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ABSTRACT

QUANTUM MONTE CARLO STUDY OF THE MULTI-ORBITAL
ANDERSON MODEL INCLUDING THE SU(2) INVARIANT HUND’S
COUPLING

In this study, an SU(2) invariant multi-orbital Anderson impurity model is dis-
cussed to obtain the electronic properties of metalloproteins. Metalloproteins are organic
molecules containing transition metal atoms. They have important roles in the chemi-
cal reactions taking place in organisms. The electronic properties of metalloproteins can
be modeled by an effective Anderson impurity model. The effective Anderson impurity
model can be studied with the quantum Monte Carlo algorithm developed by Hirsch and
Fye (1986). In the quantum Monte Carlo simulations of the Anderson impurity model so
far, only the longitudinal component of the Hund’s coupling term which arises from the
Coulomb interactions between the 3d orbitals is taken into account. Spin-flip and pair-
hopping terms (the transverse terms of the Hund’s coupling) are not considered. They are
required to make the Hamiltonian SU(2) invariant, which is related to the spin rotations,
so that the Hamiltonian is more realistic. The treatment of the transverse Hund’s coupling
with the Hirsch-Fye algorithm has been difficult because of the problems encountered in
the Trotter decomposition. Instead, a series expansion method was developed by Sakai
et al. (2006). Here, we combine the Hirsch-Fye quantum Monte Carlo algorithm with
the series expansion method to study the SU(2) invariant multi-orbital Anderson impurity
model. Therefore, we present results from quantum Monte Carlo simulations with the

new algorithm.
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OZET

SU(2)-DEGISMEZ HUND ETKILESIMIi I(CEREN COK-ORBITALLI
ANDERSON MODELININ KUANTUM MONTE CARLO
CALISMASI

Bu calismada metaloproteinlerin elektronik 6zelliklerini elde etmek icin bir SU
(2)-degismez cok-orbitalli Anderson safsizlik modeli tartisilmaktadir. Metaloproteinler
gecis atomu igceren organik molekiillerdir. Mikroorganizmalarda gergeklesen kimyasal
reaksiyonlarda onemli rollere sahiptirler. Metaloproteinlerin elektronik ozellikleri bir
etkin Anderson safsizlik modeliyle modellenebilmektedir. Etkin Anderson safsizlik mod-
eli Hirsch and Fye (1986) tarafindan gelistirilen kuantum Monte Carlo algoritmasi ile
caligilabilmek- tedir. Simdiye kadar olan Anderson safsizlik modelinin kuantum Monte
Carlo simiilasyonlarinda 3d orbitalleri arasindaki Coulumb etkilesimlerinden kaynakla-
nan, Hund etkilesiminin sadece enine bileseni hesaba katilmistir. Spin-cevirme ve cift-
atlama (Hund etkilesiminin boyuna bilesenleri) terimleri hesaba katilmamistir. Bu terim-
ler Hamiltoniyeni spin rotasyonlariyla alakali olan SU(2)-degismez yapmak i¢in gerek-
lidir, boylece Hamiltoniyen daha gergekci olacaktir. Boyuna Hund etkilesiminin Hirsch-
Fye algoritmasiyla isleyisi Trotter ayrismasinda karsilagilan problemler yiiziinden zordur.
Bunun yerine, bir seri a¢ilimi metodu Sakai et al. (2006) tarafindan gelistirilmistir. Bu-
rada, SU(2)-degismez ¢ok-orbitalli Anderson safsizlik modelini ¢alismak i¢in Hirsch-Fye
kuantum Monte Carlo algoritmasi ile seri agilim1 metodunu birlestiriyoruz. Sonug olarak,

yeni algoritma ile kuantum Monte Carlo simiilasyon sonuglarini sunuyoruz.
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CHAPTER 1

INTRODUCTION

Obtaining solutions to the strongly correlated electron systems consisting of tran-
sition metal atoms has always been a challenge in physics. There are several Hamiltonians
constructed to approach this problems such as Hubbard (Hubbard (1963)) and Anderson
Hamiltonians (Anderson (1961)). These Hamiltonians can be used to model the materi-
als of which the electronic and magnetic properties are determined or affected by the d
orbitals of the transition metals they contain. The high-dimensionality of these complex
systems makes it difficult to obtain analytical solutions, consequently the numerical meth-
ods have been developed to solve them. The advances in the computer technologies allow
us to have realistic numerical calculations. One of the most popular methods is quantum
Monte Carlo simulations.

The Anderson impurity model has been introduced in order to study the properties
of a localized magnetic impurity in a metallic host (Anderson (1961)), after that it was
extended to the semiconductor hosts (Haldane and Anderson (1976)). The single-orbital

Anderson impurity model in second-quantized form is

H= Z 1) Mmer + Z s+ Y Vi (Chguo + h.c) + Unynyy (11)

m,o

where ¢! _(c,.,) and d_(d,,) are creation(annihilation) operators for the host state m
and the localized state at v, o spin. ¢, and ¢, are the energies of the host and impurity
states. V,,, is the hybridization matrix elements between host and impurity orbitals. p is
the chemical potential, n,, is the occupation number of the impurity orbital, n,,, is the
occupation at the host orbitals. U is the Coulomb repulsion between the d electron at the
impurity site. The single-orbital Hamiltonian can be easily generalized to multi-orbital
systems. Many physical phenomena can be analyzed, such as presence of the localized
states or effects of them in semiconductors and metals, even with this simple model.

The first studies on the magnetic properties of transition metal impurities in semi-
conductor hosts within the Anderson impurity model (Haldane and Anderson (1976))
shows the existence of the localized energy levels which lies in the semiconductor gap

triggered by the occupations of the d-orbitals of those transition metals, changing the



magnetic properties of the materials. The same principles have been observed in the
dilute magnetic semiconductors (DMS) (Ohno et al. (1992, 1996)) such as (Ga,Mn)As.
They are semiconductors which exhibit magnetic properties, and they contain transition
metal atoms substituted into non-magnetic host atoms. An impurity bound state has been
found in the semiconductor gap of (Ga,Mn)As (Jungwirth et al. (2007)). The theoretical
studies within the Anderson impurity model show that this impurity bound states deter-
mines the electronic and magnetic properties of (Ga,Mn)As (Tomoda et al. (2009)). On
the other hand, the comparisons between the DMS materials and the metalloproteins show
that the same mechanism exists for the metalloproteins and metalloenzymes which have
been studied within the framework of multi-orbital Anderson impurity model (Kandemir
et al. (2016); Mayda et al. (2017)).

Metalloproteins are basically proteins which contain transition metal atoms. They
have several functions within the organisms from oxygen-carrying to catalyzing the vital
reactions in cells. The preceding studies for metalloproteins examined within the An-
derson model have given very promising results (Kandemir et al. (2016); Mayda et al.
(2017)). Although the impurity bound states have been found for metalloproteins, the
models did not consist of SU(2) invariant terms. Thus, there has not been any studies for
these materials within a SU(2) invariant Anderson Hamiltonian.

SU(2) invariant Anderson Hamiltonian consists of spin-flip and pair-hopping terms
(the transverse components of the Hund’s coupling) along with the inter- and intra-orbital
Coulomb repulsion and the z-component (longitudinal) of the Hund’s coupling. Addi-
tion of spin-flip and the pair-hopping terms makes the Hamiltonian invariant under SU(2)
transformations which are basically rotations in the spin degrees of freedom. The studies
within the multi-orbital Hubbard model for ¢,, orbitals of SroRuO,4 show that the preser-
vation of the rotational symmetries and Hund’s exchange coupling are important not only
for ferromagnetism in materials containing transition metal atoms, but also for supercon-
ductivity and metal-insulator transitions (Sakai et al. (2006)). If the symmetry is broken,
transverse spin fluctuations are ignored. This means that if the transverse components of
the Hund’s coupling term (spin-flip and pair hopping terms) is not taken into account, the
longitudinal component of the Hund’s coupling makes systems to exhibit a tendency to
ferromagnetic behavior. Thus, it can lead to wrong or overestimated results in the details
of the magnetic and electronic properties calculated. The transverse terms can suppress
the behavior of the longitudinal component.

In this manner, we propose that studies with an SU(2) invariant multi-orbital An-

derson Hamiltonian give more detailed and accurate results for metalloproteins. In this



study, 3d orbitals of the transition metal atom in the molecules are taken as impurity or-
bitals and remaining orbitals of the molecules are the host orbitals for Anderson model.
The Anderson model parameters, which are the energy eigenvalues of the single-particle
part and the hybridization matrix elements of the Hamiltonian, are obtained from the
density functional theory calculations as explained in Kandemir et al. (2016). SU(2) in-
variant Anderson Hamiltonian is constructed with these values to be solved. We focus
on hemoglobin molecule which consist of 4 heme group, each of them includes an iron
atom in the center. However, we examine a part of one heme group. The electronic and
magnetic properties of human hemoglobin, HbA, is calculated. Two molecules are cho-
sen: C3oH3oFeN;(O4 which is called deoxyheme, C32H3oFeN;¢O,4 called oxyheme in this
study. These molecules are important since hemoglobin molecule exhibits a transition
from high-spin state to low-spin state upon binding of oxygen molecules to the Fe atoms
(Pauling and Coryell (1936)). 3d orbitals of Fe atom acts as the transition metal impuri-
ties in the semiconductor hosts, thus making these molecules perfect candidates to model

them with Anderson impurity model.
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Figure 1.1. Molecular structure of C3oH3zgFeNoO-
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Figure 1.2. Molecular structure of CsoHsgFeN1oOy

In order to solve our model, we implement a quantum Monte Carlo method de-
veloped for the multi-orbital Hubbard model to simulate the ¢, orbitals of SroRuO,4 by
Sakai et al. (2006). In this QMC method, there is a combined approach of series ex-
pansion to the partition function and Trotter decomposition. The reason of a combined
method is the difficulty in the decoupling of the spin-flip and the pair-hopping terms. The
renowned auxiliary-field QMC algorithm developed by Hirsch and Fye (1986) uses Trot-
ter decomposition to discretize the imaginary-time interval, 3, of the Boltzmann operator
in the partition function, then the Hubbard-Stratonovich transformation (Hirsch (1983))
to decompose the interaction terms in order to get quadratic terms with respect to the
electron creation and annihilation operators. The density-density type interactions in the
intra- and inter-orbital Coulomb interactions along with the z-component of the Hund’s
coupling can be decoupled easily with Hubbard-Stratonovich transformation. However,
the spin-flip and pair-hopping terms consist of off-diagonal terms with respect to the elec-
tron creation and annihilation operators, thus another transformation is required for these
terms. This transformation exactly map the quartic terms in the spin-flip and pair-hopping

terms to their quadratic ones (Rombouts et al. (1998)). In order to use this transforma-



tion, we need to expand the partition function in series and use a discretized version of
the continuous-time QMC algorithm developed by Rombouts et al. (1999) to combine it
with Hirsch-Fye QMC algorithm. We named this new algorithm as Hirsch-Fye + Series
Expansion QMC (HF+SE QMC) introduced by Sakai et al. (2006).

There were several attempts to decouple the Hund’s coupling term and to solve it
within the framework of the dynamical mean field theory or QMC (Held and Vollhardt
(1998); Motome and Imada (1997); Han (2004); Sakai et al. (2004)). These transforma-
tions have serious problems: sign problem, neglecting the equality of spins or the orbitals,
orbital rotational symmetries, or works for some special cases. However, HF+SE QMC
algoritm uses an exact discrete transformation to the Hund’s coupling term. Therefore,
this algorithm is an numerically exact solver to the problem after the results are extrapo-

lated due to the errors caused by the time discretization and the series expansion.



CHAPTER 2

MULTI-ORBITAL ANDERSON IMPURITY MODEL

In this study, we will use multi-orbital Anderson Hamiltonian to model the transi-
tion metal impurities in organic molecules such as hemoglobin molecule. The construc-
tion of the model starts with the second-quantized Hamiltonian which includes kinetic

energy of the electrons, ionic potential on them and the electron-electron interaction.

2
hy(r) = —;—mw + Vion() 2.1)
ho(r,1') = Vee(r — 1) (2.2)

The second-quantized Hamiltonian is

2m

H=>" / dri (r) {— e + Vien(r) | U, (r)
+ % Z, // drdr’\Di(r)\PL,(r')Vee(r — 1)U, ()T, (r) (2.3)

We can expand the field operators, W, (r), in terms of the Wannier orbitals for the host

and the impurity orbitals as
U,(r) = ¢ilr)cio (2.4)

where ¢, , is the annihilation operator for the host states and d, , is for the impurity
states. In summation over ¢, the impurity orbitals are denoted as v and host orbitals are m.
After using 2.4, there are several terms as integrals in equation 2.3. We can define them

separately to construct the model. The kinetic energies of the host and impurity orbitals



are

h?
en—n= [ g, [—%VZ n vm<r>] om(®) 2.5)

h2
£y — = /drgol*,(r) [—%VQ + Vion(r)] 0, (1) (2.6)

The hybridization terms between the host and the impurity orbitals, which indicates the

hopping of electrons from host to impurity or impurity to host, are

2
Viw = /drgpfn(r) {—;—mVZ + V}on(r)} ©, (1) 2.7

2
Vi = / dry}(r) {—f—mw + v;(m<r>} m(r) (2:8)

The electron-electron interaction is defined on the impurity orbitals in this model. These

integrals are defined in the following.

U= [ drde el x) PV = i) 29)
U= [ [ i@Vl = 1) ) 2.10)
7= [ [ vt el @ Veale = ¥ @.11)
7= [ [ ri el Vet~ o) 2.12)

The integrals other than U, U’, J and J’ are expected to be smaller than these integrals
or to be zero. The real space rotations interchange the d orbitals to each other, in order
to ensure this equality the integrals the results of the integrals U, U’, J and J’ should be
related to each other by

U=U+2J (2.13)

With this condition the Hamiltonian is rotationally invariant in real space, as well. If we
take the Wannier orbitals real for impurity orbitals, then it holds J' = J. After these

definition, we construct the multi-orbital Anderson Model with inter-orbital and intra-



orbital interaction including spin-flip and pair-hopping terms which is defined as

H =" (m — p)ChyCms + Z ) df, dyy + Z Vo (ch oy + Do)
+ Z UnVT”Vi + Z [U/n’/an'/»*a + (U/ - J) nvanu’a]
v v>v' o
+ 3 J(ddl dyydyy + dbydl dy gy + hec) (2.14)
v>v/

where ¢! _(c,ny) and dJ (d,,) are creation(annihilation) operators for the host state 1 and
the localized state at v’th d orbital, o spin. ¢, and ¢, are the energies of the host and d
states. V), 1s the hybridization matrix elements between host and impurity orbitals. g
is the chemical potential and n,, is the occupation number of the v’th d orbital. U is
the Coulomb repulsion between the d electron at the same impurity state, U’ and U’ — J
is the Coulomb interaction between the d electrons at the different impurity state with
opposite spins and parallel spins. J is the Hund’s coupling between the different orbital
pairs. U’ — J term includes the z-component of the Hund’s coupling. And the remaining
part with .J term is the x and y component of the Hund’s coupling, which are the spin-flip

and the pair-hopping terms.
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-

Figure 2.1. Visualization of U, U’, U’ — J and J terms.

We can seperate the Hamiltonian into 3 parts for further calculations.

HO = Z(gm mgcma + Z dyo'dl/o' + Z le/ mo'dl/o' + h.c. )

Hy =Y Unpn, + Y [U’nwnylv_a + (U = J) Nygurs]

v>v'o

Hy =" J(d}dl, dyydyr + dlydl iy + hec) (2.15)

v>v!



2.1. The Effect of the SU(2) Invariant Hamiltonian in the Atomic

Limit

The preservation of the orbital and spin rotational symmetries affect many of the
aspects for our calculations. Although it exhibits a little difference in the total occupations
of the orbitals, an apparent distinction in the total magnetization is seen from the calcula-
tions. In order to show that we have done simple calculations with hemoglobin molecule.
After the parameters of the Anderson model are calculated from the DFT results (as in
Kandemir et al. (2016)), the hybridization matrix elements are set to zero. In this way,
the connection between the host and the impurity orbitals is lost, and the Hamiltonian
consisting of only five 3d orbitals can be diagonalized.The energy eigenvalues of the 3d
orbitals can be seen from the table 2.1. The comparisons (Figures: 2.2 and 2.4) show that
the total magnetization varies with respect to the absence of spin-flip and pair-hopping

terms.

Table 2.1. Energy eigenvalues of the 3d orbitals of the heme molecules in eV.

£y |y Tz Yz 322 —r? 2% —y?

deoxyheme | -3.5048 -3.4912 -3.0422 -3.3714 -3.4368
oxyheme | -4.5551 -4.1687 -4.2150 -4.0599 -4.3048

For deoxy molecule in figure 2.2b we observed that the calculations with H ; ex-
hibit lower magnetization values than the calculations without A ; at chemical potential
values  ~ —1.5 eV and p ~ 12.5 eV. The effect of H; is seen when the molecule starts
to have higher magnetic moment values, and just before losing its magnetic moment. Af-
ter these values of 1, there are sudden jumps in the magnetic moment values, (n3,). Thus,
H ; 1s more effective before these transitions. However, the total electron occupations of
the 3d orbitals are (ng;) ~ 2 and (ngy) ~ 8 at u ~ —1.5 eV and p =~ 12.5 eV, and there
are no apparent differences in the total electron numbers.

The expection value of H; is nonzero just for these chemical potential two inter-
vals from figure 2.3a. (H;) ~ —0.3 at chemical potentials ;1 ~ —1.5eV and px ~ 12.5eV.
When we compare (H ;) with the other parts of the Hamiltonian, the values (Hy) ~ 1.6
and (Hy+ Hy) =~ —2.2 at u = —1.5. The effect of H; is comparable with the other parts
of the Hamiltonian. For chemical potential i = 12.5 eV, however, the values (Hy) ~ 55.6

and (Hy + Hy) ~ —72.5 seem much higher than (H ;) at that chemical potential. In fact,



the chemical potential and the Coulomb interaction terms add up for 5 orbitals, thus the
values seem higher, but H; is still effective as seen from total magnetic moment 2.2b.

For oxy molecule in figure 2.4 we observed the same behavior with the deoxy
molecule, but at lower chemical potential values, © ~ —2.5 eV and p ~ 11.5 eV. The
reason is that the calculations were carried out in the atomic limit. There is no hybridiza-
tion between the host and the impurity orbitals. The presence of the oxygen molecule
lowers the eigenenergies of the Fe(3d) orbitals by approximately 1 eV as in table 2.1, but
its effect on the hosts cannot be seen because of the absence of hybridization. Therefore,
in the atomic limit the same behavior is seen but at lower chemical potential values. H;
is effective just before the first dramatic increment in the total magnetic moments.

The expection value of H; of oxyheme also exhibits the same behavior with the
oxyheme in the atomic limit as seen from figure 2.4a. The expection values of Hy and
Hy + Hy; are the same but shifted with respect to chemical potential approximately 1 eV.
The reason for the same behavior is not only eigenenergy differences of Fe(3d) orbitals
approximately 1 eV between the two molecules, but also the similiarities in the closeness
of the eigenenergies of each Fe(3d) orbital within each molecule.

