transformation between arbitrary curve shapes (Figure 1.27).
Their design is based on scissor units with preserved or varied subtended angles.

Instead of using scissor units for designing scissor linkages, an alternative
approach is using loops as modules and assembling the loops. Such a method can be
called as loop assembly method. Although it is not explicitly specified in the patent, the
loop assembly method is first implemented by Hoberman (1990). Later on, Hoberman
(2013) explains his methodology in detail in an invite4d lecture at MIT (Figure 1.28).
What he simply does is to install rhombi on the sides of a polyline.

16



Figure 1.26. Kiper and S6ylemez’s polygon scaling linkages

(Source: Kiper et al., 2010)

(¢) Geometry optimization

(b) Topology construction

(a) Input shapes

Figure 1.27. Zhang et al.’s design methodology

(Source: Zhang et al., 2016)
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The loop assembly method is later further generalized for other loop types by
Bai et al. (2014) using kite, parallelogram and general tetragon loops (Figure 1.29).

/)

Rhombus

Parallelogram | General Tetragon

Figure 1.29. Bai et al.’s scaling linkages
(Source: Bail et al., 2014)

Recently, the loop assembly method is used with dart (concave kite) and anti-
parallelogram loops by Yar et al. (2017) and Giir et al. (2017, 2018), respectively
(Figures 1.30-1.31). This thesis is a result of the research conducted by this research

group as well.

1.4. Methodology

In this thesis, the dimensional design method is devised for approximating the
motion of a curve transforming between an initial and final form using scissor linkages
comprising some fundamental loops. First, the topology of the fundamental loops are
examined using symmetry groups on curves. The joints of the obtained mechanisms are
located in the nodes obtained by discretizing the curves. This placement is done by
inserting suitable fundamental loops on the curve. Finally, the dimensional design of the

SLEs is performed.

18



Figure 1.30. Concave kite loop assembly

(Source: Yar et al., 2017)

Figure 1.31. Antiparallelogram loop assembly

(Source: Giir et. al., 2017)
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1.5. Summary of the Chapters

In Chapter 2, first an introduction to the fundamental loops in the literature is
presented (Section 2.1) and a classification of alternative mechanism topologies is
presented using the symmetry groups on a curve (Section 2.2). The introduction part of
Chapter 3 contains the discretization of the given curves. A scaling deployable structure
example is given in Section 3.1. An angular deployable structure example is given in
Section 3.2 and a transformable structure example is given in Section 3.3. Conclusions

are presented in Chapter 4.
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CHAPTER 2

STRUCTURAL DESIGN

This Chapter first presents the fundamental loops and their assemblies (patterns).
These assemblies are produced by using symmetry groups on curves. Then link
geometries are decided based on the patterns. The hence-obtained linkages are also

tabulated.

2.1. Loops

When the assemblies of scissor-like elements in the literature are examined, the
following loops are dominant: kite, parallelogram and rhombus. Kite is a convex
quadrilateral with two pairs of equal lengths where the long (b) and short (a) sides are

adjacent (Figure 2.1).

Figure 2.1. Kite Loop

Parallelogram is also a convex quadrilateral with two pairs of equal lengths

where opposite sides are equal (Figure 2.2).
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Figure 2.2. Parallelogram Loop

Rhombus is the special case of both of these two loops with four equal sides.
Rhombus can be regarded as a kite or a parallelogram with equal short and long sides

(Figure 2.3).

Figure 2.3. Rhombus Loop

Although a random quadrilateral has four different side lengths, a kite or a
parallelogram has only two different side lengths. This condition of the side lengths
provides a special geometric constraint in the design of deployable structures. Actually,
this is the prominent over-constraint condition for these linkages. At this point, two

other loops with two identical long sides and two identical short sides could be detected.
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Although the first three examples are convex, the two other loops are concave. These
are the dart loop which could be considered as a concave kite (Figure 2.4) and anti-
parallelogram which could be also considered as a concave parallelogram (Figure 2.5).
Unlike kite and parallelogram loops, dart and anti-parallelogram loops do not have the

special case as rhombus loops.

Figure 2.4. Dart Loop

Figure 2.5. Antiparallelogram Loop

If quadrilaterals are simply considered as a 4-bar loop, the kite loop and dart
loop could be perceived as different assembly modes of the same 4-bar loop. In the
singular configuration where two short links are inline, the assembly mode of a kite

loop could change to a dart loop (Figure 2.6).
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Figure 2.6. Assembly mode change of a kite loop (left) into a dart loop (right) through
the singular configuration (middle)

Similarly, a parallelogram also has two assembly modes where the assembly

mode change occurs when all links are collinear at the singular configuration (Figure
2.7).

