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ABSTRACT

ON THE STRUCTURE OF MODULES CHARACTERIZED BY
OPPOSITES OF INJECTIVITY

In this thesis we consider some problems and also generalize some results related
to indigent modules and subinjectivity domains. We prove that subinjectivity domain of
any right module is closed under factor modules if and only if the ring is right hereditary.
Indigent modules are the modules whose subinjectivity domain is as small as possible,
namely the modules whose subinjectivity domain is exactly the class of injective modules.
We give a complete characterization of indigent modules over commutative hereditary
Noetherian rings. The commutative rings whose simple modules are injective or indigent
are fully determined. The rings whose cyclic right modules are indigent are shown to be
semisimple Artinian. We also give a characterization of t.i.b.s. modules over Dedekind

domains.

v



OZET

INJEKTIFLIGIN TERSI iLE KARAKTERIZE EDILEN
MODULLERIN YAPISI UZERINE

Bu tezde yoksul modiiller ile ilgili baz1 problemler ele alinmakta ve ayn1 zamanda
mevcut bazi sonuclar genellestirilmektedir. Her sag modiiliin altinjektiflik bolgesinin fak-
tor modiillere gore kapali olmasi icin gerek ve yeter kosulun halkanin sag kalitsal halka
oldugu kanitlanmistir. Yoksul modiiller miimkiin olan en kii¢iik altinjektiflik bolgesine
sahip olan modiillerdir, yani altinjektiflik bolgesi tam olarak injektif moduller olan mod-
tillerdir. Yoksul modiiller degismeli kalitsal Noether halkalar {izerinde tam olarak karak-
terize edilmistir. Basit modiilleri yoksul veya injektif olan degismeli halkalar tam olarak
belirlenmistir. Devirli sag modiilleri yoksul olan halkalarin yar1 basit Artin oldugu goster-
ilmistir. Ayn1 zamanda, t.i.b.s. modiiller Dedekind tamlik bolgeleri iizerinde karakterize

edilmistir.
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CHAPTER 1

INTRODUCTION

The notions of injectivity and relative injectivity have been studied extensively in
the literature. Given two right R-modules M and N, the module M is said to be relative
injective to N or N-injective if for each submodule K of N any homomorphism from K to
M can be extended to a homomorphism from N to M. The injectivity domain of M is the
collection of all right R-modules N such that M is N-injective. The injectivity domain of
any right module is closed under submodules, factor modules and finite direct sums. It is
evident that any right module is S -injective for each semisimple right module S. In other
word, semisimple modules are contained in injectivity domain of any right module.

A right module M is called poor if its injectivity domain consists of exactly the
class of semisimple right R-modules (Alahmadi, Alkan and Loépez-Permouth, 2010).
Every ring has a poor right module (Er, Lopez-Permouth and S6kmez, 2011). The main
results related to poor modules can be found in (Alahmadi, Alkan and Lépez-Permouth,
2010), (Er, Lopez-Permouth and S6kmez, 2011), (Alizade and Biiyiikasik, 2017) and
(Alizade, Biiyiikagsik, Lépez-Permouth and Yang, 2018).

Recently, an opposite notions of poor modules and relative injectivity introduced
in (Aydogdu and Lépez-Permouth, 2011 ). A right module M is said to be N-subinjective
for some right module N, if every homomorphism from N to M can be extended to a
homomorphism from the injective hull E(N) of N to M. The subinjectivity domain of M
is defined as the collection of all right modules N such that M is N-subinjective. Injective
right modules are contained in the subinjectivity domain of any right module. In contrast
to injectivity domains, subinjectivity domains need not be closed under submodules and
factor modules. We prove that the subinjectivity domain of any right module is closed
under factor modules if and only if the ring is right hereditary.

A right module M is called indigent if its subinjectivity domain is exactly the class
of injective right modules. Existence of indigent modules is not known over arbitrary
rings. In (Aydogdu and Lépez-Permouth, 2011 ), the authors ask whether the direct sum
of non-injective uniform right modules is indigent. We give an example to show that this
module is not indigent in general. Namely we show that, over a right semiartinian right
V-ring the direct sum of non-injective uniform right modules is not indigent. On the other

hand, it is indigent over right PCI-domains.



The structure of indigent abelian groups determined in (Alizade and Biiyiikasik,
2017). We give a complete characterization of indigent modules over commutative hered-
itary Noetherian rings. We prove that, over a commutative hereditary Noetherian, a mod-
ule M is indigent if and only if Z(M) is indigent if and only if Hom(S, M) # 0 for every
singular simple module S, where Z(M) is the singular submodule and M’ is the reduced
part of M.

The commutative rings whose simple modules are injective or indigent are fully
determined. Over a commutative ring R, every simple module is injective or indigent if
and only if R is a V-ring, or R = A X B, where B is semisimple, and A is either zero or, A
is a DVR, or, A is local QF-ring. The rings whose cyclic right modules are indigent are
shown to be semisimple Artinian.

A right module M is said to be a test module for injectivity by subinjectivity
(t.i.b.s., for short) if whenever M is N-subinjective for some right module N, then N is
injective (Alizade, Biiylikasik and Er, 2014). We prove that, a commutative domain R
is Dedekind if and only if every nonzero ideal of R is indigent if and only if a nonzero

R-module M is t.i.b.s. exactly when Hom(M, R) # O.



CHAPTER 2

PRELIMINARIES

In this chapter we give the basic definitions and results that are used in the sequel.

2.1. Rings and Their Homomorphisms

Definition 2.1 A ring is defined as a non-empty set R with two compositions

+, - = R X R — R with the properties :
(i) (R,+) is an abelian group (zero element 0);
(i) (R,-) is a semigroup;

(iii) for all a,b, c € R the distributivity laws are valid:

(a+b)c=ac+bc, alb+c)=ab+ac.

Definition 2.2 A subset S of a ring R is called a subring if it is a ring with the operations
of R, and 1, = 1g in case R has identity.

Proposition 2.1 (The Subring Criterion) Let R be a ring and S be a subset of R. Then S
is a subring of R if and only if for every a,b € S :

(i) a-bes;
(i) abeS.

Definition 2.3 Let R, S be rings. The mapping f : R — S is called a ring homomorphism
if it satisfies the following:

(i) f(a+b)= f(a)+ f(b) forall a,b € R;
(ii) f(ab) = f(a)f(b) foralla,b € R;
(i) f(1g) = 1.



2.2. Ideals and Factor Rings

Definition 2.4 Let R be a ring. We say that the subset I of R is a left ideal of R if the

following are satisfied:

G) I+0;

(ii) whenever a,b,€ I, thena+ b € I;

(iii) whenever a € I and r € R, then ra € I, also.

Similarly a right ideal of a ring can be defined by changing the left multiplication
in the definition with right multiplication. If I is both left and right ideal, we say that [ is
a two sided ideal. Clearly, for a commutative ring, left and right ideals coincide. By an
ideal we will always mean a two sided ideal.

The kernel of a homomorphism f : R — § is the set

Kerf={reR: f(r)=0}.

Suppose that [ is a proper ideal of a ring R. The relation defined by

a=b(modl) a-bel

determines an equivalence relation on R. The congruence class of an element a is defined
bya+1 ={a+ x: x € I} and is called a coset of the element a, and the set R/I of all

cosets of / is a ring with operations defined by

(a+DH+b+D=@+b)+1 and (a+Db+1)=ab+ 1.

Additive and multiplicative identities are O + / and 1 + 1.
The ring R/1 is called the factor ring of R modulo /. Further, the mapo : R — R/l
defined by r — r + I is an epimorphism with kernel /, is called the natural or canonical

epimorphism.

Definition 2.5 We say that an ideal M of a ring R is a maximal ideal, if



(i) M SR, and

(ii) M & I C R implies that I = R for every ideal I of R.

2.3. Modules, Submodules and Module Homomorphisms

Although modules are in fact considered as a pair (M, 1), where M is an additive
abelian group and A is a map from R to the set of endomorphisms of M, we find the

following definition more common and simple:

Definition 2.6 Let R be a ring (with unity 1). A right R-module is an additive abelian
group M together with a mapping M X R — M, which we call a scalar multiplication,

denoted by

(m,r) » mr

such that the following properties hold: for allm,n € M and r, s € R;
1) (m+n)r =mr+ nr,

2) m(r + s) = mr + ms,

(3) m(rs) = (mr)s.

If, in addition, for every m € M we have ml = m, then M is called a unitary right
R-module. If M is a right R-module, we denote it by M.

2.3.1. Submodules

Let M be a left module over R. A subgroup N of (M, +) is called a submodule of
M if N is closed under multiplication with elements in R, i.e. rn € N forallr e R,n € N.

Then N is also an R-module by the operations induced from M:

RXN — N,(r,n)— rn,r e R,n € N.



M is called simple it M # 0 and it has no submodules except 0 and M. The submodules
of gR (resp. gRy) are just the left (resp. two-sided) ideals.
For non-empty subsets Ny, N,, N € M, A C R we define:

N +N, = {I’l] +n2|n1 EN],I’lzeNQ}CM,
AN

{Zi-;lail’li |a; € A, n; € N,k € N} c M.

If N, N, are submodules, then N; + N, is also a submodule of M. For a left ideal A C R,
the product AN is always a submodule of M.

For any infinite family {NV;};ca of submodules of M, a sum is defined by

Z/IEAN/I = {Z;le’lﬂk | r e N, /1]( c A,}’l/lk c N/lk} c M.

This is a submodule in M. Also the intersection [);cx NV, is also a submodule of M.
>aea N, 1s the smallest submodule of M which contains all N,, (),ca Nais the largest

submodule of M which is contained in all N;.

