
QUANTUM MONTE CARLO STUDY OF THE
MULTI-ORBITAL ANDERSON MODEL

INCLUDING THE SU(2) INVARIANT HUND’S
COUPLING

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
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ABSTRACT

QUANTUM MONTE CARLO STUDY OF THE MULTI-ORBITAL
ANDERSON MODEL INCLUDING THE SU(2) INVARIANT HUND’S

COUPLING

In this study, an SU(2) invariant multi-orbital Anderson impurity model is dis-

cussed to obtain the electronic properties of metalloproteins. Metalloproteins are organic

molecules containing transition metal atoms. They have important roles in the chemi-

cal reactions taking place in organisms. The electronic properties of metalloproteins can

be modeled by an effective Anderson impurity model. The effective Anderson impurity

model can be studied with the quantum Monte Carlo algorithm developed by Hirsch and

Fye (1986). In the quantum Monte Carlo simulations of the Anderson impurity model so

far, only the longitudinal component of the Hund’s coupling term which arises from the

Coulomb interactions between the 3d orbitals is taken into account. Spin-flip and pair-

hopping terms (the transverse terms of the Hund’s coupling) are not considered. They are

required to make the Hamiltonian SU(2) invariant, which is related to the spin rotations,

so that the Hamiltonian is more realistic. The treatment of the transverse Hund’s coupling

with the Hirsch-Fye algorithm has been difficult because of the problems encountered in

the Trotter decomposition. Instead, a series expansion method was developed by Sakai

et al. (2006). Here, we combine the Hirsch-Fye quantum Monte Carlo algorithm with

the series expansion method to study the SU(2) invariant multi-orbital Anderson impurity

model. Therefore, we present results from quantum Monte Carlo simulations with the

new algorithm.
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ÖZET

SU(2)-DEĞİŞMEZ HUND ETKİLEŞİMİ İÇEREN ÇOK-ORBİTALLİ
ANDERSON MODELİNİN KUANTUM MONTE CARLO

ÇALIŞMASI

Bu çalışmada metaloproteinlerin elektronik özelliklerini elde etmek için bir SU

(2)-değişmez çok-orbitalli Anderson safsızlık modeli tartışılmaktadır. Metaloproteinler

geçiş atomu içeren organik moleküllerdir. Mikroorganizmalarda gerçekleşen kimyasal

reaksiyonlarda önemli rollere sahiptirler. Metaloproteinlerin elektronik özellikleri bir

etkin Anderson safsızlık modeliyle modellenebilmektedir. Etkin Anderson safsızlık mod-

eli Hirsch and Fye (1986) tarafından geliştirilen kuantum Monte Carlo algoritması ile

çalışılabilmek- tedir. Şimdiye kadar olan Anderson safsızlık modelinin kuantum Monte

Carlo simülasyonlarında 3d orbitalleri arasındaki Coulumb etkileşimlerinden kaynakla-

nan, Hund etkileşiminin sadece enine bileşeni hesaba katılmıştır. Spin-çevirme ve çift-

atlama (Hund etkileşiminin boyuna bileşenleri) terimleri hesaba katılmamıştır. Bu terim-

ler Hamiltoniyeni spin rotasyonlarıyla alakalı olan SU(2)-değişmez yapmak için gerek-

lidir, böylece Hamiltoniyen daha gerçekçi olacaktır. Boyuna Hund etkileşiminin Hirsch-

Fye algoritmasıyla işleyişi Trotter ayrışmasında karşılaşılan problemler yüzünden zordur.

Bunun yerine, bir seri açılımı metodu Sakai et al. (2006) tarafından geliştirilmiştir. Bu-

rada, SU(2)-değişmez çok-orbitalli Anderson safsızlık modelini çalışmak için Hirsch-Fye

kuantum Monte Carlo algoritması ile seri açılımı metodunu birleştiriyoruz. Sonuç olarak,

yeni algoritma ile kuantum Monte Carlo simülasyon sonuçlarını sunuyoruz.
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CHAPTER 1

INTRODUCTION

Obtaining solutions to the strongly correlated electron systems consisting of tran-

sition metal atoms has always been a challenge in physics. There are several Hamiltonians

constructed to approach this problems such as Hubbard (Hubbard (1963)) and Anderson

Hamiltonians (Anderson (1961)). These Hamiltonians can be used to model the materi-

als of which the electronic and magnetic properties are determined or affected by the d

orbitals of the transition metals they contain. The high-dimensionality of these complex

systems makes it difficult to obtain analytical solutions, consequently the numerical meth-

ods have been developed to solve them. The advances in the computer technologies allow

us to have realistic numerical calculations. One of the most popular methods is quantum

Monte Carlo simulations.

The Anderson impurity model has been introduced in order to study the properties

of a localized magnetic impurity in a metallic host (Anderson (1961)), after that it was

extended to the semiconductor hosts (Haldane and Anderson (1976)). The single-orbital

Anderson impurity model in second-quantized form is

H =
∑
m,σ

(εm − µ)nmσ +
∑
σ

(εν − µ)nνσ +
∑
m,σ

Vmν
(
c†mσdνσ + h.c.

)
+ Unν↑nν↓ (1.1)

where c†mσ(cmσ) and d†νσ(dνσ) are creation(annihilation) operators for the host state m

and the localized state at ν, σ spin. εm and εν are the energies of the host and impurity

states. Vmν is the hybridization matrix elements between host and impurity orbitals. µ is

the chemical potential, nνσ is the occupation number of the impurity orbital, nmσ is the

occupation at the host orbitals. U is the Coulomb repulsion between the d electron at the

impurity site. The single-orbital Hamiltonian can be easily generalized to multi-orbital

systems. Many physical phenomena can be analyzed, such as presence of the localized

states or effects of them in semiconductors and metals, even with this simple model.

The first studies on the magnetic properties of transition metal impurities in semi-

conductor hosts within the Anderson impurity model (Haldane and Anderson (1976))

shows the existence of the localized energy levels which lies in the semiconductor gap

triggered by the occupations of the d-orbitals of those transition metals, changing the
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magnetic properties of the materials. The same principles have been observed in the

dilute magnetic semiconductors (DMS) (Ohno et al. (1992, 1996)) such as (Ga,Mn)As.

They are semiconductors which exhibit magnetic properties, and they contain transition

metal atoms substituted into non-magnetic host atoms. An impurity bound state has been

found in the semiconductor gap of (Ga,Mn)As (Jungwirth et al. (2007)). The theoretical

studies within the Anderson impurity model show that this impurity bound states deter-

mines the electronic and magnetic properties of (Ga,Mn)As (Tomoda et al. (2009)). On

the other hand, the comparisons between the DMS materials and the metalloproteins show

that the same mechanism exists for the metalloproteins and metalloenzymes which have

been studied within the framework of multi-orbital Anderson impurity model (Kandemir

et al. (2016); Mayda et al. (2017)).

Metalloproteins are basically proteins which contain transition metal atoms. They

have several functions within the organisms from oxygen-carrying to catalyzing the vital

reactions in cells. The preceding studies for metalloproteins examined within the An-

derson model have given very promising results (Kandemir et al. (2016); Mayda et al.

(2017)). Although the impurity bound states have been found for metalloproteins, the

models did not consist of SU(2) invariant terms. Thus, there has not been any studies for

these materials within a SU(2) invariant Anderson Hamiltonian.

SU(2) invariant Anderson Hamiltonian consists of spin-flip and pair-hopping terms

(the transverse components of the Hund’s coupling) along with the inter- and intra-orbital

Coulomb repulsion and the z-component (longitudinal) of the Hund’s coupling. Addi-

tion of spin-flip and the pair-hopping terms makes the Hamiltonian invariant under SU(2)

transformations which are basically rotations in the spin degrees of freedom. The studies

within the multi-orbital Hubbard model for t2g orbitals of Sr2RuO4 show that the preser-

vation of the rotational symmetries and Hund’s exchange coupling are important not only

for ferromagnetism in materials containing transition metal atoms, but also for supercon-

ductivity and metal-insulator transitions (Sakai et al. (2006)). If the symmetry is broken,

transverse spin fluctuations are ignored. This means that if the transverse components of

the Hund’s coupling term (spin-flip and pair hopping terms) is not taken into account, the

longitudinal component of the Hund’s coupling makes systems to exhibit a tendency to

ferromagnetic behavior. Thus, it can lead to wrong or overestimated results in the details

of the magnetic and electronic properties calculated. The transverse terms can suppress

the behavior of the longitudinal component.

In this manner, we propose that studies with an SU(2) invariant multi-orbital An-

derson Hamiltonian give more detailed and accurate results for metalloproteins. In this
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study, 3d orbitals of the transition metal atom in the molecules are taken as impurity or-

bitals and remaining orbitals of the molecules are the host orbitals for Anderson model.

The Anderson model parameters, which are the energy eigenvalues of the single-particle

part and the hybridization matrix elements of the Hamiltonian, are obtained from the

density functional theory calculations as explained in Kandemir et al. (2016). SU(2) in-

variant Anderson Hamiltonian is constructed with these values to be solved. We focus

on hemoglobin molecule which consist of 4 heme group, each of them includes an iron

atom in the center. However, we examine a part of one heme group. The electronic and

magnetic properties of human hemoglobin, HbA, is calculated. Two molecules are cho-

sen: C32H30FeN10O2 which is called deoxyheme, C32H30FeN10O4 called oxyheme in this

study. These molecules are important since hemoglobin molecule exhibits a transition

from high-spin state to low-spin state upon binding of oxygen molecules to the Fe atoms

(Pauling and Coryell (1936)). 3d orbitals of Fe atom acts as the transition metal impuri-

ties in the semiconductor hosts, thus making these molecules perfect candidates to model

them with Anderson impurity model.

Figure 1.1. Molecular structure of C32H30FeN10O2
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Figure 1.2. Molecular structure of C32H30FeN10O4

In order to solve our model, we implement a quantum Monte Carlo method de-

veloped for the multi-orbital Hubbard model to simulate the t2g orbitals of Sr2RuO4 by

Sakai et al. (2006). In this QMC method, there is a combined approach of series ex-

pansion to the partition function and Trotter decomposition. The reason of a combined

method is the difficulty in the decoupling of the spin-flip and the pair-hopping terms. The

renowned auxiliary-field QMC algorithm developed by Hirsch and Fye (1986) uses Trot-

ter decomposition to discretize the imaginary-time interval, β, of the Boltzmann operator

in the partition function, then the Hubbard-Stratonovich transformation (Hirsch (1983))

to decompose the interaction terms in order to get quadratic terms with respect to the

electron creation and annihilation operators. The density-density type interactions in the

intra- and inter-orbital Coulomb interactions along with the z-component of the Hund’s

coupling can be decoupled easily with Hubbard-Stratonovich transformation. However,

the spin-flip and pair-hopping terms consist of off-diagonal terms with respect to the elec-

tron creation and annihilation operators, thus another transformation is required for these

terms. This transformation exactly map the quartic terms in the spin-flip and pair-hopping

terms to their quadratic ones (Rombouts et al. (1998)). In order to use this transforma-
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tion, we need to expand the partition function in series and use a discretized version of

the continuous-time QMC algorithm developed by Rombouts et al. (1999) to combine it

with Hirsch-Fye QMC algorithm. We named this new algorithm as Hirsch-Fye + Series

Expansion QMC (HF+SE QMC) introduced by Sakai et al. (2006).