Figure 2.7. Assembly mode change of a parallelogram (left) into an anti-parallelogram
(right) through the singular configuration (middle)

In a multi-loop assembly, loops could constrain each other. Hence, the assembly
mode change may not occur even though some loops are in singular configurations.

Also, assembly changes may not be possible due to link collisions in real applications.

2.2. Loops Assemblies and Linkage Topologies

A frieze pattern is a design on two dimensional surfaces that are repetitive in one
direction. These patterns are frequently encountered in architecture and decorative arts.
A frieze group is basically the symmetry set of these frieze patterns. Mathematical

studies on frieze pattern have shown that these patterns can be classified into 7 types.
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These patterns are based on 4 main symmetry operations. Translation, rotation,

reflection and glide reflection (Figure 2.8) (Gir, 2017).

Translation Reflection
\

-FEEE>- FE

Glide-reflection 4 JF § @
Bl . |E| .

E E Rotation

Figure 2.8. Main symmetry operations
(Source: Giir, 2017)

=
]

These 7 types are Hop (Figure 2.9), Step (Figure 2.10), Sidle (Figure 2.11),
Dizzy Sidle (Figure 2.12), Dizzy Jump (Figure 2.13), Jump (Figure 2.14) and Spinning
Jump (Figure 2.15) (Conway et al., 2008).
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Figure 2.9. Hop (F1)
(Source: Giir, 2017)
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Figure 2.10. Step (F2)
(Source: Giir, 2017)
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Figure 2.11. Sidle (F3)
(Source: Giir, 2017)
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Figure 2.12. Dizzy Sidle (F4)
(Source: Giir, 2017)
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Figure 2.13. Dizzy Jump (F5)
(Source: Giir, 2017)
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Figure 2.14. Jump (F6)
(Source: Giir, 2017)
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Figure 2.15. Dizzy Jump (F7)
(Source: Giir, 2017)

In a scissor linkage, there are no two rows on top of each other. Therefore Jump
(F6) and Spinning Jump (F7) patterns are unrelated to this study.

Using these frieze patterns, Giir and Yar (2018) have created several scissor
linkage assemblies for dart (Figure 2.16), kite (Figure 2.17), parallelogram, rhombus
and anti-parallelogram loops. Motion studies have been conducted by examining the
movements of these assemblies. Although the patterns are obtained for identical loops,
non-identical loops may be multiplied on a curve as well.

In this study, the observed movements are evaluated to detect general and
specific cases. The detected motions can be classified under 3 fundamental types:
Scaling Type Deployment (up figure in Figure 2.18), Angular Deployment (middle
figure in Figure 2.18) and Transformability (down figure in Figure 2.18) (Kiper, 2018).

Unclassified movements are also investigated and some of these movements are
structurally similar. These similarities are attributed to the complex behavior of the
loops being placed on one of their side. The investigated structures not also have
unclassified complexity but also have some links which have more than three joints
(Figure 2.19).

Besides using the frieze patterns, it is also possible to connect the short and long
diagonals of a loop to obtain a pattern on a curve. Using two different connection types,

different linkages are obtained (Figure 2.20).
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PATTERN TYPE ON CURVE
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Figure 2.16. Dart Loop Frieze Patterns
(Source: Yar, 2018)
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PATTERN TYPE ON CURVE SPECIAL CASES
a. HOP (F1) al 1 a2 y
2
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Figure 2.17. Kite Loop Frieze Patterns

(Source: Yar, 2018)
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Figure 2.18. Transformation type classifications

Figure 2.19. Quaternary links (black) in a rhombus assembly
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Figure 2.20. Two different linkages obtained by connecting short and long diagonals of
rhombi

When a loop has vertical symmetry (Figure 2.21), Step (F2) and Dizzy Sidle
(F4) patterns and Hop (F1) and Sidle (F3) patterns are indistinguishable.

Figure 2.21. Vertical symmetric loops

By applying these various symmetry operations methods, several scissor
linkages comprising different type of loops are obtained. The motions of these linkages
are classified according to the change in the diagonal of the second loop (S2) and the
angle between the diagonals (a) as the diagonal of the first loop (S1) increases (Figure

2.22).
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Figure 2.22. Coordinate system for the loop assemblies

Over 100 assemblies are simulated and examined using a CAD software. This
analysis not only provides new assemblies, but also ideas about how to make assemblies

for more complex cases. These motions can be classified under 6 types (Tables 1 and 2).