Proposition 2.2 ( (Anderson and Fuller, 1992), Proposition 2.3)
Let M be a left R module and let N be a non-empty subset of M. Then the following are

equivalent:
(@) N is a submodule of M ;
(b) RN=N;,

(¢) Foralla,b € Rand all x,y € N

ax+ay € N.

Proposition 2.3 Modularity condition (Wisbauer, 1991)
If H,K, L are submodules of an R-module M and K C H, then

HN(K+L =K+ (HNL).



Definition 2.7 If N is a submodule of a left R-module M, then the quotient module is
the quotient group M|N (M is an abelian group and N is a subgroup) equipped with the

scalar multiplication

rm+ N)=rm+ N.

The natural map 7 : M — M|/N, given by m — m + N, is easily seen to be an
R-map.

Scalar multiplication in the definition of quotient module is well-defined: if m +
N =m'"+ N, then m —m’ € N. Hence, r(m —m’) € N (because N is a submodule),

rm—rm’ € N,andrm+ N = rm’ + N.

Definition 2.8 Let M and N be left modules over the ring R. Amap f : M — N is called

an (R-module) homomorphism (also R-linear map) if

f(my +my) f@my) + f(my) forallm;,m; € M,

f(mr)

rlf(m)] forallme M, r € R.

Proposition 2.4 ( (Rotman, 2009), Proposition 2.4) Let R be a ring, and let A, B, B’ be
left R-modules.

(i) Homg(A, D) is an additive functor RkMod — Ab.

(ii) If A is a left R-module, then Homg(A, B) is a Z(R)-module, where Z(R) is the center
of R, if we define

rf:aw— f(ra)

forre ZR)yand f : A —- B. If q : B — B’ is an R-map, then the induced map
q« : Homg(A, B) — Homg(A, B’) is a Z(R)-map, and Homg(A, O) takes values in
zrMod. In particular, if R is commutative, then Homg(A, D) is a functor kMod —
rMod.

Theorem 2.1 The Factor Theorem. ( (Anderson and Fuller, 1992), Theorem 3.6)
Let M,M',N and N’ be left R-modules and let f : M — N be an R-homomorphism.



(1) Ifg : M — M is an epimorphism with Ker(g) C Ker(f), then there exists a unique

homomorphism h : M — N such that

f = hg.

Moreover, Kerh = g(Ker(f)) and Im(h) = Im(f), so that h is monic if and only if
Ker(g) = Ker(f) and h is epic if and only if f is epic.

) If g : N’ — N is a monomorphism with Im(f) C Im(g), then there exists a unique
homomorphism h : M — N’ such that

f=gh

Moreover, Ker(h) = Ker(f) and Im(f) = g~ (Im(f)), so that h is monic if and only
if f is monic and h is epic if and only if Im(g) = Im(f).

Corollary 2.1 Isomorphism Theorems. ( (Anderson and Fuller, 1992), Corollary 3.7)
Let M and N be left R-modules.

(1) If f : M — N is an epimorphism with Kerf = K, then there is a unique isomorphism

n:M/K — N such that n(m + K) = f(m)

forallme M.

2) If K <L <M, then

(M/K)/(L/K) = M/L.

Q) IfH <M and K < M, then

(H+ K)/K = H/(H N K).



Definition 2.9 If f : M — N is an R-map between left R-modules, then

kernel f = kerf={meM: f(m) =0},

image f imf ={neN :thereexistm € Mwithn = f(m)}.

It is routine to check that ker f is a submodule of M and that im f is a submodule of N.

2.4. Exact Sequences

Definition 2.10 A finite or infinite sequence of R-maps and left R-modules

fn+l fn

e My 2 M, M —

is called an exact sequence if Im(f,,1) = ker(f,) for all n.
Proposition 2.5 ( (Anderson and Fuller, 1992), Proposition 2.18)
(i) A sequence 0 —= A B is exact if and only if f is injective.

(ii) A sequence B —2 > C——=0 is exact if and only if g is surjective.

(iii) A sequence 0 A—l-B 0 is exact if and only if h is an isomorphism.

2.5. Adjoint Isomorphisms

Theorem 2.2 (Adjoint Isomorphism, First Version) ( (Rotman, 2009), Theorem 2.75)
Given modules Ag, gBs, and Cs, where R and S are rings, there is a natural isomor-

phism:

Tapc - Homg(A ®g B,C) — Homg(A, Homg(B, C)),



namely, for f : A®r B — C,ac A, and b € B.

Tanc - f = 1(f), where t(f), : b — f(a®b).

Theorem 2.3 (Adjoint Isomorphism, Second Version) ( (Rotman, 2009), Theorem 2.76)

Given modules grA, s Bg, and sC, where R and S are rings, there is a natural isomorphism:

Typc : Homs(B®g A, C) — Homg(A, Homs(B, C)),

namely, for f : BQg A — C,a€ A, and b € B.

Thge: f 0 T(f), where T (f), - b+ fla®b).

2.6. Definitions

Definition 2.11 A submodule N C M is called maximal if N # M and it is not properly

contained in any proper submodule of M.

In a finitely generated R-module, every proper submodule is contained in a maximal sub-

module.

Definition 2.12 A submodule K of an R-module M is called essential or large in M if,
for every nonzero submodule L ¢ M, we have K N L # 0.

Then M is called an essential extension of K and we write K < M. A monomor-
phism f : L — M is said to be essential if Imf is an essential submodule of M.

Hence a submodule K C M is essential if and only if the inclusion map K — M
is an essential monomorphism. For example, in Z every non-zero submodule (=ideal) is

essential.

Definition 2.13 A submodule K of an R- module M is called superfluous or small in M,
written K < M, if for every submodule L C M,the equality K + L = M implies L = M.
An epimorphism f : M — N is called superfluous if Kerf < M.

10



Obviously K < M if and only if the canonical projection M — M/K is a super-
fluous epimorphism.

It is easy to see that e.g. in Z there are no non-zero superfluous submodules.

Definition 2.14 Let M be an R-module. As socle of M (= S oc(M), S ocM) we denote the

sum of all simple (minimal) submodules of M. If there no minimal submodules in M we

put Soc(M) = 0.

Soc(M) is a semisimple submodule of M. Clearly, M is semisimple if and only if

M = Soc(M). An important multiple characterization of the socle is

Proposition 2.6 If M is a left R-module, then

Soc(M) = X{K < M|K isminimalin M }

ﬂ{L < M| Lisessentialin M }.

Properties of the Socle ( (Wisbauer, 1991), 21.2)
Let M be an R-module.

(1) For any morphism f : M — N, we have f(Soc(M)) C Soc(N).

(2) For any submodule K ¢ M, we have Soc(K) = K N S oc(M).

3) Soc(M) < M if and only Soc(K) # 0 for every non-zero submodule K C M.
(4) Soc(M) is an Endg(M)-submodule, i.e. Soc(M) is fully invariant in M.

5) Soc(@}A M) = @A Soc(My).

Definition 2.15 Dual to the socle we define as radical of an R-module M (= Rad(M), RadM )
the intersection of all maximal submodules of M. If M has no maximal submodule we set
Rad(M) = M.

The characterization of the radical

Proposition 2.7 Let M be a left R-module. Then

Rad (M) ﬂ{K < M| K is maximal in M )

X{L < M| Lis superfluous in M }.

11



Properties of the radical ( (Wisbauer, 1991), 21.6)
Let M be an R-module.

(1) For a morphism f : M — N we have
(i) f(RadM) C RadN,
(ii) Rad(M/RadM) = 0, and
(iii) f(RadM) = Rad(f(M)), if Kerf C RadM.

(2) RadM is an Endg(M)-submodule of M (fully invariant).

(3) If every proper submodule of M is contained in a maximal submodule, then RadM <«

M (e.g. if M is finitely generated).
(4) M is finitely generated if and only if RadM < M and M/RadM is finitely generated.
(5) If M = P, M,, then RadM = &, RadM, and M/RadM ~ &, M,/RadM,.

(6) If M is finitely cogenerated and RadM = 0, then M is semisimple and finitely gener-
ated.

(7) If M = M/RadM is semisimple and RadM < M, then every proper submodule of M

is contained in a maximal submodule.

Definition 2.16 The radical of gR is called the Jacabson radical of R, i.e.

Jac(R) = Rad(zR)

As a fully invariant submodule of the ring, Jac(R) is two-sided ideal in R.

Definition 2.17 An element x € R is left quasi-regular in case 1 — x has a left inverse in R.
Similarly x € R is right quasi-regular (quasi-regular) in case 1 — x has a right (two-sided)

inverse in R.

Proposition 2.8 Characterization of the Jacobson radical

In a ring R with unit, Jac(R) can be described as the
(a) intersection of the maximal left ideals in R (= definition),
(b) sum of all superfluous left ideals in R;

(¢) sum of all left quasi-regular left ideals;

12



(d) largest (left) quasi-regular ideal;
(e) {r € R|1 — ar is invertible for any a € R},
(f) intersection of the annihilators of the simple left R-modules;

(@*) intersection of the maximal right ideals.

Replacing ‘left‘ by ‘right* further characterizations (b*) - (f*) are possible.

2.7. Singular Submodule

Given any right module M, the singular submodule of M is the set

Z(M) ={me M : ml =0 for some essential right ideal I of R}.

Equivalently, Z(M) is the set of those m € M for which the right ideal anng(m) is essential
in R. An R-module M is called singular if Z(M) = M, and it is called a nonsingular
module if Z(M) = 0. A ring R is called a right nonsingular ring if R is nonsingular as a
right R-module. Z,(R) will be used for Z(Rg). Similarly, we say that R is left nonsingular
ring if Z)(R) = 0.