There were several attempts to decouple the Hund’s coupling term and to solve it

within the framework of the dynamical mean field theory or QMC (Held and Vollhardt

(1998); Motome and Imada (1997); Han (2004); Sakai et al. (2004)). These transforma-

tions have serious problems: sign problem, neglecting the equality of spins or the orbitals,

orbital rotational symmetries, or works for some special cases. However, HF+SE QMC

algoritm uses an exact discrete transformation to the Hund’s coupling term. Therefore,

this algorithm is an numerically exact solver to the problem after the results are extrapo-

lated due to the errors caused by the time discretization and the series expansion.
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CHAPTER 2

MULTI-ORBITAL ANDERSON IMPURITY MODEL

In this study, we will use multi-orbital Anderson Hamiltonian to model the transi-

tion metal impurities in organic molecules such as hemoglobin molecule. The construc-

tion of the model starts with the second-quantized Hamiltonian which includes kinetic

energy of the electrons, ionic potential on them and the electron-electron interaction.

h1(r) = − ~2

2m
∇2 + Vion(r) (2.1)

h2(r, r′) = Vee(r− r′) (2.2)

The second-quantized Hamiltonian is

H =
∑
σ

∫
drΨ†σ(r)

[
− ~2

2m
∇2 + Vion(r)

]
Ψσ(r)

+
1

2

∑
σ,σ′

∫∫
drdr′Ψ†σ(r)Ψ†σ′(r

′)Vee(r− r′)Ψσ′(r
′)Ψσ(r) (2.3)

We can expand the field operators, Ψσ(r), in terms of the Wannier orbitals for the host

and the impurity orbitals as

Ψσ(r) =
∑
i

ϕi(r)ci,σ (2.4)

where cm,σ is the annihilation operator for the host states and dν,σ is for the impurity

states. In summation over i, the impurity orbitals are denoted as ν and host orbitals arem.

After using 2.4, there are several terms as integrals in equation 2.3. We can define them

separately to construct the model. The kinetic energies of the host and impurity orbitals
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are

εm − µ =

∫
drϕ∗m(r)

[
− ~2

2m
∇2 + Vion(r)

]
ϕm(r) (2.5)

εν − µ =

∫
drϕ∗ν(r)

[
− ~2

2m
∇2 + Vion(r)

]
ϕν(r) (2.6)

The hybridization terms between the host and the impurity orbitals, which indicates the

hopping of electrons from host to impurity or impurity to host, are

Vmν =

∫
drϕ∗m(r)

[
− ~2

2m
∇2 + Vion(r)

]
ϕν(r) (2.7)

Vνm =

∫
drϕ∗ν(r)

[
− ~2

2m
∇2 + Vion(r)

]
ϕm(r) (2.8)

The electron-electron interaction is defined on the impurity orbitals in this model. These

integrals are defined in the following.

U =

∫∫
drdr′|ϕ†ν(r)|2Vee(r− r′)|ϕν(r′)|2 (2.9)

U ′ =

∫∫
drdr′|ϕ†ν(r)|2Vee(r− r′)|ϕν′(r′)|2 (2.10)

J =

∫∫
drdr′ϕ†ν(r)ϕ

†
ν′(r

′)Vee(r− r′)ϕν(r
′)ϕν′(r) (2.11)

J ′ =

∫∫
drdr′ϕ†ν(r)ϕ

†
ν(r
′)Vee(r− r′)ϕν′(r

′)ϕν′(r) (2.12)

The integrals other than U , U ′, J and J ′ are expected to be smaller than these integrals

or to be zero. The real space rotations interchange the d orbitals to each other, in order

to ensure this equality the integrals the results of the integrals U , U ′, J and J ′ should be

related to each other by

U = U ′ + 2J (2.13)

With this condition the Hamiltonian is rotationally invariant in real space, as well. If we

take the Wannier orbitals real for impurity orbitals, then it holds J ′ = J . After these

definition, we construct the multi-orbital Anderson Model with inter-orbital and intra-
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orbital interaction including spin-flip and pair-hopping terms which is defined as

H =
∑
m,σ

(εm − µ)c†mσcmσ +
∑
ν,σ

(εν − µ)d†νσdνσ +
∑
m,ν,σ

Vmν
(
c†mσdνσ + h.c.

)
+
∑
ν

Unν↑nν↓ +
∑
ν>ν′,σ

[U ′nνσnν′,−σ + (U ′ − J)nνσnν′σ]

+
∑
ν>ν′

J(d†ν↑d
†
ν′↓dν↓dν′↑ + d†ν↑d

†
ν↓dν′↓dν′↑ + h.c.) (2.14)

where c†mσ(cmσ) and d†νσ(dνσ) are creation(annihilation) operators for the host statem and

the localized state at ν’th d orbital, σ spin. εm and εν are the energies of the host and d

states. Vmν is the hybridization matrix elements between host and impurity orbitals. µ

is the chemical potential and nνσ is the occupation number of the ν’th d orbital. U is

the Coulomb repulsion between the d electron at the same impurity state, U ′ and U ′ − J
is the Coulomb interaction between the d electrons at the different impurity state with

opposite spins and parallel spins. J is the Hund’s coupling between the different orbital

pairs. U ′ − J term includes the z-component of the Hund’s coupling. And the remaining

part with J term is the x and y component of the Hund’s coupling, which are the spin-flip

and the pair-hopping terms.

Figure 2.1. Visualization of U,U ′, U ′ − J and J terms.

We can seperate the Hamiltonian into 3 parts for further calculations.

H0 =
∑
m,σ

(εm − µ)c†mσcmσ +
∑
ν,σ

(εν − µ)d†νσdνσ +
∑
m,ν,σ

Vmν
(
c†mσdνσ + h.c.

)
HU =

∑
ν

Unν↑nν↓ +
∑
ν>ν′,σ

[U ′nνσnν′,−σ + (U ′ − J)nνσnν′σ]

HJ =
∑
ν>ν′

J(d†ν↑d
†
ν′↓dν↓dν′↑ + d†ν↑d

†
ν↓dν′↓dν′↑ + h.c.) (2.15)
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2.1. The Effect of the SU(2) Invariant Hamiltonian in the Atomic

Limit

The preservation of the orbital and spin rotational symmetries affect many of the

aspects for our calculations. Although it exhibits a little difference in the total occupations

of the orbitals, an apparent distinction in the total magnetization is seen from the calcula-

tions. In order to show that we have done simple calculations with hemoglobin molecule.

After the parameters of the Anderson model are calculated from the DFT results (as in

Kandemir et al. (2016)), the hybridization matrix elements are set to zero. In this way,

the connection between the host and the impurity orbitals is lost, and the Hamiltonian

consisting of only five 3d orbitals can be diagonalized.The energy eigenvalues of the 3d

orbitals can be seen from the table 2.1. The comparisons (Figures: 2.2 and 2.4) show that

the total magnetization varies with respect to the absence of spin-flip and pair-hopping

terms.

Table 2.1. Energy eigenvalues of the 3d orbitals of the heme molecules in eV.

εν xy xz yz 3z2 − r2 x2 − y2

deoxyheme -3.5048 -3.4912 -3.0422 -3.3714 -3.4368
oxyheme -4.5551 -4.1687 -4.2150 -4.0599 -4.3048

For deoxy molecule in figure 2.2b we observed that the calculations with HJ ex-

hibit lower magnetization values than the calculations without HJ at chemical potential

values µ ≈ −1.5 eV and µ ≈ 12.5 eV. The effect of HJ is seen when the molecule starts

to have higher magnetic moment values, and just before losing its magnetic moment. Af-

ter these values of µ, there are sudden jumps in the magnetic moment values, 〈n3d〉. Thus,

HJ is more effective before these transitions. However, the total electron occupations of

the 3d orbitals are 〈n3d〉 ≈ 2 and 〈n3d〉 ≈ 8 at µ ≈ −1.5 eV and µ ≈ 12.5 eV, and there

are no apparent differences in the total electron numbers.

The expection value of HJ is nonzero just for these chemical potential two inter-

vals from figure 2.3a. 〈HJ〉 ≈ −0.3 at chemical potentials µ ≈ −1.5 eV and µ ≈ 12.5 eV.

When we compare 〈HJ〉 with the other parts of the Hamiltonian, the values 〈HU〉 ≈ 1.6

and 〈H0 +HU〉 ≈ −2.2 at µ ≈ −1.5. The effect of HJ is comparable with the other parts

of the Hamiltonian. For chemical potential µ ≈ 12.5 eV, however, the values 〈HU〉 ≈ 55.6

and 〈H0 +HU〉 ≈ −72.5 seem much higher than 〈HJ〉 at that chemical potential. In fact,
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the chemical potential and the Coulomb interaction terms add up for 5 orbitals, thus the

values seem higher, but HJ is still effective as seen from total magnetic moment 2.2b.

For oxy molecule in figure 2.4 we observed the same behavior with the deoxy

molecule, but at lower chemical potential values, µ ≈ −2.5 eV and µ ≈ 11.5 eV. The

reason is that the calculations were carried out in the atomic limit. There is no hybridiza-

tion between the host and the impurity orbitals. The presence of the oxygen molecule

lowers the eigenenergies of the Fe(3d) orbitals by approximately 1 eV as in table 2.1, but

its effect on the hosts cannot be seen because of the absence of hybridization. Therefore,

in the atomic limit the same behavior is seen but at lower chemical potential values. HJ

is effective just before the first dramatic increment in the total magnetic moments.

The expection value of HJ of oxyheme also exhibits the same behavior with the

oxyheme in the atomic limit as seen from figure 2.4a. The expection values of HU and

H0 +HU are the same but shifted with respect to chemical potential approximately 1 eV.

The reason for the same behavior is not only eigenenergy differences of Fe(3d) orbitals

approximately 1 eV between the two molecules, but also the similiarities in the closeness

of the eigenenergies of each Fe(3d) orbital within each molecule.

Therefore, even in the atomic limit we saw that the effect of spin-flip and pair-

hopping terms is not negligible, it can be effective where a transition occurs. It can con-

tribute to the antiferromagnetic correlations since it lowers the magnetization on certain

points in two of the molecules.
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Figure 2.2. Exact diagonalization results for Fe(3d) orbitals in deoxyheme molecule
in the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature T = 300 K. Red
empty dots indicates the calculations with HJ , black filled dots indicates
the calculations without HJ . (a) Total occupation number of the Fe(3d)
orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total magnetic
moment at the Fe(3d) orbitals 〈(M3d)

2〉 versus chemical potential µ.
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Figure 2.3. Exact diagonalization results for Fe(3d) orbitals in deoxyheme molecule
in the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature T = 300 K. Red
empty dots indicates the calculations with HJ , black filled dots indicates
the calculations without HJ . (a) Expectation value of HJ versus chemical
potential µ. (b) Expectation value of HU versus chemical potential µ. (c)
Expectation value of H0 +HU versus chemical potential µ.
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Figure 2.4. Exact diagonalization results for Fe(3d) orbitals in oxyheme molecule in
the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature T = 300 K. Red
empty dots indicates the calculations with HJ , black filled dots indicates
the calculations without HJ . (a) Total occupation number of the Fe(3d)
orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total magnetic
moment at the Fe(3d) orbitals 〈(M3d)

2〉 versus chemical potential µ.
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Figure 2.5. Exact diagonalization results for Fe(3d) orbitals in oxyheme molecule in
the atomic limit. Coulomb interaction between the 3d orbitals U = 4
eV and Hund’s coupling J = 0.9 eV at temperature T = 300 K. Red
empty dots indicates the calculations with HJ , black filled dots indicates
the calculations without HJ . (a) Expectation value of HJ versus chemical
potential µ. (b) Expectation value of HU versus chemical potential µ. (c)
Expectation value of H0 +HU versus chemical potential µ.
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CHAPTER 3

MONTE CARLO METHOD

Monte Carlo method is a random sampling technique in order to estimate a proba-

bility distribution functions, or to obtain results for numerical integration problems. There

are several methods, leading to the term “quantum Monte Carlo (QMC)”, to sample the

terms of partition in quantum mechanics in order to evaluate the expectation values of the

observables (Gull et al. (2011)). Some methods involve sampling of the wavefunctions of

the many-body systems (McMillan (1965); Ceperley et al. (1977); Foulkes et al. (2001)),

while the others stochastically sample the action of the many-body system or the path

integrals (Ceperley (1995); Sandvik and Kurkijärvi (1991)). On the other hand, auxiliary-

field algorithms (Hirsch and Fye (1986)) discretize the Boltzmann operator or the action

so that the partition function integral can be reformulated as a discrete sum over a high-

dimensional configuration space, and these algorithms sample the terms of the discretized

sum of the partition function instead of dealing with the whole configuration space.