Therefore, even in the atomic limit we saw that the effect of spin-flip and pair-
hopping terms is not negligible, it can be effective where a transition occurs. It can con-
tribute to the antiferromagnetic correlations since it lowers the magnetization on certain

points in two of the molecules.
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Figure 2.2. Exact diagonalization results for Fe(3d) orbitals in deoxyheme molecule
in the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature 7' = 300 K. Red
empty dots indicates the calculations with /;, black filled dots indicates
the calculations without H ;. (a) Total occupation number of the Fe(3d)
orbitals (ns4) versus chemical potential u. (b) Square of the total magnetic
moment at the Fe(3d) orbitals ((Ms4)?) versus chemical potential .
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Figure 2.3. Exact diagonalization results for Fe(3d) orbitals in deoxyheme molecule

in the atomic limit. Coulomb

interaction between the 3d orbitals U = 4

eV and Hund’s coupling J = 0.9 eV at temperature 7" = 300 K. Red
empty dots indicates the calculations with H ;, black filled dots indicates
the calculations without H ;. (a) Expectation value of H; versus chemical
potential u. (b) Expectation value of Hy versus chemical potential p. (c)
Expectation value of Hy + Hy versus chemical potential .

12



10 LI B B L B T T 1 T T
L OHJ:O _
8 OHJ¢O

(ngq)

OIIIIlIIIIlIIIIlIIII
-9 0 S 10 15

u (ev)

((Mgq)?)

-5 0 5 10 15
w (eV)

Figure 2.4. Exact diagonalization results for Fe(3d) orbitals in oxyheme molecule in
the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature 7' = 300 K. Red
empty dots indicates the calculations with /1, black filled dots indicates
the calculations without H ;. (a) Total occupation number of the Fe(3d)
orbitals (ns4) versus chemical potential u. (b) Square of the total magnetic
moment at the Fe(3d) orbitals ((M34)?) versus chemical potential .
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Figure 2.5. Exact diagonalization results for Fe(3d) orbitals in oxyheme molecule in
the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature 7" = 300 K. Red
empty dots indicates the calculations with H;, black filled dots indicates
the calculations without H ;. (a) Expectation value of H; versus chemical
potential u. (b) Expectation value of Hy versus chemical potential p. (c)
Expectation value of Hy + Hy versus chemical potential .
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CHAPTER 3

MONTE CARLO METHOD

Monte Carlo method is a random sampling technique in order to estimate a proba-
bility distribution functions, or to obtain results for numerical integration problems. There
are several methods, leading to the term “quantum Monte Carlo (QMC)”, to sample the
terms of partition in quantum mechanics in order to evaluate the expectation values of the
observables (Gull et al. (2011)). Some methods involve sampling of the wavefunctions of
the many-body systems (McMillan (1965); Ceperley et al. (1977); Foulkes et al. (2001)),
while the others stochastically sample the action of the many-body system or the path
integrals (Ceperley (1995); Sandvik and Kurkijirvi (1991)). On the other hand, auxiliary-
field algorithms (Hirsch and Fye (1986)) discretize the Boltzmann operator or the action
so that the partition function integral can be reformulated as a discrete sum over a high-
dimensional configuration space, and these algorithms sample the terms of the discretized
sum of the partition function instead of dealing with the whole configuration space.

This chapter covers the basic principles of the Monte Carlo integration and sam-

pling from the configuration spaces.

3.1. Monte Carlo Integration

There are high-dimensional integrals and sums over high-dimensional configura-
tion spaces to be solved in order to evaluate the properties of the thermodynamical sys-
tems. The basic numerical integration techniques, i.e. Simpson’s Rule, are not sufficient
when the dimensions of the integrals increase due to the fact that in these methods the er-
ror scales with the number of the integration points or the dimensionality of the integrals.
For high-dimensional integrals, they are not efficient.

Monte Carlo integration, however, is not dependent on the dimensionality of the
integrals. The elements of the integration domain are randomly sampled in Monte Carlo
integration. For uniformly selected elements z; of the configuration space C, any integral

can be approximated as

15



i f(z)dz = lim L Zf(%) (3.1

where €2 is the volume of configuration space C'. The statistical error, A, can be estimated

as

A=y =L = (3.2)

Therefore, the error of this method decreases with the number of samples, and it is inde-

pendent of dimensionality of the integrals.

3.2. Importance Sampling

Calculation of the integrals with uniformly chosen random elements is not effi-
cient for high-dimensional integrals. Instead, the elements which has more impact on the
integral can be chosen with importance sampling and decrease the variance more quickly.
The configurations can be generated with a general probability distribution p(z) on con-

figuration space C', where

/p(a:)dx =1 (3.3)
c
then equation 3.1 becomes
1 @ o L fl@)
(fl=4 /c mp(f)dx = lim - ; (@) (3.4)

and the integration error is

16



(3.5)

The expectation value of an observable in a system in equilibrium can be calculated using

the partition in statistical mechanics. The configurations can be generated according to

their contribution to the partition function. The expectation value of an observable, A, is

where

In order to use importance sampling, equation 3.6 becomes

N )

o A xi p(xl)

W= A<x>%p<m>dx = i 2=t
C plx —00 Zi:1 en)

3.3. Markov Process, Metropolis and Heat-bath Algorithms

(3.6)

(3.7

(3.8)

There is a method called Markov process to generate the configurations according

to their contribution to partition function or some probability distribution. In the Markov

chain the configurations are generated randomly but their values are dependent on their

previous values. The chain starts from a random elements x, € C, and can be visualized

as

17



Tg—>T1 —>Tg —7 Tk —7 ...

These configurations are generated via the transition probabilities between the
states zj and x;,q. To ensure that the probability distribution of the generated configu-
rations asymptotically approaches the right probability distribution, the transition proba-
bilities should satisfy detailed balance and ergodicity conditions. Ergodicity means that
reaching any x from any configuration y should be possible in a finite number of steps
in the Markov chain. To fulfill the detailed balance condition, the equation between the

probability distribution p(x) and transition matrix W, should be

=LY (3.9)

Metropolis and heat-bath algorithms satisfies detailed balance condition. The tran-
sition matrix elements are splitted into two parts as proposal and acceptance parts (Gull

et al. (2011)).

Way = Wirop(z = y)Waee(z — y) (3.10)

Using equation 3.9 detailed balance condition becomes

Waeel® = y) Dy Werop(y = )

—Ly_prop\s (3.11)
Wacc( .CL’) Pz Wprop(x — y)
To satisfy that the Metropolis algorithm then reads
Jymetropolis (1, s 4)) = min {1 —y—} (3.12)
( ) Pe Wprop(T = y)
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while the heat-bath algorithm is

heat—bath
WCLCC
where
p
pP==
Pz

(=) = —
€T _
eI
Worop(y — @)
mep(x - y)

(3.13)

(3.14)
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CHAPTER 4

HIRSCH-FYE + SERIES EXPANSION ALGORITHM

In this chapter, we present detailed derivations of the steps of the HF+SE QMC
algorithm. We start with the partition function for the measurements in the finite temper-
ature. After the series expansion of the Boltzmann factor, the transformation formulas are
applied to the two-body interaction terms. These decoupling formulas map the quantum
mechanical problem to its exactly classical one, an extra dimension to the problem in re-
turn. Thus, we can classically sample the terms of the partition function with Monte Carlo
methods. To perform the physical measurements, we use a Green’s function method. In
order to use it in the algorithm, for decoupling and calculating the Green’s functions, we
need to make one more modification to the 3 parts of the Hamiltonian. Thus, Hy, Hy and

H; becomes

HO = Z(gm mgcmo + Z dya-dllo' + Z Vmu mgdua + h.c. )
3 Znyd + ,/; |: nV‘T + Ny *U) + @(nua + nu’o):| (41)

!/

U U
Hy = Z [Unwnw - 5(7%4 + nui)} + Z {U/nvanu’,a - ?(nua + nV',U):|

v v>v o
/ —
+ ; |:<U, - J)nl/anl/o - (IJ—QJ)(HVU + nu’cr):| 4.2)
Hy =" J(ddl, dyydyy + diydl dyydyy + hec) 4.3)

v>v/
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The partition function is

J = Tre’ﬁﬁ

— Tre P(Ho+Hu+Hy) 4.4)

We add and subtract a constant, v, to the Hamiltonian in order to make a discrete decom-

position to H ;. We split the Hamiltonian into two parts as H; and H, where

Hy=Hy+ Hy+ 2 (4.5)
5
Hy=H;— 1 (4.6)
g
The partition function becomes
7 — Trefﬁ(H1+H2)
— ¢ "Tre BHo+Hu)+(y—BH,) “4.7)

In the following sections, we drop the constant term, e~7, in the partition function since it

1s just a constant and does not change the physics.

4.1. Series Expansion of the Boltzmann Factor

We expand the Boltzmann operator, e~ PH with respecttoy — SH .

e~ B(Ho+Hu)+(v—=BH) —B(Ho+Hy)

=€

0 1 T2
—1—2/ di.../ dr
1 70 0

k

x [ [e oWt H0) (4 — BH )erfHotHo)] e =5HatHu) - (4.8)
=1
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Derivation of this expansion is given in Appendix A. After discretization of the integrals

for numerical calculations, the equation becomes

-BH —B(Ho+Hy)

€ =€

) L j k
+ Z L7F Z . i H [e_jiAT(HO+HU)(fY _ BHJ)ejiAT(HoJrHU)}
k=1

k=1 j=1i=1
x ¢ PHHHY) L O (A7)

where

AT:B/L.

4.9)

(4.10)

The summations in equation 4.9 are cut at L. This expression is valid only for the con-

dition (k) < L. To reduce the computation time and the number of configurations, the

terms having consecutive 7 — S H; in the same imaginary-time interval is changed into

approximate terms. We use the notation

X=7—fBH;

After these changes equation 4.9 becomes

L
eiﬁH - Z F(kJ T1,T2," 7TL) H [eiAT(HO+HU)X”i| + O<AT>
1,72, ,r=0,1 /=1
where
L
k:Zm and yo=1.
/=1

4.11)

(4.12)

(4.13)

F' is a positive weight factor. Detailed derivation of F' terms is given in Appendix B.
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We use Trotter approximation to decompose Hy and to separate it from H,.

efAT(HoJrHu) o e*ATHOe*ATHU + O(ATQ) 4.14)

Now, we can use discrete Hubbard-Stratonovich transformation to decompose e~ATHY
The Hubbard-Stratonovich transformation is following.
1
e~ ATV [mony—gnutn,)] 5 D, e for V20 @15)
Sy=+1
where
cosh(\y) = 227V (4.16)

Thus, the decomposition of e~27v can be done with Hubbard-Stratonovich transforma-

tion.

e ATHU — exp {—AT

U
Z (UnuTnzxi, - E(nua + nu’a))

v
/

U
+ Z (Ulnua'nu’,o' - 7(”1/0’ + ny’,a‘))

+ ) ((U’ — Iy — WT_J)(nW + nm,))] } (4.17)

v>v o

After the discrete Hubbard-Stratonovich transformation, equation 4.17 becomes as in
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Hirsch and Fye (1986)

Ny
o~ ATHY (0) _ 2(2Nd1—1)Nd Z Z Z exp {Z Z U)\lSll/{an/a'

(8, =11 {8V, =1} sV, =1y \v=l @

d d d (i
D NENNETNED 3 3) RN

=1 /=1 v=1 V=1 o
/#V /;£V
(4.18)
where
cosh(\) = 2TV (4.19)
cosh(Xg) = 287V (4.20)
cosh()z) = e287(0'=7) 4.21)

and N, is the number of the d orbitals. There are (2N, — 1)N, density-density type
interactions which are transformed, leaving 1/2 for each after the transformation. We can

write equation 4.18 in terms of W, (¢)’s

o ATHU(0) _ SN N Z Z Z exp{z Ww(f)nw} (4.22)

{Sﬁjz—il} (80 =+ {sV') =41}
where
Woo(t) = WY () + WY (0) + WU () (4.23)
WL (0) = oAiSY, (4.24)
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V=1
v'#y
Ny
W ==X Sh, (4.25)
V=1
v'#v
v—1 Nd
W =Y SO =X > S (4.26)
v'=1 v'=v+1

Here we can make one more simplification to ease the notation for configurations
/ ! . .
{8Y,, SV, ,, SV~ 1 which is

vv! 0 Mo Lo

(S} =1{8Y,. 8%, ,.su/ (4.27)

vv! O Moy fo

Using equation 4.22, equation 4.12 becomes

1
—BH __ ‘
¢ _m Z Z F(k,T’1,T2,~-~,rL)
{re=0,1} {§,=+1}

L
x H [efATHoezy,U er(é)nuoxre] + O(AT) (428)

/=1

Since Hy, Hy and H; are separated out, we can decompose x(= v — S H ) now. Firstly,

we need to decompose X, into all distinct two-orbital pairs as in Sakai et al. (2006).

Y= BH,(0) = Y [ = sHY ()] (4.29)
where
y=) 7" (4.30)
v>v/
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Decomposition of H; is following as in Appendix C;

: ' — B
gy =Y

{ap”' gy’ vy =%1}

x [] exp {)\4 [o—qg” F7 At (g Ty — 1)] } 431)
where
HY = Jf f1 (4.32)
o =d dye +d, dy, (4.33)
1. 1+k
M=ol — (4.34)
bJ (4.35)

vv!

Using equation 4.29 and 4.31 together, we obtain the decomposition for Y, and it is

— BH,(0) = Z Y (4.36)

1/>1/ {qul/ tuu tuy} :tl

where

Te

' _ ,ym/ 8_ ﬁJ H 6)\4 {quylfgul-l—tcl;zl(n”“+nV/°_1)] (437)

(e

Using what we find after the decomposition of x,, the final form of the Boltzmann oper-

ator is

e_ﬂH:m Z Z Z F(k;rl,’f’g,“',TL)

{re=0,1} {§,=+1} n>n
{q"]"l tUU t’ﬂ’ﬂ _il}

L
y H [G—ATHOQZM Woo (O)no Q?fl} +O(AT) (4.38)

(=1
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where

, 1 if r,=0
?;7 — nn |: 7]7] ym +t7m( + 71):| (4-39)
e I i oo if ro=1
and
L
k= Z e (4.40)
/=1

In equation 4.38 we changed the notation for Qﬁé" term (v, to n,7n’) and we used the
fact that expanding the ¢ multiplication with “n > 7" summation being inside of it gives
different pairs of orbitals multiplied in different terms of the summation. We expanded
the ¢ multiplication and then took the “n > 7/ summation out of the ¢ multiplication.
This means that in different imaginary-time slices there can be different pairs of orbitals

active in QQ/_?/ term.
4.2. Partition Function

Before calculating the partition function, we make other simplifications to ease

the notations. We change 77’ pair notations and configurations obtained from 4.31,

{qg77 t?g : Zl} According to this change

a = (4.41)
Z > (4.42)
n>n'
{qf 7tT£vt } - {qnn t%] 7tzz } (443)
1P} ={a, twtu} (4.44)
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« stands for the orbitals pairs on which H is acting and {P;*} is for the configurations

{q", t%/, tﬁg'}. Thus, the partition function is

7 = Tre PH

1
Er D DD DI D) DRI

{re=0,1} {S,=+1} @ {Pp*1}

L
x Tr [ ] [em 2 oeve WrrOme Q] 4 O(ArT) (4.45)
=1
We can drop another constant term, 1/22Na=1Nal  from the partition function. Let us
focus on the trace over fermion degrees of freedom.

L
Tr H [e_ATHO 621’7" Woo()nyo ffé] (4.46)
/=1

This trace has three parts to evaluate. First part is coming from H, second part is coming

from Hy; and the third part is coming from v — SH ;. First part is represented as
e ATHo (4.47)

The second part is

oLvo Woo(Onve — oX, 5 dbaWoo (O)dve (4.48)
And the third part is

o _ =B T ¢l 15 +tsctme g, 0]
T 8
(o2
«@
_ - BJ H 6_)\4th€[djw(/\4aq?)dn/0+d;,0()\4oq§‘)dng+diw()\4t§£>dna+d;,0(/\4tfr‘£)dn/g]
8

(e

(4.49)
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In equation 4.49, %e‘k“(w +t1e) is just a constant with respect to the trace over fermion
degrees of freedom. Therefore, we can take this terms out of the trace. Let us define the

N, x N, matrices

[WU (E)] = Wl/w(g)él/mm (4.50)

v1,v2

[Taa (6)]1/1,1/2 = )‘40(1? (5111,?751/2,77’ + 61/1771’51/2,77) + )‘4th (51/177151/2,77 + 51/1,71’51/2,77’) (4.51)

The dimension of these matrices is Ny X N, since the interaction part of the Hamiltonian
includes only N; impurity orbitals. Using these matrices we can easily take the trace over

fermion degrees of freedom. The trace becomes

L
TI‘ H H |:€_ATH0 621/,1// le’U [WO (6)11/,1// du’o’ ezu,u’ dI’O' [Tg (E)L/,x/dulc' frnd

o (=1
[[det[1+BB] ;- B (4.52)
where
e ATEKWo O T30 for 1y =1
BY = (4.53)
e ATE W) for 1y, =0

where K is the kinetic part of the Hamiltonian. Calculation of the trace can be found in

Appendix D. Let us define the product of the matrices ¢V=() and e+ () by A, (¢).
Ag(l) = W OeTe® (4.54)

By using these results, the partition function becomes

Z=Y > > > F{r}p)]]det[I+B;B] - B] (4.55)

{re=01} {§,=+1} o {Pp+£1}

29



where

By = e 2TKAL(0) (4.56)

Vo0l for =1

A (0) = 4.57)
Woll)  for 1, =0

_ ;? N ﬂJ k L
F({Tﬁ}) = F(k’, 1y ,’I“L) ( ) €exXp —)\4 Z (tw + tu) (57%1 (458)

L
k=Y "r (4.59)

(=1
{Pfa} = {Q?a t?f’ tfé} (460)
{Set = {59,854, 807, 4.61)

and « were indicated as the orbital pairs 7n’ on which the H; is acting. Recall that the «
summation has the condition 7 > 7. In equation 4.58, we took the weights of the orbital

pairs coming from v — S H ; term equal. Thus, we set 7y as constant, 7.
v = Z 5 (4.62)

Furthermore, determinants of the products of Bf being N; X N, matrices can be repre-
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sented as the determinants of N, - L X N, - L matrices,

[[det [+ B;B] ,---Bf] = det MM, (4.63)
where
T 0 By |
-BY I 0 0
0 —Bg I :
M,=| 2 _ (4.64)
I 0
L 0 0 - 0 -Bp, I AN LxNg L
and
Go = [M,]" (4.65)

Relation between the single particle Green’s functions and M, matrices is in Appendix

D.

4.3. A,(¢) Matrices

Let us look at the form of A, (¢) matrices.

Ay (£) = VD170 (4.66)
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Wo(£)

Wi,6(£)

Wao(0)

BWNd—l,O'(Z)

eWNdyff(Z)

. NdXNd

(4.67)

We keep in mind that A, (¢) = "= if r, = 0. However, 7%(¢) has only four non-zero

elements.

TOé

0
' '
{
)\4tg€ )\40’(]?
(t) = ' '
T 1
/
nn nn

Exponential of this matrix is quite simple.

'

eMloe cosh(N\goq?)

eMlse sinh(\0q?)
T /
mn

- NdXNd

n.n

eMlse sinh(\0q?)

eMlse cosh(N\g0q?)