Table 1. Motion Classification

Extraction Contraction
Types S1 Sz o S1 Sz a
Type-1 Increasing Increasing Increasing Decreasing Decreasing Decreasing
Type-2 Increasing Increasing | Decreasing | Decreasing Decreasing Increasing
Type-3 Increasing | Decreasing | Increasing Decreasing Increasing Decreasing
Type-4 Increasing | Decreasing | Decreasing | Decreasing Increasing Increasing
Type-5 Increasing Increasing | No Change | Decreasing Increasing No Change

Type-6 Increasing | Decreasing | No Change | Decreasing Decreasing No Change
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Table 2. The number of possibilities

Types The Number of Possibilities
Type-1 13 Assemblies
Type-2 7 Assemblies
Type-3 18 Assemblies
Type-4 6 Assemblies
Type-5 7 Assemblies
Type-6 2 Assemblies

Only one assembly of Type-2 could be used for Angular Deployment. Type 1
results in linkages with a well-structured transformable motion. Type 3 and Type-4
cannot be used for Angular or Scaling Deployment - such complex motions could just
be considered in Transformability cases. However, Type-5 and Type-6 have
importance since angle o does not change. Type-6 does not result in Scaling
Deployment, but Type-5 does. Type-5 assemblies have Scaling Deployment ratio if the
link lengths ratio is constant for all loops.

For Scaling Deployment, 7 different assemblies including same type and similar
geometric dimensions with different ratio are found. The first one is the well-known
rhombus assembly (Figure 2.23) (Hoberman, 1991).

The second one is with the parallelogram assemblies. During the construction,
geometrically similar loops should be located on each segment (Figure 2.24). The third
and fourth cases are 2 different kite assemblies. All kites should be similar. One of these
assemblies is depicted in Figure 2.25 (Bai et al.,, 2014). The other alternative is

explained in detail in a latter Section.
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Figure 2.23. Rhombus assemblies for scaling deployment
(Source: Hoberman, 1991)
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Figure 2.24. Parallelogram assemblies for scaling deployment
(Source: Bai et al., 2014)
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Figure 2.25. Kite assemblies for scaling deployment
(Source: Bai et al., 2014)




The fifth assembly is an anti-parallelograms assembly. Again, similar anti-

parallelograms are used (Figure 2.26) (Glir et al., 2017, 2018).

Figure 2.26. Deployment anti-parallelogram linkage on an arbitrary curve
(Source: Giir et al., 2018)

This approach introduces 2 new type scaling deployment linkages as the sixth
and seventh assemblies comprising dart (Figure 2.27) and parallelogram (Figure 2.28)
loops. As in the previous scaling assemblies, these assemblies also have geometrically
similar loops.

For the Angular Deployment, only kite assembly can be used (Figure 2.29). The
radius slightly changes during the motion, but the major change is in the angle. Also, it

is possible to have the same radius in the initial and final configuration.
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Figure 2.29. Kite angular deployment assemblies

In some dart (Figure 2.30) and anti-parallelogram (Figure 2.31) assemblies with
identical loops, although the nodes remain on a circle, the radius change is extremely

much, so these assemblies cannot be considered to have angular deployment.

Figure 2.30. Dart angular deployment assemblies
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Figure 2.31. Antiparallelogram angular deployment assemblies
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CHAPTER 3

DIMENSIONAL DESIGN

In this Chapter, examples for scaling deployment, angular deployment and
transformability are mathematically modelled for synthesis. The given curves are

discretized to polylines and dimensional design is performed.

3.1. Discretization of the Curves

The given initial and final form of the curve are discretized to n line segments.
For n-line segments, there are n nodes for a closed curve and n + 1 nodes for an open
curve. This discretization causes an error between the curves and the polylines. This
error could be minimized. Preferably the given curves are discretized according the
changing radius of curvature along the curve. The lengths between adjacent nodes are
longer for larger radius. Otherwise, more are located more frequently when the radius is

smaller (Figure 3.1) (Hamann et al., 1994).
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Figure 3.1. Data point selection for a selected curve
(Source: Hamann, 1994)
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In scaling deployment, the lengths between nodes can change. The radius should
be at least approximately constant along the path in angular deployment, so the

discretization method of Hamann (1994) locates the nodes equally.

3.2. Scaling Deployable Linkages

In scaling deployment, the length of the line segments of a polyline can be
presented by S, for each segment n. Figure 3.2 illustrates an anti-parallelogram
assembly, but the forthcoming formulations and discussions are valid for all type of

assemblies with scaling deployment.