This chapter covers the basic principles of the Monte Carlo integration and sam-

pling from the configuration spaces.

3.1. Monte Carlo Integration

There are high-dimensional integrals and sums over high-dimensional configura-

tion spaces to be solved in order to evaluate the properties of the thermodynamical sys-

tems. The basic numerical integration techniques, i.e. Simpson’s Rule, are not sufficient

when the dimensions of the integrals increase due to the fact that in these methods the er-

ror scales with the number of the integration points or the dimensionality of the integrals.

For high-dimensional integrals, they are not efficient.

Monte Carlo integration, however, is not dependent on the dimensionality of the

integrals. The elements of the integration domain are randomly sampled in Monte Carlo

integration. For uniformly selected elements xi of the configuration space C, any integral

can be approximated as
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1

Ω

∫
C

f(x)dx = lim
N→∞

1

N

N∑
i=1

f(xi) (3.1)

where Ω is the volume of configuration space C. The statistical error, ∆, can be estimated

as

∆ =

√
varf
N

=

√
f 2 − f 2

N − 1
(3.2)

Therefore, the error of this method decreases with the number of samples, and it is inde-

pendent of dimensionality of the integrals.

3.2. Importance Sampling

Calculation of the integrals with uniformly chosen random elements is not effi-

cient for high-dimensional integrals. Instead, the elements which has more impact on the

integral can be chosen with importance sampling and decrease the variance more quickly.

The configurations can be generated with a general probability distribution p(x) on con-

figuration space C, where

∫
C

p(x)dx = 1 (3.3)

then equation 3.1 becomes

〈f〉 =
1

Ω

∫
C

f(x)

p(x)
p(x)dx = lim

N→∞

1

N

N∑
i=1

f(xi)

p(xi)
(3.4)

and the integration error is
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∆ =

√
var(f/p)

N
(3.5)

The expectation value of an observable in a system in equilibrium can be calculated using

the partition in statistical mechanics. The configurations can be generated according to

their contribution to the partition function. The expectation value of an observable, A, is

〈A〉 =
1

Z

∫
C

A(x)ρ(x)dx (3.6)

where

Z =

∫
C

ρ(x)dx (3.7)

In order to use importance sampling, equation 3.6 becomes

〈A〉 =
1

Z

∫
C

A(x)
ρ(x)

p(x)
p(x)dx = lim

N→∞

∑N
i=1 A(xi)

ρ(xi)
p(xi)∑N

i=1
ρ(xi)
p(xi)

(3.8)

3.3. Markov Process, Metropolis and Heat-bath Algorithms

There is a method called Markov process to generate the configurations according

to their contribution to partition function or some probability distribution. In the Markov

chain the configurations are generated randomly but their values are dependent on their

previous values. The chain starts from a random elements x0 ∈ C, and can be visualized

as

17



x0 → x1 → x2 → · · · → xk → . . .

These configurations are generated via the transition probabilities between the

states xk and xk+1. To ensure that the probability distribution of the generated configu-

rations asymptotically approaches the right probability distribution, the transition proba-

bilities should satisfy detailed balance and ergodicity conditions. Ergodicity means that

reaching any x from any configuration y should be possible in a finite number of steps

in the Markov chain. To fulfill the detailed balance condition, the equation between the

probability distribution p(x) and transition matrix Wxy should be

Wxy

Wyx

=
py
px

(3.9)

Metropolis and heat-bath algorithms satisfies detailed balance condition. The tran-

sition matrix elements are splitted into two parts as proposal and acceptance parts (Gull

et al. (2011)).

Wxy = Wprop(x→ y)Wacc(x→ y) (3.10)

Using equation 3.9 detailed balance condition becomes

Wacc(x→ y)

Wacc(y → x)
=
py
px

Wprop(y → x)

Wprop(x→ y)
(3.11)

To satisfy that the Metropolis algorithm then reads

Wmetropolis
acc (x→ y) = min

{
1,
py
px

Wprop(y → x)

Wprop(x→ y)

}
(3.12)
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while the heat-bath algorithm is

W heat−bath
acc (x→ y) =

P

1 + P
(3.13)

where

P =
py
px

Wprop(y → x)

Wprop(x→ y)
(3.14)
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CHAPTER 4

HIRSCH-FYE + SERIES EXPANSION ALGORITHM

In this chapter, we present detailed derivations of the steps of the HF+SE QMC

algorithm. We start with the partition function for the measurements in the finite temper-

ature. After the series expansion of the Boltzmann factor, the transformation formulas are

applied to the two-body interaction terms. These decoupling formulas map the quantum

mechanical problem to its exactly classical one, an extra dimension to the problem in re-

turn. Thus, we can classically sample the terms of the partition function with Monte Carlo

methods. To perform the physical measurements, we use a Green’s function method. In

order to use it in the algorithm, for decoupling and calculating the Green’s functions, we

need to make one more modification to the 3 parts of the Hamiltonian. Thus, H0, HU and

HJ becomes

H0 =
∑
m,σ

(εm − µ)c†mσcmσ +
∑
ν,σ

(εν − µ)d†νσdνσ +
∑
m,ν,σ

Vmν
(
c†mσdνσ + h.c.

)
+
U

2

∑
ν,σ

nνσ +
∑
ν>ν′,σ

[
U ′

2
(nνσ + nν′,−σ) +

(U ′ − J)

2
(nνσ + nν′σ)

]
(4.1)

HU =
∑
ν

[
Unν↑nν↓ −

U

2
(nν↑ + nν↓)

]
+
∑
ν>ν′,σ

[
U ′nνσnν′,−σ −

U ′

2
(nνσ + nν′,−σ)

]
+
∑
ν>ν′,σ

[
(U ′ − J)nνσnν′σ −

(U ′ − J)

2
(nνσ + nν′σ)

]
(4.2)

HJ =
∑
ν>ν′

J(d†ν↑d
†
ν′↓dν↓dν′↑ + d†ν↑d

†
ν↓dν′↓dν′↑ + h.c.) (4.3)
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The partition function is

Z = Tre−βĤ

= Tre−β(H0+HU+HJ ) (4.4)

We add and subtract a constant, γ, to the Hamiltonian in order to make a discrete decom-

position to HJ . We split the Hamiltonian into two parts as H1 and H2 where

H1 = H0 +HU +
γ

β
(4.5)

H2 = HJ −
γ

β
(4.6)

The partition function becomes

Z = Tre−β(H1+H2)

= e−γTre−β(H0+HU )+(γ−βHJ ) (4.7)

In the following sections, we drop the constant term, e−γ , in the partition function since it

is just a constant and does not change the physics.

4.1. Series Expansion of the Boltzmann Factor

We expand the Boltzmann operator, e−βĤ with respect to γ − βHJ .

e−β(H0+HU )+(γ−βHJ ) = e−β(H0+HU )

+
∞∑
k=1

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

×
k∏
i=1

[
e−τiβ(H0+HU )(γ − βHJ)eτiβ(H0+HU )

]
e−β(H0+HU ) (4.8)
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Derivation of this expansion is given in Appendix A. After discretization of the integrals

for numerical calculations, the equation becomes

e−βH = e−β(H0+HU )

+
∞∑
k=1

L−k
L∑

jk=1

· · ·
j2∑
j1=1

k∏
i=1

[
e−ji∆τ(H0+HU )(γ − βHJ)eji∆τ(H0+HU )

]
× e−β(H0+HU ) +O(∆τ) (4.9)

where

∆τ = β
/
L. (4.10)

The summations in equation 4.9 are cut at L. This expression is valid only for the con-

dition 〈k〉 � L. To reduce the computation time and the number of configurations, the

terms having consecutive γ − βHJ in the same imaginary-time interval is changed into

approximate terms. We use the notation

χ ≡ γ − βHJ (4.11)

After these changes equation 4.9 becomes

e−βH =
∑

r1,r2,··· ,rL=0,1

F (k; r1, r2, · · · , rL)
L∏
`=1

[
e−∆τ(H0+HU )χr`

]
+O(∆τ) (4.12)

where

k =
L∑
`=1

r` and χ0 = 1. (4.13)

F is a positive weight factor. Detailed derivation of F terms is given in Appendix B.
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We use Trotter approximation to decompose HU and to separate it from H0.

e−∆τ(H0+HU ) ∼= e−∆τH0e−∆τHU +O(∆τ 2) (4.14)

Now, we can use discrete Hubbard-Stratonovich transformation to decompose e−∆τHU .

The Hubbard-Stratonovich transformation is following.

e−∆τV [nνnν′− 1
2

(nν+nν′ )] =
1

2

∑
SV =±1

eλV SV (nν−nν′ ) for V ≥ 0 (4.15)

where

cosh(λV ) = e
1
2

∆τV (4.16)

Thus, the decomposition of e−∆τHU can be done with Hubbard-Stratonovich transforma-

tion.

e−∆τHU = exp

{
−∆τ

[∑
ν

(
Unν↑nν↓ −

U

2
(nνσ + nν′σ)

)
+
∑
ν>ν′,σ

(
U ′nνσnν′,−σ −

U ′

2
(nνσ + nν′,−σ)

)

+
∑
ν>ν′,σ

(
(U ′ − J)nνσnν′σ −

(U ′ − J)

2
(nνσ + nν′σ)

)]}
(4.17)

After the discrete Hubbard-Stratonovich transformation, equation 4.17 becomes as in
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Hirsch and Fye (1986)

e−∆τHU (`) =
1

2(2Nd−1)Nd

∑
{SUν,`=±1}

∑
{SU′
νν′,`=±1}

∑
{SU′−J
νν′,`,σ=±1}

exp

{
Nd∑
ν=1

∑
σ

σλ1S
U
ν,`nνσ

+

Nd∑
ν=1

Nd∑
ν′=1
ν′ 6=ν

λ2S
U ′

νν′,`(nν↑ + nν↓) +

Nd∑
ν=1

Nd∑
ν′=1
ν′ 6=ν

∑
σ

λ3S
U ′−J
νν′,`,σ(nνσ − nν′σ)


(4.18)

where

cosh(λ1) = e
1
2

∆τU (4.19)

cosh(λ2) = e
1
2

∆τU ′ (4.20)

cosh(λ3) = e
1
2

∆τ(U ′−J) (4.21)

and Nd is the number of the d orbitals. There are (2Nd − 1)Nd density-density type

interactions which are transformed, leaving 1/2 for each after the transformation. We can

write equation 4.18 in terms of Wνσ(`)’s

e−∆τHU (`) =
1

2(2Nd−1)Nd

∑
{SUν,`=±1}

∑
{SU′
νν′,`=±1}

∑
{SU′−J
νν′,`,σ=±1}

exp

{∑
ν,σ

Wνσ(`)nνσ

}
(4.22)

where

Wνσ(`) = WU
νσ(`) +WU ′

νσ (`) +WU ′−J
νσ (`) (4.23)

WU
νσ(`) = σλ1S

U
ν,` (4.24)
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WU ′

ν↑ = λ2

Nd∑
ν′=1
ν′ 6=ν

SU
′

νν′,`

WU ′

ν↓ = −λ2

Nd∑
ν′=1
ν′ 6=ν

SU
′

ν′ν,` (4.25)

WU ′−J
νσ = λ3

ν−1∑
ν′=1

SU
′−J

νν′,`,σ − λ3

Nd∑
ν′=ν+1

SU
′−J

ν′ν,`,σ (4.26)

Here we can make one more simplification to ease the notation for configurations

{SUν,`, SU
′

νν′,`, S
U ′−J
νν′,`,σ} which is

{S̃`} ≡ {SUν,`, SU
′

νν′,`, S
U ′−J
νν′,`,σ} (4.27)

Using equation 4.22, equation 4.12 becomes

e−βH =
1

2(2Nd−1)NdL

∑
{r`=0,1}

∑
{S̃`=±1}

F (k; r1, r2, · · · , rL)

×
L∏
`=1

[
e−∆τH0e

∑
ν,σWνσ(`)nνσχr`

]
+O(∆τ) (4.28)

Since H0, HU and HJ are separated out, we can decompose χ(= γ − βHJ) now. Firstly,

we need to decompose χr` into all distinct two-orbital pairs as in Sakai et al. (2006).