T
mn

(4.68)

NdXNd

(4.69)
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Now, we can form A, (¢) matrix which is the product of e"=(¥) and e?= ) matrices. From

equation 4.66;

eMboe cosh(Agogd)eVn o (O eMloesinh(A\gogl)e' Vo (O

eMtoe sinh(M\ogd)e'Vme (9 eMte cosh(M\gogd)e'Vme ()

(4.;0)

In matrix A,(¢), all elements are zero except the diagonal, [A,(¢)], ., and [A(€)],,  ele-

ments. And the inverse of this matrix is

[AU(E)]il =

—-A

e~ Mte cosh(Agoqf)e™ Vo

—e~ Mt sinh(M\oqd)e™Wne ()

—e Mo sinh(\ogd)e Voo e~ Mt cosh(\gogf)e™Wne ()

@71

Always keep in mind that 7 > 7’ and the dimensions of the A, (¢) matrices are Ny x Ny.
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4.4. Expansion Parameter ~

The expansion parameter v not only affects the strength of the auxiliary spins
introduced in the decomposition of v — S H ; term as in equation 4.31, but also affects the
expansion order. It is related to the expectation value of H ; since we expand the partition
function as powers of it. However, the expectation values of any observable should not be
depended on - since it is the free parameter of the expansion.

In this chapter, we have split the Hamiltonian in two parts as /1 and H.

Hy = Hy + Hy + % 4.72)
Hy=H, — % (4.73)

Let us rewrite the expansion formula in equation 4.8 by using H; and Hs.

7 — o B(H1+H:2)

k

00 1 T
=2 /0 dr - /0 dr [[[-BHa(7:B)] e P (4.74)
k=0

i=1

where
Hy(1;8) = e P HyemPMh (4.75)

We need to change the upper limits of the integrals to 1. In order to do that, the equation

should be multiplied by 1/k! to cancel out the overcounted terms.

k

00 1 1 1
szz_gg/o di"'/O dn [ [ [-BHa(7:B)] e (4.76)

i=1
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Let us calculate the expectation value of — H, using 4.76.

1 B
(~H:) = / dr{—Hy(7))
1 1
-3 / dr(—BHy(75))

111 (! ! !
=== — dT/ di~~-/ dr
Z%k!/o 0 o

x (—BHs(78))(—BHa(11f)) . .. (= BHa(mi3))e "™ 4.77)

If the equation is multiplied and divided by £ + 1 and the summation over k is shifted to

k + 1, it is simply the expectation value of the expansion order k.

(—Hy) = ;; k+1 /dT/ dry, - - /dﬁ

X(_5H2(7'5))( BHy(118)) ... (= BHy(73))e P

0 1
_ %% Z% dry- - /0 dri(—BHy(r1B)) ... (—BHs(73))e "

(4.78)

Now, let us go back to our notation, make the integrals time-ordered and arrange the limits

of the integrals to their old values.

11 oo 1 T k
<_H2> B BE k=0 k:/(] di N / dTl i=1 [ BHz(TM@)] h
1
L (4.79)

If we look at (— H,) from the other way, the equation is

(—Hy) = L — (1)) (4.80)

B

Using equations 4.79 and 4.80, the relation between the expansion parameter, v, and (H ;)
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becomes

(k) =~ —B(Hy)

(4.81)
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CHAPTER 5

CALCULATIONS OF THE GREEN’S FUNCTIONS

In this chapter, we focus on the calculations of the Green’s functions, updates of

them in the Monte Carlo steps and the physical measurements.

5.1. New Green’s Function (G”)’ From Old Green’s Function G°

Here, we will give a derivation of the new Green’s function (G)’ with a new spin
configuration when we know the old one with old spin configuration. Since A, is not
diagonal, we cannot use Hirsh-Fye algorithm directly. We have to find out the form of the
equations. We omit the spin indices, 7 and « indices for simplicity. A’ represents the new
spin configuration and A represents the old spin configuration. Let us define the matrices

G~ and A.

10 B, |
-B: 1 0 0
S
: b I (.)
L 0 0 - 0 —Bpa [ ANy LxNg L
A, 0 ]
() [A@)] vy, | 52)

0 ADIR

Nd‘LXNdI/
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Here Aisa N;- L x Ng- L matrix, and there are N; x N, matrices in the diagonal elements

which are denoted as A(¢). A(¢) can be written as

[A<€)]i,j = [A]M,jf (5.3)

And the multiplication of these matrices

(A 0 S e BTk
—e &K A2)] 7 0 0
G (A = 0 —e AR AB) | 5 (5.4)

AL =) 0
0 0 0 —e K (AL

Because By = e 2TEA(Y).

Let us define G which is

G = AG (5.5
G) =6 () (5.6)

With these definitions we clearly see that we can get G’ from G.

— ()=t -ATt )T (5.7)

(G T=G =) =AT (5.8)

Multiplying both sides G from the left and G’ from the right, we get

G-G=G[(N) =AY (5.9)



G'=G-G[N)—AT] & (5.10)

Using equation 5.5, the expression becomes

NG =AG—AG [(N) ' = AT NG (5.11)
(MTNG =G+GA'N-I)& (5.12)

Add G’ to both sides;
G=G+(G-1)(A'N-1)& (5.13)

Therefore, we find the relation between the old Green’s function and the new Green’s

function which is

1

G={I-(G-T)(A'N-1)} G (5.14)

5.2. Initial Calculation of Green’s Function G° from G° and A,

In Hirsh-Fye quantum Monte Carlo method they used a relation to find G from G’

which is represented as

G =G+ (G-DE""V-DNE (5.15)

They used this relation to find G° from G° which can be found analytically, as well. How-
ever, the Hamiltonian that they used includes only the intra-orbital Coulomb interaction.

The Hamiltonian that we use includes inter-orbital Coulomb interaction, pair-hopping and
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spin-flip terms along with the intra-orbital Coulomb interaction. Therefore, we cannot use
this relation. In section 5.1 we have found that the relation between the old and the new

Green’s function is
G={I-@G-(A'N-1)}"C (5.16)

In order to find the relation for the initial calculation of Green’s function we need to

modify some variables in a way that;

G — G°
G — QY
AN — A, (5.17)

The equation for the initial calculation of Green’s function G° from G? is

G7={I- ) (Ae — D)} GO (5.18)

where GV is the Green’s function for the case in which the auxiliary fields, {gg} and
{P}'}, are set to zero, and we can calculate it analytically. Since the Green’s function was
defined with plus sign in Hirsh-Fye paper, we defined it the same way. Green’s function

is represented as
GO (0,0 = + <wa(e)di,a(£’)> (5.19)

in our algorithm. Here G is calculated from the H, part of the Hamiltonian which is

Hy = (em = 1)chpCme + Z )5, dyy + Z Vo (ch oy + Do)
U v’ v —J)
-+ 5 ; Nyos + V;J |:? (nyo' + ny/7—o') + T(nya + nV/O'):| (520)
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G° is calculated from the Dyson’s equation which is

GO, (iwn) = GO (iwn) + Y Govu(iwn) > Vi G (i) Vi Gt (i)

v m,m/

(5.21)

where G%, (iw,,) and G

mm/’

(iw,) are impurity and host Green’s functions when the hy-

bridization terms, V,,, , are zero. G%,(iw,) and G  (iw,) are calculated from the

v/

Hamiltonian Hy.

Hoo = > (em = 1)ChoCma + > (e = p)dlpdo + > Y1, (5.22)

m,o

where

; Ynua = Z Nyo + Z |: nl/a + Ny —a) + @(nwf + nV’U):| (523)

v>v' o

and if sums over v, v/ and o are taken

v.t U_‘]> (5.24)

Y:(Nd—1)(5+5+ 5

for N; > 1. Ny is the number of d orbitals. The Green’s functions, G%, (iw,,) and

G (iw,), for zero hybridization are

G, (iw,) = - O (5.25)

iwy, — (e, —p+Y)

O
00 — mm 2
G (W) = P E— (5.26)
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Notice that Ggy, (iwy,) is calculated in Matsubara frequency, iw,,. After the calculation, it

should be transformed to Matsubara time, 7 = it.

5.3. Ratio of the Determinants

In this section we will calculate the ratio of the determinants which are used for

updating the Green’s functions and weight comparison while progressing in the Markov

chain.

G'=G-G[N)—AT]

(5.27)

where we omitted the spin and 7 indices and G = AG. Multiplying with (é’ )~! on the

right

I=G(G) " =G[(N) = A]

GG =T+G[(N) =A™

Recall that G = M~! from equation 4.65.

Using that equation 5.29 becomes

(AMY) [N (M) =T+ AG [(A) ™ = A7

(5.28)

(5.29)

(5.30)
(5.31)

(5.32)
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Multiplying A~! on the left, A’ on the right

MM = AW+ G (I — A7)

=A'N+(G-1)(I-A'"N)+ (I-A'A)

= M 'M=I1+I-G)(A'N-1)

After taking the determinant of the both sides, expression becomes

det M’
det M

=det [+ (I = G) (AN —I)]

(5.33)
(5.34)

(5.35)

(5.36)

Therefore, the ratio of the determinants of the new and the old spin configuration without

omitting the indices is

det M’
. = 7 = det A,
det M, ©

where

Ay =1+ (1 —G) (A'A, — 1)

5.4. Calculation of Updated Green’s Functions

(5.37)

(5.38)

In this section we will derive the expressions for the updated Green’s functions.

First, look at the equations for the relation between the old and the new Green’s function;

(G7) =G7+(G" = 1) (A;'A, = 1) (G7)

(5.39)
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and
(G) ={I—(G°—I)(A;'N, - 1)} 6o (5.40)

solving them together gives the expression for the update algorithm that we used in the

program which is represented as

(G°) = G7 + (G" —I) (A;'N, — 1) A;'G” (5.41)

where

Ap =T+ I -G") (A'A, = 1) (5.42)

The matrix A, is used in fast update scheme to make a more efficient and fast algorithm.
The derivations of the equations required for fast update scheme is given in Appendix E.

There are two types of updates in this algorithm: single spin flip and expansion
order updates. Expansion order updates increase or decrease the expansion order by one
at a random imaginary-time slice for one Monte Carlo move by introducing or removing
3 spin for H; term. Single spin flip updates changes the values of the spins while the
expansion order is constant. While making these changes, we need to consider the detailed

balance of the Monte Carlo steps. The n and « indices is dropped for simplicity.

5.5. Monte Carlo Transition Probabilities for Single Spin-flips

The acceptance probabilities for a single spin-flip are calculated using heat-bath

algorithm using equation 3.13;

Weaee(s = ') = —— (5.43)
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where

p = P Woropls = 5) (5.44)

Here the term py /ps is simply the ratio of the determinants multiplied by the ratio of the

weight terms for expansion orders.

=~ — _RyR, (5.45)

where the ratio of the determinants, R,,, is calculated in section 5.3 which is

, = SEE %: — det A, (5.46)

where
Ag =T+ (I —-G%) (AN, —1) (5.47)
We should consider f(k’; r1,72, -+ ,7rr) as weights of the configurations along with the

determinants of the fermion matrices.

- 5 - B8J\* L
F(k;rlar%' o 7TL) = F(k;rlar27' t 7TL) (fy 86 ) exXp {_)\4Z(tT£ +t$£) 67"@71}
/=1

(5.48)

Therefore, the equation 5.44 becomes

(5.49)

In this study the proposal probabilities are different only when there is an order

change. We will show that the calculation of the acceptance probabilities for each spin-
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flip.

5.5.1. Single Spin-flip for *r,”’

Spin-flip for r, occurs in two ways. First one is turning on the effect of H; for

imaginary-time slice ¢, and the second one is turning it off for imaginary-time slice /.

5.5.1.1. Turning on the effect of [ ;

Let us look at the turning on case which is following;
re=0 — 1r,=1

This move turns on three auxiliary field variables at time slice ¢, and impurity sites 7, 7'.

These variables are g, t+ and t .

qé:() — qézzl:l

tho — t/u::lzl

Let us calculate the ratio of the weight variables F. If we turn on the effects of H for

imaginary-time slice /, it is turned on for k£ + 1 imaginary-time slices.

ﬁ/_ﬁ(k_'—l;rl)TQa"'7T2:17"'7TL)

F F<k;rlvr27”'7T£:07"'7TL)

~ k+1
o 1 <7—BJ>
( + 77017712’... 77.6 =1,--- ’TL> 8 €7A4(tTf+ti£)

F<k;rl7r27"'7Tf:07"'7rL) <§5J>k
8

(5.50)
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The ratio of the weight variables becomes

E F(k:“f_].;rl,TQ,"' ,Té - 17”. 7TL) :YJ_/BJ €—>\4(t7~g+t‘w)
F F(k;T17T2,"'7Tg:O,"'7TL)

= 3 (5.51)

We should consider the ratio of the proposal probabilities, as well. For order change
updates, the steps in the Markov chain are not symmetrical. Increasing order by one adds
3 auxiliary field variables at the same time. Thus, there are 8 configurations from which

we can choose. The proposal probability from 7, to 7} is
, 1
Wrop(Te = 1)) = 3 (5.52)

and the proposal probabilities for reverse move is chosen from one possible configuration,

itis
Wrop(ry — 1) = 1 (5.53)

Using 5.49 the probability of the change “ry =0 — r, = 17 is

F 1

P = ?Rﬂﬁm (5.54)
Therefore, the acceptance probability of the change “ry =0 — r;, = 1" is
Wace(re — 1p) = HLP (5.55)
where
ﬁ/
P=8x ?RTRi (5.56)
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and

5.57
F F(k;rl,'f’g,"‘,Tg:O,"',TL) ( )

- 8

5/ F(k+ 1;T17T27"' JTZ = ]'7 JTL) (%7_/6‘]) e—)ul(tﬂ‘i‘tﬂ)

5.5.1.2. Turning off the effect of ;

Let us look at the turning on case which is following;

re=1 — 1,=0

This move turns off three auxiliary field variables at time slice ¢, and impurity sites 7, 7'.

These variables are ¢, t+¢ and t .

q£::|:1 — q2:0
=41 — =0

tw::lzl — tj,ZZO

Let us calculate the ratio of the weight variables F. If we turn of the effects of H, for

imaginary-time slice /, it is turned on for £ — 1 imaginary-time slices.

ﬁ/ i(k._l;rla,r?)'”’TEZO"“’TL)

ﬁ F<k;rlvr27”'7T£:17"'7TL)

~ k—1
. (v—ﬁJ>
F(k_ 1;7”1,7“2,"' 77/.[:07... 7TL) 8 6+A4(t¢g+t¢g>

_ 5.58
F<k;rl7r27"'7T€:17"'7TL) (M)k ( )
8
The ratio of the weight variables becomes
~/ [ . “ e ! — .« e A — -1
FT - F(k ]-a 1,72, Ty Oa ) TL) i B‘] €+)\4(tﬂz+tu) (559)
F F(k‘;/’ﬂlar27'.'aré:]-?”.ur[/) 8
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We should consider the ratio of the proposal probabilities, as well. Decreasing order by

one removes 3 auxiliary field variables at the same time. There is only one configuration

for removing case. The proposal probability from r, to 7/ is

Wrop(re = 15) =1

(5.60)

and the proposal probabilities for reverse move is chosen from 8 possible configurations,

itis
Worap(ry = 1¢) = é
Using 5.49 the probability of the change “ry =1 — 1, = 0" is
F 1/8

P=—=RR —
J T4

Therefore, the acceptance probability of the change “ry =1 — r;, = 0" is

P
WQCC(T’Z — 7’2) = ]_—I——P
where
1 F
P=—x TR R
g < i
and

E F(k—1;r,m9,-- 7y =0,--+ 1) (:Yv—ﬁj>le+/\4(t¢e+t¢e)

ﬁ F(k;rlar%“'7r€:17"'7rL) 8

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)
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5.5.2. Single Spin-flip for “q,”
The spin-flip for g, occurs in the following way.

qe = —Q

Let us calculate the ratio of the weight variables F. There is nothing related to ¢, in F

Therefore, F' = F The ratio of the weight variables becomes
(5.66)

The proposal probabilities for this change is the same since there is no order change.

Using 5.49 the acceptance probability of the change “q — ¢, = —q,” is

P
acc V) = — 5.67
where
(5.68)

P = RR,

5.5.3. Single Spin-flip for *“¢,,”

The spin-flip for ¢,, occurs in the following way.

toe —> t,=—tw
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Let us calculate the ratio of the weight variables F.

F’ o ﬁ(k;ﬁﬂz,"' ,TL)
F ﬁ(k;rlﬂ‘z,'“,T’L)
k
-8
P (222)
_ ( 371, T2, 7TL) 8 ke+2)\4tg¢ (569)
F(k;ri,ra, -+, 71) <§—5J>
8
The ratio of the weight variables becomes
(5.70)

fnll
5 +2Mqtop

=€

F

The proposal probabilities for this change is the same since there is no order change.
= —t,0" 1S

Using 5.49 the acceptance probability of the change “t,, — t.,

P
Wacc tO’ — t/ - 5.71
where
ﬁ/
P=—=RR, (5.72)
F
Uss “Sz[/{//’,ﬁ” and “SVUV/’TE{U”

vl 9

5.5.4. Single Spin-flip for “S

Spin-flips of these variables are explained in sections E.7, E.8 and E.9. From
the results it is seen that these changes do not include any variables changing in the F

weights. Therefore, the ratio of the weights is
(5.73)
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for these spin-flips. The proposal probabilities for this change is the same since there is

no order change. The probability of acceptance of these spin changes is

Wace(se — 8y) =

14+ P

where

P = RiR,

where the matrices A; and det A, is calculated in sections E.7, E.8 and E.9.

5.6. Quantum Monte Carlo Measurements

(5.74)

(5.75)

We use Green’s function method in order to calculate the physical measurements.

The key point is that the Green’s functions are sampled from the configurations

{{Tg}, {S¢}, {a}, {Pﬁ}} Thus, after the Green’s functions are calculated, we need to

average them over the QMC samples.

The single particle Green’s functions in Matsubara time are

Glo(7) = = (Tea( + 7))
Gl (r) = = (T’ + 1)l ()

(5.76)

(5.77)

The physical quantities that we measure can be represented as the single particle Green’s

functions using the commutation relation between the electron creation/annihilation op-

erators.

{@mﬂw}zéw&w

(5.78)
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The electron number operator and magnetization operators are

ny = dydyy + df dyy (5.79)
MZ =ddy —d} dy, (5.80)

These are static measurements, using commutation relations representations of them with

the Green’s functions are

=7 Z (1-Gl,(ri,m)) + (1= G (ri, 7)), (5.81)

(M7M7)) = <(di¢du¢ —d}ydy)(dl oy — dif¢du’¢)>

L
1
=7 > (G (ri,m) = G (i 73))
=1

X (GI/V’ (7—7;, Ti) — Gi/y’(Th TZ))
+ G (70, 7) (0 — G, (i, T2))

vv!

G, (70, 7) O — Gl (s ) (5.82)

mc

where 7, is the occupation of the impurity orbital v, (M ZMZ ) is the magnetic correlation
between the impurit orbitals v and /. Since HF+SE QMC algorithm uses time discretiza-
tion, measurements need to be averaged over L time slices. (- - - ),,,. indicates the average
over the configurations sampled during the Monte Carlo simulations.

The other physical quantities such as total occupation, square of the total magnetic

moment and dynamical quantities can be calculated in the same way.
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CHAPTER 6

QUANTUM MONTE CARLO RESULTS

In this chapter, we will show the results of our calculations. We have implemented
two kinds of algorithms to test here:

o First, HF+SE algorithm was tested which we developed it for Anderson impurity
model. It includes spin-flip and pair-hopping terms along with the U, U’ and U’ — J terms.
Rombouts’ transformation is applied to spin-flip and pair-hopping terms. Spin-flip and
pair-hopping terms have off-diagonal terms in the occupation number basis.

e Second, in order to check the reliability of a combined method with Hubbard-
Stratonovich transformation and Rombouts’ transformation together, we have applied
Rombouts’ transformation on U’ — .J term to expand it with series expansion since U’ — .J
only includes diagonal terms in the occupation number basis. It is easier to combine them
when all terms have diagonal elements. Thus, we have done tests with this algorithm in-
cluding Hubbard-Stronovich transformation on U, U’ and Rombouts’ transformation on

U’ — J terms.