Figure 3.2. Parameters of the linkage
(Source: Giir et al., 2018)

One of the segments is selected as the primary segment. The ratio of the num

segment length to the primary can be denoted as kn:

I -y 3.1)
Sl Sl Sl

In scaling deployment, all loop types except rhombus type have a short (a;) and
a long edge (b1). The link lengths for each loop are determined using the ratio between

the link length ratio R of the loop associated with the primary segment. The ratio R
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should be equal for all loops on all segments. The resulting links are in Type 11, i.e.

similar GAEs:

=.=—=1 3.2)

At the fully deployed form, the sum of the link lengths (aj + b;) is equal to
segment
lengths. The kink angle aii+1 of an angulated SLE meeting at the vertex
of a polyline is simply the angle between the segments meeting at the vertex. The
kink angle at a vertex is supplementary of the summation of halves of subtended angles
of the neighboring segments: o ii+1 + (0ii+1 + 0i+1,)/2 = 180° in Figure 3.2. Since the
kink angles of a pair of angulated SLEs meeting at a vertex are equal to each other, all
loops deploy with the same ratio during the motion, hence resulting in a scaling linkage.

Maximum deployed to compact form ratio can be found for all scaling
deployment assemblies. These ratios depend on which loop assembly is preferred.
These ratios can be found for the anti-parallelogram assembly, one of the kite

assemblies and both parallelogram assemblies as

Compactness ratio: 100 x b, ~a, = 100><R—_1 (3.3)
b +a, R+1

n

When the other scaling deployment assemblies are fully deployed, these ratios
are zero neglecting the link length collisions. The ratio R and compactness ratio can be
utilized as design measures. Once the link lengths are decided, kinematic analysis of the
resulting linkage can be performed. Derivation of the kinematic analysis formulations
are straightforward (see for ex. (Soylemez, 2008)). The formulations are implemented

in Microsoft Office Excel (Figures 3.3-6).

42



- - RV R R

A B C D E F G H 1 1 K (3 M N (4]
Vector, Vector; Cosia) o B
X-Coord. | Y-Coord. | X-Coord_ | Y-Coord. radian degree n 5. ke s b. rad deg
0,155631 | 0987815 | 0,984808 | 0,173648 | 0,324799 | 1,239997 | 7104658 1 158,1138 1 31,62276 | 126,491 | 1,41453 | 81,0466
| 0,984808 | 0,173648 | 0642788 | -0.76604 | 05 | 1047197 | 59.99998 2 2213584| 14 |a4.27187 | 177.0875 | 0,174533 | 10,00002
| 0,642788 | -0,76604 | 0984808 | 0,173644 | 0,500004 | 1,047193 | 59,99975 3 2213592 | 1,399909 | 4427184 | 1770873 | 087265 S0
| 0,984808 | 0,173644 | 0,642789 | -0,76604 | 0,500004 | 1047192 | 59.99971 4 1423024| 09 | 28,46048 | 1138419 | 0,174529 | 9.999782
| 0,642789 | -0,76604 | -0,34202 | -0,93969 | 0,499999 | 1,047199 | 60,00009 5 205,5476 | 1,299998 | 41,10953 | 164,4381 | -0,87266 | -49,9999
-0,34202 | -0.93969 -1 |0,000347 | 0.341694 | 1222077 | 7001988 6 158,115 | 1000008 | 31623 | 126492 | -191986 | -110
-1 0,000347 | -0,86625 | 0,499604 | 0,866427 | 0,522795 | 29,95394 7 189,696 | 1,199743 | 3792919 | 151,7568 | 3,141245 | 1799801
-0,86625 | 0499608 -1 0,00062 | 0,866563 | 0,522522 | 29.93829 B 221,3632 | 1,400025 | 44,27264 | 177,0906 | 2.618451 | 150,0262
E ) 126,3802 | 0,799356 | 25,27784 | 101,1114 3,140072 | 1799545
1w |1739252| 11 |3478504 | 1391402 | 2,150244 | 123,1999
1 0 0 0 [] #ov/o! [ #oiv/o!
19 0 0 0 [ sov/o! [ sowvo!
13 [ 0 0 [ sov/o! [ #owyo!
14 0 0 1] [] #0iv/o! | #Div/o!
Rooia] & |
Design Points Max | Ratio (%) s* | costy | costrd) rad deg rad deg
Point No | X-Coord. | Y-Coord. 60 | 70 [110.6797 | 0973214 039286 [0.231975 [ 1320118 1,742558 | 99.84122
1 0 [}] «[»
2 24,60743 | 156,1872
3 242 6038 | 194,6259 R P Pay Pa2 Pra
[ 384,8909 | 25,05505 X-Coord. | ¥-Coord. | X-Coord. | ¥-Coord. | X-Coord. | Y-Coord. | X-Coord. | ¥-Coord.
5 525,0315 | 49,76507 1 1 0 1] -30,6594 | -7,74606 | -9,5673 | 126.1287 | 17,2252 | 1093311
B 657,1552 | -107,693 1 3 17,2252 | 1093311 | 7.166553 | 66,217 | 1940206 | 99,16446 | 169,827 | 136,2382
7 603,0766 | -256.273 1 3 169,8227 | 136,2382 | 189,8304 | 175,731 | 311,7908 | 30,38453 | 269.4236 | 17,53854
8 413,3807 | -256,207 -1 4 269,4236 | 17,53854 | 262,9572 | -10,1776 | 3830778 | 11,0024 | 367,522 | 34,83555
3 221,624 | -145613 1 s 367,522 | 3283555 | 386,1006 | 71,50746 | 499,3495 | -63.4565 | 460.0085 | -75.3854
10 | 95323479 -145535 1 5 460,0086 | -75,3854 | 436,9300 | -53,7651 | 3905779 | -181,119 | 422,1536 | -179,391
11 o [ 1 7 422,1536 | -179,391 | 4370462 | -214,285 | 274,497 | -214,229 | 285,3665 | -179,345
n o [ 1 8 289,3665 | -179,345 | 3247735 | -152,767 | 160,4106 | 57,0717 | 155,1368 | -101,920
13 [ [ 1 9 155,1368 | -101,929 | 165,0529 | -125,181 | 56,71935 | -125.114 | 66,66435 | -101.874
14 1] [) -1 10 | 66,66435 | -101,874 | 100,9138 | -95,7935 | 19,28397 | 28,95043 0 0
15 o [ 1 11 [] o #ovjo! [ soiv/o! [ ool | sowvjo! [ sonvjo! [ spivio!
A 12 #oiv/ol | sowv/ol | sovyor [ soivsor [ soivsor | sovjor [ sovpor [ soivol
1 13 #ov/ol [ sowv/ol [ soiv/or [ soiv/o! [ #owvjo! [ soivjol [ soivjol [ #oiv/o!
El 14 #oiv/o! | sowyo! | sovyor [ aoivior [ aoivsor | ool [ soivior [ spivyor