γ − βHJ(`) =
∑
ν>ν′

[
γνν

′ − βHνν′

J (`)
]

(4.29)

where

γ =
∑
ν>ν′

γνν
′

(4.30)

25



Decomposition of HJ is following as in Appendix C;

γνν
′ − βHνν′

J (`) =
γνν

′ − βJ
8

∑
{qνν′` ,tνν

′
↑` ,t

νν′
↓` =±1}

×
∏
σ

exp
{
λ4

[
σqνν

′

` f νν
′

σ + tνν
′

σ` (nνσ + nν′σ − 1)
]}

(4.31)

where

Hνν′

J = Jf νν
′

↑ f νν
′

↓ (4.32)

f νν
′

σ = d†νσdν′σ + d†ν′σdνσ (4.33)

λ4 =
1

2
ln

1 + κ

1− κ
(4.34)

κ =

√
βJ

γνν′
< 1 (4.35)

Using equation 4.29 and 4.31 together, we obtain the decomposition for χr` and it is

γ − βHJ(`) =
∑
ν>ν′

∑
{qνν′` ,tνν

′
↑` ,t

νν′
↓` }=±1

Qνν′

r`
(4.36)

where

Qνν′

r`
=
γνν

′ − βJ
8

∏
σ

e
λ4

[
σqνν

′
` fνν

′
σ +tνν

′
σ` (nνσ+nν′σ−1)

]
(4.37)

Using what we find after the decomposition of χr` , the final form of the Boltzmann oper-

ator is

e−βH =
1

2(2Nd−1)NdL

∑
{r`=0,1}

∑
{S̃`=±1}

∑
η>η′,

{qηη
′

` ,tηη
′

↑` ,t
ηη′
↓` =±1}

F (k; r1, r2, · · · , rL)

×
L∏
`=1

[
e−∆τH0e

∑
ν,σWνσ(`)nνσQηη′

r`

]
+O(∆τ) (4.38)
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where

Qηη′

r`
=

1 if r` = 0

γηη
′−βJ
8

∏
σ e

λ4
[
σqηη

′
` fηη

′
σ +tηη

′
σ` (nησ+nη′σ−1)

]
if r` = 1

(4.39)

and

k =
L∑
`=1

r` (4.40)

In equation 4.38 we changed the notation for Qνν′
r`

term (ν, ν ′ to η, η′) and we used the

fact that expanding the ` multiplication with “η > η′” summation being inside of it gives

different pairs of orbitals multiplied in different terms of the summation. We expanded

the ` multiplication and then took the “η > η′” summation out of the ` multiplication.

This means that in different imaginary-time slices there can be different pairs of orbitals

active in Qηη′
r`

term.

4.2. Partition Function

Before calculating the partition function, we make other simplifications to ease

the notations. We change ηη′ pair notations and configurations obtained from 4.31,

{qηη
′

` , tηη
′

↑` , t
ηη′

↓` }. According to this change

α ≡ ηη′ (4.41)∑
α

≡
∑
η>η′

(4.42)

{qα` , tα↑`, tα↓`} ≡ {q
ηη′

` , tηη
′

↑` , t
ηη′

↓` } (4.43)

{Pα
` } ≡ {qα` , tα↑`, tα↓`} (4.44)
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α stands for the orbitals pairs on which HJ is acting and {Pα
` } is for the configurations

{qηη
′

` , tηη
′

↑` , t
ηη′

↓` }. Thus, the partition function is

Z = Tre−βH

=
1

2(2Nd−1)NdL

∑
{r`=0,1}

∑
{S̃`=±1}

∑
α

∑
{Pα` ±1}

F (k; r1, r2, · · · , rL)

× Tr
L∏
`=1

[
e−∆τH0e

∑
ν,σWνσ(`)nνσQα

r`

]
+O(∆τ) (4.45)

We can drop another constant term, 1/2(2Nd−1)NdL, from the partition function. Let us

focus on the trace over fermion degrees of freedom.

Tr
L∏
`=1

[
e−∆τH0e

∑
ν,σWνσ(`)nνσQα

r`

]
(4.46)

This trace has three parts to evaluate. First part is coming from H0, second part is coming

from HU and the third part is coming from γ − βHJ . First part is represented as

e−∆τH0 (4.47)

The second part is

e
∑
ν,σWνσ(`)nνσ = e

∑
ν,σ d

†
νσWνσ(`)dνσ (4.48)

And the third part is

Qα
r`

=
γα − βJ

8

∏
σ

eλ4[σq
α
` f

α
σ +tασ`(nησ+nη′σ−1)]

=
γ
α − βJ

8

∏
σ

e−λ4t
α
σ`e

[
d†ησ(λ4σqα` )dη′σ+d†

η′σ(λ4σq
α
` )dησ+d†ησ(λ4tασ`)dησ+d†

η′σ(λ4t
α
σ`)dη′σ

]

(4.49)
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In equation 4.49, γ
α−βJ

8
e−λ4(t↑`+t↓`) is just a constant with respect to the trace over fermion

degrees of freedom. Therefore, we can take this terms out of the trace. Let us define the

Nd ×Nd matrices

[Wσ(`)]ν1,ν2 = Wν1σ(`)δν2,ν1 (4.50)

[Tασ (`)]ν1,ν2 = λ4σq
α
` (δν1,ηδν2,η′ + δν1,η′δν2,η) + λ4t

α
σ` (δν1,ηδν2,η + δν1,η′δν2,η′) (4.51)

The dimension of these matrices is Nd ×Nd since the interaction part of the Hamiltonian

includes only Nd impurity orbitals. Using these matrices we can easily take the trace over

fermion degrees of freedom. The trace becomes

Tr
∏
σ

L∏
`=1

[
e−∆τH0e

∑
ν,ν′ d

†
νσ [Wσ(`)]ν,ν′dν′σe

∑
ν,ν′ d

†
νσ [Tασ (`)]ν,ν′dν′σ

]
=∏

σ

det
[
I +Bσ

LB
σ
L−1 · · ·Bσ

1

]
(4.52)

where

Bσ
` =

e−∆τKeWσ(`)eT
α
σ (`) for r` = 1

e−∆τKeWσ(`) for r` = 0
(4.53)

where K is the kinetic part of the Hamiltonian. Calculation of the trace can be found in

Appendix D. Let us define the product of the matrices eWσ(`) and eTασ (`) by Λσ(`).

Λσ(`) = eWσ(`)eT
α
σ (`) (4.54)

By using these results, the partition function becomes

Z =
∑
{r`=0,1}

∑
{S̃`=±1}

∑
α

∑
{Pα` ±1}

F̃ ({r`})
∏
σ

det
[
I +Bσ

LB
σ
L−1 · · ·Bσ

1

]
(4.55)
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where

Bσ
` = e−∆τKΛσ(`) (4.56)

Λσ(`) =

eWσ(`)eT
α
σ (`) for r` = 1

eWσ(`) for r` = 0
(4.57)

F̃ ({r`}) = F (k; r1, · · · , rL)

(
γ̃ − βJ

8

)k
exp

{
−λ4

L∑
`=1

(t↑` + t↓`) δr`,1

}
(4.58)

k =
L∑
`=1

r` (4.59)

{Pα
` } ≡ {qα` , tα↑`, tα↓`} (4.60)

{S̃`} ≡ {SUν,`, SU
′

νν′,`, S
U ′−J
νν′,`,σ} (4.61)

and α were indicated as the orbital pairs ηη′ on which the HJ is acting. Recall that the α

summation has the condition η > η′. In equation 4.58, we took the weights of the orbital

pairs coming from γ − βHJ term equal. Thus, we set γα as constant, γ̃.

γ =
∑
α

γ̃ (4.62)

Furthermore, determinants of the products of Bσ
` being Nd × Nd matrices can be repre-
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sented as the determinants of Nd · L×Nd · L matrices,

∏
σ

det
[
I +Bσ

LB
σ
L−1 · · ·Bσ

1

]
= detM↑M↓ (4.63)

where

Mσ =



I 0 · · · Bσ
L

−Bσ
1 I 0 0

0 −Bσ
2 I

...
...

...
... . . . ...

I 0

0 0 · · · 0 −Bσ
L−1 I


Nd·L×Nd·L

(4.64)

and

Gσ = [Mσ]−1 (4.65)

Relation between the single particle Green’s functions and Mσ matrices is in Appendix

D.

4.3. Λσ(`) Matrices

Let us look at the form of Λσ(`) matrices.

Λσ(`) = eWσ(`)eT
α
σ (`) (4.66)
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eWσ(`) =



eW1,σ(`) 0

eW2,σ(`)

. . .

eWNd−1,σ(`)

0 eWNd,σ
(`)


Nd×Nd

(4.67)

We keep in mind that Λσ(`) = eWσ(`) if r` = 0. However, Tασ (`) has only four non-zero

elements.

Tασ (`) =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
λ4t

α
σ` · · · λ4σq

α
`

...
...

λ4σq
α
` · · · λ4t

α
σ`

↑↑↑
η, η′η, η′η, η′

↑↑↑
η, ηη, ηη, η

. . .

0 0


Nd×Nd

(4.68)

Exponential of this matrix is quite simple.

eT
α
σ (`) =



1 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
eλ4t

α
σ` cosh(λ4σq

α
` ) · · · eλ4t

α
σ` sinh(λ4σq

α
` )

1

eλ4t
α
σ` sinh(λ4σq

α
` ) · · · eλ4t

α
σ` cosh(λ4σq

α
` )

↑↑↑
η, η′η, η′η, η′

↑↑↑
η, ηη, ηη, η

. . .

0 1


Nd×Nd

(4.69)
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Now, we can form Λσ(`) matrix which is the product of eWσ(`) and eTασ (`) matrices. From

equation 4.66;

Λσ(`) =



. . . 0

eλ4t
α
σ` cosh(λ4σq

α
` )eWη′,σ(`) eλ4t

α
σ` sinh(λ4σq

α
` )eWη′,σ(`)

. . .

eλ4t
α
σ` sinh(λ4σq

α
` )eWη,σ(`) eλ4t

α
σ` cosh(λ4σq

α
` )eWη,σ(`)

0 . . .


(4.70)

In matrix Λσ(`), all elements are zero except the diagonal, [Λσ(`)]η,η′ and [Λσ(`)]η′,η ele-

ments. And the inverse of this matrix is

[Λσ(`)]−1 =

. . . 0

e−λ4t
α
σ` cosh(λ4σq

α
` )e−Wη′,σ(`) −e−λ4tασ` sinh(λ4σq

α
` )e−Wη,σ(`)

. . .