6.1. Tests of the HF+SE QMC Algorithm for Spin-flip and

Pair-hopping Terms

These first tests have been carried out for the algorithm that we developed for
SU(2) invariant Anderson impurity model.

In order to test our algorithm, we compared the results of the program with the
inputs of an exactly solvable model. The results from the runs for average expansion
order, (k), and the value of v — 3(H ;) were compared which is a self-check mechanism
since they should be equal. Additionally, the results should not be changed with respect
to the free parameter v in the expansion.

The first tests of the algorithm is on a 2 orbital Anderson model with no hy-
bridization between the host and the impurity orbitals. In this theoretical situation, the
Hamiltonian can be diagonalized for 2 orbitals. The tests were carried out at temperatures
T = 3020 K, T' = 700 K, T" = 300 K. However, the correlation times are less in high

temperatures. Thus, we get the results quickly in high temperatures.
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Firstly, we set Hy term to zero. The Hamiltonian becomes

H=Hy+ Hy (6.1)

Figure 6.1 shows the effect of the H ; term from the exact diagonalization results
for Hamiltonian. Spin-flip and pair-hopping terms affect the results considerably when
Hy; is absent. From the expectation value of H it is clearly seen that the total energy
of the system is decreased which is expected since H ; contains off-diagonal terms with
respect to the electron creation/annihilation operators. For this case H; changes both
total magnetic moment and total occupation numbers. It lowers the magnetic moment as
expected.

For testing our algorithm, we compared the results with these exact calculations of
(nsa), ((Msq)?) and (H ). Then we will show that the results do not change with respect
to the free parameter ~.

In figure 6.2, 2000 warm up and 5000 measurement sweeps were taken from the
QMC simulations for each point. Our QMC calculations exactly match to the exact di-
agonalization results for I = H, 4+ H; as seen from figure 6.2 plotted as a function of
chemical potential ;. Here, the number of imaginary-time slices L. = 64 and the time
discretization parameter A7 = 0.06. J = 0.9 but Hy = 0. Free expansion parameter
~v — BJ = 0.3. The energy values of the impurity orbitals are ¢; = 0 eV and e, = 0 eV.
All points are within the error bars. Here, the only error is the statistical error caused by
the Monte Carlo samples. In 6.2b, the error on the total magnetic moment at chemical
potential © = —0.2 can be fixed with more Monte Carlo samples.

For the calculations in figure 6.3, 5000 warm up and 10000 measurement sweeps
were taken from the QMC simulations for each point. Here, the results are plotted as a
function of the free expansion parameter ~y. It is clearly seen that the results does not
change as a function of v and exactly on the line of the exact diagonalization result. The
number of imaginary-time slices L = 64 and the time discretization parameter A7 =
0.06. J = 0.9 but Hy = 0. This time the chemical potential is constant as y = —0.2.
The energy values of the impurity orbitals are €; = 0 eV and €, = 0 eV. The value of the
total magnetic moment is fluctuating about the exact value, because of the degeneracy in
the energy eigenvalues. It can be a smooth function of v, if there are more Monte Carlo
samples. If we look at our bare data, the expectation value of the expansion order (k) and
~v — B(H ) are equal for all data points.

We have carried out tests for only H; term at 7" = 300 K to check the algorithm
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in more realistic temperatures. Figure 6.4 shows the exact diagonalization calculations to
observe the effect of H; term at 300 K and non-degenerate impurity energy eigenvalues.
The energy values of the impurity orbitals are ¢ = 0 eV and €, = 2 eV. It is seen that the
magnetization values are lowered more than the previous case. At lower temperatures, the
strength of the spin-flip and pair-hopping interactions are higher. They nearly suppresses
ferromagnetic behavior of the system for this case.

The comparison between the QMC results and the exact diagonalization calcu-
lations in 300 K and non-degenerate energy case shows that they also match for these
parameters. Figure 6.5 shows the comparison between QMC results and the exact diag-
onalization calculations. 5000 warm up and 5000 measurement sweeps and 32 CPU per
points are used in the QMC simulations for each point. Here, the number of imaginary-
time slices L = 296 and the time discretization parameter A7 = 0.13063. J = 0.9 but
Hy = 0. Free expansion parameter 7 — $J = 0.3. The energy values of the impurity
orbitals are £y = 0 eV and 5 = 2 eV. All points match the exact calculations except for
two points. More Monte Carlo samples can lower the error bars of these points and they
can converge the exact results. In figure 6.6, the QMC results are plotted as a function of
the free parameter -y, with the parameters used in the figure 6.5 but at constant chemical
potential 1 = 1 eV. The results are independent of the free parameter as expected.

We continue our tests by extend this calculations to 3 orbital and 5 orbital systems

with a degenerate energy levels. The Hamiltonian is again

H=H,+H; (6.2)

In the calculations of figure 6.7, 3 orbital system is tested. The comparison be-
tween the QMC results and the exact diagonalization calculations shows that the QMC re-
sults have little errors. For these calculations The free parameter is taken as v — 3.J = 0.3.
The number of imaginary-time slices L. = 64 and the time discretization parameter
A1t = 0.06. J = 0.9 but Hy = 0. The energy eigenvalues are all zero, ¢, = 0.
5000 warm up and 10000 measurement sweeps were taken for each point. The temper-
ature is 7" = 3020 K. The expectation value of H; is overestimated a little bit in these
calculations. Thus, there are unmatched points in the magnetization and the occupation
values.

For those calculations in figure 6.8 we compare the results of the QMC simulations
with the exact diagonalization results for 5 orbitals, plotted as a function of y. The free

parameter is taken as v — $J = 0.3. The number of imaginary-time slices I = 64 and the

56



time discretization parameter A7 = 0.06. J = 0.9 but Hy = 0. The energy eigenvalues
are all zero, €, = 0. 100 warm up and 100 measurement sweeps were taken from 10 cores
for each point. Sweeps are lower than the two orbital case, because matrix sizes bigger
and the number of processes are much more to calculate the observables. However, the
results do not match to the exact diagonalization results. It may be caused by a bug in the
source code of the program or the treatment of free expansion parameter v implemented
mistakenly. As seen from figure 6.8, the expectation value of [ ; is underestimated.

Although the results do not match to the exact ones, if we plot them as a function
of free parameter ~, they are constant as in 2 orbital case. In figure 6.8, results do not
change as a function of . Here, the number of imaginary-time slices L = 32 and the
time discretization parameter A7 = 0.12. J = 0.9 but Hy = 0. The energy eigenvalues
are all zero, ¢, = 0. 100 warm up and 100 measurement sweeps were taken from 10
cores for each point. A lower number of imaginary-time slices are chosen, because of the
bigger matrix sizes.

The last tests of the program involve H; and H ; together for 2 orbital case. The

Hamiltonian becomes

H=Hy+ Hy+ H,y (6.3)

For this Hamiltonian we compared the exact diagonalization results to see the
effect of H; when Hy; is present. Figure 6.10 shows the exact diagonalization comparison
when Hy # 0 for H; = 0 and H; # 0. The energy eigenvalues are ¢; = 0 eV and
g9 = 0 eV. Coulomb interaction between the 3d orbitals U = 4 eV and Hund’s coupling
J = 0.9 eV at temperature 7' = 3020 K for this calculation. For chemical potential values
between 1 = 0.5 and u = 6.5, H; is effective and its value is approximately (H;) =
—0.3. At these chemical potential values, spin-flip and pair-hopping terms suppress the
ferromagnetic tendency of the z-component of the Hund’s coupling, as seen in figure
6.10b. However, no apparent change in the total occupation.

In figure 6.11, the comparison between the QMC results and the exact diagonal-
ization results are for U = 4 eV and J = 0.9 eV at temperature 7' = 3020 K. In QMC
simulations A7 = 0.12 and L. = 32, the free parameter v — 5J = 0.3, 10000 warm
up and 50000 measurement sweeps were taken at 30 processors for each point on the
graph in QMC simulations, and the energy eigenvalues are ¢; = 0 eV and 5 = 0 eV.
The QMC measurements do not match to exact diagonalization results for these calcula-

tions. However, the behavior is similar to the exact results. The expectation value of H;
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is overestimated here. Thus, it lowers the value of the total magnetic moment more than
expected.

For 2 orbital case, we have tested our algorithm at 7" = 700 K, as well. In figure
6.12, QMC results and exact diagonalization calculations are compared for for U = 4
eVand J = 09eV atT = 700 K, A7 = 0.13810 and L = 120, the free parameter
v — BJ = 0.3, and 1000 warm up and 4000 measurement sweeps were taken at 32 pro-
cessors for each point on the graph. The energy eigenvalues are ¢y = 0 eV and 5 = 0
eV. Here, the behavior is similar with 6.11. For total occupation numbers, the jumps are
located at different chemical potential values compared to exact diagonalization calcula-
tions since the expectation value of H; is overestimated in QMC results. This causes the
magnetization values to be lowered more than expected.

In 6.13, we have compared QMC results and the exact diagonalization results
for non-degenerate impurity energies for U = 4 eV and J = 0.9 eV at T' = 700 K,
A7 = 0.13810 and L = 120, the free parameter v — SJ = 0.3. The energy eigenvalues
are ¢; = 0 eV and e, = 2 eV. 1000 warm up and 4000 measurement sweeps were taken
at 32 processors for each point on the graph. The jumps are located at different chemical
potential values similar to the previous cases 6.11 and 6.12. The expectation value of H ;
is overestimated again. Resulting a dramatic decrement in the magnetization values.

In figure 6.14, we present the distributions of the expansion orders sampled in
the QMC simulations. These results are for theoretical 2-orbital case. Hy = 0 and
Hj # 0. The energy eigenvalues are ¢y = 0 eV and €5 = 0 eV. Hund’s coupling J = 0.9
eV at temperature 7' = 3020 K for this calculations. As the free parameter v — 5.J
increases, the distribution shifts to the right so that the contribution from the higher orders
can be sampled. The expansion orders are sampled from a normally distributed space
as seen in the figures. However, for the figures 6.15, the expansion orders for Monte
Carlo samples are not normally distributed. For the calculation in figure 6.15, the only
difference is Hy # 0 and Coulomb interaction is U = 4 eV. This may be related to
the overestimated expectation values of H; terms and transition probabilities that we
choose. The distributions have skewness and for high values of measurement sweeps,

they converge to a certain skewness value.
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Figure 6.1. Exact diagonalization results plotted as a function of chemical potential
u, for theoretical 2-impurity orbitals of degenerate energy levels, and no
hybridization between the host and the impurity. e = 0 eV and 5 = 0
eV. Coulomb interaction between the 3d orbitals U = 0 eV and Hund’s
coupling J = 0.9 eV at temperature 7" = 3020 K. Red empty dots indicates
the calculations with H;; = 0 and H; # 0, black filled dots indicates the
calculations with Hy = 0 and H; = 0. (a) Total occupation number of
the 3d orbitals (ns,) versus chemical potential . (b) Square of the total
magnetic moment at the 3d orbitals ((Ms4)?) versus chemical potential .
(c) Expectation value of H ; versus chemical potential .
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Figure 6.2. Exact diagonalization vs QMC comparison results plotted as a function of

chemical potential 1, for theoretical 2-impurity orbitals of energies €; = 0
eV and 5 = 0 eV at temperature 7' = 3020 K. In these calculations Hy; =
0 and H; # 0. The transverse components of Hund’s coupling J = 0.9 eV.
In QMC simulations A7 = 0.06 and L = 64. The free parameter y—3.J =
0.3. 2000 warm up and 5000 measurement sweeps were taken for QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals (ns4) versus chemical potential . (b) Square
of the total magnetic moment at the 3d orbitals ((M3,4)?) versus chemical
potential u. (c) Expectation value of H; versus chemical potential .
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Figure 6.3. Exact diagonalization vs QMC comparison results plotted as a function of

the free expansion parameter 7, for theoretical 2-impurity orbitals of en-
ergies ¢; = 0 eV and 5 = 0 eV at temperature 7' = 3020 K. In these
calculations Hy = 0 and H; # 0. The transverse components of Hund’s
coupling J = 0.9 eV. In QMC simulations A7 = 0.06 and L. = 64. The
chemical potential is constant as ¢ = —0.2. 5000 warm up and 10000
measurement sweeps were taken for QMC simulations. Red empty dots
for calculations with the QMC simulations, black dashed line for the ex-
act diagonalization result. (a) Total occupation number of the 3d orbitals
(nsq) versus free expansion parameter «y. (b) Square of the total magnetic
moment at the 3d orbitals ((M34)?) versus free expansion parameter 7. (c)
Expectation value of H ; versus free expansion parameter 7.
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Figure 6.4. Exact diagonalization results plotted as a function of chemical potential ,

for theoretical 2-impurity orbitals of non-degenerate energy levels, and no
hybridization between the host and the impurity. €; = 0 eV and e; = 2
eV. Coulomb interaction between the 3d orbitals U = 0 eV and Hund’s
coupling J = 0.9 eV at temperature 7' = 300 K. Red empty dots indicates
the calculations with H;; = 0 and H; # 0, black filled dots indicates the
calculations with Hy = 0 and H; = 0. (a) Total occupation number of
the 3d orbitals (ns,) versus chemical potential . (b) Square of the total
magnetic moment at the 3d orbitals ((Ms4)?) versus chemical potential .
(c) Expectation value of H; versus chemical potential .
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Figure 6.5. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential 1, for theoretical 2-impurity orbitals of energies €; = 0
eV and e, = 2 eV at temperature 7' = 300 K. In these calculations Hy = 0
and H; # 0. The transverse components of Hund’s coupling J = 0.9 eV.
In QMC simulations A7 = 0.13063 and L = 296. The free parameter
v — BJ = 0.3. 5000 warm up and 5000 measurement sweeps and 32 cpu
per point were taken in QMC simulations. Red empty dots for calculations
with the QMC simulations, black filled dots for the exact diagonalization
results. (a) Total occupation number of the 3d orbitals (n3,) versus chem-
ical potential x. (b) Square of the total magnetic moment at the 3d orbitals
((M34)?) versus chemical potential p. (c) Expectation value of H; versus

chemical potential s.
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Figure 6.6. Exact diagonalization vs QMC comparison results plotted as a function

of the free expansion parameter vy, for theoretical 2-impurity orbitals of
energies ¢; = 0 eV and e, = 2 eV at temperature 7' = 300 K. In these
calculations H; = 0 and H; # 0. The transverse components of Hund’s
coupling J = 0.9 eV. In QMC simulations A7 = 0.13063 and L = 296.
The chemical potential is constant as ¢ = 1.0 eV. 5000 warm up and 5000
measurement sweeps and 32 cpu per point were taken in QMC simulations.
Red empty dots for calculations with the QMC simulations, black dashed
line for the exact diagonalization result. (a) Total occupation number of
the 3d orbitals (ng,) versus free expansion parameter 7. (b) Square of the
total magnetic moment at the 3d orbitals ((M34)?) versus free expansion
parameter v. (c) Expectation value of H; versus free expansion parameter
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Figure 6.7. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential y, for theoretical 3-impurity orbitals of energies €, = 0
eV for all at temperature 7' = 3020 K. In these calculations H; = 0 and
H; # 0. The transverse components of Hund’s coupling J = 0.9 eV. In
QMC simulations A7 = 0.06 and L. = 64. The free parameter v — 5.J =
0.3. 5000 warm up and 10000 measurement sweeps were taken in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals (ns4) versus chemical potential . (b) Square
of the total magnetic moment at the 3d orbitals ((M3,4)?) versus chemical
potential u. (c) Expectation value of H; versus chemical potential .
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Figure 6.8. Exact diagonalization vs QMC comparison results plotted as a function of

chemical potential y, for theoretical S-impurity orbitals of energies €, = 0
eV for all at temperature 7' = 3020 K. In these calculations Hy = 0
and H; # 0. The transverse components of Hund’s coupling J = 0.9
eV. In QMC simulations A7 = 0.06 and L = 64. The free parameter
v — BJ = 0.3. 100 warm up and 100 measurement sweeps were taken
at 10 processors for each point on the graph in QMC simulations. Red
empty dots for calculations with the QMC simulations, black filled dots
for the exact diagonalization results. (a) Total occupation number of the
3d orbitals (ns4) versus chemical potential y. (b) Square of the total mag-
netic moment at the 3d orbitals ((M34)?) versus chemical potential . (c)
Expectation value of H; versus chemical potential .
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Figure 6.9. Exact diagonalization vs QMC comparison results plotted as a function of

the free expansion parameter -, for theoretical 5-impurity orbitals of ener-
gies €, = 0 eV for all at temperature 7" = 3020 K. In these calculations
Hy = 0and H; # 0. The transverse components of Hund’s coupling
J = 0.9 eV. In QMC simulations A7 = 0.12 and L = 32. The chemical
potential is constant as y = —0.2. 100 warm up and 100 measurement
sweeps were taken at 10 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black black dashed line for the exact diagonalization result. (a) Total occu-
pation number of the 3d orbitals (ng,) versus free expansion parameter .
(b) Square of the total magnetic moment at the 3d orbitals ((Mz4)?) ver-
sus free expansion parameter 7. (c) Expectation value of H; versus free
expansion parameter -y.
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Figure 6.10. Exact diagonalization results plotted as a function of chemical potential
, for theoretical 2-impurity orbitals of degenerate energy levels, and no
hybridization between the host and the impurity. €¢; = 0 eV and 5 = 0
eV. Coulomb interaction between the 3d orbitals U = 4 eV and Hund’s
coupling J = 0.9 eV at temperature 7' = 3020 K. Red empty dots indicates
the calculations with H; # 0, black filled dots indicates the calculations
with H; = 0. (a) Total occupation number of the 3d orbitals (ng,) versus
chemical potential p. (b) Square of the total magnetic moment at the 3d
orbitals ((Ms4)?) versus chemical potential yi. (c) Expectation value of H;
versus chemical potential p.
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Figure 6.11. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential 1, for theoretical 2-impurity orbitals of energies €; = 0
eV and 2 = 0 eV at temperature 7' = 3020 K. In these calculations
Hy # 0 and H; # 0. The transverse components of Hund’s coupling
J = 0.9 eV and Coulomb interaction between the 3d orbitals U = 4
eV. In QMC simulations A7 = 0.12 and L = 32. The free parameter
v — BJ = 0.3. 10000 warm up and 50000 measurement sweeps were
taken at 30 processors for each point on the graph in QMC simulations.
Red empty dots for calculations with the QMC simulations, black filled
dots for the exact diagonalization results. (a) Total occupation number of
the 3d orbitals (ng;) versus chemical potential ;. (b) Square of the total
magnetic moment at the 3d orbitals ((M34)?) versus chemical potential .
(c) Expectation value of H; versus chemical potential .
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Figure 6.12. Exact diagonalization vs QMC comparison results plotted as a function of

chemical potential p, for theoretical 2-impurity orbitals of energies e; = 0
eV and g5 = 0 eV at temperature 7' = 700 K. In these calculations Hy; # 0
and H; # 0. The transverse components of Hund’s coupling J = 0.9 eV
and Coulomb interaction between the 3d orbitals U = 4 eV. In QMC sim-
ulations A7 = 0.13810 and L = 120. The free parameter v — SJ = 0.3.
1000 warm up and 4000 measurement sweeps were taken at 32 proces-
sors for each point on the graph in QMC simulations. Red empty dots for
calculations with the QMC simulations, black filled dots for the exact di-
agonalization results. (a) Total occupation number of the 3d orbitals (n34)
versus chemical potential p. (b) Square of the total magnetic moment at
the 3d orbitals ((M34)?) versus chemical potential . (c) Expectation value
of H; versus chemical potential p.
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Figure 6.13. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential u, for theoretical 2-impurity orbitals of energies ¢; =
0 eV and 5 = 2 eV at temperature 7" = 700 K. In these calculations
Hy # 0 and H; # 0. The transverse components of Hund’s coupling
J = 0.9 eV. In QMC simulations A7 = 0.13810 and L = 120. The
free parameter v — SJ = 0.3. 1000 warm up and 4000 measurement
sweeps were taken at 32 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals (ns,) versus chemical potential p. (b) Square
of the total magnetic moment at the 3d orbitals ((M34)?) versus chemical
potential p. (c) Expectation value of H ; versus chemical potential .
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Figure 6.14. Histograms of the expansion orders from the QMC simulations for typical
parameters for theoretical 2-impurity orbitals of degenerate energies 1 =
0 eV and e = 0 eV at temperature 7' = 3020 K. Hy = 0, H; # 0
and J = 09 eV. A7 = 0.12 and L = 32. 5000 warm up and 10000
measurement sweeps. a) The free parameter v — 5J = 0.3. The average
expansion order (k) ~ 6. b) The free parameter v — .J = 7. The average
expansion order (k) =~ 13. c¢) The free parameter v — SJ = 15. The
average expansion order (k) ~ 20.
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Figure 6.15. Histograms of the expansion orders from the QMC simulations for typical
parameters for theoretical 2-impurity orbitals of degenerate energies €1 =
0 eV and e, = 0 eV at temperature 7' = 3020 K. Hy # 0, H; # 0 and
U=4eV,J =09eV. At = 0.12 and L = 32. The free parameter v —
BJ = 0.3. a) 5000 warm up and 10000 measurement sweeps. The average
expansion order (k) ~ 6. b) 10000 warm up and 50000 measurement
sweeps. The average expansion order (k) ~ 7. c¢) 50000 warm up and

100000 measurement sweeps. The average expansion order (k) ~ 7.
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6.2. Tests of the QMC Algorithm for Series Expansion of U’ — J

Term

Here, we have constructed a Hamiltonian which only includes the z-component of

the Hund’s coupling.