Figure 3.3. Kinematic Analysis in Excel
(Source: Giir et al., 2018)
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Figure 3.4. Deployment of an antiparallelogram linkages
(Source: Giir et al., 2018)
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Figure 3.5. Deployment of a parallelogram linkages
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Figure 3.6. Deployment of a dart linkages

3.3. Angular Deployable Linkages

In general, angular deployable linkage is designed for the angular deployment
from an arbitrary initial angle to another with minimum possible radius change.
Although this linkage is classically designed by assembling polar scissor units, it can
also be designed using kite assemblies such that the links will not be angulated. In this
Section, the dimensional design of angular deployable linkages is presented for given
number of loops (n), span length (2R) and the wall thickness (t) in the deployed

configuration. (Figure 3.7).
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Figure 3.7. Design inputs for angular deployment mechanism

First, the circular arcs are divided into n equal segments of length S to construct

an n-segmented polyline (Figure 3.8).

Figure 3.8. Design parameters for angular deployment mechanisms

A kink angle (a) of the polyline and number of units (n) of the loop are
governed by the following equation:

a:n_Ezw (3.4)

n n
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To obtain collinear links, the summation of following angles can be written:

T
-y, +y,=n = szn_OH'Wl:\Vl"'H (3.5)

The length of a line segment of a polyline at deployed configuration can be

found for each segment:

S = 2R sin — (3.6)
2n

From the geometry, the design parameters thickness (t) can be expressed:

t=§(‘[an\|f2 +tany, ) (3.7)

Using trigonometric identities, the following expression can be found such as:

2t sin2y, —a)

_ (3.8)
S coswy, cos(y, —a)
Using tangent of the half-angle substitution v = tan(y1/2) :
4v(l1-v*)cosa—| (1-v*)> =4V |sina
a-v) [a-v) Jsinet _2¢ (3.9)

(l—Vz)I:(l—Vz)COSOL+2VSinOLJ S
Equation 3.9 is a 4™ order polynomial equation which can be solved analytically:

Av'+BV' +Cv’ +Dv+E =0 (3.10)

2 . 4t . 4 .
where Azgtcosowsma, B=4cosa—§tsma, C:—Etcosoc—6s1noc,

4t . 2 .
D= Etsm o—4cosa and E = gtcos a+sina . The lengths of the short (a) and long (b)

links can be expressed as:

S
T 2cos
) i 3.11)
b=
2cos vy,
The inner and outer radius could be found as following:
R, =R|cos T 4 sin—tan v,
2n 2n
(3.12)

R,.=R [cos X o sin—tan wl}
2n 2n
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As an example, the angular deployment linkage for the parameters in Tables 3-6

can be seen in Figure 3.9.