−e−λ4tασ` sinh(λ4σq
α
` )e−Wη′,σ(`) e−λ4t

α
σ` cosh(λ4σq

α
` )e−Wη,σ(`)

0 . . .


(4.71)

Always keep in mind that η > η′ and the dimensions of the Λσ(`) matrices are Nd ×Nd.
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4.4. Expansion Parameter γ

The expansion parameter γ not only affects the strength of the auxiliary spins

introduced in the decomposition of γ − βHJ term as in equation 4.31, but also affects the

expansion order. It is related to the expectation value of HJ since we expand the partition

function as powers of it. However, the expectation values of any observable should not be

depended on γ since it is the free parameter of the expansion.

In this chapter, we have split the Hamiltonian in two parts as H1 and H2.

H1 = H0 +HU +
γ

β
(4.72)

H2 = HJ −
γ

β
(4.73)

Let us rewrite the expansion formula in equation 4.8 by using H1 and H2.

Z = e−β(H1+H2)

=
∞∑
k=0

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

[−βH2(τiβ)] e−βH1 (4.74)

where

H2(τiβ) = e−τiβH1H2e
τiβH1 (4.75)

We need to change the upper limits of the integrals to 1. In order to do that, the equation

should be multiplied by 1/k! to cancel out the overcounted terms.

Z =
∞∑
k=0

1

k!

∫ 1

0

dτk · · ·
∫ 1

0

dτ1

k∏
i=1

[−βH2(τiβ)] e−βH1 (4.76)
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Let us calculate the expectation value of −H2 using 4.76.

〈−H2〉 =
1

β

∫ β

0

dτ〈−H2(τ)〉

=
1

β

∫ 1

0

dτ〈−βH2(τβ)〉

=
1

β

1

Z

∞∑
k=0

1

k!

∫ 1

0

dτ

∫ 1

0

dτk · · ·
∫ 1

0

dτ1

× (−βH2(τβ))(−βH2(τ1β)) . . . (−βH2(τkβ))e−βH1 (4.77)

If the equation is multiplied and divided by k + 1 and the summation over k is shifted to

k + 1, it is simply the expectation value of the expansion order k.

〈−H2〉 =
1

β

1

Z

∞∑
k=0

k + 1

(k + 1)!

∫ 1

0

dτ

∫ 1

0

dτk · · ·
∫ 1

0

dτ1

× (−βH2(τβ))(−βH2(τ1β)) . . . (−βH2(τkβ))e−βH1

=
1

β

1

Z

∞∑
k=0

k

k!

∫ 1

0

dτk · · ·
∫ 1

0

dτ1(−βH2(τ1β)) . . . (−βH2(τkβ))e−βH1

(4.78)

Now, let us go back to our notation, make the integrals time-ordered and arrange the limits

of the integrals to their old values.

〈−H2〉 =
1

β

1

Z

∞∑
k=0

k

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

[−βH2(τiβ)] e−βH1

=
1

β
〈k〉 (4.79)

If we look at 〈−H2〉 from the other way, the equation is

〈−H2〉 =
γ

β
− 〈HJ〉 (4.80)

Using equations 4.79 and 4.80, the relation between the expansion parameter, γ, and 〈HJ〉
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becomes

〈k〉 = γ − β〈HJ〉 (4.81)
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CHAPTER 5

CALCULATIONS OF THE GREEN’S FUNCTIONS

In this chapter, we focus on the calculations of the Green’s functions, updates of

them in the Monte Carlo steps and the physical measurements.

5.1. New Green’s Function (Gσ)′ From Old Green’s Function Gσ

Here, we will give a derivation of the new Green’s function (Gσ)′ with a new spin

configuration when we know the old one with old spin configuration. Since Λσ is not

diagonal, we cannot use Hirsh-Fye algorithm directly. We have to find out the form of the

equations. We omit the spin indices, η and α indices for simplicity. Λ′ represents the new

spin configuration and Λ represents the old spin configuration. Let us define the matrices

G−1 and Λ.

G−1 =



I 0 · · · BL

−B1 I 0 0

0 −B2 I
...

...
...

... . . . ...

I 0

0 0 · · · 0 −BL−1 I


Nd·L×Nd·L

(5.1)

(Λ)−1 =


[Λ(1)]−1

Nd×Nd 0
[Λ(2)]−1

Nd×Nd
. . .

0 [Λ(L)]−1
Nd×Nd


Nd·L×Nd·L

(5.2)
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Here Λ is aNd ·L×Nd ·Lmatrix, and there areNd×Nd matrices in the diagonal elements

which are denoted as Λ(`). Λ(`) can be written as

[Λ(`)]i,j = [Λ]i`,j` (5.3)

And the multiplication of these matrices

G−1 (Λ)−1 =



[Λ(1)]−1 0 · · · e−∆τK

−e−∆τK [Λ(2)]−1 0 0

0 −e−∆τK [Λ(3)]−1 ...
... . . .

[Λ(L− 1)]−1 0

0 0 · · · 0 −e−∆τK [Λ(L)]−1


(5.4)

Because B` = e−∆τKΛ(`).

Let us define G̃ which is

G̃ = ΛG (5.5)

(G̃)−1 = G−1 (Λ)−1 (5.6)

With these definitions we clearly see that we can get G̃′ from G̃.

=⇒ (G̃′)−1 = G̃−1 − Λ−1 + (Λ′)−1 (5.7)

(G̃′)−1 − G̃−1 = (Λ′)−1 − Λ−1 (5.8)

Multiplying both sides G̃ from the left and G̃′ from the right, we get

G̃− G̃′ = G̃
[
(Λ′)−1 − Λ−1

]
G̃′ (5.9)
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G̃′ = G̃− G̃
[
(Λ′)−1 − Λ−1

]
G̃′ (5.10)

Using equation 5.5, the expression becomes

Λ′G′ = ΛG− ΛG
[
(Λ′)−1 − Λ−1

]
Λ′G′ (5.11)

(Λ)−1Λ′G′ = G+G
(
Λ−1Λ′ − I

)
G′ (5.12)

Add G′ to both sides;

G′ = G+ (G− I)
(
Λ−1Λ′ − I

)
G′ (5.13)

Therefore, we find the relation between the old Green’s function and the new Green’s

function which is

G′ =
{
I − (G− I)

(
Λ−1Λ′ − I

)}−1
G (5.14)

5.2. Initial Calculation of Green’s Function Gσ from G0 and Λσ

In Hirsh-Fye quantum Monte Carlo method they used a relation to find G from G′

which is represented as

G′ = G+ (G− I)(eV
′−V − I)G′ (5.15)

They used this relation to findGσ fromG0 which can be found analytically, as well. How-

ever, the Hamiltonian that they used includes only the intra-orbital Coulomb interaction.

The Hamiltonian that we use includes inter-orbital Coulomb interaction, pair-hopping and
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spin-flip terms along with the intra-orbital Coulomb interaction. Therefore, we cannot use

this relation. In section 5.1 we have found that the relation between the old and the new

Green’s function is

G′ =
{
I − (G− I)

(
Λ−1Λ′ − I

)}−1
G (5.16)

In order to find the relation for the initial calculation of Green’s function we need to

modify some variables in a way that;

G′ −→ Gσ

G −→ G0

Λ−1Λ′ −→ Λσ (5.17)

The equation for the initial calculation of Green’s function Gσ from G0 is

Gσ =
{
I − (G0 − I) (Λσ − I)

}−1
G0 (5.18)

where G0 is the Green’s function for the case in which the auxiliary fields, {S̃`} and

{Pα
` }, are set to zero, and we can calculate it analytically. Since the Green’s function was

defined with plus sign in Hirsh-Fye paper, we defined it the same way. Green’s function

is represented as

Gσ
νν′(`, `

′) = +
〈
Tdνσ(`)d†ν′σ(`′)

〉
(5.19)

in our algorithm. Here G0 is calculated from the H0 part of the Hamiltonian which is

H0 =
∑
m,σ

(εm − µ)c†mσcmσ +
∑
ν,σ

(εν − µ)d†νσdνσ +
∑
m,ν,σ

Vmν
(
c†mσdνσ + h.c.

)
+
U

2

∑
ν,σ

nνσ +
∑
ν>ν′,σ

[
U ′

2
(nνσ + nν′,−σ) +

(U ′ − J)

2
(nνσ + nν′σ)

]
(5.20)
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G0 is calculated from the Dyson’s equation which is

G0
νν′(iωn) = G00

νν′(iωn) +
∑
ν′′,ν′′′

G00
νν′′(iωn)

∑
m,m′

Vν′′mG
00
mm′(iωn)Vm′ν′′′G

00
ν′′′ν′(iωn)

(5.21)

where G00
νν′(iωn) and G00

mm′(iωn) are impurity and host Green’s functions when the hy-

bridization terms, Vmν , are zero. G00
νν′(iωn) and G00

mm′(iωn) are calculated from the

Hamiltonian H00.

H00 =
∑
m,σ

(εm − µ)c†mσcmσ +
∑
ν,σ

(εν − µ)d†νσdνσ +
∑
ν,σ

Y nνσ (5.22)

where

∑
ν,σ

Y nνσ =
U

2

∑
ν,σ

nνσ +
∑
ν>ν′,σ

[
U ′

2
(nνσ + nν′,−σ) +

(U ′ − J)

2
(nνσ + nν′σ)

]
(5.23)

and if sums over ν, ν ′ and σ are taken

Y = (Nd − 1)

(
U

2
+
U ′

2
+
U ′ − J

2

)
(5.24)

for Nd > 1. Nd is the number of d orbitals. The Green’s functions, G00
νν′(iωn) and

G00
mm′(iωn), for zero hybridization are

G00
νν′(iωn) =

δνν′

iωn − (εν − µ+ Y )
(5.25)

G00
mm′(iωn) =

δmm′

iωn − (εm − µ)
(5.26)
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Notice that G0
νν′(iωn) is calculated in Matsubara frequency, iωn. After the calculation, it

should be transformed to Matsubara time, τ = it.

5.3. Ratio of the Determinants

In this section we will calculate the ratio of the determinants which are used for

updating the Green’s functions and weight comparison while progressing in the Markov

chain.

G̃′ = G̃− G̃
[
(Λ′)−1 − Λ−1

]
G̃′ (5.27)

where we omitted the spin and η indices and G̃ = ΛG. Multiplying with (G̃′)−1 on the

right

I = G̃(G̃′)−1 − G̃
[
(Λ′)−1 − Λ−1

]
(5.28)

G̃(G̃′)−1 = I + G̃
[
(Λ′)−1 − Λ−1

]
(5.29)

Recall that G = M−1 from equation 4.65.

G̃ = ΛG (5.30)

= ΛM−1 (5.31)

Using that equation 5.29 becomes

(
ΛM−1

) [
Λ′(M ′)−1

]−1
= I + ΛG

[
(Λ′)−1 − Λ−1

]
(5.32)

42



Multiplying Λ−1 on the left, Λ′ on the right

M−1M ′ = Λ−1Λ′ +G
(
I − Λ−1Λ′

)
(5.33)

= Λ−1Λ′ + (G− I)
(
I − Λ−1Λ′

)
+
(
I − Λ−1Λ′

)
(5.34)

⇒ M−1M ′ = I + (I −G)
(
Λ−1Λ′ − I

)
(5.35)

After taking the determinant of the both sides, expression becomes

detM ′

detM
= det

[
I + (I −G)

(
Λ−1Λ′ − I

)]
(5.36)

Therefore, the ratio of the determinants of the new and the old spin configuration without

omitting the indices is

Rσ =
detM ′

σ

detMσ

= detAσ (5.37)

where

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(5.38)

5.4. Calculation of Updated Green’s Functions

In this section we will derive the expressions for the updated Green’s functions.