Proposition 2.9 (Goodearl, 1976) The following hold for any ring R.

(1) A module N is nonsingular if and only if Hom(M, N) = 0 for all singular modules
M.

(2) If R is a right semihereditary ring, then Z.(R) = 0.
(3) If Z(R) = 0, then Z(M/Z(M)) = O for all right R-modules M.
(4) If N < M, then Z(N) = N N Z(M).

(5) Suppose that Z.(R) = 0. A right module M is singular if and only if Hom(M,N) = 0

for all nonsingular right modules N.

Let M be an R-module and N < M. If N is an essential submodule of M, then
M/N is singular. Converse is not true in general. For example, let M = Z/2Z and N = 0.
M/N is singular but N is not an essential submodule of M. The following Proposition

shows that when the converse true.

13



Proposition 2.10 ( (Goodearl, 1976), Proposition 1.21) Let M be a nonsingular module
and N < M. Then M/N is singular if and only if N is an essential submodule of M.

The class of all singular right modules is closed under submodules, factor modules
and direct sums. On the other hand, the class of all nonsingular right modules is closed

under submodules, direct products, essential extensions, and module extensions.

Proposition 2.11 ( (Goodearl, 1976), Proposition 1.24) If M is any simple right R-

module, then M is either singular or projective, but not both.

A ring R is called a right SI-ring if every singular right R-module is injective. A
ring R is called a right PCI-ring if each proper cyclic right R-module is injective. Right
PCI-rings are right Noetherian and right hereditary. The right SI-ring and right PCI-ring

conditions are equivalent for domains.

2.8. Small Rings and Small Modules

Definition 2.18 A right R-module M is called a small module if it is a small submodule
in its injective hull E(M), i.e M < E(M).

The following characterization of small module is well-known
Proposition 2.12 For a right R-module M, the followings are equivalent:
(i) M is small.

(i) M < E(M).
(iii) M < E for some injective right R-module E.

(iv) M < L for some right R-module L containing M.

Proposition 2.13 If M is small then M/N is small for every N < M.

Proof Suppose M is small i.e. M < E(M). Let N < M, then M/N < E(M)/N. Let
L/N < E(M)/N suchthat M/N+L/N = E(M)/N,then M+ L = E(M). Since M < E(M),
L = E(M). Hence L/N = E(M)/N and M/L is small. ]
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Definition 2.19 A ring R is called left small if zR is a small module; e.g. Z is a small

ring as it is small in 7Q.

Proposition 2.14 ( (Ramamurthi, 1982), 3.3), ( (Pareigis, 1966), 4.8) Let R be a ring and

let E(R) be the injective hull of gR. Then the followings conditions are equivalent:
(i) R is a left small ring.
(ii) Rad(M) = M for every injective left R-module M.

(iii) Rad(E(R)) = E(R).
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CHAPTER 3

PROJECTIVE, INJECTIVE AND FLAT MODULES

In this chapter we give the definitions and main properties and characterization of

projective, injective and flat modules.

3.1. Projective Modules

Definition 3.1 A left R-module P is projective if, whenever p is surjective and h is any
map, there exists a lifting g; that is, there exists a map g making the following diagram

commute:

Proposition 3.1 ( (Rotman, 2009), Proposition 3.2) A left R-module P is projective if and

only if Homg(P, D) is an exact functor.

Proposition 3.2 ( (Rotman, 2009), Proposition 3.3) A left R-module P is projective if and
j p

only if every short exact squence 0 A—~B P 0 splits.

Definition 3.2 A ring R is left hereditary if every left ideal is projective; a ring R is right
hereditary if every right ideal is projective. A Dedekind ring is a hereditary domain.

Theorem 3.1 (Cartan-Eilenberg) The following statements are equivalent for a ring R.
(i) R is left hereditary.
(ii) Every submodule of a projective module is projective.

(iii) Every quotient of an injective module is injective.
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3.2. Injective Modules

Definition 3.3 A left R-module E is injective if, whenever i is an injection, a dashed arrow

exists making the following diagram commute.

0—>A—'"-B

Ve
. 7/
\Lj%/ &

E

Proposition 3.3 ( (Rotman, 2009), Proposition 3.28)

() If (Eviek is a family of injective left R-modules, then [|cx Ex is also an injective left
R-module.

(ii) Every direct summand of an injective left R-module E is injective.

Proof

(i) Consider the diagram in which E = [] E;.

0—>A—'"-B

/
. /
/s

E

Let py : E — E; be the kth projection, so that p,f : A — E;. Since Ej is an
injective module, there is g, : B — Ej with gii = pif. Now define g : B — E by
g : b — (gi(b)). The map g does extend f, for if b = ia, then

glia) = (g(ia)) = (pefa) = fa,

because x = (pyx) for every x in the product.

(ii) Assume that £ = E; @ E,, leti : E; — E be the inclusion, and let p : E — E; be the
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projection ( so that pi = 1g,).

Then, the proof can be completed easily using the diagram as a guide.

Corollary 3.1 Any finite direct sum of injective left R-modules is injective.

Proof The direct sum of finitely many modules coincides with the direct product. O

Theorem 3.2 (Baer Criterion) ( (Rotman, 2009), Theorem 3.30) A left R-module E is
injective if and only if every map f : I — E, where I is an ideal in R, can be extended to
R.

0—>A—'"-B

/
I

Proof Since any left ideal / is a submodule of R, the existence of an extension g of f is
just special case of the definition of injectivity of E.

Suppose we have the diagram

0—>A—'"-B

lf

E

where A is a submodule of a left R-module B. For notational convenience, let us assume
i is the inclusion [ this assumption amounts to permitting us to write a instead of i(a)
whenever a € A |. We are going to use Zorn‘s lemma. Let X be the set of all ordered pairs

(A’,g'), where A C A" C Band g’ : A” — E extends f; thatis g’|[4 = f. Note that X # 0,
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because (A, f) € X. Partially order X by defining

A,g)=<@A",g")

to mean A C A" and g extends g. The reader may supply the argument that chains
in X have upper bounds in X; hence, Zorn‘s lemma applies, and there exists a maximal
element (Ay, go) in X. If Ay = B, we are done, and so we may assume that there is some
b € Bwith b ¢ (Ay).

Define

I={reR:rbeAy.

It easy to see that / is a left ideal in R. Define h : [ — E by

h(r) = go(rb).

By hypothesis, there is a map h* : R — E extending h. Finally, define A} = Ap+ < b >
and g, : Ay — E by

gi(ap + rb) = go(agp) + rh*(1),

where ay € Ag and r € R.
Let us show that g, is well defined. If ag + rb = aj + r'b, then (r — r')b = a;, — ag € Ay; it

follows that r — " € I. Therefore, go((r — r’)b) and h(r — r’) are defined, and we have

golag — ag) = go((r = r)b) = h(r —r') = W' (r = r') = (r = r’ )" (1).

Thus go(ay) — golap) = rh*(1) — r'A*(1) and go(ay) + r'h*(1) = go(ao) + rh*(1), as desired.
Clearly giap = goao for all ay € Ay, so that the map g; extends go. We conclude that
(Ao, 80) < (A4, g1), contradicting the maximality of (Ao, g9). Therefore Ay = B, the map

go 1s lifting of f, and E is injective. |
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Proposition 3.4 ( (Rotman, 2009), Proposition 3.31) If R is a left Noetherian ring and
(Ekek is a family of injective left R-modules, then P i Ei s an injective left R-module.

Definition 3.4 Let M be an R-module over a domain R. If r € R and m € M, then we say
that m is divisible by r if there is some m’ € M with m = rm’. We say that M is a divisible

module if each case m € M is divisible by every nonzero r € R.

If R is a domain, » € R and M is an R-module, then the function ¢, : M — M, defined
by ¢, : m — rm, is an R-map. It is clear that M is divisible module if and only if ¢, is

surjective for every r # 0.

Lemma 3.1 ( (Rotman, 2009), Lemma 3.33) If R is a domain, then every injective R-

module E is a divisible module.

Corollary 3.2 Let R be a principal ideal domain.
(i) An R-module E is injective if and only if it is divisible.
(ii) Every quotient of an injective R-module E is itself injective.

Corollary 3.3 ( (Rotman, 2009), Corollary 3.36) Every abelian group M can be imbed-

ded as a subgroup of some injective abelian group.

Theorem 3.3 ( (Rotman, 2009), Theorem 3.38) For every ring R, every left R-module M

can be imbedded as a submodule of an injective left R-module.

Theorem 3.4 ( (Rotman, 2009), Theorem 3.39) If R is a ring for which every direct sum

of injective left R-modules is an injective module, then R is left Noetherian.

Definition 3.5 Let M and E be left R-modules. Then E is an essential extension of M if
there is an injective R-map « : M — E with S Na(M) # {0} for every nonzero submodule

S CE. Ifalso a(M) C E is called a proper essential extension of M.

Lemma 3.2 ( (Rotman, 2009), 3.44) Given a left R-module M, the following conditions

are equivalent for a module E 2 M.

(i) E is a maximal essential extension of M; that is, no proper extension of E is an

essential extension of M.
(ii) E is an injective module and E is an essential extension of M.

(iii) E is an injective module and there is no proper injective intermediate submodule E’;

that is, there is no injective E' with M C E’ C E.
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Definition 3.6 If M is a left R-module, then a left R-module E containing M is an injective
envelope of M, denoted by E(M) if any of equivalent conditions in Lemma 3.2 hold.

3.2.1. Injective Cogenerator

Definition 3.7 Let U be a non-empty set (class) of objects in a category C. An object A
in C is said to be generated by U or U-generated if, for every pair of distinct morphisms
f,8: A — BinC, there is a morphism h : U — A with U € U and hf # hg. In this case

U is called a set (class) of generators for A.