Table 3. Angular deployment inputs

Inputs
Given radius R 120
# of segments n 15
Thickness t 50

Table 4. Coefficient of equation

Coefficient of Equation
A B C D E
-3.691 -5.570 6.551 5.570 -3.691

Table 5. Roots of the equations

Solution
Vi \'%) V3 V4
0.533 0.920 -1.088 -1.875

Table 6. Results for the root v

Results
i 0,980
¥ 1,190
Router 150,636
Rinner 100,636
a 22,523
b 33,713
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Figure 3.9. Kinematic Analysis in Excel

3.4. Transformable Linkages — Case Studies

The transformable linkages are designed for the transformation from an initial
curve to some other curve with a different form. The transformable linkages noted in the
literature generally require either nonsymmetrical loops or composition of different
types of loops (see (Rippmann, 2007); (Zhang et al., 2016)). Since the scope of this
thesis is on modular design of scissor linkages, only the transformable linkages with the
same type of loops are analyzed. Various such modular designs can be constructed and
the dimensional design of each and every type is different. In this Section, the
dimensional designs of three selected transformable linkages are presented as case
studies. The selected type of transformation for all three linkages is in between two
circular arcs with different radii and subtended angles. It is assumed that the curve form
remains as a circular arc at any configuration during the motion of the linkage.

First, the circular arcs are segmented into n equal segments to construct an n-
segmented polyline. The length of a line segment of a polyline at an arbitrary
configuration can be presented by S for each segment (Figure 3.10). S changes during

the motion. Let S = S; at the initial form and S = S, at the final form.
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Figure 3.10. Parameter of the linkages for the anti-parallelogram assembly

The angular change Ao = o — a1 of segmented poly-line is assumed as given.
All loop types except the thombus have a short (a) and a long side (b). The link lengths
of this type of loops are determined using the link length ratios. For identical line
segments, the ratio R should be equal for all loops:

R=2 (3.13)
a

The ratio p of initial segment length to the final segment length could be defined
as:

Sl

s (3.14)

“:

The compact and deployed form of the anti-parallelogram assembly are
illustrated in Figure 3.10. The parameters of a loop in compact form Si, y1, y2 and in

deployed form S, y1*, y2* are governed by the following equations:
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a b S,

siny, siny, sin(y, +y,)

3.15
a b S, (3-13)
siny, siny, sin (\ul +V, )
Therefore
S;siny,  S,siny,
sin(y, +v,)  sin(y; +\{;) (3.16)
S;siny,  S,siny,
sin(y, +y,)  sin(y; +y;)
w1, ¥2, W1*, y2* angles can be represented in the following forms:
. (s +b’—a j
W, =acos
: [ +a —b2]
W, =acos
(3.17)
[ S +b* - j
W, =acos

S’ +a —sz

=acos
V2 [ 2aS,

Since all loops are identical, the parameter y1*, y2* can be presented with
Equation 3.18, where B1 and B2 are the amount of rotation of the links from initial to

final configuration.

\Iff =V, +Bz —AOL=\|11 _Bl

. (3.18)
YV, =V, +Bl —Ao=vy, _Bz
from which B1 and B2 are found as:
B, =\|fl—\|ff*=\v’§*—\|fz+m (3.19)
Bz =y, —V, =y, —y, +Aa
In terms of equations above Aa can be expressed as:
Ao=P, +B, =W, — |+, —, (3.20)
Using Equation 3.17 and 3.20 Aa can be derived as
S’ +b’-a’ S +a’-b’ .
Ao =acos| ———— |+acos| ——— |-y, — 3.21
[ 25, ] [ 25, ViV, (3.21)
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Assuming that at fully deployed form the links are on the polyline, y1* = y2* =
0, a+b=(1+R)a=S;and the kink angle of the angulated SLEs are equal to 21 — ow.