First, look at the equations for the relation between the old and the new Green’s function;

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
(Gσ)′ (5.39)
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and

(Gσ)′ =
{
I − (Gσ − I)

(
Λ−1
σ Λ′σ − I

)}−1
Gσ (5.40)

solving them together gives the expression for the update algorithm that we used in the

program which is represented as

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (5.41)

where

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(5.42)

The matrix Aσ is used in fast update scheme to make a more efficient and fast algorithm.

The derivations of the equations required for fast update scheme is given in Appendix E.

There are two types of updates in this algorithm: single spin flip and expansion

order updates. Expansion order updates increase or decrease the expansion order by one

at a random imaginary-time slice for one Monte Carlo move by introducing or removing

3 spin for HJ term. Single spin flip updates changes the values of the spins while the

expansion order is constant. While making these changes, we need to consider the detailed

balance of the Monte Carlo steps. The η and α indices is dropped for simplicity.

5.5. Monte Carlo Transition Probabilities for Single Spin-flips

The acceptance probabilities for a single spin-flip are calculated using heat-bath

algorithm using equation 3.13;

Wacc(s→ s′) =
P

1 + P
(5.43)
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where

P =
ps′

ps

Wprop(s
′ → s)

Wprop(s→ s′)
(5.44)

Here the term ps′/ps is simply the ratio of the determinants multiplied by the ratio of the

weight terms for expansion orders.

ps′

ps
=
F̃ ′

F̃
R↑R↓ (5.45)

where the ratio of the determinants, Rσ, is calculated in section 5.3 which is

Rσ =
detM ′

σ

detMσ

= detAσ (5.46)

where

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(5.47)

We should consider F̃ (k; r1, r2, · · · , rL) as weights of the configurations along with the

determinants of the fermion matrices.

F̃ (k; r1, r2, · · · , rL) = F (k; r1, r2, · · · , rL)

(
γ̃ − βJ

8

)k
exp

{
−λ4

L∑
`=1

(t↑` + t↓`) δr`,1

}
(5.48)

Therefore, the equation 5.44 becomes

P =
F̃ ′

F̃
R↑R↓

Wprop(s
′ → s)

Wprop(s→ s′)
(5.49)

In this study the proposal probabilities are different only when there is an order

change. We will show that the calculation of the acceptance probabilities for each spin-
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flip.

5.5.1. Single Spin-flip for “r`”

Spin-flip for r` occurs in two ways. First one is turning on the effect of HJ for

imaginary-time slice `, and the second one is turning it off for imaginary-time slice `.

5.5.1.1. Turning on the effect of HJ

Let us look at the turning on case which is following;

r` = 0 −→ r′` = 1

This move turns on three auxiliary field variables at time slice `, and impurity sites η, η′.

These variables are q`, t↑` and t↓`.

q` = 0 −→ q′` = ±1

t↑` = 0 −→ t′↑` = ±1

t↓` = 0 −→ t′↓` = ±1

Let us calculate the ratio of the weight variables F̃ . If we turn on the effects of HJ for

imaginary-time slice `, it is turned on for k + 1 imaginary-time slices.

F̃ ′

F̃
=
F̃ (k + 1; r1, r2, · · · , r′` = 1, · · · , rL)

F̃ (k; r1, r2, · · · , r` = 0, · · · , rL)

=
F (k + 1; r1, r2, · · · , r′` = 1, · · · , rL)

F (k; r1, r2, · · · , r` = 0, · · · , rL)

(
γ̃−βJ

8

)k+1

(
γ̃−βJ

8

)k e−λ4(t↑`+t↓`) (5.50)
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The ratio of the weight variables becomes

F̃ ′

F̃
=
F (k + 1; r1, r2, · · · , r′` = 1, · · · , rL)

F (k; r1, r2, · · · , r` = 0, · · · , rL)

(
γ̃ − βJ

8

)
e−λ4(t↑`+t↓`) (5.51)

We should consider the ratio of the proposal probabilities, as well. For order change

updates, the steps in the Markov chain are not symmetrical. Increasing order by one adds

3 auxiliary field variables at the same time. Thus, there are 8 configurations from which

we can choose. The proposal probability from r` to r′` is

Wprop(r` → r′`) =
1

8
(5.52)

and the proposal probabilities for reverse move is chosen from one possible configuration,

it is

Wprop(r
′
` → r`) = 1 (5.53)

Using 5.49 the probability of the change “r` = 0 −→ r′` = 1” is

P =
F̃ ′

F̃
R↑R↓

1

1/8
(5.54)

Therefore, the acceptance probability of the change “r` = 0 −→ r′` = 1” is

Wacc(r` → r′`) =
P

1 + P
(5.55)

where

P = 8× F̃ ′

F̃
R↑R↓ (5.56)
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and

F̃ ′

F̃
=
F (k + 1; r1, r2, · · · , r′` = 1, · · · , rL)

F (k; r1, r2, · · · , r` = 0, · · · , rL)

(
γ̃ − βJ

8

)
e−λ4(t↑`+t↓`) (5.57)

5.5.1.2. Turning off the effect of HJ

Let us look at the turning on case which is following;

r` = 1 −→ r′` = 0

This move turns off three auxiliary field variables at time slice `, and impurity sites η, η′.

These variables are q`, t↑` and t↓`.

q` = ±1 −→ q′` = 0

t↑` = ±1 −→ t′↑` = 0

t↓` = ±1 −→ t′↓` = 0

Let us calculate the ratio of the weight variables F̃ . If we turn of the effects of HJ for

imaginary-time slice `, it is turned on for k − 1 imaginary-time slices.

F̃ ′

F̃
=
F̃ (k − 1; r1, r2, · · · , r′` = 0, · · · , rL)

F̃ (k; r1, r2, · · · , r` = 1, · · · , rL)

=
F (k − 1; r1, r2, · · · , r′` = 0, · · · , rL)

F (k; r1, r2, · · · , r` = 1, · · · , rL)

(
γ̃−βJ

8

)k−1

(
γ̃−βJ

8

)k e+λ4(t↑`+t↓`) (5.58)

The ratio of the weight variables becomes

F̃ ′

F̃
=
F (k − 1; r1, r2, · · · , r′` = 0, · · · , rL)

F (k; r1, r2, · · · , r` = 1, · · · , rL)

(
γ̃ − βJ

8

)−1

e+λ4(t↑`+t↓`) (5.59)
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We should consider the ratio of the proposal probabilities, as well. Decreasing order by

one removes 3 auxiliary field variables at the same time. There is only one configuration

for removing case. The proposal probability from r` to r′` is

Wprop(r` → r′`) = 1 (5.60)

and the proposal probabilities for reverse move is chosen from 8 possible configurations,

it is

Wprop(r
′
` → r`) =

1

8
(5.61)

Using 5.49 the probability of the change “r` = 1 −→ r′` = 0” is

P =
F̃ ′

F̃
R↑R↓

1/8

1
(5.62)

Therefore, the acceptance probability of the change “r` = 1 −→ r′` = 0” is

Wacc(r` → r′`) =
P

1 + P
(5.63)

where

P =
1

8
× F̃ ′

F̃
R↑R↓ (5.64)

and

F̃ ′

F̃
=
F (k − 1; r1, r2, · · · , r′` = 0, · · · , rL)

F (k; r1, r2, · · · , r` = 1, · · · , rL)

(
γ̃ − βJ

8

)−1

e+λ4(t↑`+t↓`) (5.65)
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5.5.2. Single Spin-flip for “q`”

The spin-flip for q` occurs in the following way.

q` −→ q′` = −q`

Let us calculate the ratio of the weight variables F̃ . There is nothing related to q` in F̃ .

Therefore, F̃ ′ = F̃ The ratio of the weight variables becomes

F̃ ′

F̃
= 1 (5.66)

The proposal probabilities for this change is the same since there is no order change.

Using 5.49 the acceptance probability of the change “q` −→ q′` = −q`” is

Wacc(q` → q′`) =
P

1 + P
(5.67)

where

P = R↑R↓ (5.68)

5.5.3. Single Spin-flip for “tσ`”

The spin-flip for tσ` occurs in the following way.

tσ` −→ t′σ` = −tσ`
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Let us calculate the ratio of the weight variables F̃ .

F̃ ′

F̃
=
F̃ (k; r1, r2, · · · , rL)

F̃ (k; r1, r2, · · · , rL)

=
F (k; r1, r2, · · · , rL)

F (k; r1, r2, · · · , rL)

(
γ̃−βJ

8

)k
(
γ̃−βJ

8

)k e+2λ4tσ` (5.69)

The ratio of the weight variables becomes

F̃ ′

F̃
= e+2λ4tσ` (5.70)

The proposal probabilities for this change is the same since there is no order change.

Using 5.49 the acceptance probability of the change “tσ` −→ t′σ` = −tσ`” is

Wacc(tσ` → t′σ`) =
P

1 + P
(5.71)

where

P =
F̃ ′

F̃
R↑R↓ (5.72)

5.5.4. Single Spin-flip for “SUν`”, “SU ′

νν′,`” and “SU
′−J

νν′,`,σ”

Spin-flips of these variables are explained in sections E.7, E.8 and E.9. From

the results it is seen that these changes do not include any variables changing in the F̃

weights. Therefore, the ratio of the weights is

F̃ ′

F̃
= 1 (5.73)
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for these spin-flips. The proposal probabilities for this change is the same since there is

no order change. The probability of acceptance of these spin changes is

Wacc(s` → s′`) =
P

1 + P
(5.74)

where

P = R↑R↓ (5.75)

where the matrices A↑ and detA↓ is calculated in sections E.7, E.8 and E.9.

5.6. Quantum Monte Carlo Measurements

We use Green’s function method in order to calculate the physical measurements.

The key point is that the Green’s functions are sampled from the configurations{
{r`}, {S̃`}, {α}, {Pα

` }
}

. Thus, after the Green’s functions are calculated, we need to

average them over the QMC samples.

The single particle Green’s functions in Matsubara time are

G↑νν′(τ) = −
〈
Tτdν↑(τ

′ + τ)d†ν′↑(τ
′)
〉

(5.76)

G↓νν′(τ) = −
〈
Tτdν↓(τ

′ + τ)d†ν′↓(τ
′)
〉

(5.77)

The physical quantities that we measure can be represented as the single particle Green’s

functions using the commutation relation between the electron creation/annihilation op-

erators.

{
dνσ, d

†
ν′σ′

}
= δνν′δσσ′ (5.78)
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The electron number operator and magnetization operators are

nν = d†ν↑dν↑ + d†ν↓dν↓ (5.79)

MZ
ν = d†ν↑dν↑ − d

†
ν↓dν↓ (5.80)

These are static measurements, using commutation relations representations of them with

the Green’s functions are

〈nν〉 = 〈nν〉mc

=
1

L

L∑
i=1

〈
(1−G↑νν(τi, τi)) + (1−G↓νν(τi, τi))

〉
mc

(5.81)

〈(
MZ

ν M
Z
ν′

)〉
=
〈

(d†ν↑dν↑ − d
†
ν↓dν↓)(d

†
ν′↑dν′↑ − d

†
ν′↓dν′↓)

〉
mc

=
1

L

L∑
i=1

〈
(G↑νν(τi, τi)−G↓νν(τi, τi))

× (G↑ν′ν′(τi, τi)−G
↓
ν′ν′(τi, τi))

+G↑νν′(τi, τi)(δνν′ −G
↑
ν′ν(τi, τi))

+G↑ν′ν(τi, τi)(δνν′ −G
↑
νν′(τi, τi))

〉
mc

(5.82)

where nν is the occupation of the impurity orbital ν,
(
MZ

ν M
Z
ν′

)
is the magnetic correlation

between the impurit orbitals ν and ν ′. Since HF+SE QMC algorithm uses time discretiza-

tion, measurements need to be averaged over L time slices. 〈· · · 〉mc indicates the average

over the configurations sampled during the Monte Carlo simulations.