Definition 3.8 Let M be an R-module. We say that an R-module N is subgenerated by M,
or that M is a subgenerator for N, if N is isomorphic to a submodule of an M-generated
module.

A subcategory C of R—MOD is subgenerated by M, or M is a subgenerator for C, if every
object in C is subgenerated by M.

We denote by o[M] the full subcategory of R — MOD whose objects are all R-modules
subgenerated by M.

Definition 3.9 An injective module Q in o[M] is a cogenerator in o[M] if and only if
it cogenerates every simple module in o[M], or equivalently, Q contains every simple

module in o[M] as a submodule ( up to isomorphism ).

3.3. Flat Modules

Definition 3.10 If R is a ring, then a right R-module A is flat if AQg O is an exact functor;

that is, whenever

is an exact sequence of left R-modules, then

0—=AexB 2 Ay B2 Ay B —=0
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is an exact sequence of abelian groups. Flatness of left R-modules is defined similarly.

Proposition 3.5 ( (Rotman, 2009), Proposition 3.46) Let R be an arbitrary ring.
(i) The right R-module R is a flat right R-module.

(i) A direct sum @j M; of right R-modules is flat if and only if each M is flat.
(iii) Every projective right R-module P is flat.

Definition 3.11 For a right R-module M, the left module M* = Hom(M,Q/Z) is called

the character module of M.

Proposition 3.6 (Lambek). A right R-module M is flat if and only if its character module

M* is an injective left R-module.

Proof The functors Homg(O, Homz(M,Q/Z)) = Homg(O, M*) and Homz(O,Q/Z) o
(M ®g O) are naturally isomorphic, by ( (Rotman, 2009), Corollary 2.77). If M is flat, then
each of the functors in the composite is exact, for Q/7Z is Z-injective; hence, Homg(O, M)
is exact and M™ is injective.

Conversely, assume that M* is an injective left R-module and A” — A is an injection
between left R-modules A’ and A. Since Homg(A, M*) = Homg(A, Homz(M, Q/Z)), the
( second version of the ) adjoint isomorphism, ( (Rotman, 2009), Theorem 2.76), gives a

commutative diagram in which the vertical maps are isomorphisms.

Homg(A, M") Homgz(A',M*) ———0

l |

Homz(M ® A,Q/Z) —— Homz(M ® A’,Q/Z) —0

(M & A)* (M &g A"

0

Exactness of the top row gives exactness of the bottom row. The sequence
00— M®rA'— M ®r A is exact, by ( (Rotman, 2009), Lemma 3.53), and this
gives M is flat. O

Definition 3.12 Let M be a right R-module and N a submodule of M. N is said to be a
pure submodule of M if the induced map N ® L — M ® L is monic for each left R-module
L.
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Proposition 3.7 (Rotman, 2009) The following are equivalent for a right module M and

its submodule N.
(1) N is a pure submodule of M.
(2) The induced map N® F — M ®F is monic for each finitely presented left R-module F.
(3) The induced map Hom(F, M) — Hom(F, M/N) is epic for each finitely presented left

R-module F.

Definition 3.13 A right module M is said to be absolutely pure if it is a pure submodule
of E(M).
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CHAPTER 4

POOR MODULES

In this chapter we introduce the notions of relative injectivity and injectivity do-
mains of modules. Poor modules are defined as the modules whose injectivity domains
is as small as possible. We review some results from (Alahmadi, Alkan and Lépez-
Permouth, 2010), (Alizade and Biiyiikasik, 2017) and (Alizade, Biiyiikasik, Lopez-
Permouth and Yang, 2018) about poor modules.

4.1. Relative Injectivity and Injectivity Domain

Definition 4.1 A right R-module M is said to be N-injective (or injective relative to N)

if for every submodule K of N and every morphism f : K — M there exists a morphism
f: N — M such that f |x= f.

K——N

Proposition 4.1 ( (Mohamed and Miiller, 1990), Proposition 1.3) Let N be an A-injective
module. If B < A, then N is B-injective and A/ B-injective.

Proof It is obvious that N is B-injective. Let X/B be a submodule of A/B, and ¢ :
X/B — N be a homomorphism. Let 7 denote the natural homomorphism of A onto A/B
and n’ = nlx. Since N is A-injective, there exists a homomorphism 6 : A — N that extends

pn’. Now

0B = o' B = ¢(0) = 0.
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Hence Kerm < Ker6, and consequently there exists ¢ : A/B — N such that yr = 6. For

every x € X,

Y(x + B) = yn(x) = 6(x) = o' (x) = ¢(x + B).

Thus ¢ extends ¢, and therefore N is A/B injective.

Definition 4.2 For a module M, the injectivity domain of M is defined to be the collection
of modules N such that M is N-injective, that is, In"'(M) = {N € Mod — R | M is N-
injective }. Clearly, for any right R-module M, semisimple modules in Mod — R are

contained in In""(M), and M is injective if and only if In"'(M) = Mod — R.

4.2. Poor modules

Definition 4.3 M is called poor if, for every right R-module N, M is N-injective only if

N is semisimple.

Theorem 4.1 ( (Er, Lopez-Permouth and Sokmez, 2011), Proposition 1) Every ring has a

poor module.

Proof Let R be any ring. Let {A,|y € I'} be a complete set of representatives of
isomorphism classes of non-semisimple cyclic (right) R-modules. Since, for eachy € I,
A, is non-semisimple, we can pick a proper essential submodule K, of A,. Now put
T = &,rK,. Let B be a non-semisimple cyclic module such that 7" is B-injective. Then
there is some y € I' such that B = A,. Thus B has a proper essential submodule, say N,

isomorphic to K,. But then N is B-injective, a contradiction. Therefore, T is poor. O
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Definition 4.4 A module M crumbles if socles split in all factors of M.

Theorem 4.2 ( (Er, Lopez-Permouth and Sokmez, 2011), Theorem 1) Let R be any ring.

The following conditions are equivalent:

(i) R has a semisimple poor right module.

(ii) Every cyclic right R-module that crumbles is semisimple.
(iii) Every right R-module that crumbles is semisimple.

(iv) Every Noetherian but not Artinian cyclic R-module has a factor whose Jacobson

radical has nonzero socle.

(v) Every Noetherian but not Artinian cyclic R-module has a factor with nonzero Jacob-

son radical.

The structure of poor abelian groups is as follows

Theorem 4.3 ( (Alizade and Biiyiikasik, 2017), Theorem 3.1) A group is poor if and only

its torsion part has a direct summand isomorphic to ®,epZp.

Corollary 4.1 ( (Alizade and Biiyiikasik, 2017), Corollary 3.2) For a group G, the fol-

lowing are equivalent.

(1) G is poor.

(2) The reduced part of G is poor.

3) T(G) is poor.

(4) For each prime p, G has a direct summand isomorphic to Z,,.

Definition 4.5 A commutative domain is h — semilocal (or a finite character), if every

nonzero ideal is contained in only finitely many maximal ideals.

Commutative semilocal rings, & — local domains, and in particular Dedekind do-
mains are h-semilocal. It is known that direct sum of nonisomorphic simple Z-modules is
poor. We have the following result for h-semilocal domains.

Let S be the direct sum of non-isomorphic non-injective simple R-modules over
aring R. It is known that S is poor over the ring of integers. We have the following

generalization.
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Proposition 4.2 Let R be an h-semilocal domain (a domain of finite character). Then S
is poor.

Proof Suppose S is A-injective for some cyclic R-module A. We need to show that A is
semisimple. We have two cases: A = R or A = R/I for some nonzero ideal I of R. In the
first case, S 1is injective by Baer’s Criteria. But R is a domain, so R is a field. This means
that A is a simple R-module. Now suppose A = R/I for some non zero ideal / of R. We
claim that Rad(R/I) = 0. Suppose there is a nonzero a + I € Rad(R/I). Then (aR + I)/1
is small in R/I. Since (aR + I)/I is cyclic, it has a simple quotient, say (aR + I)/K. Note
that / < K. Then (aR + I)/K small in R/K because small modules are closed under
homomorphic images. On the other hand, (aR + I)/K is isomorphic to a direct summand
of S. So (aR + I)/K is R/ K-injective. Then (aR + I)/K is a direct summand of R/K. This
contradicts with the smallness of (aR + I)/K in R/K. As a consequence Rad(R/I) = 0.
This means that I = Nycal;, where A is an index set and I, are maximal ideals of R for
each 4 € A. Since R is h-semilocal, / is contained in only finitely many maximal ideals.
Therefore we may assume that A is finite and that the intersection Nycp /, is irredundant in
the sense that for each A’ € A, N1y # Naealy. Then R/T = R/(NMpealy) = ®aea(R/ 1)) 1

semisimple. Hence in both cases, we have A is semisimple. This proves that S is poor. O

Definition 4.6 ( (Alizade, Biiyiikasik, Lopez-Permouth and Yang, 2018)) A module is a
pauper (or a pauper module) if it is poor and no proper direct summand of it is poor. For

a ring R and a class of right modules C,

e C satisfies (Ux) for every poor module P in C there exists a pauper M € C such that
M is a pure submodule of P.

Recently, Theorem 4.3 generalized as follows.

Theorem 4.4 ( (Alizade, Biiyiikasik, Lopez-Permouth and Yang, 2018), Theorem 4.9) A
commutative hereditary Noetherian ring R satisfies (Ux). In fact, for every right R-module

M, the following statements are equivalent.

(1) M is poor.

(2) Z(M) is poor.

(3) For every noninjective simple module V, M has a direct summand isomorphic to V.