H = Hy+ Hy + Hyr—y (6.4)

where

!/

U U
Hy = Z {UnVan o E(nVT + nw)} + Z [Ulnwnw,_g B 7(7%0 o)

v v>v' o
U —J
HU/fJ = Z |:<U/ - J)nuanl/a - %(nya + nl/’a):| (65)

v>v' o
We expanded the Boltzmann factor with respect to Hy_ 5

e~ B(Ho+Hy)+(v=BH,) _ ,—B(Ho+Hy)

XH n,@(HoJrHU (y — BHyr_ )nﬂ(HoJrHu)] e AHo+HY) (6 6)

After this, we follow the same derivations what we developed in the study except
for the Rombouts’ transformation. For U’ — J terms, we have used a decoupling formula

similar to the transformation in Gull et al. (2008).

1— i) ZZ{””"”’“’_ nl,g—l—nl,a)}:
v>v o
Z Z Z >‘U’ JS nl,g—n o) (67)

v>vY' o U’
SW, - J—141

1
4 N, pair
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where

Npairﬁ<U, - J)

coshA\pr_y) =1+
8

(6.8)

We have carried out tests for this Hamiltonian for 2-orbital case to check the com-
patibility of the Hubbard-Stratonovich transformation and the Rombouts’ transformation.

Figure 6.16 shows the QMC results and exact diagonalization comparison for U =
4eV,U=22eVandU' —J =13¢eV, A7 =0.12and L = 32 at T' = 3020 K. The free
parameter v = 0.3. In these simulations 5000 warm up and 10000 measurement sweeps
were taken at 20 processors for each point on the graph. The QMC results match the
exact diagonalization calculations with small errors. These error are actually the statistical
errors and can be corrected with more Monte Carlo samples.

We have carried out calculations in more realistic temperatures with same param-
eters. In figure 6.17, U = 4eV,U =22eVand U’ — J = 1.3 eV, A7 = 0.13063 and
L = 296 at T' = 300 K. The free parameter v = 0.3. For QMC results, 1000 warm up
and 1000 measurement sweeps were taken at 32 processors for each point on the graph.
At T = 300 K, the matrices are bigger, thus the run times of the simulations are higher
than the simulations at high temperatures. Therefore, we only carried out QMC simula-
tions at the chemical potential values which have critical jumps in the figures. We saw
some points in figures 6.17 which do not match the exact calculations. These points have
statistical error and can be corrected by taking more Monte Carlo samples.

In figure 6.18, the QMC results are plotted as a function of the free parameter ~.
The parameters are U = 4eV,U =22eVand U’ —J = 1.3eV, AT = 0.13063, L = 296
at 7" = 300 K and constant chemical potential value ¢ = 7eV'. 1000 warm up and 1000
measurement sweeps were taken at 32 processors for each point on the graph. The QMC
results are independent of the free parameter v as expected. These results lead to the fact
that Hubbard-Stratonovich transformation and Rombouts’ transformation are compatible

when the transformed terms are diagonal in the occupation number basis.
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Figure 6.16. QMC results for the series expansion to the U’ — J vs exact diagonalization
comparison plotted as a function of chemical potential p, for theoretical 2-
impurity orbitals of energies e; = 0 eV and €, = 0 eV at temperature
T = 3020 K. In these calculations Hy # 0 and Hy—; # 0. U = 4 eV,
U=22eVand U’ —J = 1.3eV.In QMC simulations A7 = 0.12and L =
32. The free parameter v = 0.3. 5000 warm up and 10000 measurement
sweeps were taken at 20 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals (ns,) versus chemical potential . (b) Square
of the total magnetic moment at the 3d orbitals ((M34)?) versus chemical
potential p. (c) Expectation value of H ; versus chemical potential .
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Figure 6.17. QMC results for the series expansion to the U’ — J vs exact diagonalization
comparison plotted as a function of chemical potential p, for theoretical 2-
impurity orbitals of energies ¢; = 0 eV and €2 = 0 eV at temperature 7' =
300 K. In these calculations Hy; £ Oand Hyr_y #0. U =4eV,U = 2.2
eVand U — J = 1.3 eV. In QMC simulations A7 = 0.13063 and L =
296. The free parameter v = 0.3. 1000 warm up and 1000 measurement
sweeps were taken at 32 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals (ns4) versus chemical potential . (b) Square
of the total magnetic moment at the 3d orbitals ((M34)?) versus chemical
potential p. (c) Expectation value of H ; versus chemical potential .
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Figure 6.18. QMC results for the series expansion to the U’ — J vs exact diagonalization
comparison plotted as a function of the free parameter -y, for theoretical 2-
impurity orbitals of energies e, = 0 eV and €, = 0 eV at temperature
T = 300 K. In these calculations Hy # 0 and Hy_; # 0. U = 4 eV,
U=22eVand U — J = 1.3 eV. In QMC simulations A7 = 0.13063
and L = 296. The chemical potential is constant as ; = 7 eV. 1000 warm
up and 1000 measurement sweeps were taken at 32 processors for each
point on the graph in QMC simulations. Red empty dots for calculations
with the QMC simulations, black filled dots for the exact diagonalization
results. (a) Total occupation number of the 3d orbitals (n3,) versus chem-
ical potential . (b) Square of the total magnetic moment at the 3d orbitals
((M34)?) versus chemical potential x. (c) Expectation value of H; versus
chemical potential .
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CHAPTER 7

CONCLUSIONS

In this thesis, we have implemented a quantum Monte Carlo method to solve the
multi-orbital Anderson impurity model including the SU(2) invariant Hund’s coupling.
The QMC method involves a series expansion to the partition function and Trotter de-
composition in order to apply the renowned Hirsch-Fye QMC algorithm with the spin-flip
and pair hopping terms. The detailed derivations was carried out, and the QMC program
was written to simulate the deoxy and oxyheme molecules. On the other hand, we have
developed an exact diagonalization program to solve the SU(2) invariant Hamiltonian in
the atomic limit.

To form an insight about the effect of transverse components of the Hund’s cou-
pling, the hybridization matrix elements between the Fe(3d) orbitals of hemoglobin mole-
cules and the remaining host orbitals are neglected. This allowed us to diagonalize the
Hamiltonian in the atomic limit. The exact diagonalization calculations revealed that the
transverse Hund’s coupling terms affect the system for certain points, and suppress the
tendency to ferromagnetic regime of the longitudinal Hund’s terms, decreasing the total
magnetic moments before the dramatic jumps for hemoglobin molecules. Additionally,
calculations with the theoretical two and five orbital systems showed that the effect of
the spin-flip and the pair-hopping terms can be more increased which resulted in more
decrement in the total magnetization.

We have compared the QMC measurements and the exact diagonalization calcu-
lations with zero hybridization to ensure the accuracy of the simulations. In QMC mea-
surements, the results have matched to exact diagonalization results for spin-flip and pair-
hopping terms in two orbital systems when the Coulomb interactions are neglected. We
have observed that the free expansion parameter y does not affect the results as expected
since it is just a constant with respect to electron creation/annihilation operators. The in-
crement of ~y increases the average expansion order &, while it is decreasing the strength
of the decoupled H ;. Therefore, the results are not dependent on the free parameter ~.
However, smaller values of - is safer because we have cut off the expansion order at L and
average expansion order should much smaller than that L. For two orbital systems, the
expectation value of H ; was overestimated in QMC measurements when Coulomb inter-

actions are taken into account, thus the results do not match to the exact ones. Although
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the behaviors of the QMC results and the exact results are very similar, the magnetiza-
tion values are decreased more than expected. When we examine the distribution of the
expansion orders which are sampled in the QMC simulations, the normal behavior is bro-
ken if Hy; terms are taken into account along with the H ; terms. These results suggests
that the diagonal terms transformed by Hubbard-Stratonovich transformation and the off-
diagonal terms decoupled with Rombouts’ transformation may be incompatible to use in
QMC simulations or calculating the partition functions. The second suggestion is that
the transition probabilities in the Monte Carlo steps may be chosen inaccurately which
leads errors in the QMC results. However, when we used Rombouts’ transformation on
U’ — J part of the Hamiltonian, the decoupling gives diagonal terms with respect to the
occupation number basis. The results from the series expansion of U’ — J terms showed
that the Hubbard-Stratonovich transformation and Rombouts’ transformation can be used
together when the terms which are decoupled are diagonal.

All in all, we have found that the effect of spin-flip and pair-hopping terms cannot
be neglected from the exact diagonalization results. The calculations with the multi-
orbital Anderson impurity model including SU(2) invariant Hund’s coupling in order to
obtain the electronic properties of the metalloproteins can give more realistic results. The
QMC algorithm was derived for general interactions, any number of impurity orbitals,
especially for metalloproteins. The first steps have been taken for the QMC studies of the

SU(2) invariant Anderson impurity models on metalloproteins and similar materials.
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APPENDIX A

SERIES EXPANSION

Interaction representation: Operators and wavefunctions have time dependence.

Hamiltonian consists of kinetic part and a potential part.

H=Hy+V (A.1)

The imaginary time variable is defined as

T =1t (A.2)
The partition function is
Z =Tr (e’ﬂ = )
=Tr [(e_fBHeﬁHo) e_’BHO] (A.3)
Let us define an operator U (7).
U(r) = e ™HemHo (A.4)

Time evolution of this operator is

0
EU(T) = eiTH(HO — H)@THO
— —e_THVeTHO
=-U(1)V(7) (A.5)
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where
V(r) = e THoyemHo (A.6)
Taking 7 integral on both sides

U(r)=1- /OT dnU(m)V (1)

K

(—1)k/OT dr, - /0 drV () - V()

T T2 k
(—1)’“/ dm---/ dr [[V(m) (A7)
0 0 i=1

k=0

WE

ol

=0

where we have changed the order of the integrals. Thus, the Boltzmann operator becomes

e PH = e~ BHo (A.8)

oo 8 T k
1+Z(—1)k/0 dfk,---/o dn [[V(m)
k=1 =1

In 7 integrals substitute 7; with 7;3. This substitution changes the limits of the integrals.

oo 1 To k
e BH — o—BHo + Z(_l)kﬂk/ dry, - - / dr H [e—TzﬂHoveﬁﬁHo] e~ BHo
k=1 0 0 i=1

k

oo 1 T2
— ¢ PHo Z/ dry - - - / dm H [e_TiBHO(_/BV)eTiﬁHO] o—BHo (A.9)
k=1"0 0

=1
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APPENDIX B

DERIVATION OF EXPANSION WEIGHTS

The Hamiltonian is denifed as
H=H,+ Hy+ H; (B.1)

and the series expansion of the Boltzmann operator is

—B(Ho+Hy)+(v=BHr) — ,—B(Ho+Hu)

o0 1 T2
+z/dm.../ ”

> H B(Ho+Hy) ( _ ﬂHJ)eTz‘/B(Ho-i-HU)} e~ P(Ho+Hy) (B.2)

e

Discretize it for numerical calculations

7 PH — —B(Ho+Huy)
+ ZL Yy
Jk=1 J1=1

k
% H _J1A7— H0+HU)<,y /BH )ejLAT(HO+HU):| —ﬂ(H()+HU)+O<AT) (B.3)
i=1

Ar = ﬁ/L (B.4)

Firstly, the k summation in equation B.3 is cut off at L with the condition (k) < L.
Originally the summation goes to infinity. It cannot be expanded to infinite order. If we

cut of it at L, k,,,, should be much smaller than L.
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Secondly, in order to reduce the computation time and the number of config-
urations, we need to do some alterations when we sample from the terms of the ex-
pansion. The terms having consecutive v — S H; at the same imaginary-time interval
should be changed into approximate terms consisting one v — SH ; per imaginary-time
interval. For example, - - - e #(Ho+Hv)(y — BH ;) (v — BHj)--- should be replaced by
oo (y = BHy)e BHoTHU) (y — BH ;Y- .-

If we expand equation B.3, there are some terms which have equal time variables.
For example; for k = 2 — j; = 2,jo = 2orfork =5 — j5 = 3,4 = 3,J3 =
2,72 = 1,71 = 1. For terms like these, we have to be careful about the fact that originally
imaginary-time variables hold the relation ---¢; < t;11 < t;42---. For that reason,
we should correct the volumes of the integrals depending on the number of consecutive
~ — BH ;. Thus, the correction of the volumes of the integrals for ¢ consecutive v — S H ;

is

7 (B.5)
Let us define
X=7—PBH,; (B.6)
After these changes the Boltzmann operator can be written as
L
eV —BH _ Z F(k;ry,ro, - 1) H [G—AT(HOJFHU)XTJ + O(AT) (B.7)
1,7, rp=0,1 i=1

where k£ = Zle r; and xo = 1. F is a positive weight factor.

B.1. Derivation on the example of L=8

We now show that how F terms arise on an example of L = 8 by expanding the

sum of equation B.7.
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B.1.1. k=1

8
8—1 Z e—leT(Ho—i-HU)Xej1AT(H0+HU)e—ﬂ(Ho-i—HU) —

Jj1=1

8 8
8—1 Z e—jlAT(H0+HU)X6j1AT(H0+HU) [H e—AT(HO—i—HU)] (BS)
Ji=1 i=1
j1=1— 8_1e—AT(H0+HU)X€AT(H0+HU)e—ﬁ(Ho-i-HU)

h=2— 8_1€_AT(HO+HU)e_AT(H0+HU)XeAT(H0+HU)€AT(H0+HU)e—ﬁ(Ho—i-HU)

We drop L~! terms and change the notation for simplicity;

G—AT(HO—i-HU) =}

X i

Expanding the terms for £ = 1 gives us

1
ji=1— hxﬁhhhhhhhh = hxhhhhhhh

Jj1 =2 — hhxhhhhhh
Jj1 = 8 — hhhhhhhhz

For these terms there are no consecutive x’s. There is no need for correction. The treat-

ment of configurations is the following.
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hx h h h h h h h — configuration
l 1 62 63 64 14 5 66 67 fg — imaginary—time interval
F(;1, 0, 0, 0, 0, O, 0, 0) — F term

All substrings having j times x, j —1 times h and consecutive z will be replaced by
---xhzhx - --. For example, - --zzh--- and - --zhx - - - are approximately same terms,

and should be corrected by 1 for zhz and 1/2! for xaxh. Weight for this is 1 + % = %

B.1.2. k=2

8 2
8723 N [erharlottin)y enAr(tlot )] [emiAr(HotHy)y iaAr(Hot )| o=+ )

Je=1j1=1
(B.9)
Weight factors of the pairings below are

a)F'(2;1,1,0,0,0,0,0,0) = (1 + 5)8 = 58

1 3
b)F(2;0,1,1,0,0,0,0,0) = (1 + 5)8—2 = 58—2

Lol —2
2)F(2;0,0,0,0,0,0,1,1) = (1—1—5—1—5)8 =2-8 (B.10)

It is seen that we have to be careful when the consecutive ’s are located at the

end of the strings.
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Jj2 71— configuration Jj2 71— configuration
1 1 — hzxhhhhhhh 6 3 — hhhxhhhxzhh
2 1 — hzhxhhhhhh 6 4 — hhhhxhhxhh
2 2 — hhxxhhhhhh 6 5 — hhhhhzhxzhh
3 1 — hxhhxhhhhh 6 6 — hhhhhhzzhh
3 2 — hhzhxhhhhh 7 1 — hxhhhhhhxh
3 3 — hhhxzxhhhhh 7 2 — hhzhhhhhxh
4 1 — hxzhhhzhhhh 7 3 — hhhxhhhhxh
4 2 — hhzhhxhhhh 7 4 — hhhhxhhhxh
4 3 — hhhxhzhhhh 7 5 — hhhhhxhhxh
4 4 — hhhhzzhhhh 7 6 — hhhhhhzhxh
5 1 — hxhhhhzhhh 7 7 — hhhhhhhxxh
5 2 — hhzhhhzhhh 8 1 — hxhhhhhhhx
5 3 — hhhxhhzhhh 8 2 — hhzhhhhhhx
5 4 — hhhhxhzhhh 8 3 — hhhxhhhhhx
5 5 — hhhhhzzhhh 8 4 — hhhhxhhhhx
6 1 — hxhhhhhzhh 8 5 — hhhhhxhhhx
6 2 — hxzhhhhhhh 8 6 — hhhhhhzhhx

8 7 — hhhhhhhzhx
8 8 — hhhhhhhhxx

B.1.3. k=3

J3

8
{3 Z Z Z [e—hAT(Ho-i-HU)XeJ'lAT(Ho-i-HU)}

Jj3=1j2=1751=1

J2

% [eszAT(H(ri»HU)XengT(HQ+HU):| [efngT(H0+HU)XengT(H0+HU)]

w ¢ B(Ho+Huy)

(B.11)
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Jjs J2 J1 —  configuration Js J2 jJ1 —  configuration
1 1 1 — hzzaehhhhhhh a 3 3 1 — hxhhxzxhhhhh
2 1 1 — hzzhxhhhhhh a 3 3 2 — hhzhxxhhhhh
2 2 1 — hzhxxhhhhhh a 3 3 3 — hhhxxxhhhhh
2 2 2 — hhzxzxzhhhhhh b 4 1 1 — hxxhhhxhhhh
3 1 1 — hxxhhxhhhhh a 4 2 1 — hxhxhhxhhhh
3 2 1 — hxhzhxhhhhh a 4 2 2 — hhxxhhxhhhh
3 2 2 — hhzzhxhhhhh b 4 3 1 — hxhhzhaxhhhh
b 4 3 2 — hhzhxhzhhhh
7 7 7 — hhhhhhhzxxh d d 8 7 7 — hhhhhhhxxhz
8 6 6 — hhhhhhzzhhx d d 8 8 6 — hhhhhhzhhxx
8 8 7 — hhhhhhhzhxx
8 7 6 — hhhhhhzhxhx d d 8 8 8 — hhhhhhhhxxx
Weight factors of these pairings are
1 1 1 1. .4
a)F'(3;1,1,1,0,0,0,0,0) = (1 + a1 + a1 + a0 + 5)8

1 1 1 1.,
b)F(3;0,1,1,1,0,0,0,0) = (14 55 + o7 + 5 + )8
1
©)£'(3;1,0,1,1,0,0,0,0) = (1 + 5)8*3
’ 11

1 1 1 1.,
d)F(3;0,0,0,0,0,1,1,1) = (14 53 + o5 + 5 + 57 + 5+ 37)8

(B.12)
Here, it is also seen that when the consecutive x’s are located at the end of the

string, the weight factors are changing.