The other physical quantities such as total occupation, square of the total magnetic

moment and dynamical quantities can be calculated in the same way.
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CHAPTER 6

QUANTUM MONTE CARLO RESULTS

In this chapter, we will show the results of our calculations. We have implemented

two kinds of algorithms to test here:

• First, HF+SE algorithm was tested which we developed it for Anderson impurity

model. It includes spin-flip and pair-hopping terms along with the U , U ′ and U ′−J terms.

Rombouts’ transformation is applied to spin-flip and pair-hopping terms. Spin-flip and

pair-hopping terms have off-diagonal terms in the occupation number basis.

• Second, in order to check the reliability of a combined method with Hubbard-

Stratonovich transformation and Rombouts’ transformation together, we have applied

Rombouts’ transformation on U ′−J term to expand it with series expansion since U ′−J
only includes diagonal terms in the occupation number basis. It is easier to combine them

when all terms have diagonal elements. Thus, we have done tests with this algorithm in-

cluding Hubbard-Stronovich transformation on U , U ′ and Rombouts’ transformation on

U ′ − J terms.

6.1. Tests of the HF+SE QMC Algorithm for Spin-flip and

Pair-hopping Terms

These first tests have been carried out for the algorithm that we developed for

SU(2) invariant Anderson impurity model.

In order to test our algorithm, we compared the results of the program with the

inputs of an exactly solvable model. The results from the runs for average expansion

order, 〈k〉, and the value of γ − β〈HJ〉 were compared which is a self-check mechanism

since they should be equal. Additionally, the results should not be changed with respect

to the free parameter γ in the expansion.

The first tests of the algorithm is on a 2 orbital Anderson model with no hy-

bridization between the host and the impurity orbitals. In this theoretical situation, the

Hamiltonian can be diagonalized for 2 orbitals. The tests were carried out at temperatures

T = 3020 K, T = 700 K, T = 300 K. However, the correlation times are less in high

temperatures. Thus, we get the results quickly in high temperatures.
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Firstly, we set HU term to zero. The Hamiltonian becomes

H = H0 +HJ (6.1)

Figure 6.1 shows the effect of the HJ term from the exact diagonalization results

for Hamiltonian. Spin-flip and pair-hopping terms affect the results considerably when

HU is absent. From the expectation value of HJ it is clearly seen that the total energy

of the system is decreased which is expected since HJ contains off-diagonal terms with

respect to the electron creation/annihilation operators. For this case HJ changes both

total magnetic moment and total occupation numbers. It lowers the magnetic moment as

expected.

For testing our algorithm, we compared the results with these exact calculations of

〈n3d〉, 〈(M3d)
2〉 and 〈HJ〉. Then we will show that the results do not change with respect

to the free parameter γ.

In figure 6.2, 2000 warm up and 5000 measurement sweeps were taken from the

QMC simulations for each point. Our QMC calculations exactly match to the exact di-

agonalization results for H = H0 + HJ as seen from figure 6.2 plotted as a function of

chemical potential µ. Here, the number of imaginary-time slices L = 64 and the time

discretization parameter ∆τ = 0.06. J = 0.9 but HU = 0. Free expansion parameter

γ − βJ = 0.3. The energy values of the impurity orbitals are ε1 = 0 eV and ε2 = 0 eV.

All points are within the error bars. Here, the only error is the statistical error caused by

the Monte Carlo samples. In 6.2b, the error on the total magnetic moment at chemical

potential µ = −0.2 can be fixed with more Monte Carlo samples.

For the calculations in figure 6.3, 5000 warm up and 10000 measurement sweeps

were taken from the QMC simulations for each point. Here, the results are plotted as a

function of the free expansion parameter γ. It is clearly seen that the results does not

change as a function of γ and exactly on the line of the exact diagonalization result. The

number of imaginary-time slices L = 64 and the time discretization parameter ∆τ =

0.06. J = 0.9 but HU = 0. This time the chemical potential is constant as µ = −0.2.

The energy values of the impurity orbitals are ε1 = 0 eV and ε2 = 0 eV. The value of the

total magnetic moment is fluctuating about the exact value, because of the degeneracy in

the energy eigenvalues. It can be a smooth function of γ, if there are more Monte Carlo

samples. If we look at our bare data, the expectation value of the expansion order 〈k〉 and

γ − β〈HJ〉 are equal for all data points.

We have carried out tests for only HJ term at T = 300 K to check the algorithm
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in more realistic temperatures. Figure 6.4 shows the exact diagonalization calculations to

observe the effect of HJ term at 300 K and non-degenerate impurity energy eigenvalues.

The energy values of the impurity orbitals are ε1 = 0 eV and ε2 = 2 eV. It is seen that the

magnetization values are lowered more than the previous case. At lower temperatures, the

strength of the spin-flip and pair-hopping interactions are higher. They nearly suppresses

ferromagnetic behavior of the system for this case.

The comparison between the QMC results and the exact diagonalization calcu-

lations in 300 K and non-degenerate energy case shows that they also match for these

parameters. Figure 6.5 shows the comparison between QMC results and the exact diag-

onalization calculations. 5000 warm up and 5000 measurement sweeps and 32 CPU per

points are used in the QMC simulations for each point. Here, the number of imaginary-

time slices L = 296 and the time discretization parameter ∆τ = 0.13063. J = 0.9 but

HU = 0. Free expansion parameter γ − βJ = 0.3. The energy values of the impurity

orbitals are ε1 = 0 eV and ε2 = 2 eV. All points match the exact calculations except for

two points. More Monte Carlo samples can lower the error bars of these points and they

can converge the exact results. In figure 6.6, the QMC results are plotted as a function of

the free parameter γ, with the parameters used in the figure 6.5 but at constant chemical

potential µ = 1 eV. The results are independent of the free parameter as expected.

We continue our tests by extend this calculations to 3 orbital and 5 orbital systems

with a degenerate energy levels. The Hamiltonian is again

H = H0 +HJ (6.2)

In the calculations of figure 6.7, 3 orbital system is tested. The comparison be-

tween the QMC results and the exact diagonalization calculations shows that the QMC re-

sults have little errors. For these calculations The free parameter is taken as γ−βJ = 0.3.

The number of imaginary-time slices L = 64 and the time discretization parameter

∆τ = 0.06. J = 0.9 but HU = 0. The energy eigenvalues are all zero, εν = 0.

5000 warm up and 10000 measurement sweeps were taken for each point. The temper-

ature is T = 3020 K. The expectation value of HJ is overestimated a little bit in these

calculations. Thus, there are unmatched points in the magnetization and the occupation

values.

For those calculations in figure 6.8 we compare the results of the QMC simulations

with the exact diagonalization results for 5 orbitals, plotted as a function of µ. The free

parameter is taken as γ−βJ = 0.3. The number of imaginary-time slices L = 64 and the
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time discretization parameter ∆τ = 0.06. J = 0.9 but HU = 0. The energy eigenvalues

are all zero, εν = 0. 100 warm up and 100 measurement sweeps were taken from 10 cores

for each point. Sweeps are lower than the two orbital case, because matrix sizes bigger

and the number of processes are much more to calculate the observables. However, the

results do not match to the exact diagonalization results. It may be caused by a bug in the

source code of the program or the treatment of free expansion parameter γ implemented

mistakenly. As seen from figure 6.8, the expectation value of HJ is underestimated.

Although the results do not match to the exact ones, if we plot them as a function

of free parameter γ, they are constant as in 2 orbital case. In figure 6.8, results do not

change as a function of γ. Here, the number of imaginary-time slices L = 32 and the

time discretization parameter ∆τ = 0.12. J = 0.9 but HU = 0. The energy eigenvalues

are all zero, εν = 0. 100 warm up and 100 measurement sweeps were taken from 10

cores for each point. A lower number of imaginary-time slices are chosen, because of the

bigger matrix sizes.

The last tests of the program involve HU and HJ together for 2 orbital case. The

Hamiltonian becomes

H = H0 +HU +HJ (6.3)

For this Hamiltonian we compared the exact diagonalization results to see the

effect ofHJ whenHU is present. Figure 6.10 shows the exact diagonalization comparison

when HU 6= 0 for HJ = 0 and HJ 6= 0. The energy eigenvalues are ε1 = 0 eV and

ε2 = 0 eV. Coulomb interaction between the 3d orbitals U = 4 eV and Hund’s coupling

J = 0.9 eV at temperature T = 3020 K for this calculation. For chemical potential values

between µ = 0.5 and µ = 6.5, HJ is effective and its value is approximately 〈HJ〉 =

−0.3. At these chemical potential values, spin-flip and pair-hopping terms suppress the

ferromagnetic tendency of the z-component of the Hund’s coupling, as seen in figure

6.10b. However, no apparent change in the total occupation.

In figure 6.11, the comparison between the QMC results and the exact diagonal-

ization results are for U = 4 eV and J = 0.9 eV at temperature T = 3020 K. In QMC

simulations ∆τ = 0.12 and L = 32, the free parameter γ − βJ = 0.3, 10000 warm

up and 50000 measurement sweeps were taken at 30 processors for each point on the

graph in QMC simulations, and the energy eigenvalues are ε1 = 0 eV and ε2 = 0 eV.

The QMC measurements do not match to exact diagonalization results for these calcula-

tions. However, the behavior is similar to the exact results. The expectation value of HJ
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is overestimated here. Thus, it lowers the value of the total magnetic moment more than

expected.

For 2 orbital case, we have tested our algorithm at T = 700 K, as well. In figure

6.12, QMC results and exact diagonalization calculations are compared for for U = 4

eV and J = 0.9 eV at T = 700 K, ∆τ = 0.13810 and L = 120, the free parameter

γ − βJ = 0.3, and 1000 warm up and 4000 measurement sweeps were taken at 32 pro-

cessors for each point on the graph. The energy eigenvalues are ε1 = 0 eV and ε2 = 0

eV. Here, the behavior is similar with 6.11. For total occupation numbers, the jumps are

located at different chemical potential values compared to exact diagonalization calcula-

tions since the expectation value of HJ is overestimated in QMC results. This causes the

magnetization values to be lowered more than expected.

In 6.13, we have compared QMC results and the exact diagonalization results

for non-degenerate impurity energies for U = 4 eV and J = 0.9 eV at T = 700 K,

∆τ = 0.13810 and L = 120, the free parameter γ − βJ = 0.3. The energy eigenvalues

are ε1 = 0 eV and ε2 = 2 eV. 1000 warm up and 4000 measurement sweeps were taken

at 32 processors for each point on the graph. The jumps are located at different chemical

potential values similar to the previous cases 6.11 and 6.12. The expectation value of HJ

is overestimated again. Resulting a dramatic decrement in the magnetization values.