(4) M has a pure submodule isomorphic to S, where S is the sum of nonisomorphic and

noninjective simple R-modules.

27



CHAPTER 5

SUBINJECTIVITY AND SUBINJECTIVITY DOMAINS

As an opposite notion of relative injectivity and injectivity domains, the subinjec-
tivity and subinjectivity domains introduced in (Aydogdu and Lépez-Permouth, 2011 ).
In this section we outline some properties of subinjectivity and subinjectivity domains. In
contrast to injectivity domains subinjectivity domains are not closed under factor modules
in general. In this chapter we prove that the ring R is right hereditary if and only if the

subinjectivity of any right R-module is closed under factor modules.

Definition 5.1 Given modules M and N, we say that M is N-subinjective if for every
module K with N < K and every homomorphism ¢ : N — M there exists a homomor-
phism ¢ : K — M such that ¢ |y= ¢. The subinjectivity domain of a module M, Jn~'(M)
is defined to be the collection of all modules N such that M is N-subinjective.

Lemma 5.1 ( (Aydogdu and Lopez-Permouth, 2011 ), Lemma 2.2) The following state-

ments are equivalent for any modules M and N:

(1) M is N-subinjective.

(2) For each ¢ : N — M and for every module K with N < K, there exists a homomor-
phism ¢ : K — M such that ¢ |y= ¢.

(3) Foreach ¢ : N — M, there exists a homomorphism ¢ : E(N) — M such that ¢ |y= .

(4) Foreach ¢ : N — M, there exists an injective extension E of N and a homomorphism
¢ : E — M such that ¢ |y= ¢.

Proof The implications (1) = (2) = (3) = (4) are obvious. To show (4) = (1), let

N € N and ¢ : N — M. By assumption, there exists an injective extension E of N

and a homomorphism ¢ : E — M such that ¢ |y= ¢. Since E is injective, there exists

ay : N — E such that |y = i, where i : N — E is the inclusion. Then we get that

(¢¥)|y = ¢. This gives that N € Jn~'(M). m|

Proposition 5.1 ( (Aydogdu and Lopez-Permouth, 2011 ), Proposition 2.3) (\yemod—r JN~ (M) =
{A € Mod — R | A is injective}.
Proof Let N € Nyepoa—rdn ' (M). Then N € Jn~'(N) which means that N is injective.

O
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The following two results summarize some properties of subinjectivity and subin-

jectivity domains.

Proposition 5.2 ( (Aydogdu and Lopez-Permouth, 2011 ), Proposition 2.4) The following
properties hold for a module N:

(1) [lie; M; is N-subinjective if and only if each M; is N-subinjective.
(2) If each M; is N-subinjective fori =1,...,n, then so is @:;1 M;.

(3) Every direct summand of an N-subinjective module is an N-subinjective module.
Conversely, if N is a finitely generated module and M;, i € I is a family of N-
subinjective modules indexed in an arbitrary index set 1, then €@, M; is an N-

subinjective module.

Proof (1) Suppose that M; is N-subinjective for each i € I. Consider a homomorphism
¢ : N — [l M;. Letn; : [l;e; Mi = M, be the canonical epimorphism for each i € 1.
Then there exists a ¢; : E(N) — M; such that ¢;[y = mp for each i € I. Define an
R-homomorphism ¢ : E(N) — [];e; M; via x — (¢:(x)). Then |y = ¢.

For the converse, leti € I and ¢ : N — M. There exists a ¢ : E(N) — [];e; M;
such that ¢|y = e;p, where ¢; is the inclusion M; — [],; M;. Let m; : [[;c; Mi — M, be
the canonical epimorphism. Then (;¢)|y = ¢. Hence N € (o, Jn~'(M,).

The proofs of (2) and (3) are similar to the proof of (1). |

Proposition 5.3 ( (Aydogdu and Lopez-Permouth, 2011 ), Proposition 2.5) The following
properties hold for any ring R and R-modules N and M:

(1) IfN = @7: | Ni, then M is N-subinjective if and only if M is N;-subinjective for each

i=1,...,n

(2) If R is right Noetherian and I is any index set, then M is ., N;-subinjective if and

i€l

only if M is N;-subinjective for each i € I.

(3) If R is right hereditary right Noetherian ring and M is N-subinjective, then M is
N/K-subinjective for any submodule K of N.

@) If M is a non-singular N-subinjective module, then M is K-subinjective for any es-

sential extension K of N.

(5) If N < M and M is N-subinjective, E(N) < M. In particular, M is M-subinjective if

and only if M is injective.
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Proof

(1) Let ¢ : N; - M, and consider the canonical epimorphism 7 : N — N;. Since
N € Jn Y(M), there exists a ¢ : E(N;) ® E(@iiij) — M such that ¢|y = on.
Then ¢ = @lgw, : E(N;) = M, and hence y|y, = ¢. Now let ¢ : N — M. Then
there exists y; : E(N;) — M such that y;|y, = ¢n; for each i = 1,...,n. Define
Vo @?:1 E(N;)) = M, x; + ...+ x, = Yi1(x)) +... + ¥,(x,). Hence, we get that
Yl = .

(2) Since R is right Noetherian, E(N) = @I. . E(N;). The rest of the proof is similar to
that of (1).

(3) Since R is right Noetherian, we have a decomposition M = M, & M,, where M, is an
injective module and M, is a reduced module, i.e., a module which does not have
non-zero injective submodules. Then Jn™'(M) = Jn~'(M}) N Jn~'(M,) by 5.1(1).
But since M, is injective, its subinjectivity domain consists of all R-modules. There-
fore, Jn~'(M) = Jn='(M,). On the other hand, R being right hereditary implies that
Jn Y (M,) = {N € Mod — R | Homg(N, M,) = 0}. It is easy to see that this set is

closed under taking homomorphic images.

(4) Let f : K — M be any homomorphism. Since M is N-subinjective, there exists
g : E(N) — M such that g|ly = f|ly. Then N C Ker(g — f). Because N is an
essential submodule of K, Ker(g— f) is essential in K, too. Therefore, K/Ker(g—f)
is singular. On the other hand, K/Ker(g — f) is isomorphic to a submodule of the
non-singular module M. Hence, K = Ker(g — f) which means that g|x = flk.

(5) Since N isessential in E(N), E(N) can be embedded into M because of N-subinjectivity

assumption.

From Proposition 5.3(3), we see that the subinjectivity domain is closed under

factor modules. We generalize this result as follows.

Theorem 5.1 A ring R is right hereditary if and only if the subinjectivity domain of each

right module is closed under homomorphic images.
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Proof Suppose M is N-subinjective for right modules M and N. Let K < N and
f : N/K — M be a homomorphism. Consider the following diagram:

where 7, 7" are canonical epimorhisms. Since M is N-subinjective, there isa ¢ : E(N) —
M such that ¢, = fr. Clearly fm(K) = 0, and so K C Ker(y). Then, by factor theorem,
there exists a homomorphism ¢’ : E(N)/K — M, given by ¢’(a + K) = ¢(a) for each
a € E(N). Clearly, gol’N/K = f. Then M is N/K-subinjective by 5.1(4). This proves the
necessity.

Conversely suppose the subinjectivity domain of every right module is closed un-
der homomorphic images. We shall prove that quotients of injective right modules are
injective. Let E be an injective module and K < E. Clearly E/K is E-subinjective.
Therefore E/K is E/K-subinjective by the assumption. Hence E/K is injective. Thus R
is right hereditary. m|

Proposition 5.4 ( (Aydogdu and Lopez-Permouth, 2011 ), Proposition 2.8)

(1) Let R = R, ® R, be a ring decomposition. Then M is N-subinjective in Mod-R if and
only if MR; is NR;-subinjective in Mod-R; for each i = 1,2.

(2) Let I be an ideal of a ring R, and let M and N be R/I-modules. If M is N-subinjective
as an R/I-module, then it is N-subinjective as an R-module. The converse holds if

N is a pure submodule of E(N).
Proof

(1) By assumption, we have K = KR @ KR, for any R-module K. Now assume that M
is N-subinjective. Let f; : NR; — MR; be an R;-homomorphism. We can define an
R-homomorphism f' : N = M, nyry + nyr, — fi(n;r;), where ny,n, € N, r; € R; for
i = 1,2. Then there exists g : E(NR,) ® E(NR,) — M such that g|y = f’. Hence,
the result follows. For the converse, note that E(N) — E(NR;) ® E(NR,) since
E(NR;) ® E(NR,) is an injective R-module.
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(2) Let Eg;;(N) be the injective hull of Ng/;. Since Eg//(N) is also an injective R-module,
the result follows from 5.1(4). For the reverse implications, let N be pure in E(N).
Then N being both pure and essential in E(N) implies that EN has an R/[-module

structure.

Proposition 5.5 ( (Aydogdu and Lopez-Permouth, 2011 ), Proposition 2.9)Consider the

following statements for a module N:

(1) N is projective.

(2) Every homomorphic image of N-subinjective module is N-subinjective.
(3) Every homomorphic image of an injective module is N-subinjective.