Then Equation 3.21 becomes

Aa:acos(u2(1+R)2+R2—l] (MZ(HR)ZH—RZ

2HR(1+R) ZM(“‘R) ]:\W"'\l’z (3.22)

In Equation 3.22, u and Aa are known from the initial and final curve forms,
hence R can be calculated using Equation 3.23.
S; =a’+b”+2abcos(Aa) (3.23)
Equation 3.23 can be rearranged as
w2 (R+1)"a® = (R*+1)a® + 2Ra’ cos (Aa.) (3.24)
Rearranging Equation 3.24, Equation 3.25 can be written as
R?(1-p* )+ 2R (cos (Aa) —p?) +(1-p*) =0 (3.25)

Because of the two different solutions are reciprocals of each other, the only

solution can be written as:

2

—cos(Aa)+p’ +\/(cos(Aoc)—u2)2 —(l—uz) L

I<R = < 3.26
-~ - (3.26)
Once R is determined, a and b can be solved as
SZ
a= and b=Ra (3.27)
1+R
.. ) I+p . ) )
The limit of Equation 3.22, as R goes to T is found as in Equation 3.29
when the loop reaches it’s the deployed form.
lim Ao =2acos(—1)=m7 (3.29)

L
I-p

R—

The limit of Equation 3.22, as R goes to 1, is found as in Equation 3.30 when the

loop is at it’s the compact form.

%{m} Ao = 2acos(L) (3.30)
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Figure 3.11. Parameters of the linkages for dart assembly

The compact and deployed forms of the dart loop assembly are illustrated in

Figure 3.11. The parameters of the loop in compact form Si, yi, y2 and in deployed

form Sz, y1*, y2* are governed by the following equations:
2cosy,a=2cosy,b=S5,
2cosya=2cosy,b=S,

where
. S __ S, *
2cosy, 2cosy,
LSS,

- 2cosy, - 2cos

v, W2, yi¥, y2* angles can be represented in the following forms:

(3.31)

(3.32)
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(3.33)

Because of the link connection, the parameter yi1* can be presented with

Equation 3.34 where Aa is the change in the king angle of the polylines.

\V: :W1+Bz_Aa:W1_Bl

. (3.34)
v, =y, +B —Aa=y, B,
where 1 and B2 can be found as:
B =v, —\VT*= \v’;*— v, +Aa (3.35)
B,=v,—vy, =y, —y, +Aa
In terms of equations above Aa can be expressed as:
Aa =0, +
. (3.:36)
Ao =\, +y, -y, —V,
Equation 3.33 can be rearranged as
S, S, 2a
oS =—==—t=—=]
(W1 ) 2a 2a 2a
. 2 1
2b 2b 2aR R
(3.37)
cos(y ):i:“_szzzﬂzu
""2a 2a 2a
S, _KS, 2pa
CcOS = == — = —
(v2)=35 =2 “2aR "R

Assuming that at fully deployed form the links are on the polyline, yi* = 0,
S> = 2a and the kink angle of the angulated SLEs are equal to 21 — o. Then Equation

3.36 becomes

Aa’:Wl-l_\I]Z_\Il;
¥, = Ay, ) (3.38)

1
cos(y, ) =cos (Aoc —aCoS|L+acos (ED
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Using trigonometric identities Equation 3.38 can be rearranged as

J— 2 —
% = COS(AOLR acos) —sin(Aa—acosu)RTl (3.39)

Solving for R in Equation 3.39, the only solution can be written as:

_ \/l—2ucos(Aa—acosu)+u2 (3.40)

sin (Aa. —acost)
The limit of Equation 3.36, as R goes to infinity, is found as in Equation 3.41
when the loop reaches its deployed form.

Fl{im Ao = acos(p) +acos(0) —acos(0) = acos(p) (3.41)

The limit of Equation 3.36, as R goes to 1, is found as in Equation 3.42 when the

loop is at its compact form.

Errll Ao = acos(p) +acos(p) = 2acos(p) (3.42)

Figure 3.12. Parameters of the linkages for kite assembly
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The compact and deployed forms of the kite loop assembly are illustrated in
Figure 3.12. The parameters of the loop in compact form Si, y1, y2 and in deployed
form S, yi1*, y2* are governed by the following equations:

2cosy,a=2cosy,b=S5,

. . (3.43)
2cosy,a=2cosy,b=S,
where
. : S, _ : S, *
cos cos
Vv Y, (3.44)
2cosy, 2cosy,
w1, W2, W1*, y2* angles can be represented in the following forms:
acos S—j
vV, 2a
SZ
W, =acos >
(3.45)

Because of the link connection, the parameter yi* can be presented with

Equation 3.45 where Aa. is the king angle.