B.2. Recursive Formulas

There are recursive formulas in order to find those weights, F', easily. We show
that how these recursive formulas can be derived on two example. These formulas do
not generate L% part of the weights. Suppose there are i times h and j times z in a

substring. Recursive formulas come from leaving out - - - hxxzxx - - - string from that
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substring, each time decreasing x.

B.2.1. xhx substring (i=1, j=2)

Generates xhx and xxh. Weight of that configuration is 1 + %

—  Start from “zhx*.
Drop one - - - hxxzxxx - - - * string with j — 1 x from that substring.
j—1=2—1=1, thus, drop one "hzx*.
The remaning is ”x*. It has a weight of % . % =1
The first % comes from leaving out 1 ”hx*, correction for
one consecutive Y.
The other one comes from correction of volume of the integral

for one consecutive Y.

— Again start from “zhx*.
Drop one "h* (j-2=2-2=0).
The remaining is "z2*. It has a weight of 5; - 5;.
1/0! comes from leaving out one ”h*, correction for zero .

1/2! comes from correction for 2 consecutive x’s.

——  Sum the results.
The weight of zhz is 1 + & = 3.

B.2.2. xhxhx substring (i=2, j=3)

Generates zxxhh, xxhxh, xhxxh, xxhhx, rthaxhx. Weight of that configuration
IS1+ 545+ + 3
— Start from “zhxhx®.
Drop one "hz* (j-2=3-2=1) and multiply remaining with 1/1!.
Remaining is "zhz* (i=1, j=2).
Drop one "hz* and drop one "h*.
Remaining is ”x* and "zz*.
Weight is & (41 + o797)-
Thus, 1 and 1/2! are generated.
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— Again start from “xhzhx®.
Drop one ”h* (j-3=3-3=0) and multiply remaining with 1/0!.
Remaining is "xhxx* (=1, j=3).

— Now start from “zhzz*.
Drop one "hzz* (j-1=3-1=2) and multiply remaining with 1/2!.
Remaining is ”x*. Weight is %%%

— Again start from “zhxx®.

Drop one "hz* (j-1=2-1=1) and multiply remaining with 1/1!.

111

Remaining is "zx*. Weightis g 17 5;-

— Again start from “xhzz*.

Drop one ”h* (j-1=1-1=0) and multiply remaining with 1/0!.

111
ool 3l

Thus, 1/2!, 1/2!, 1/3! are generated.

Remaining is "zxx*. Weight is

——  Sum the results.

the weight of zhahzis 1+ & + & + 2 + 4.

B.2.3. Introducing Recursive Formulas

From the results we can introduce the recursive formulas. For 5 consecutive x, we

1
b(O,j):ﬁ for 0<;<L

The recursive formula using b(0, j) and the results from the examples is

J
. 1 : L
b(i,j) = E mb@—l,k‘) for 1<:1<53<L

k=i ’

Therefore, for - - - xhaxhxhx - - - substring, ¢ times x and ¢ — 1 times h;

a; =b(i—1,7) for 1<i<L

(B.13)

(B.14)

(B.15)
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For the terms in which z is located at the last time slice, - - - xhxhz, ¢ times . and 7 — 1

times h; it is enough just to change the lower limit of the summation in equation B.14 to

0. It generates the remaining terms.

d0,j) = 5 for 0<j<L

| =

;
. 1 . . .
d(Z,j):E (j_k)!d(z—l,k) for 1<i<L—-1 and 0<j<L

k=0

Therefore, for - - - thxhxhx substring, ¢ times x and ¢ — 1 times h;
¢;=d(i—1,4) for 1<i<L
Here is some examples for L=8;

F(2;1,1,0,0,0,0,0,0) = ay8>
F(3;0,1,1,1,0,0,0,0) = a38*
F(3;0,0,0,0,0,1,1,1) = 3873

( )

F(5;1,1,0,0,0,1,1,1) = asc387°

(B.16)

(B.17)

(B.18)

(B.19)
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APPENDIX C

DECOUPLING OF THE SPIN-FLIP AND THE

PAIR-HOPPING TERMS
vv! v ’ijl B 6‘] A4 U‘ch';V/JFtagcl;V/

gy =S e [ ] (.1

q,tT,t¢ o

where

HY =T (C.2)
f;’”/ = CITMCV/U + ci/gcl,a (C.3)
QZVI = (nua + Nyrg — 1) (C4)

1. 1+k

= —] .
A4 5 n T r (C.5)
K= BJ, (C.6)
,-YZ/I/

Nyg = CZJCVO' (C7)
{a.ty, )} = £1 (C.8)

Let us derive equation C.1 starting from some identities. We can find these identities

simply applying the operators to a trial wavefunction |vv').

o 1 if ne=1n,=0 or ny,=0n,,=1
[ = (C.9)
0 if no=1ny,=1 or n,,=0,n,,=0
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1 if Ny =1,np, =1

vy

9y =40 if nye=1n,,=0 or ny,=0n,,=1 (C.10)

-1 if new=0,n,,=0

From equations C.9 and C.10 we can find the product of f*' - g%*". We see that

If =1 — ¢ =0
If g =+1 — =0

For all cases

g =0 (C.11)

o

The square of f7 v operator is

vv! 7 i T T T
fU ' fa - CZJCV/UCZJCV/U + CV’UCVUCV’UCVU + CITIJCV/UCV’UCVU + CV’aCVUCZUCVIO'

— T
- CZUCV'U + CuoCvo

= (P =P =) =
(frym = (fr ) =y = (C.12)

The square of g“*' operator is

ggz/ . gZV/ — (nyo + Ny — 1)(711/0 +nye — 1)

v! |

= gy
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= ()" =19 = () = (gs) =+

(g0 )t =g = (g ) = (g5 )" = - (C.13)
And the last identity (f*')% 4 |g2*'|.

, 1 if ne=1ny,=0 or ny,=0mn,,=1

0 if ne=1ny,=1 or n,,=0n,,=0

W,| 1 if ne=1Lnyes=1 or n,=0mn,,=0

95
0 if nuo=1n,,=0 or ny,=0n,,=1

For all cases
(f )2+ g2 | =1 (C.14)

We can expand [ [ ™M {oquv Hogs” ] in series using equations C.9, C.10, C.11, C.12, C.13,
C.14.

Ay +tng] nal—arr +uay] _
vv! vv! 1 2 vv! vv! 2
LA (aff + gt ) + 5 00 (aff” + gy )+

! ! 1 ! / 2
« {1+A4 (—qff” +t¢g’¢’”) + 5 () (—qff” +t¢gj”> +} (C.15)
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By using equation C.11

e>\4 [qf%w’ +tTng”’/] e>\4 [_qffu’ +t¢gi’ul:| _

{r (s ) o2 [ + @] e}

/ ! 1 ! /
x {1 + M (—qff“ + twi”) + 57 (M)? [(ff” )+ (97" )2} e } (C.16)
Halary g | dal=ar vugy| _
/ / 1 / /
{1 0 (af + g + 51 (M)’ 72 4 12|+ }

y {1 Y (—qff”' + tigj”l> + %(M)Q [(ff"l)2 + |gfyl|] o }

(C.17)
To group the same terms into parentheses
> e lasz " +tnay’] a[—ary ]
ity
v’ v’ 1 3
> (qu + byl ) N TIC
ity '
/ / ].
[ 19| (1 + A+ 5 (M) + - ) }
v’ v’ 1
X {<—Qf¢ +1.9, > (M + 50\4)3 + - )
/ / 1
+ [(ff”)2+|gi” |] (1+A4+§(A4)2+--->} (C.18)
By using equation C.14
S los o oy ]
ity
Z { (qf{’/ + tTng”/> sinh(Ay) + cosh()\4)}
ity
x { (—q 7+ tigi’”/> sinh(\y) + cosh()\4)} (C.19)
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> [ty +trar | ha=afy +ti9r”]

Dipsty

Z [Sinh()\4) cosh(Ay) (qf%”/ - qff”/ + tTg’T”/ + t¢g¢’”’/> + cosh?(\,)

q,tp,ty

+ Slnh ( ) ( f ffy/ + qtifyy vv! thngw/ffy/ + tTtingJ/)] (CZO)

BJ

After expand the summation in equation C.20, and multiply with 2= <> we have equa-

tion C.1 expanded. Notice that in the summation there are 23 elements.

” 8_ 5 Z 1_[6)\4 [Uquylﬂgggul] = (71’”, — 5J> (coshZ(/\4) - f " sinh? @) ))

q’tT7tl« o

=" — BHY (C.21)

- BT 1

( v 6J> (cosh () — £ 7 Sinh2(>\4)>
— (7”"' — 5J> (1 + sinh?(\,) — I f "sinh? (A )) (C.22)

If we solve this equation

i [5J — (v = BJ) sinh*(A\y)] =0

(C.23)
— 4 (= BI) + (7 — BJT) sinh®(\y) = 0

For the decomposition to be valid, the solution of )\, is

sinh?(\y) = 6 ! Ty (C.24)
Let us define x = /2.
) K
A4 = arcsinh (—) (C.25)
1 — K2

99



Using the identity arcsinh(z) = In(z + V22 + 1);

arcsinh r l il +4/ i +1
= 1n _— _—
1 — k2 V1 — K? 1 — k?
K 1

ln(\/11m2+\/1ff2)
(i)
:m[(”“fr
1 iaim)(u@}
> M T m)1—r)
:>A4_11n(i:)
K = ’yﬁ”{ and k<1

(C.20)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)
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APPENDIX D

TRACE OF THE EXPONENTIAL OPERATORS

Trace of the quadratic operators in the Boltzmann factor is very important to for-
mulate the algorithm. In this chapter, we will use a compact notation for simplicity. Recall

that the partition function is

7 = TreP!
=Y F({re}) ZZZTrHHD (D.1)
{re} {S;y o« {P¢}

where

Do' (6) — e—AT ZV ! CLU[HO]V ST gez ! Cuo’[Wa(Z)]V vCy Gez ! CVO-[TO‘(Z)] Cyly (D.2)

The operators Hy, W, (¢) and T2 (¢) are quadratic with respect to electron creation / anni-
hilation operators, and they are defined in chapter 4 along with the weight terms, F ({re}).
Actually, this operators depend on the configurations {r¢}, {S,}, {a}, {P2}, however we
do not write them to simplify the notation. In the rest of the chapter, the spin indices o,
and the orbital indices « for H; term will be dropped. The summation indices, vv/, are

changed into 5. Therefore, the matrices will be seen as

D() = e27 L ellHolies ¢T3 AV (O 363 X 1O g5 (D.3)

The configuration space consists of {r,}, {5}, {a}, {Pg}. Thus, a given configuration

will be given as

GERNEARCINI:AY (D.4)
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D.1. Trace Over Fermionic Degrees of Freedom

For a given configuration {(}, the partition function is

Z{C} = Tr H e_AT Z” C;r [HO]Z'J'CJ‘ eZm‘ CI [W(é)h’jc]- eZi,j C;r [T(e)]i,jcj (DS)
l

~A7Hy (W () ,T(0)

Suppose A, = e P are the eigenvalues of the matrix [], e e’ Y. Therefore,
the product of the exponential operators in the partition function can be rewritten in the

diagonal basis as

H e_AT E” C;r [HOL,J‘CJ' GZM CI [W(Z)]i,jcj ezz‘,j CI [T(K)]i,jcj = Zcp C;p¢c¢

14

=TI e ChPsco (D.6)
ol

We can take the trace in this diagonal basis easily. There are two possibilities for all ¢

states since we are in the diagonal basis. There is zero or one electron for the trace over

CLC¢.

Tr[Jecerece =TT (1 +e7) (D.7)
¢ ¢

This equation simply the multiplication of the eigenvalues, thus it can be written as deter-

minant of the original matrices.

[T (@ +ee) =det

¢

1+ H e~ ATHo W (D) eT“)] (D.8)
l

Thus, the partition function is

Ziy = det (D.9)

1+HBe

L
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where

By = ¢ A7Ho W (O T() (D.10)

D.2. Calculation of the Green’s Function from )/ !

We can further simplify the equation D.9 by introducing M matrices.

det [I+BLBL_1"'Bl] =det M (Dll)
where
[ T 0 . BL-
—B; I 0 0
0 —By I
M = . (D.12)
I 0
0 0 0 00 =B 4 Ny LxNg-L

Here we changed the sequence in the product of the B, matrices since it simplify the
programming part of the algorithm, and [ is identity matrix.. In this section, the equal
time Green’s functions will be derived. For a given configuration the single particle equal

time Green’s function is calculated in the following way,

Gy ey = (el i)
B Trcmc;f/ [, D(¢)
- Tr H@ D()

(D.13)
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where

D(¢) = =27 i cllHols o531 5 el WO 05 35 ] (10 o5 (D.14)

Here the Green’s function defined with plus sign, as in Hirsch-Fye paper. We should use

the diagonal basis, ¢, in order to evaluate the trace. The transformation is the following,

o= (z])cy (D.15)
¢

ch =Y (dl)c (D.16)
]

Using these, the Green’s function becomes

AT
TI‘C¢C;E)/ H¢,, e C¢//p¢/lc¢//

(cachhicy = D _{alo)(@'ly)

b,0' Tr H¢,, €

(D.17)

7CL//p¢”C¢”

Since the trace is in the diagonal basis, the only contribution comes from c¢cjb. Thus the

summation over ¢’ is eliminated.

_t
TrC¢CL H¢,, e C¢/IP¢IIC¢//

(calh) iy =D (@[} (8ly)

% Tr], e

(D.18)

—c;,,p¢//c¢//

The operator Cjb”%” is the number operator. There are two possibilities in all states for

number operator as 0 or 1.

TrH efc;//pwlcd)// _ H (1 + e—P¢//) (D19)
¢ (z)//
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However, in the numerator the term cd,c; cancels ¢ terms in this multiplication, because

of the following,

Trc¢cle_p¢c;>c¢ = (ng = 0|c¢c:rz)e_p¢c;c¢|n¢ =0) + (ny = 1|C¢CL€—p¢ch¢|n¢ =1)
140
=1 (D.20)

where
ng = chey (D.21)

Therefore, all terms except ¢ term in the denominator are canceled.

The Green’s function becomes

(each)icy = Z@J!@(d)ly);

1 —Po
p +e

1
- Z<$|¢>m<¢|y> (D.22)
¢

Recall that e P+ are the eigenvalues of the matrix [], e 27HoeW(©)eT(®) Equation D.22,

without the inner products, is the inverse of this matrix represented in the diagonal basis.

-1

1
> 19) (¢l = |1+ e 2 eV Del®
¢ J4

14+ ePe

=[I+BLBy_1--- B (D.23)

Thus, the single particle equal-time Green’s function becomes,
Gy iy = (caCl)iey = I + BLBry1 -~ B, (D.24)
Here the matrices G'¢y and I+ ByBp_1--- Bl}_l are N; x N, matrices. We know that
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[[ + B Bp_1 - -- By] can be written as the M matrices which are Ny - L x Ny - L. Thus,

in the changed notation, the Green’s functions represented in the N; - L X N, - L matrices

is

G (0. 0) = (Teo (O () ey = M) 0 (D.25)
where
[ I 0o .. BL-
-B, I 0 0
0 —By I :
M = ‘ ‘ . _ (D.26)
I 0
i 0 0 - 0 =Bia I_Nd'Lde-L
and
By = ¢ ATHo W (0 o T(0) (D.27)

Calculations of the unequal-time Green’s functions or equal-time Green’s function in dif-

ferent time slices can be evaluated in the same steps with this appendix.
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APPENDIX E

FAST UPDATE SCHEME

There are 5 types of change in the updates. First, turning on 3 auxiliary field
variables at imaginary-time slice ¢ and impurity sites 7,7’ for H; term which indicates
r¢ = 0 — r, = 1. Second, turning off 3 auxiliary field variables at imaginary-time slice ¢
and impurity sites 7, ' for H; term which indicates 7, = 1 — r;, = 0. Third, single spin
flip at imaginary-time slice ¢ and impurity sites 7, ' for H; term which are qg"/, t??/ and
tzgl. Forth kind of change occurs for the intra-orbital and inter-orbital interactions when
H; term is turned on. Fifth is for the intra-orbital and inter-orbital interactions when H ;
term is turned off. However, all these changes occurs only for one imaginary-time slices.

In this appendix the 77’ indices are dropped from the auxiliary field variables qZ"/,
t??/ and t?gl. In equation 5.41 the matrix multiplication A 'A/ has all elements zero
except the diagonal elements and all diagonal elements are 1 excluding the imaginary-
time slice part that the change occurs. Let us look at the matrix forms in order to see that

clearly.

A = (E.1)
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and

ATl = (E.2)

Here Aisa N;- L x Ng- L matrix, and there are N; x N, matrices in the diagonal elements

which are denoted as A(¢). A(¢) can be written as
[AO];; = [Alig e (E.3)

The product of these two matrices is following.

AGTA, = ; (E4)

That’s why we will only focus imaginary-time slice ¢ part of these matrix products in the
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following sections of this chapter. We can see that clearly from this equation (A 'A/ — I);

0 0

N . (E.5)
( ) {[AO] A0 =T}y L,

E.1. General Expression for Updates with Four Non-zero Elements

Equation 5.41 is used for updating the Green’s functions. For this equation the
form of (A;'A/ — I) is important and it varies for all single spin-flip operations. There
are cases with 4 non-zero elements and 5 non-zero elements. In this section we derive the
expression for 4 non-zero elements. This expression is used for a spin-flip operation that

affects 4 elements of the matrix.