Then (1) = (2) = (3), and (3) = (1) if the injective hull E(N) of N is projective.
Proof (1) = (2)Let M be an N-subinjective module. Let K < M andlet f : N - M/K
be a homomorphism. Since N is projective, there exists a homomorphism g : N —
M such that ng = f, where 1 : M — M/K is the canonical epimorphism. But N-
subinjectivity of M implies that g can be extended to a homomorphism 4 : E(N) — M.
It follows that the homomorphism 7k : E(N) — M/K extends f. (2) = (3) is obvious.
For (3) = (1) assume that E(N) is projective. Let M and K be modules such that K < M,
andlet f : N - M/K. Then we have if : N - E(M)/K, where i : M/K — E(M)/K
is the inclusion. By hypothesis, E(M)/K is N-subinjective, so there exists g : E(N) —
E(M)/K which extends if. But E(N) is projective. Therefore, there is a homomorphism
h : E(N) - E(M) such that 7’/h = g, where i’ : E(M) — E(M)/K is the canonical
epimorphism. Hence, if we consider hi : N — M, then nhi = f, where 7 : M — M/N is

the canonical epimorphism. O

32



CHAPTER 6

INDIGENT MODULES

In this chapter we study some properties of indigent modules and their charac-
terizations over some particular rings. The existence of indigent modules is not known
over arbitrary rings. In (Aydogdu and Lépez-Permouth, 2011 ), the authors ask whether
the direct sum of non-injective uniform right modules is indigent. We give an example
to show that this module is not indigent in general. Namely, we show that over a right
semiartinian right V-ring, the direct sum of non-injective uniform right modules is not
indigent. On the other hand, it is indigent over right PCI-domains. We give a complete
characterization of indigent modules over commutative hereditary Noetherian rings. We
characterize the commutative rings whose simple modules are injective or indigent. We
also prove that every cyclic right module is indigent if and only if the ring is semisimple

Artinian.

6.1. Indigent Modules

A right module M is called indigent if its subinjectivity domain is exactly the class

of injective right modules.

Proposition 6.1 ( (Alizade and Durgun, 2017)) Every right Noetherian ring has an indi-
gent right R-module.

Proof Let A be a complete set of representatives of finitely presented left R-modules.
Consider the left module M = @pcp F. Then M* = [[pcp F*. We claim that M™ is an
indigent right module. To prove this, suppose M* is N-subinjective for some right R-
module N. Note that (D, F)* = [1rep F*. Thenthe map 0 > N& M — E(N) @ M is
monic. This implies that the map 0 - N ® F — E(N) ® F is a monomorphism for each
finitely presented left R-module F. Therefore N is absolutely pure by Proposition 3.7.
Since the ring is right Noetherian, N injective by ( (Megibben, C.), Theorem 3) Hence
M is indigent. O

Let R be a non-Noetherian ring. Suppose every module is indigent or injective.

Then every pure-injective module is injective. Thus R must be von Neumann regular.
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Remark 6.1 Let M = ®ycpU, where B is a complete set of non-injective uniform right
modules, and let ® = @y N, where T is any complete set of representatives of cyclic
modules. The author of (Aydogdu and Lopez-Permouth, 2011 ) suspect whether the

module I is indigent, at least over right Noetherian rings.

Proposition 6.2 Let R be a (non-semisimple) right semiartinian right V-ring. Then M is

not indigent.

Proof Let U be a nonzero uniform right R-module. Then U has a simple submodule
X by the semiartinian condition. Then X is injective, because R is a right V-ring. Then
U=XeaY, forsome Y C U. Since U is uniform and X is nonzero, we must have ¥ = 0.
Thus U = X is a simple. Hence every nonzero uniform module is simple over such ring.
Then Mt is semisimple. Since R is non-semisimple, there is a non-injective cyclic right
module, say N by Osofsky Theorem. Let f : N — 0t be any homomorphism. Then f(N)
is contained in a finitely generated submodule K of M. Then K is injective, because it
is semisimple and finitely generated. Thus there is a g : E(N) — K such that g|ly = f.

Hence Mt is N-subinjective. This shows that 9t is not indigent. O

Proposition 6.3 Let R be a right hereditary right Noetherian ring. Suppose every non-

injective right module has a non-injective uniform factor module. Then I is indigent.

Proof Since R is Noetherian without loss of generality, we can assume that 9t has no
nonzero injective submodule. Suppose Wi is N-subinjective for some right module N.
We claim that N is injective. Suppose the contrary, and let N = D @ N’, where D is the
largest injective submodule of N and 0 # N’ has no nonzero injective submodule. Then
It is N’-subinjective. Since N’ # 0, N’ has a nonzero uniform quotient module which is
non-injective by the assumption. Thus there is a nonzero homomorphism f : N' — .
Then f extends to a homomorphism g : E(N) — M. Now 0 # g(E(N’)) is an injective
submodule of M, by the hereditary assumption. This contradicts with the fact that M has

no nonzero injective submodule. Thus N must be injective, and so 9 is indigent. O

Proposition 6.4 Let R be a right PCI-domain. Then I is indigent.

Proof Since R is a right hereditary right Noetherian, by Proposition 6.3, it is enough to
show that every non-injective right module has a non-injective uniform factor module. Let
M be a non-injective right R-module. Since singular modules are injective over right PCI-
domains, without loos of generality we can assume that M is nonsingular. Let E be the
injective hull of M. Then E = @, E;, where E; are indecomposable by ( (Matlis, 1958),

Theorem 2.5). Note that E; are uniform, because they are injective and indecomposable.
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Since R is a domain, we have E; = E(R) foreachi € I. Foreach i, lete : M — E and
n;  E — E; be the inclusion and projection maps respectively. Since M is non-injective,
there is a j € I such that the map g = 7 e is not epic, and so M/Kerg is isomorphic to
a proper submodule E;. Thus M/Kerg is a non-injective uniform factor module of M.

Now, 9 is indigent by Proposition 6.3. O

6.2. Indigent modules over Commutative Hereditary Noetherian

rings

In this section we shall give a characterization of indigent modules over commu-
tative hereditary Noetherian rings. First we recall a result from (Alizade, Biiyiikasik and

Er, 2014) which gives a characterization of indigent abelian groups.

Theorem 6.1 ( (Alizade, Biiyiikasik and Er, 2014), Theorem 27) The following are equiv-

alent for an abelian group G.

(i) G isindigent.
(i) 7,(G) # pT,(G) for each prime p.

(iii) The reduced part of T(G) contains a submodule isomorphic to P where p

Z
p pz’
ranges over all primes.
Proof (ii) = (iii) is clear.

(i) = (ii) Suppose pT,(G) = T,(G) for some prime p. On the other hand, for a
prime g # p, we always have ¢T,(G) = T,(G). Hence T,(G) is divisible, and so injective.
Now it straightforward to check that G is %—subinj ective, obtaining a contradiction.

(iii) = (i) Suppose G is N-subinjective for some abelian group N. We will show
that N is injective, equivalently, that gN = N for every prime g. Assume, contrarily, that

pN # N for some prime p. Since plN is nonzero semisimple, N has a factor isomorphic to
z

=
: Now G = D@ B, where D is divisible and B is reduced. Then T(G) = T(D)®T(B),
where T'(D) is clearly divisible and 7'(B) is reduced. So, by assumption, 7'(B) contains
a copy of I%z. Then there is a nonzero map f : N — T(B), which, by assumption of
N-subinjectivity, extends to some g : E(N) — G. Thus, Im(g) is divisible. Let 7 :
D & B — B be the obvious projection. If /m(g) were not contained in D, n(Im(g)) would

be a nonzero divisible module in B, a contradiction. But then, Im(f) € Im(g) N B = 0,

again a contradiction. Now the conclusion follows. m|
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Corollary 6.1 ( (Alizade, Biiyiikasitk and Er, 2014), Corollary 28) An abelian group G is

indigent if and only if its torsion part is indigent.

From Theorem 6.1, we see that the direct sum simple abelian groups is indigent.

For right small ring we have the following result.

Proposition 6.5 Let R be a right small ring and S be the direct sum of non-isomorphic

simple right R-modules. The following are equivalent.
(1) S is indigent.

(2) R is right hereditary, right Noetherian and any module with Rad(N) = N is injec-

tive.

Proof (1) = (2) Suppose S is indigent. First note that Hom(N, S') = 0 for every module
N such that Rad(N) = N. This implies S is N-subinjective, and so N is injective because
S is indigent. Since R is a small ring, Rad(E) = E for every injective right module
E. Now for an injective module E and a submodule K of M, Rad(E/K) = E/K. Then
Hom(E/K,S) = 0, and so E/K is injective by (1). This shows that R is right hereditary.
Now let E;, i € I be a family of injective right modules. Then Rad(®E;) = ®Rad(E;) =
®F;, and so Hom(®E;,S) = 0. Thus @®F; is injective by (1) again. This proves that R is
right Noetherian.

(2) = (1) Suppose S is N-subinjective for some right module N. Assume that
N is not injective and lets find a contradiction. By the Noetherian assumption we can
assume that N has no nonzero injective submodule. Let f € Hom(N,S). Since S is
N-subinjective, the map f extends to aamap g : E(N) — §S. Since R is a small ring,
Rad(E) = E. Thus g(E) < Rad(S) = 01i.e. g = 0. Then f = g|ly = 0, and so we have
Hom(N,S) = 0. Hence Rad(N) = N, and so N is injective by (2). This proves that § is

indigent. O

The following proposition shows that, injective modules, flat module and projec-

tive semisimple modules coincide over commutative Noetherian rings.

Proposition 6.6 Let R be a commutative ring and S a semisimple module. Consider the

following statements.

(1) S is injective;
(2) S is flat;

(3) S is projective.
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Then (1) = (2) & (3). If R is also Noetherian, then (1) & (2) & (3).
Proof (1) = (2) By ((Ware, 1971), Lemma 2.6) and by the fact that direct sum of flat
modules is flat.

(3) = (2) Projective modules are flat, so this is clear.

(2) = (1) Over a Noetherian ring, arbitrary direct sum of injective modules is
injective. So the proof is clear by ( (Ware, 1971), Lemma 2.6).