\VT =V, _Bz —AOL=\|I1 _Bl

. (3.406)

vV, =y, —B+Aa=y, B,

where B1 and B2 are found as:

B, :WI_WT*:\VZ_W;*-’_AG‘ (3.47)

B,=v,—Vy, =y, —y, - Aa

In terms of equations above Ao can be expressed as:
Ao =P, -

P =P, (3.48)

A=y, —y =y, Y,

Equation 3.45 can be rearranged as
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NS, S, 2
cos(¥) =5 20 "2 !
cos(yy) =z =222 1
V)79 T2 T 2R R (.49)
S, S, 2ua '
o) =3 " T P
cos(\pz)=i—“_s2:2“a H

2b 2b 2aR R
Assuming that at fully deployed form the links are on the polyline, y1*= 0,
2a = Sy and the kink angle of the angulated SLEs are equal to 2w — a2. Then Equation

3.48 becomes

Ao =y, =y, +\|/;
Vo =W,y — A (3.49)

1
cos(y, ) =cos [acosu — AoL+acos (ED

Equation 3.49 can be rearranged as

VR -1

L cos (acosp — Aa.) —sin(acosu—Aa)T (3.50)

R R

Solving for R in Equation 3.49, the only solution can be written as:

. \/1 —2pcos(acosp—Aa) +
B sin (acosp —Aat)

(3.51)

The limit of Equation 3.48 as R goes to infinity, is found as in Equation 3.52

when the loop reaches its deployed form.
[l{im Ao = acos(pt) —acos(0) +acos(0) = acos(p) (3.52)
The limit of Equation 3.48, as R goes to 1, is found as in Equation 3.53 when the
loop is at its compact form.
Erq Ao = acos(p) —acos(p) +acos(1) =0 (3.53)
The compactness ratio can be found for all transformable assemblies. For kite

and dart assemblies, the theoretical compactness ratio is zero neglecting link collisions.

These ratios depend on which loop assembly is preferred. These maximum compactness

ratio for the anti-parallelogram loops can be found as

Sl
== = 3.54
a S, b+a R+1 (.34
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Once the link lengths are calculated, kinematic analysis of the resulting linkage
can be performed. Derivation of the kinematic analysis formulations are straightforward
(see for ex. (Soylemez, 2008)). The formulations are implemented in Microsoft Excel.

Three cases are presented as numerical examples. Table 7 presents the design
requirement parameters for three case studies with different loop assemblies. The
illustrations of the case studies are depicted in Figures 3.13-15, where anti-
parallelogram, dart and kite loop assemblies is transformed between two circular arc
forms with different curvature characteristics. The resulting design parameters are listed

in Table 8.

Table 7. Design Requirement Parameters

Loop Type St | S2 | a a2

Case 1 | Antiparallelogram | 80 | 100 | 135° | 210°

Case 2 Dart 60 | 100 | 135° | 210°

Case 3 Kite 50 | 100 | 160° | 190°

Table 8. Resulting design Parameters
Loop Type R a b Link Kink Angle

Case 1 | Antiparallelogram | 1.407 | 41.548 | 58.452 135.000°
Case 2 Dart 1.332 | 50.000 | 66.624 176.368°
Case 3 Kite 1.239 | 50.000 | 61.966 123.794°
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Figure 3.13. Kinematic Analysis in Excel for antiparallelogram assembly

100

-150

Figure 3.14. Kinematic Analysis in Excel for dart assembly
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Figure 3.15. Kinematic Analysis in Excel for kite assembly
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CHAPTER 4

CONCLUSIONS

The aim of this thesis study is to create kinematic design methods for different
scissor linkages for different motions to satisfy today’s engineering structures demand.
The linkages are designed for the transformation of planar curves from an initial form to
a final form. The planar curves are approximated with poly-lines with nodes.

The topological alternatives of possible scissor linkages are already listed by
other researchers. In order to examine the transformations these linkages are capable of,
first a classification of motion characteristics of possible linkage assemblies is
performed. The classification resulted in six different type of motions, some of which
can lead to deployable linkages and others lead to linkages for transformable motion.
The six different motion types differ by increasing/decreasing polyline segment lengths
and the kink angle of adjacent segments in the poly-line. The result of this classification
reveals possible type of linkages that can be used for different transformations of
curves.

To perform the dimensional design of these linkages, first the given initial and
final form of the approximated curve is represented by segment lengths and angles
between the segments. The mathematical set of equations to design several different
linkages are derived. Three assemblies for scaling deployment different from literature
are analyzed and a generalized design approach for transformable assemblies are
presented. Also, case studies for dimensional design are presented.

The method introduced in this study can be used as an overall guideline to
design deployable structures comprising scissor linkages. The derived formulations can
be implemented in a design software that can be used by architects and engineers.

As further studies, the linkages comprising different loop types should be
examined to understand the behavior of their motion characteristics. The methodology

in this thesis study can be used in addressing this problem as well.
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