(G7) =G+ (G7 —I) (A'A, — 1) AJ'GT (E.6)

where

Ag =1+ (1 -G (AN, —1) (E.7)
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The form of {[Ag(ﬁ)]*1 AL(0) =1} Ny« n, With 4 non-zero elements is following;

All elements except the dots are zero

is the same;

AN — T =

0

0

n'en'e

X
nl,n'l

The matrix representation of this matrix is

(A;'AL — 1)

v1ly,v282

n'n '
\ \J
° °

0
[ [
Tl t
mn mn

n'ent

X
ne,nl

0

= 5[,@15&f2 {677/y1/1677'71’2 (A;]'A;_ - [)n/&n/é

+ 57771/1 57771’2 (A;IA; o I) nent

+ 5?7’#157]#2 (AJIA; - ])

n'Lnt

+ 0n 1 O (A; A, -1 )ne,n%}

(E.8)

. The form of N;- L x Ny - L matrix (A;*A, — 1)

(E.9)

(E.10)
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The matrix representation of equation E.6 is

(Ggl,lfz (617 62))/ = GV1 12] (gla 62)
+ Z Z (G o V1€1,V353 (A;lA; - [) v3l3,v404 (At;l)u4£4,u5£5 Gl/s V2 (657£2>

£3,04,05 V3,V4,V5

(E.11)
After equation E.10 is inserted in equation E.11, equation E.11 becomes
(GV1 12) (g]-’ €2)) = Gyl v2 (g].? 62)
o -1
+ (G B )V1€1,77’f (AU Aif n'en'e Z n'Lvsls V5 V2 <£5’ 62)
ls,vs
+ (GU - I)l/lél,nf (A;lA/o_ 77@ Y] Z o 77( vsls I/a vo (€5a 62)
ls,vs
+ (GU I)Vlgl 'l (A 1AI - I n'enl Z o 772 v5ls Vs Vo (857 22)
Us,v5
+ (GU o I)V151,77€ (A;IA; n'e Z n'lvsls l’5 v2 (65’ 62)
l5,v5
(E.12)

From this equation it is seen that we only need 4 elements of AS'; (nf,nt), (n'¢,n'l),
(n'¢,nl) and (nf,n'() elements.

Now let us calculate A! using equation E.7 and E.10;

Ap =T+ I -G") (A'A, = 1) (E.13)
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| 110 0]
Ay =1+ | 0 |
_ 110 | | 0
(E.14)
’ 0
A, = | 1 | (E.15)

0

Here all elements in the diagonal are 1 except the big dots, vertical lines indicates the

non-zero elements, and all other elements are zero. The representation of A, is

(A pstr it = O wnOtrts + D (L= G Vst gty (NN, = T) (E.16)

v3,l3
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If we insert equation E.10 into E.16, A, becomes

(Ad)ulél,uzfg = 51’1,1/2551,52 + 577’71/255,42 (I - Ga)lﬂflm'f (AglA; - I)U%T)'@
+ 57771/25@,52 (I - GU)Ulflmf (AglA; - I)ngmg
+ 57771/25@,52 (I - Gg)lﬂflﬂ?’f (AEIA; - I)

n'ent
+ 0006 (I = G e (AN, = 1), (E.17)
Let us look at the form of A 1.
A, - A =1 (E.18)
The matrix form of this is following;
(1 0] 0]
° ° ° °
1 1 =1
° ° ° °
0 1110 1
(E.19)

A, Al

o

It is seen from equation E.12 that we only need 4 elements of A ! which are indicated as

big dots. Thanks to the form of A_!, we can work on only 2 x 2 part of A, and take the
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inverse. Let us define 2 x 2 matrix A as

A= (E.20)

~ 1
ATl = - (E.21)
det A
7 /ntn'e (Aa)n’fﬂ?’f
where
det A = (Ao)n/e,n'z (Aa)nz,ne - (Aa)n'z,ne (Aa)nzm'e (E22)
In addition to that, det Ais equal to det A, thanks to the form of A,.
det A = det A, (E.23)
Therefore, the elements which we need of A;l are the following;
(AU) 0l
-1 _ nl;n
(A e = g 1 i (E.24)
(Ao ) e.me
-1 _ Tyt
(A e =~ qer 4. (E.25)
(Ao) e
-1 _ né,n
(A, )WW e H (E.26)
(Ao )oe
-1 _ n'em
(A1) e = Tdet A, (E.27)
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Finally, after these findings equation E.12 becomes “General Expression for Updates with

(A;'A! — I) Having Four Non-zero Elements”;

(GVl va (41, 62)) = GV1 va (41, €2)

+ |:<GU - I)ulélm’f (A;lA; - I) n'em't

(G = Dy (08, = 1),

vil1,ml

(4,) (A,
| R Gt )~ S G e )

+ _(GU - I)ulél,nﬁ (AglA/a - ])775,77@

+(G7 = 1) (A;lA’U - ])nfz,nz}

vily,m'l

- (A )n[nf o (A ) el o
o B WGM(&@)} (E.28)

where

(Ag)ype = 1+ [1 = Gy (6,0] (ATA, = 1)
(Ao)yome = =G (60) (AN, = 1), + [1 -
(Ao) e = =G (60 (AZ'AG = 1)y 0y 4+ [1 -
(Ag)ppme =1+ [1 = G7 (6,0)] (A'A, = 1)

nen't (67@( lA;_I)nzw
O] (AGAG = 1) 0
O] (AT = 1),

- G;,n/ (6,0) (AN, = 1)

nént n'emt
(E.29)
and
det A, = (Aa)n'z,n/z (Aa)nz,ne - (Aa)n/e,ne (Aa)nz,n/e (E.30)

Equations E.28, E.29 and E.30 are the general expressions for the updates when an arbi-
trary spin variable changes at an orbital on which H; is turned on and when N;- L X Ny- L

matrix (A;'A’ — I) has 4 non-zero elements.
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E.2. General Expression for Updates with Two Non-zero Elements

When there are 2 elements of (A, 'A/ — I) is non-zero, the update is the same as
the update derived in section E.1 except that we just exclude the off-diagonal terms of the
non-zero elements. Therefore, the update of the Green’s function when (A, *A/ — I) has

two non-zero elements is

(Gg (0, 02)) = GS ,, (£1,05)

v1,V2 v1,V2
+(G7 - [>V1f1,n’€ (A;lA; N Dn’f,n’z
[ (AU)nZ,T]E o (AU)n’Z,né o
X _mGnl’y2 (g, 62) — MGWJQ (6, 62):|

+ (GU - I)ulfl,ne (A;lA;_ - [)né,nf

[ (AU)nZ,n’f o (Ag)n’fm’@ o
X -——G (E, 62) + WGT)’VQ (E’ 62):| (E31)

det 4, 72

where

(Ao—)n/e’n/é - 1 + |:1 - G;’,n’ (67 €)i| (A;lA/O' - I)n’f,r]’@

(Ao)n/e,ne = _Gg’,n(g’ £) (A;lA; - [)n&nf

(Ao)né,n’e =Gy (¢, 0) <A;1A:7 N [) n'tn't

(Ao)yome =1+ [1=G7(L.O) (AN, = 1),

(E.32)

and

det A, = (Aa)nfz,n/e (Aﬂ)né,né - (Aa)nfe,ne (Aa)nz,nfe (E.33)

Equations E.31, E.32 and E.33 are the general expressions for the updates when an arbi-
trary spin variable changes at an orbital on which H; is turned on and when N;- L X Ny- L

matrix (A 'A/ — I) has 2 non-zero elements.
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E.3. General Expression for Updates with Five Non-zero Elements

In this section we derive the expression in section E.1 for 5 non-zero elements.

This expression is used for a spin-flip operation that affects 5 elements of the matrix. The

form of {[A, (O] AL — T } N,xn, With 5 non-zero elements is following;

(Ao (O] AG(0) — 1 =

0

(E.34)

In this example, v > n and v > 7’ but it can be the opposite case. In our derivation,

however, we derive it for a general case. Thus, it does not matter wherever v is. All

elements except the dots are zero. The form of Ny - L X Ng- L matrix (A;'A! — I) is the

same;

AN, — T =

URY]

n,n

n.m

0

(E.35)
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The matrix representation of this matrix is not very different from equation E.10.

(A7 N = 1), sy = G0t {Brin O (AN = 1)y
OO (AN 1),
Oy O (ASTAL — )WW
+ 00O (A'AL = 1),
GO (AN, = 1), b (E36)

In order to update the Green’s function, we use the following expression.

(GV1 vo (1, 62)) = GV1 vo (41, £2)
- Z (G - Vlfl,lfsfg (A;IA; - I) Vsl vals (A;l)y‘l&’%&) GV5 vo (65, 62)

l3,04,05 V3,V4,V5

(E.37)
After equation E.36 is inserted in equation E.37, equation E.37 becomes
(Gyl Vo (617 62)) - Gyl Vo (617 62)
+ (GU - )1/181,17’5 (A;lA; n'em'l Z n'L,vsls 1/5 12 (£5a £2)
Us,v5
o 1
+ (G I)z/1€1 nl (A A/ - I 17[ nl KZ o 77£ vsls 115 Vo (657 62)
Vs
+(G7 — I)ulém’ﬁ (A;IA; n'ene Z 4 nf vsls V5 v (ls, £2)
l5,v5
(G = 1)y 0 (A, 7A, - ne 7. Z 7' tvs s CHNCRE)
Us,vs
+ (GG - I)l/lgl,lje (A;IA‘; y[ vl Z a l/f sl V5 V2 (657 62)
l5,vs
(E.38)
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Here it is seen that we only need 3 x 3 part of A, ! which consists of 77/, 7 and v. Now let

us calculate A ! using equation E.36;

Ap =T+ I -G (A'A, = 1) (E.39)

(E_.40)

Ay = ® ® (E.41)

119



Here all elements in the diagonal are 1 except the big dots, vertical lines indicates the

non-zero elements, and all other elements are zero. The representation of A, is

(Ao)sstr ity = OOt + Oy 000, (I = G )y pe (AF'AG = 1),
+ a0, (1 = G )uyer e (AZ'AG, = 1),
+ 0ns 000, (I — G )ity pe (ASTAL — 1)
+ 8 s 000, (I — G )iy e (ATAL — 1)

n'Lnt

ne,n't
+ 005000, (L — G )y e (AN, — I)VM (E.42)
Let us look at the form of A 1.
Ay At =1 (E.43)
The matrix form of this is following;
[ 0] 0]
° ° ® °
° ° '3 ° =1
° °
0 o .
(E.44)

A, Al

o

It is seen from equation E.38 that we only need 9 elements of A ! which are indicated as

big dots. Thanks to the form of A !, we can work on only 3 x 3 part of A, and take the
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inverse. Let us define 3 x 3 matrix A as

(Ao')n’ﬁ,’r]’ﬁ (AU>7]’K,77€ (AU>7]’€,V€
A= (AU)né,n/Z (Ao')né,né (AU)nE,VZ
_(AU)VZ,n’Z (AU)VZJ]E (AU)VE,VZ_

We can find the inverse of A by using 2 x 2 determinants of A.

det A

(Ao ) ne
(Ao) e
(Ao ) pee
(A0)ee
(Ao) e

(AU)VKJ]%

(Ao )i
(Ao)ye e
(Ao) e e
(Ao) e
(Ao) e

(AO' ) vel,nl

(Ao ) ve
(A0)ee
(Ao) e
(Ao) e e
(Ao) e

(AO')VKJIE

(Ao ) rome
(Ao) e
(Ao) et
(Ao) et
(Ao )y

(AO')VZJ]’[

(Ao )yome (Ao) i
(Ao )peme  (Ao)nene
(Ao)yine (Ao)yiae
(Ao )pewe (Ao pome
(Ao)yire (Ao) i

(AU)nE,n’Z (AU)nZ,nK

(E.45)

(E.46)

As in section E.1, because of the form of A,, determinants of A, and A are equal.

det A = det A,

(E.47)
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We have all the elements that we need for updating the Green’s function. From matrix

E.45, we can calculate the determinant of A, which is

det Ay = (Ao) gyt [(Ar) s (Ar)ute = (A (Ao e
B (Ag)né,n/é [(Aa)n’f,nf (AU)VE,VE o (AU)n’E,Vf (AU)VE,nE]

+ (AU)VZ,n’é [(AU)n’Z,né (Aa)neyyg - (Aa)n/gﬂjg (Ao)ngm[} (E48)

From equation E.42, we know the 3 x 3 part of A,. 9 elements of A, are

(Ag)ypgre =1+ [1 =Gy (6,0)] (ATHA, - [)n, e = Goa(,0) (AJ'AL — I)W, ,

(Aa)n’&nl’ - _Ggﬁn(g’ 9 (A;lA; o I)ne,ne + [1 o Gg’m/ (¢, 6)} (A;lA; - I)

n'ent

(Ao) e = =G (60) (AN, = 1), , (E.49)

(Aa)nf,n’f - _Gfm’ (€, 0) (A;lA; o I)n/e,n/e - [1 B GZ,n(ﬁ, g)] (A;lA; - I)
(Ao)pepe = 14 [1 = GL,(6O] (ASTA, = 1)

nen'L

—G7 (0.0) (AN, —1T)

ntnt n'Lnt

(A0>77[,y£ = _Gg,u<£7 £> (A;lA/U - I) R (ESO)

(Ao)poure = —Go(0,0) (ASAL — I)n,m,[ —G7,(0,0) (A;'A, — I)Wf

(Ag)vf,nf - —G‘;n(ﬂ, 0) (A;lA; - I)ne,ne B Gg,n’ (4,0) (A;IA; - I) n'lnl

(Ar) e =1+ [1 =G (60O] (AN, = 1), (E.51)

From matrix E.46, we know the 9 elements of A;l which are

(A7) e = (68 A) ™ [(A0) e (Aot = (Ao (Ao |

(A7) e = (@t Ag) ™ [(A0) e (Ao = (Ao e (Ao ]

(Az;l)n/e,uz = (det A,) ™" _(Ao)n/e,ne (Ao)powe = (Ao) e (Aa>ne,ne] (E.52)
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(A2%) e = (€t A0) ™ [(A0) 0 (Ao = (Ao iy (Ao)
(Agl)neme = (det AU)_l _(AU)n’&n’Z (AU>1/E,1/€ - (Ad)n/Z,VZ (A0'>VZ,17’£:|
(

e = (8 AT AL e (A = (A e (Ao)yne|  (ES3)

(Agl)ue,n/z = (det Aa)il _(Aﬂ)nf,n’l (Aa)ue,nz - (Aa)ne,ne (Aa)yz,n/e]
(A7) e = (006 A0) ™ [(A0), g1 (Ao = (Ao e (Ao
(

;1)1/871/@ = (det A,)~" _(Aa)n/z,n/e (Ao)peme = (Ao )ypme (Aa)ne,n/z] (E.54)

Finally, after these findings equation E.38 becomes “General Expression for Updates with

(A;*A! — I) Having Five Non-zero Elements”;

(G (6, 69)) = GS, (£1,0s)

+ :(G” D)y e (NN = 1) g+ (G7 = 1) (AN — 1 )W,,J

X (A7) e G (0 60) + (A7) G 6a) + (A7) 4,1, G (0, )]
(G = Dy (08 = 1)y (G = Dy (88 = 1),

X (A1) e G (0 2) + (ATY), L G (6 62) + (A7), G (602)]
(G = 1), 0 (AJTA, —1T) Y

X (A7), Ganl2) + (A1), G (6.6) + (A1), G (6,0)]

(E.55)

Equations E.48, E.49, E.50, E.51, E.52, E.53, E.54 and E.55 are the general expressions
for the updates when an arbitrary spin variable changes at an orbital on which H ; is turned

on and when N, - L x Ny - L matrix (A;'A/ — I) has 5 non-zero elements.
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E.4. Single Spin-flip for “r/

Spin-flip for r, occurs in two ways. First one is turning on the effect of H; for

imaginary-time slice ¢, and the second one is turning it off for imaginary-time slice /.

E.4.1. Turning on the effect of H ;

Let us look at the turning on case which is following;

re=0 — 1r,=1

This move turns on three auxiliary field variables at time slice ¢, and impurity sites 7, 7.

These variables are g, t1 and t .
G@=0 — qz ==1
ty=0 — t/Te ==+1
tw =0 — tig ==1

Green’s function for new spin configuration is calculated with the relation

(G°) = G7 4+ (G" = I) (A;'N, — 1) A;'G” (E.56)
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Let us look at the form of (AJ'A/ — I). We know the forms of the matrices [A,(¢)]

and A’ (¢) from section 4.3.

A/

and

(0) =

erator COSh()\40'Qg>6W",v"(Z)

Aat Wh,o(£)

et sinh(Aoqp)e

e_Wn’,o' (e)

Mot sinh(Ayoqp)e’Vn o)

eMtot cosh(Mgoqe)e’Vne ()

-1

(E.—57)

W (6)

(E.58)
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After we multiply them, we get the form of {[A,(¢)] " AL (¢) — I} NNy

AL (0] AL () — 1 =

0

0

eMlot cosh(N\goq) — 1

!

URY]

o

!

n.m

eMlot sinh(\goqp)

eMlot sinh(\yoqp) eMiot cosh(Agoqp) — 1
T , t
mn mn

0

(E.59)

Since the change occurs only at imaginary-time slice £, the form of (AJ'A! — I) is the

same.

AN, — T =
. 0
eMloe COSh(/\40'QZ) —1 elator Sil’lh(/\40'(]g)
0 (E.60)

€>\4t

ot sinh(Ayoqy) eMiot cosh(N\goqr) — 1

0

All elements are zero except the four elements which are located at (¢, n'¢), (n'¢,nf),
(nl,n'¢) and (nf,nl). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (A;'A/, — I), has only 4 non-zero ele-
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ments. The elements which are used for the Green’s function update caused by

re=0 — 1,=1

change are

(A;'AL — 1) . et cosh(\oqe) —

(A;IA; — I) ot = Mot sinh (Ao qp)
(A;TAL — I) eMiot sinh (Ao qp)
(AJ'AL — I)nf,nﬁ Mot cosh(M\oqp) —

E.4.2. Turning off the effect of H;

Let us look at the turning on case which is following;

re=1 — 1,=0

(E.61)

This move turns off three auxiliary field variables at time slice ¢, and impurity sites 7, 77'.

These variables are g, t1 and t .
@=+1 — ¢ =0
ty==+1 — t/TZ =0
tw ==+1 — t/u =0

Green’s function for new spin configuration is calculated with the relation

(G7) =G+ (G7 —I) (A'A, — 1) AJ'GT

(E.62)
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Let us look at the form of (AJ'A/ — I). We know the forms of the matrices [A,(¢)]

and A’ (¢) from section 4.3.

(&

AL (f) =

and

A (0] =

—e~ Mot sinh(M\oq)e

et cosh(Agoge)e e () —e Mot sinh(Agoq)e

Wy o(0) e~ Mtot cosh(M\oqp)e

-1

(E.63)

W (0)

Wy, (6)

Wi (6)

(E.-64)
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After we multiply them, we get the form of {[A,(¢)] " AL (¢) — I} NNy

o

A0 AL (0 — T =

. 0
' '
1
e~Mtot cosh(Agoqe) — 1 —e Mot sinh(\oqp)
0 (E.65)
—e Mot sinh(Agoqp) e~ Mtot cosh(N\oqr) — 1
) , 1 .
nn mnn .
0 0

Since the change occurs only at imaginary-time slice £, the form of (AJ!'A/ — I) is the

same.

AN — T =
_ ; O_
e Mot cosh(M\oq) — 1 —e Mot sinh(\oqp)
0 (E.66)
—e bt sinh(\oqp) e Mbot cosh(M\oq) — 1

0

All elements are zero except the four elements which are located at (1'¢, n'¢), (n'¢,nf),
(nl,n'¢) and (nf,nl). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (A;'A/, — I), has only 4 non-zero ele-
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ments. The elements which are used for the Green’s function update caused by

re=1 — 1,=0

change are

(ASTAL — I)n’f,n’f = e Mot cosh(M\oqe) — 1

AN — 1), = —e Mot sinh(M\ogy)

( it (E.67)
(AZ'A, - I)ne,w = —e M sinh(\yoq)

(AJTAL — ])n&nﬁ — e Mot cosh(M\oqe) — 1

E.S. Single Spin-flip for “¢,”

The spin-flip for g, occurs in the following way.