(2) = (3) If R is Noetherian, then each simple module is finitely presented.
Finitely presented flat modules are projective by ( (Lam, 1999), Theorem 4.30). Since
direct sum of projective modules is projective, semisimple flat modules are projective

over Noetherian rings. O

Theorem 6.2 ( (McConnell and Robson, 2001), Theorem 4.6) A hereditary Noetherian
ring R is a finite direct sum of Artinian hereditary rings and hereditary Noetherian prime

rings.

Proposition 6.7 Let R be a Dedekind domain and M be an R-module. The following

statements are equivalent.
(1) M is injective.
(2) M is divisible.

(3) M has no maximal submodules i.e. Rad(M) = M.
Proof (1) = (2) Assume that M is injective. Let m € M and ry € R be nonzero; we
must find x € M with m = rox. Define f : Rrp — M by f(rry) = rm (note f is well-
defined because R is a domain: rry = r'ry implies that r = r’). Since M is injective, there

exists & : R — M extending f. In particular,

m = f(ro) = h(ro) = roh(1),

so that x = h(1) is the element in M required by the definition of divisible.
(2) = (1) Assume that M is divisible R-module. By the Baer Criterion, it is suffices to

complete the diagram

0—>1—">R
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where [ is an ideal and i is the inclusion. We may assume that / is nonzero, so that /
is invertible: there are elements ay,...,a, € [ and qy,...,q, € FracR with ¢, C R and
I = X,q;a;. Since M is divisible, there are elements m; € M with f(a;) = a;m;. Note for

every b € I, that

f(b) = f(Zigia;ib) = Zi(q:b) f(a;) = Zi(gib)aim; = bXi(q;a;)m;.

Hence, if we define m = X;(q;a;)m;, then m € M and f(b) = bm for all b € I. Now we
define g : R — M by g(r) = rm; since g extends f, the module M is injective. |

The following result shows that, radical modules are injective over commutative

hereditary Noetherian rings.

Proposition 6.8 Let R be a commutative hereditary Noetherian ring. Then every module
with Rad(N) = N is injective.

Proof By Theorem 6.2 and the commutativity assumption, we have

R=e,R® - ¢,R® fiR® - fiR,

where ¢;R‘s are fields and fjR‘s are Dedekind domains foreach 1 <i<rtand1 < j <k.
LetS = &@_eRand T = eaj.;l fiR. Let E be a module with Rad(E) = E. Then E can
not have a simple direct summand. Thus § - E = 0, and so E is a T-module. So E has a

decomposition as

E=fHE®LE®- - fiE,

where f;E is an f;R module and Rad(f;R) = f;R for each j = 1,---,k. Since fiR is
a Dedekind domain and Rad(f;E) = f;E, the modules f;E are injective f;R for each
j=1,---,k. Thus E is injective both as a T-module and as R-module. O

We do not know whether the following result is stated somewhere in the literature,

we include it for completeness.

Proposition 6.9 Let R be a commutative hereditary Noetherian ring. Then R = S & T,
where S is semisimple, Soc(T) =0and T < E(T).
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Proof By Theorem 6.2, R = S®T, whereS = Soc(R) and T is a direct sum of Dedekind
domains. Now let us prove that T < E(T). If not, then T + K = E(T') for some maximal
submodule K of E(T'). Then

T/(T N K) = E(T)/K

is simple, and also injective by the Hereditary condition. Thus 7/(T N K) is projective
by Proposition 6.6, and so T = T N K @ U for some simple submodule U of R. Then
U < Soc(T) =0, a contradiction. Therefore T <« E(T). O

Proposition 6.10 Let R be a commutative hereditary Noetherian ring and C the direct

sum of nonisomorphic singular simple R-modules. Then C is indigent.

Proof LetR =S @ T be as in Proposition 6.9. Since S is projective it is nonsingular.
Thus we have S.C = 0, and so C is a T-module. Clearly every simple 7-module is
singular. Therefore C is exactly the direct sum nonisomorphic singular simple 7-modules.
Now T is a small ring. Thus C is an indigent 7T-module by Proposition 6.8 and Proposition
6.10. Now let us see C is indigent R-module. Suppose C is N-subinjective for some R-
module N. There is a decomposion N = N.§ & N.T. Since S is projective it is injective
by 6.6. Then N.S is injective. Since C is N.T-subinjective and C is indigent 7-module,
N.T is injective T-module. Now it is straightforward to check that both N.§ and N.T are
injective as R-modules. Hence their direct sum N = N.§ & N.T is injective R-module.

Therefore C is indigent. O

Proposition 6.11 Let R be a commutative Noetherian ring and M an indigent R-module.
Let C be the direct sum of nonisomorphic singular simple R-modules. Then M contains a
submodule isomorphic to C.

Proof Suppose Hom(U, M) = 0 for some singular simple module U. Since U is singu-
lar, it is noninjective. Let E = E(U). Then Soc(E/U) # 0. So there is a nonsemisimple
V < E such that V/U is simple. As U essential in V, we must have V/U = U. But then
Hom(V, M) = 0, and this implies that M is V-subinjective. This contradicts the fact that
M is indigent. Thus Hom(U, M) # 0 for each singular simple module U. m|

Proposition 6.12 Let R be a commutative hereditary noetherian ring and M an R-module.

The following are equivalent.

(1) M is indigent.
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(2) The reduced part M’ of M is indigent.

(3) Hom(S,M") # O for every singular simple R-module S, where M’ is the reduced
part of M.

Proof (1) & (2) Since R is Noetherian, the module M has a largest injective submodule,
say N. Then M = M’ ® N, for some M’ < M. Now it is easy to see that, for a right module
K, M is K-subinjective if and only if M’ is K-subinjective. Thus M is indigent if and only
if M’ is indigent.

(2) = (3) By Proposition 6.11.

(3) = (2) Suppose M’ is K-subinjective for some R-module K. Suppose K is not
injective. Then without loss of generality we can assume that K has no nonzero injective
submodule.

Suppose Hom(S, M’) = 0 for some singular simple module S. Then, as in the

proof of Proposition 6.11.

6.3. When simple modules are indigent or injective

In this section we give a complete characterization of commutative rings over
which each simple is indigent or injective. As a consequence we also characterize the
commutative rings whose simple modules are indigent. The rings whose cyclic modules

are indigent are shown to be semisimple artinian.

Lemma 6.1 If R is a commutative ring, then every simple R-module is pure-injective.

A ring R is called right H-ring if every right module is a direct sum of an injective
module and a small module. Every right QF-ring is a right Harada ring by ( (Oshiro,
1984), Theorem 4.3).

Theorem 6.3 Let R be a commutative ring. The following are equivalent.
(1) Every simple module is indigent or injective.
(2) RisaV-ring, or R = A X B, where B is semisimple, and
(i) Ais local, hereditary, Noetherian, small ring, or;

(ii) A is local QF.
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Proof (1) = (2) Suppose every simple is indigent or injective. If all simple modules
are injective, then R is a V-ring. Now suppose, there is a non-injective simple module U.
Then U is indigent by the hypothesis. If U’ is any simple module which is not isomorphic
to U, then Hom(U’,U) = 0. That is, U is U’-subinjective, and so U’ must be injective
because U is indigent. Thus the ring has a unique non-injective simple module, up to
isomorphism.

Let {E;}ic; be an arbitrary family of injective modules. Then @;¢;E; is a pure sub-
module of [[,;; E;. By Lemma 6.1 the simple module U is pure-injective. Thus U is
®;c;E;-subinjective. As U is indigent, ®,;E; must be injective. So that the ring R is
Noetherian. Now let B be the sum of the injective simple ideals of R. Then B is injective,
because the ring is Noetherian. So R = A@® B for some ideal A of R. Then Hom(B, A) = 0,
and Hom(A, B) = 0 by Proposition 6.6. Now, since Hom(B, U) = 0, we have

0# Hom(R,U) = Hom(A® B,U) = Hom(A,U) ® Hom(B,U) = Hom(A, U).

This implies that A has a simple module isomorphic U. If X is a simple A-module,
then we must have X = U. Otherwise X would be injective by the hypothesis. Then X
must be projective by Proposition 6.6, which implies that A = X’ @ Y for some X" = X.
But then X’ € A N B = 0, contradiction. Therefore A has a unique simple module, and
this simple is isomorphic to U. By the commutativity condition, we get that A is a local
ring. We have the following two cases:

Case I: Aisasmallring,i.e. A < E(A). Then Rad(E/K) = E/K for each injective
A-module E and K € E. Thus Hom(E/K,U) = 0, and so U is E/K-subinjective. Hence
E/K is injective. This proves that R is Hereditary.

Case II: A is not small i.e. Rad(E(A)) # E(A). Let us prove that A is QF by
showing that A is injective. We know that A is local and non small. Since A is finitely
generated, we have A € Rad(E(A)). Thus there is a maximal submodule K of E(A) such
that A+ K = E(A). Then A/ANK = E(A)/K is simple, and so ANK is the unique maximal
submodule of A. Moreover E(A)ANK = AJANK®K/ANK. Let f: A — U be anonzero
homomorphism. Since U is simple Ker(f) = AN K is maximal. Letn’ : A - A/ANK
and 7 : E(A) —» A/A N K be the natural projections, and f : A/A N K — U be the map
satisfying f = fn’. It is straightforward to check that the map ¢ = fr : E(A) —» U
extends fi.e. gla = f. Thus U is A-subinjective, and so A is injective. Being Noetherian

and injective, A is QF.
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(2) => (1) If R is a V-ring, then each simple is injective. So that (1) s hold.
Now assume (i). Note that B is projective R-module, and so injective as an R-module by
Proposition 6.6. Let U be a noninjective simple R-module. Then B.U = 0, and so U is a
simple A-module. Since A is local U is the unique simple A-module up to isomorphism.
Hence U is an indigent A-module by Proposition 6.10. Let us prove that U is indigent R-
module. Suppose U is M-subinjective for some R-module M. Then M = M, & M,, where
M, is an A-module and M, is a B-module. Since B is semisimple and injective R-module.
M, is an injective R-module. Since U is M;-subinjective and U is indigent A-module, M,
is an injective A-module. Since Hom(B, M) = 0, M, is also an injective B-module. Thus
M, is injective A ® B = R-module. Therefore M = M| & M, is an injective R-module, and
so U is indigent R-module.

Now assume (ii). As in the proof of (i), the ring R has a unique non-injective
simple module, say U which is also the unique simple A-module, up to isomorphism.
Then since A is local and QF, U is an indigent A-module by ( (Alizade, Biiyiikagik and
Er, 2014), Proposition 32) and ( (Oshiro, 1984), Theorem 4.4). Then by similar arguments

as in the proof of (i), U is an indigent R-module. This completes the proof. m|

The following is a direct consequence of Theorem 6.3.

Corollary 6.2 Let R be a commutative ring. The following are equivalent.
(1) Every simple module is indigent.
(2) R is semisimple, or R is a local,
(i) V-ring, or;
(ii) hereditary Noetherian small ring, or;
(iii) QF.

A module is said to be semiartinian in case every homomorphic image of it has
an essential socle. A ring R is called right semiartinian if it is semiartinian as a right R-
module. In ( (Aydogdu and Lopez-Permouth, 2011 ),Proposition 4.13), it is shown that if
every non-zero cyclic right R-module is indigent, then R is right semiartinian. We have

the following result.

Proposition 6.13 Let R be a ring. Every non-zero cyclic right R-module is indigent if and

only if R is semisimple Artinian.
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Proof Sufficiency is clear. To prove the necessity suppose every cyclic right R-module
is indigent. Let A and B be two simple right R-modules. Assume that A and B are not
isomorphic. Then, A is clearly B-subinjective. As A must be indigent by its choice, then
B is injective. But, by our assumption, B is also indigent. Then R is semisimple Artinian
since B is both injective and indigent module. W.l.0.g, R has a unique simple non-injective
module up to isomorphism. If A is projective, then R is semisimple Artinian. Hence, A
has to be a singular module. Note that R is also indigent by our assumption. Hence
Hom(A,R) # 0, otherwise A is injective, a contradiction. Then R has a minimal right
ideal, which is isomorphic to A , i.e. R is a right Kasch ring. We have the following two
cases:

Case I: Hom(E(R),A) = 0. Then R is right small ring by Proposition 2.14. By
Proposition 6.5, R is right hereditary, contradicting the singularity of A.

Case II: Hom(E(R),A) # 0. In this case, R is a right self-injective ring. Consider

the following diagram

0—>R—“ER)
k;fﬁ - %2 J/
E(R)—=A 0

By projectivity of R, there exists a homomorphism u : R — E(R) such that fu = n. Now,
by injectivity of E(R), there exists a homomorphism v : E(R)) — E(R) such that vi = u.
Then fv. = fu = m,and so A is R-subinjective. But A is indigent, and so R is a right

self-injective. But R is indigent, and so R is semisimple Artinian.
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CHAPTER 7

TEST MODULES FOR INJECTIVITY BY
SUBINJECTIVITY

There is another notion which is defined by subinjectivity. Namely, a module N
is said to be a test for injectivity by subinjectivity (t.i.b.s.) if the only N-subinjective
modules are injective modules.

In this chapter we give a characterization of t.i.b.s. modules over Dedekind do-
mains.

First we state a result which states that t.i.b.s. modules exist over any ring.

Proposition 7.1 ( (Alizade, Biiyiikasik and Er, 2014), Proposition 1) Every ring has
t.i.b.s. right module.

Proof Let R be aring and N = € 1, where I ranges among (proper) essential right
ideals of R, and assume that X is an N-subinjective module. Let A be a right ideal of R,
and f : A — X be any homomorphism. We may assume, without loss of generality, that
A 1is essential in Rg. Then, the copy of A in N that is a direct summand of N is essential
in an injective submodule, say Q, of E(N). So, there is an embedding ¢ : Rg — Q
fixing A. Since X is N-subinjective, f(¢™!)|4 (here, A is the copy in N) extends to some
h : E(N) — X. Thus, h¢ is the desired extension of f to R — X. |

Proposition 7.2 ( (Alizade, Biiyiikasik and Ev, 2014), Proposition 2) The following con-

ditions are equivalent for a ring R:

(i) Every right R-module is injective or a t.i.b.s.;

(ii) Every right R-module is injective or indigent;

(iii) IfA, B € Mod — R and A is B-subinjective, then A or B is injective.

In this case, the class of indigent modules and that of t.i.b.s. modules coincide.

Theorem 7.1 ( (Alizade, Biiyiikasik and Er, 2014), Theorem 19) The following are equiv-

alent for a ring R:

(i) Rristib.s.;
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(ii) R is right hereditary and right Noetherian.

Corollary 7.1 ( (Alizade, Biiyiikasik and Er, 2014), Corollary 20) A commutative domain
R is Dedekind if and only if it is a t.i.b.s.

7.1. The structure of t.i.b.s. modules over commutative rings

The structure of t.i.b.s. modules is known over the ring of integers. In this section

we shall characterize t.i.b.s. modules over Dedekind domains.

Theorem 7.2 ( (Alizade, Biiyiikasik and Er, 2014), Theorem 26) An abelian group G is

t.i.b.s. if and only if G has a direct summand isomorphic to Z.

Proof Suppose G is a ti.b.s. Then Hom(G,Z) # 0. Let f : G — Z be a nonzero

homomorphism. Then %(f) = nZ is projective. So that G = Ker(f) ® G’ with G’ = Z.

Conversely, if G =A@ A’ with A’ = Z, then G is a t.1.b.s. since Z is a t.i.b.s. by 7.1. O

The following lemma can be easily verified by using the properties of subinjectiv-

ity (see, (Aydogdu and Lopez-Permouth, 2011 )). The proof is omitted here.

Lemma 7.1 The following statements are equivalent for a right R-module M.
(1) M ist.ib.s.
(2) M" is t.i.b.s. for some n € Z*.
(3) M" is t.i.b.s. foralln € Z".
(4) M ® N is t.i.b.s. for any right module N.

The following theorem is a generalization of ( (Alizade, Biiyiikasik and Er, 2014),
Theorem 26).

Theorem 7.3 The following are equivalent for a commutative domain R.
(1) R is Dedekind.
(2) Ris tib.s.
(3) Every nonzero ideal of R is t.i.b.s.

(4) A nonzero R-module M is t.i.b.s. exactly when Hom(M, R) # O.
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Proof (1) & (2) By ( (Alizade, Biiyiikasik and Er, 2014), Corollary 20).

(2) = (3). Let I be nonzero ideal of R. Since R is Dedekind, I is finitely generated and
projective. Let P be a maximal ideal of R. We claim that, P - [ # I. Otherwise, we would
have Pp - Ip = Ip. Now Rp is a DVR with the unique maximal ideal Pp, and Ip is finitely
generated. So Ip = 0, by Nakayama’s Lemma. /p = 0 implies, ¢ - I = 0 for some nonzero
t € R— P. But Ris adomain, and I # 0, so t = 0. Contradiction. Therefore we have
PI # I for each maximal ideal P of R. Thus I/PI is a nonzero semisimple R-module, and
so there is a maximal submodule K of I such that //K = R/P for each maximal ideal P of
R. This means that / generates each simple R-module. So that I is a projective generator
by ( (Anderson and Fuller, 1992), Proposition 17.9). Then there is a positive integer n,
such that I" 2 R® K. Hence [ is t.i.b.s. by Lemma 7.1.

(3) = (2) is clear.

(3) = (4) Let M be an R-module. Suppose first that Hom(M, R) # 0. Then there
is a nonzero ideal I of R such that M/K = [ for some K < M. Since (3) also implies that
R 1s Dedekind, the ideal I is projective. Thus M = K @ I. By (3), the ideal [ is t.i.b.s.
Then M is t.i.b.s. by Lemma 7.1. Conversely, suppose M is t.i.b.s. and Hom(M, R) = 0.
Then R is M-subinjective, and so R is injective by the t.i.b.s. assumption on M. Thus R is
a field, and so Hom(M, R) = 0 gives M = 0, a contradiction. Hence Hom(M, R) # 0.

(4) = (2) Hom(R,R) # 0. So R is t.i.b.s. by (4). This proves (2).
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CHAPTER 8

CONCLUSION

Recently, an opposite notions of poor modules and relative injectivity introduced
in (Aydogdu and Lopez-Permouth, 2011 ). A right module M is said to be N-subinjective
for some right module N, if every homomorphism from N to M can be extended to a
homomorphism from the injective hull E(N) of N to M. The subinjectivity domain of M
is defined as the collection of all right modules N such that M is N-subinjective. A right
module M is called indigent if its subinjectivity domain is exactly the class of injective
right modules.

In this thesis we consider some problems and also generalize some results related
to indigent modules and subinjectivity domains. We prove that subinjectivity domain of
any right module is closed under factor modules if and only if the ring is right hereditary.
Indigent modules are the modules whose subinjectivity domain is as small as possible,
namely the modules whose subinjectivity domain is exactly the class of injective modules.
We give a complete characterization of indigent modules over commutative hereditary
Noetherian rings. The commutative rings whose simple modules are injective or indigent
are fully determined. The rings whose cyclic right modules are indigent are shown to be
semisimple Artinian. We also give a characterization of t.i.b.s. modules over Dedekind

domains.
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