~~

Qo — q

Green’s function for new spin configuration is calculated with the relation

(G7) =G+ (G7 1) (AJ'A, — 1) AJ'G” (E.68)
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Let us look at the form of (A;'A’ — I). We know the forms of the matrices [A,(¢)] "
and A’ (¢) from section 4.3.

eMtot cosh(Ngoge)e'Vn o —eMtot sinh (Ao q)eVn o)

Ao (0) =
—eMbot sinh(M\oqe)eVne ) eMtot cosh(Agoge)e'Vne(®
(E.69)
and
Ao (0] =

— A4t

e~Mtot cosh(\gage)e™Vo o) —e Mot sinh(\ o qp)e Vo)

—e Mot sinh(\yoqe)e™ Vo) e~ Mtot cosh(\goge)eWna ()

(E._70)

After we multiply them, we get the form of {[AU(E)]_1 AL(0) -1} N, xn, and the result
can be reduced more by using hyperbolic identities. Since the change occurs only at

imaginary-time slice ¢, the form of (AJ'A/ — I) is the same. The reduced form of the
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matrix is

cosh(2M\40q,) — 1 — sinh(2A\40qy)
AN — T = 0 (E.71)
— sinh(2M\40qy) cosh(2M\40q,) — 1

0

All elements are zero except the four elements which are located at (1'¢, n'¢), (n'¢,nf),
(n¢,n'¢) and (nf,n¢). For this new spin configuration, the update expression of Green’s
function is equation E.28, because the matrix, (A;'A/ — I), has only 4 non-zero ele-

ments. The elements which are used for the Green’s function update caused by

Q0 — qp=—q

~~

change are

(AT = 1) e = cosh(2M0gr) — 1

A;lA;. -7 , = —Slnh(Q)\ qu)

( 1 e ! (E.72)
(ATAG = 1), 0 = —sinh(20i0q,)

(ASTAG = 1), = cosh(2s0ge) — 1
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E.6. Single Spin-flip for “¢,,”

The spin-flip for ¢,, occurs in the following way.

tge — Iflgé = —tag

Green’s function for new spin configuration is calculated with the relation

(G7)Y =G+ (G7 —I) (A;'A, — 1) AJ'G° (E.73)

Let us look at the form of (A;'A’ — I). We know the forms of the matrices [A,(¢)] "

and A’ (¢) from section 4.3.

e~ Mot cosh(Agoqe)eVn o) e~ Mot sinh(A\yoqp) e o0
Ao (l) =

— A4t

e~ Mtor sinh(Ayoqp)eVme ) e~ Mot cosh(Agoge)eVne®)

(E.7;1)
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and

-1
(A (O] =

e~ Mot cosh(Agoqp)e Vo0 —e~Mtot ginh(M\oqp)e Vo)

—e Mot sinh(\ogp)e Vo) e~ Mot cosh(M\oq)e™ Ve ()

(E.-75)

After we multiply them, we get the form of {[A, (O] AL =T } Nyx Ny
0 0
n' '
6—2>\4t04 -1
A (O] PAL(E) — T = 0 (E.76)

6—2)\4th _ 1

T
mn
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This can be reduced more by using hyperbolic identities. Since the change occurs only at

imaginary-time slice ¢, the form of (AJ'A/ — I) is the same.
0 0

6_2)\4t0€ — 1
AJIN, — T = 0 (E.77)
e~ 2Mlor _ |

0

All elements are zero except two elements which are located at (¢, n'¢) and (n¢, nf). For
this new spin configuration, the update expression of Green’s function is equation E.31,
because the matrix, (A;'A/ — I), has only 2 non-zero elements. The elements which are

used for the Green’s function update caused by

tor  — U= —lo
change are
AN, — 1), = Ptet
( it (E.78)
(A;IA; . I)ng y _ 6—2/\4750[ -1
E.7. Single Spin-flip for «“SY”
The update algorithms of arbitrary field variables SY, K,SE;“ , and Sl(,];,_ é,]a are mod-

ified when the changes are at the impurity orbitals on which the effects of H; are turned
on. The update algorithm of these variables do not change if the effects of H; is turned

off on that orbitals. Here, for the update algorithms of these variables, we assume that the
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effects of H is turned on for 1 and 7’ impurity orbitals. There are two cases which SY,
can be changed; for v = n or v = 1/ impurity orbitals. If v £ n or v # 7/, there is no

change in the algorithms.
E.7.1. Spin-flip for S}/,
In this section, we will look at spin-flip for Sf]], , which is
/

n

In order to track the effect of this change let us look at (W,,(¢))" — Wy, (¢) which will

be calculated when we multiply A ! and A/ matrices.
(Wi (0)) = Wiyo(0) = =2010S0, (E.79)
Green'’s function for new spin configuration is calculated with the relation

(G7) =G+ (G7 —I) (A'A, — 1) AJ'GT (E.80)
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Let us look at the form of (A;'A’ — I). We know the forms of the matrices [A,(¢)] "
and A’ (¢) from section 4.3.

Ao (0) =
eMtor COSh()\4O’Q@)6(W 20) eMtor sinh(Moq@)e(Wn’*f’(z))
eMtor sinh(\goqp)eVme®) eMtot cosh(Ngoqp)eVme®)
(E.81)
and
[Aa(g)]_l =
e~ Mt cosh(Agoq)e Va9 —e Mot sinh(\yoq)e” Vo)
—e Mot sinh(\oqp)e™ Vo (O e~ Mtot cosh(Agogp)e W)

(E.82)

Since the change occurs only at imaginary-time slice /, the form of (A;'A! — I)
is the same. All elements are zero except the four elements which are located at (1, n'¢),
(n'l,nt), (nl,n'l) and (nf,nl). For this new spin configuration, the update expression of

Green'’s function is equation E.28, because the matrix, (A;lA; — I), has only 4 non-zero
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elements. The elements which are used for the Green’s function update caused by

Spe — (S) =-S5

change are

_ o v
(A7 0, = 1) 0 = o (ao) (7750 — 1)
B 1 . —2A10 U/
(AN, = 1),5,,, = 5 sinb(2Xoq) (75 — 1) (E.83)
AN T _ Lsinnen 1 — e M50 |
( o o )7]€777/€ - §Sln ( 40'(]5) ( — e ’ )
' —2X\108Y,
(A8 = 1), = sinb* (i) (1= 77500

E.7.2. Spin-flip for S},
In this section, we will look at spin-flip for S,% which is

S — (Sn) =Sy

In order to track the effect of this change let us look at (W, (¢))" — Wy, (¢) which will

be calculated when we multiply A and A/, matrices.
(Wo(€)) = Wi (€) = —2X0S5], (E.84)

This update is the same as in the case for Sff/g, however the only change is the orbital
indices. All elements are zero except the four elements which are located at (1, n'¢),
(n'l,nt), (nl,n'l) and (n¢,nt). For this new spin configuration, the update expression of

Green’s function is equation E.28, because the matrix, (A;lA; — I), has only 4 non-zero
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elements. The elements which are used for the Green’s function update caused by

SL— (s = sy

change are

(A;lA; — I>n’1z e = sinh?*(\4oqr) (1 — 672>\10Sr[z]’£>
_ L. —2\oSY
(AN, = 1) 0 = 5 sinh(2Noqr) (1 — &) (E.85)
AJIN — T — L NS |
(210, = 1) = L2 (7% -
—2\i0 U/
(A;'AL — [)n&nﬂ — cosh?(\oq) (e 208y, 1>

E.8. Single Spin-flip for “SVUV%”

e~ (Sa) =50

vv' 4 vv' vv' 4

The spin-flip for S, affects just the orbital in the first index which is v in this
example. However, the effect of this change is different for up and down spin in the

following way;

(Wi (€)) = Wit (£) = —2X905Y)

vv' 4

(W, (0)) = Wy () = +2X908Y) (E.86)

vv! 0

Since it affects just one orbital, the update algorithm is the same as in the case of S,%’.
One needs to check whether v is equal to 7,7’ or not. If v is equal to n or 7/, the up-

date algorithm is equation E.28 and the elements of (A, 'A! — I) matrix depends on the
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orbital.

If v=7n" — useequations F.83
If v=n — wuseequations [£.85
If v#1n or v#n — nochange in the equations

(E.87)

Addition to this, exponents of the factors in the equations E.83 and E.85 should be

changed depending on up and down spin using equations E.86

E.9. Single Spin-flip for «SU~/ »

vv' b0

There are three cases in which the spin-flip for .S U"=J occurs. These cases include

vv! b0

H; being turned on at both v and v/ orbitals, H; being turned on at just v or v/ orbital.
These three cases includes 5 situations. Let us assume that the effects of H; is turned on

at ) and 7’ orbitals.

U'—J
Srm’,&o
U'—-J
Svn’,f,a

if v=n and V' =17

if v#n1n and V=1
U'—J
vn,l,o
SU’—J

n'v' lo

if v#nn and V=1
if v=7n" and V' #n1n

Lo

SU’fJ

nv' 4,0

if v=n and Vv #1719

E.9.1. Spin-flip for S%,Tgfa

QU= <SU’—J >’ — _gu—J

' Lo ' Lo
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In order to track the effect of this change let us look at (W, (£))' =W, (¢) and (W, (£))'—

W, (¢) which will be calculated when we multiply A ' and A/ matrices.

(Wi (£)) = Wy (£) = +2X35Y'

' Lo

(Wyo (£)) = Wy (£) = —2X38Y (E.88)

nn' 4,0
Green’s function for new spin configuration is calculated with the relation
(G7)Y =G+ (G7 = 1) (AJ'AL, — 1) AJ'G] (E.89)

Let us look at the form of (A;'A’ — I). We know the forms of the matrices [A,(¢)] "

and A/ (¢) from section 4.3.

Ao (0) =

etatot COSh()\40’Q@)€(W '0(0)) ehatot sinh(A4oq@)e<Wn’va(€))

Mot sinh (Ao qp)eWneo0) eMlot cosh(\goqp)eWne(0)

(i3.90)
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and

A (0]

After we multiply them, we get the form of {[A, (O] AL

6—)\475

ot cosh(Agoqe)e

—e Mot sinh(\ogp)e Vo)

W,

_6—)\475

67)\41‘/

n,n

ot sinh(A\oqp)e

ot cosh(A\qoqp)e

T
mn

~Wa,o ()

W (6)

) B [}NdXNd.

(E.-91)

(E.92)
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Here, all elements are zero except the big dots. Since the change occurs only at imaginary-

time slice ¢, the form of (AJ'A/ — I) is the same.

AN, — T = (E.93)

0 0]
All elements are zero except the four elements which are located at (1'¢, n'¢), (n'¢,nt),
(nl,n'¢) and (nf,nl). For this new spin configuration, the update expression of Green’s
function is equation E.28, because the matrix, (A;'A/ — I), has only 4 non-zero ele-
ments. After the results is reduced more by using hyperbolic identities, we can get the
final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

qu'=1 <SU’—J >’ _ _gu—J

' Lo ' Lo ' Lo

change are
U'—J v'—J
(AS'AL — I)n/g we 3% .o {1 + sinh®(Asoqr) (1 — 64A35W»4’»0>} -1
1 v'—J _ Ul—J
(ASTA, = 1) went = 5 sinh(2\0q,) (e%’s"wﬂf»a —e 2A3Snn%v>
] v o (E.94)
(AEIA; - ])nz w9 sinh(2\40qy) (6_2)\35’7"’%0 — 62)\3377’7'7’5!">
) u'-J
(A;lA/U — [)nf ” = QQABS"]”]/qE,O' |:1 + COShZ()\4UC]g) (6_4>\3Snn’,£,a — 1):| —1
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E.9.2. Spin-lip for SV’

vy Ao

qU—I (SU’—J )' __gU-J

l/’r]l7£7o- Vn/7e’o. l/’r]/7£7o-

In order to track the effect of this change let us look at (W,,,(¢))" — Wy, (¢) which will

be calculated when we multiply A ! and A/ matrices.

(Wyo(0)) = Wiya(£) = +2X35,,7,

vn' Lo

(Woo(£)) = Wi (£) = —2203SU

vn' b0

Here, we should be careful about the facts that

v>r1

n>n.

Green’s function for new spin configuration is calculated with the relation

(G°) = G° + (G —I) (A;'AL — I) A;'G°

(E.95)

(E.96)
(E.97)

(E.98)
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Let us look at the form of (AJ'A! — 1)

and A’ (¢) from section 4.3.

Ao (0) =

ehatot COSh()\4O'(]g)€(W’7/"’(€))

eMtot sinh(\yogp)e'Vne®

and

[As ()]

e~ Mot cosh(Agoqp)e Vo)

—e Mot sinh(\oqp)e Vo (O

eretot Sinh(/\4O'Qg>€(W"l"’(£)>

Mgt Wh,o(€)

eMtot cosh(Agoqp)e

—e Mot sinh(\yoqp)e Ve (®

e~ Mtot cosh(Agog)eWne)

el

. We know the forms of the matrices [A,(¢)]

Wo.o(6))'

e

-1

(E.99)

—Wy,o(£)

(E. 10(-))
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After we multiply them, we get the form of {[A,(¢)] " AL (¢) — I} Ny Ny

3 0

n’in’ 7'm
[ ] [ ]
A (O] AL — T = . . (E.101)
T
n,n 7,7
[ ]
T
v, v

Here, all elements are zero except the big dots. Since the change occurs only at imaginary-

time slice ¢, the form of (A, A/ — I) is the same.

3 0

A;lA/U -1 = ° ° (E.102)

0 ,

All elements are zero except five elements which are located at (¢, n'¢), (n'¢, nt),
(nl,n'C), (nl,nt) and (v¢,v¢). For this new spin configuration, the update expression of
Green’s function is equation E.55, because the matrix, (A, 'A’ — I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function
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update caused by

’_ , / -
Sovie (SU J) =-S0

vy Lo vn' 4o

change are

QU —J
(A;lA; — [)77/5777/5 = COSh2()\40(]g) <6+2>\35V’0/,€,o‘ — 1)
_ 1 . QU -
(AglA(’T — I)W,nf =3 sinh(2A\40qy) <€+2)\55un’,i,o _ 1)
1/ 1 +2xssY ) (E.103)
(AO' AO’ - I)ng n'e - § Slnh<2)\40'qZ) 1 — e vn! Lo .

(A;lA; — I)nf = sinh?(\4oqr) (1 — e+2A355n’,é,]a)

!
—1 A/ _ 28U Y
(AU Ao B I)yé,uf =e vilbe — 1

E.9.3. Spin-flip for U~/

vn,l,o

’_ ’ / ,
Sgne}]f (SU J) _ _gu-J

vn,l,o vnl,o

In order to track the effect of this change let us look at (W,,,(£))" — W,,(¢) which will be
calculated when we multiply A and A/ matrices.

(Wao (€)' = Wao () = +2X55057

vn,l,o

(Woo(0)) = Wye(£) = —203S0 7 (E.104)
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Here, we should be careful about the facts that

v>n (E.105)
n>n. (E.106)

Green’s function for new spin configuration is calculated with the relation
(G7)Y =G+ (G" = 1) (A;'A, — 1) AJ'G° (E.107)

The form of the matrix (A, 'A/ — I) is the same as in the case of S%,}Jo.

3 0

AJIN, — T = . . (E.108)

0 :

All elements are zero except five elements which are located at (¢, n'?), (n'¢, nt),
(nl,n'¢), (nl,nt) and (v¢,v¢). For this new spin configuration, the update expression of
Green’s function is equation E.55, because the matrix, (A, 'A’ — I), has only 5 non-zero
elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

/
U'—J U'—J _ U'—J
Swy,é,a (Sm],ﬁ,a) - _Sumf,a
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change are

1 .
(AU A; - I)n/f,nf - 2

(A 1Al _I) 6—2)\351/7][0 _ 1

(A, A, — I) = sinh?*(\40q/) (1 +2/\55unea)

E sinh(2A\40qy) (1 2080, g>
_ 1.

(AUIA; - ])nz,n/z = 5 Slnh(2)‘4UQZ) ( +2/\SSV"Z 7 — 1>

(A7, = 1), = cosh®(uogs) (7295025 — 1)

E.9.4. Spin-flip for SY V“

U/
Snufcr n'vl,o

In order to track the effect of this change let us look at (W, (¢))" —

calculated when we multiply A ! and A/, matrices.

(Woo (€)' — Wi (£) = +2)3
(Wi (£)) = Wiy (£) = =23

Here, we should be careful about the facts that

n>v

n>n.

Green’s function for new spin configuration is calculated with the relation

(G7) =G+ (G7 —I) (A;'A, — 1) AJ'GT

—  (SY —SU
(stie) =

(E.109)

W, (¢) which will be

(E.110)

(E.111)
(E.112)

(E.113)
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The form of the matrix (A;'AL — 1)

difference.

AN — T = o .

0

3 0

v bo

. . 1__ . .
is the same as in the case of SY ;7 with a minor

(E.114)

All elements are zero except five elements which are located at (¢, n'¢), (n'¢, nt),

(nl,n'l), (nl,nt) and (v¢, v¢). For this new spin configuration, the update expression of

Green'’s function is equation E.55, because the matrix, (A, 'A/ — I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

change are

SU’—J

77’1/,£7a' T]/I/,Z,O'

/
v-J7\ _ _cU-J
(S ) = ~Siyvio

u'-J
(A;TAL — I)n’ﬂ o= cosh?(A\soqr) (€2ASS77/V,Z,U — 1)

L. sV
nent 9 sinh(2A40q,) (e e — 1

(A;*AL —1T)

1 . —92) SUI_J
et~ 9 sinh(2\40q,) (1 — e 5o

—1 A/
(AS'AL — 1),

u'—-J
(AZ'AG — I)ne n sinh®(\s0qr) (1 — 6_2)\3577'”%0)

!
o +2xnsy
vbl ¢ K 1

(A'AL = 1T)

)
)

(E.115)
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E.9.5. Spin-flip for SV,

nvl,o

qU-J (SU'—J)’ _ _gU-J

nvl,o nvl,o nvl,o

In order to track the effect of this change let us look at (W,,,(£))" — W,,(¢) which will be

calculated when we multiply AJ! and A/ matrices.

(Wyo (€)' — Wie(£) = —2X3S8Y 7 (E.116)
Here, we should be careful about the facts that

n>v (E.117)
n>n. (E.118)

Green’s function for new spin configuration is calculated with the relation
(G°) =G7+ (G = 1) (A'A, — 1) AJ'G7 (E.119)

The form of the matrix (A;'A! — I) is the same as in the case of S,%,_EJJ with a minor
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difference.

AN, — T =

0

(E.120)

All elements are zero except five elements which are located at (¢, '(), ('¢, nt),

(nt,n'¢), (nl,nt) and (v¢,v¢). For this new spin configuration, the update expression of

Green’s function is equation E.55, because the matrix, (A;lA; — I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

’_ ’_ / r
Sr[]jl/,ﬁ,i — (Sff,,ei) = _Sgu,e,i
change are
(A'A = 1), = sinh?(A 1 2S00
TN~ 1), = sinh2 (i) (1 — e
SN — Ll _e2aSh)
(A;TAL [)n’f =3 sinh(2\40q,) (1 —e it
—1 A7/ - o 1 . 72)\SSU/7J B
(Ao- A—o’ I)ng e - 5 Slnh(2A4o'q€) e nv,l,o 1
(A;IA; — ])nf e = cosh?(A\soqp) (e*”SSgu,Z,}]f _ 1)
(A;"A, = 1) el e

(E.121)
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