In figure 6.14, we present the distributions of the expansion orders sampled in

the QMC simulations. These results are for theoretical 2-orbital case. HU = 0 and

HJ 6= 0. The energy eigenvalues are ε1 = 0 eV and ε2 = 0 eV. Hund’s coupling J = 0.9

eV at temperature T = 3020 K for this calculations. As the free parameter γ − βJ

increases, the distribution shifts to the right so that the contribution from the higher orders

can be sampled. The expansion orders are sampled from a normally distributed space

as seen in the figures. However, for the figures 6.15, the expansion orders for Monte

Carlo samples are not normally distributed. For the calculation in figure 6.15, the only

difference is HU 6= 0 and Coulomb interaction is U = 4 eV. This may be related to

the overestimated expectation values of HJ terms and transition probabilities that we

choose. The distributions have skewness and for high values of measurement sweeps,

they converge to a certain skewness value.
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Figure 6.1. Exact diagonalization results plotted as a function of chemical potential
µ, for theoretical 2-impurity orbitals of degenerate energy levels, and no
hybridization between the host and the impurity. ε1 = 0 eV and ε2 = 0
eV. Coulomb interaction between the 3d orbitals U = 0 eV and Hund’s
coupling J = 0.9 eV at temperature T = 3020 K. Red empty dots indicates
the calculations with HU = 0 and HJ 6= 0, black filled dots indicates the
calculations with HU = 0 and HJ = 0. (a) Total occupation number of
the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total
magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical potential µ.
(c) Expectation value of HJ versus chemical potential µ.
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Figure 6.2. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 2-impurity orbitals of energies ε1 = 0
eV and ε2 = 0 eV at temperature T = 3020 K. In these calculations HU =
0 andHJ 6= 0. The transverse components of Hund’s coupling J = 0.9 eV.
In QMC simulations ∆τ = 0.06 and L = 64. The free parameter γ−βJ =
0.3. 2000 warm up and 5000 measurement sweeps were taken for QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square
of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical
potential µ. (c) Expectation value of HJ versus chemical potential µ.

60



Figure 6.3. Exact diagonalization vs QMC comparison results plotted as a function of
the free expansion parameter γ, for theoretical 2-impurity orbitals of en-
ergies ε1 = 0 eV and ε2 = 0 eV at temperature T = 3020 K. In these
calculations HU = 0 and HJ 6= 0. The transverse components of Hund’s
coupling J = 0.9 eV. In QMC simulations ∆τ = 0.06 and L = 64. The
chemical potential is constant as µ = −0.2. 5000 warm up and 10000
measurement sweeps were taken for QMC simulations. Red empty dots
for calculations with the QMC simulations, black dashed line for the ex-
act diagonalization result. (a) Total occupation number of the 3d orbitals
〈n3d〉 versus free expansion parameter γ. (b) Square of the total magnetic
moment at the 3d orbitals 〈(M3d)

2〉 versus free expansion parameter γ. (c)
Expectation value of HJ versus free expansion parameter γ.
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Figure 6.4. Exact diagonalization results plotted as a function of chemical potential µ,
for theoretical 2-impurity orbitals of non-degenerate energy levels, and no
hybridization between the host and the impurity. ε1 = 0 eV and ε2 = 2
eV. Coulomb interaction between the 3d orbitals U = 0 eV and Hund’s
coupling J = 0.9 eV at temperature T = 300 K. Red empty dots indicates
the calculations with HU = 0 and HJ 6= 0, black filled dots indicates the
calculations with HU = 0 and HJ = 0. (a) Total occupation number of
the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total
magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical potential µ.
(c) Expectation value of HJ versus chemical potential µ.
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Figure 6.5. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 2-impurity orbitals of energies ε1 = 0
eV and ε2 = 2 eV at temperature T = 300 K. In these calculationsHU = 0
and HJ 6= 0. The transverse components of Hund’s coupling J = 0.9 eV.
In QMC simulations ∆τ = 0.13063 and L = 296. The free parameter
γ − βJ = 0.3. 5000 warm up and 5000 measurement sweeps and 32 cpu
per point were taken in QMC simulations. Red empty dots for calculations
with the QMC simulations, black filled dots for the exact diagonalization
results. (a) Total occupation number of the 3d orbitals 〈n3d〉 versus chem-
ical potential µ. (b) Square of the total magnetic moment at the 3d orbitals
〈(M3d)

2〉 versus chemical potential µ. (c) Expectation value of HJ versus
chemical potential µ.
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Figure 6.6. Exact diagonalization vs QMC comparison results plotted as a function
of the free expansion parameter γ, for theoretical 2-impurity orbitals of
energies ε1 = 0 eV and ε2 = 2 eV at temperature T = 300 K. In these
calculations HU = 0 and HJ 6= 0. The transverse components of Hund’s
coupling J = 0.9 eV. In QMC simulations ∆τ = 0.13063 and L = 296.
The chemical potential is constant as µ = 1.0 eV. 5000 warm up and 5000
measurement sweeps and 32 cpu per point were taken in QMC simulations.
Red empty dots for calculations with the QMC simulations, black dashed
line for the exact diagonalization result. (a) Total occupation number of
the 3d orbitals 〈n3d〉 versus free expansion parameter γ. (b) Square of the
total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus free expansion
parameter γ. (c) Expectation value of HJ versus free expansion parameter
γ.
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Figure 6.7. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 3-impurity orbitals of energies εν = 0
eV for all at temperature T = 3020 K. In these calculations HU = 0 and
HJ 6= 0. The transverse components of Hund’s coupling J = 0.9 eV. In
QMC simulations ∆τ = 0.06 and L = 64. The free parameter γ − βJ =
0.3. 5000 warm up and 10000 measurement sweeps were taken in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square
of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical
potential µ. (c) Expectation value of HJ versus chemical potential µ.
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Figure 6.8. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 5-impurity orbitals of energies εν = 0
eV for all at temperature T = 3020 K. In these calculations HU = 0
and HJ 6= 0. The transverse components of Hund’s coupling J = 0.9
eV. In QMC simulations ∆τ = 0.06 and L = 64. The free parameter
γ − βJ = 0.3. 100 warm up and 100 measurement sweeps were taken
at 10 processors for each point on the graph in QMC simulations. Red
empty dots for calculations with the QMC simulations, black filled dots
for the exact diagonalization results. (a) Total occupation number of the
3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total mag-
netic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical potential µ. (c)
Expectation value of HJ versus chemical potential µ.
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Figure 6.9. Exact diagonalization vs QMC comparison results plotted as a function of
the free expansion parameter γ, for theoretical 5-impurity orbitals of ener-
gies εν = 0 eV for all at temperature T = 3020 K. In these calculations
HU = 0 and HJ 6= 0. The transverse components of Hund’s coupling
J = 0.9 eV. In QMC simulations ∆τ = 0.12 and L = 32. The chemical
potential is constant as µ = −0.2. 100 warm up and 100 measurement
sweeps were taken at 10 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black black dashed line for the exact diagonalization result. (a) Total occu-
pation number of the 3d orbitals 〈n3d〉 versus free expansion parameter γ.
(b) Square of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 ver-
sus free expansion parameter γ. (c) Expectation value of HJ versus free
expansion parameter γ.
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Figure 6.10. Exact diagonalization results plotted as a function of chemical potential
µ, for theoretical 2-impurity orbitals of degenerate energy levels, and no
hybridization between the host and the impurity. ε1 = 0 eV and ε2 = 0
eV. Coulomb interaction between the 3d orbitals U = 4 eV and Hund’s
coupling J = 0.9 eV at temperature T = 3020 K. Red empty dots indicates
the calculations with HJ 6= 0, black filled dots indicates the calculations
with HJ = 0. (a) Total occupation number of the 3d orbitals 〈n3d〉 versus
chemical potential µ. (b) Square of the total magnetic moment at the 3d
orbitals 〈(M3d)

2〉 versus chemical potential µ. (c) Expectation value of HJ

versus chemical potential µ.
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Figure 6.11. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 2-impurity orbitals of energies ε1 = 0
eV and ε2 = 0 eV at temperature T = 3020 K. In these calculations
HU 6= 0 and HJ 6= 0. The transverse components of Hund’s coupling
J = 0.9 eV and Coulomb interaction between the 3d orbitals U = 4
eV. In QMC simulations ∆τ = 0.12 and L = 32. The free parameter
γ − βJ = 0.3. 10000 warm up and 50000 measurement sweeps were
taken at 30 processors for each point on the graph in QMC simulations.
Red empty dots for calculations with the QMC simulations, black filled
dots for the exact diagonalization results. (a) Total occupation number of
the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square of the total
magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical potential µ.
(c) Expectation value of HJ versus chemical potential µ.
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Figure 6.12. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 2-impurity orbitals of energies ε1 = 0
eV and ε2 = 0 eV at temperature T = 700 K. In these calculationsHU 6= 0
and HJ 6= 0. The transverse components of Hund’s coupling J = 0.9 eV
and Coulomb interaction between the 3d orbitals U = 4 eV. In QMC sim-
ulations ∆τ = 0.13810 and L = 120. The free parameter γ − βJ = 0.3.
1000 warm up and 4000 measurement sweeps were taken at 32 proces-
sors for each point on the graph in QMC simulations. Red empty dots for
calculations with the QMC simulations, black filled dots for the exact di-
agonalization results. (a) Total occupation number of the 3d orbitals 〈n3d〉
versus chemical potential µ. (b) Square of the total magnetic moment at
the 3d orbitals 〈(M3d)

2〉 versus chemical potential µ. (c) Expectation value
of HJ versus chemical potential µ.
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Figure 6.13. Exact diagonalization vs QMC comparison results plotted as a function of
chemical potential µ, for theoretical 2-impurity orbitals of energies ε1 =
0 eV and ε2 = 2 eV at temperature T = 700 K. In these calculations
HU 6= 0 and HJ 6= 0. The transverse components of Hund’s coupling
J = 0.9 eV. In QMC simulations ∆τ = 0.13810 and L = 120. The
free parameter γ − βJ = 0.3. 1000 warm up and 4000 measurement
sweeps were taken at 32 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square
of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical
potential µ. (c) Expectation value of HJ versus chemical potential µ.
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Figure 6.14. Histograms of the expansion orders from the QMC simulations for typical
parameters for theoretical 2-impurity orbitals of degenerate energies ε1 =
0 eV and ε2 = 0 eV at temperature T = 3020 K. HU = 0, HJ 6= 0
and J = 0.9 eV. ∆τ = 0.12 and L = 32. 5000 warm up and 10000
measurement sweeps. a) The free parameter γ − βJ = 0.3. The average
expansion order 〈k〉 ≈ 6. b) The free parameter γ − βJ = 7. The average
expansion order 〈k〉 ≈ 13. c) The free parameter γ − βJ = 15. The
average expansion order 〈k〉 ≈ 20.
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Figure 6.15. Histograms of the expansion orders from the QMC simulations for typical
parameters for theoretical 2-impurity orbitals of degenerate energies ε1 =
0 eV and ε2 = 0 eV at temperature T = 3020 K. HU 6= 0, HJ 6= 0 and
U = 4 eV, J = 0.9 eV. ∆τ = 0.12 and L = 32. The free parameter γ −
βJ = 0.3. a) 5000 warm up and 10000 measurement sweeps. The average
expansion order 〈k〉 ≈ 6. b) 10000 warm up and 50000 measurement
sweeps. The average expansion order 〈k〉 ≈ 7. c) 50000 warm up and
100000 measurement sweeps. The average expansion order 〈k〉 ≈ 7.
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6.2. Tests of the QMC Algorithm for Series Expansion of U ′ − J

Term

Here, we have constructed a Hamiltonian which only includes the z-component of

the Hund’s coupling.

H = H0 +HU +HU ′−J (6.4)

where

HU =
∑
ν

[
Unν↑nν↓ −

U

2
(nν↑ + nν↓)

]
+
∑
ν>ν′,σ

[
U ′nνσnν′,−σ −

U ′

2
(nνσ + nν′,−σ)

]
HU ′−J =

∑
ν>ν′,σ

[
(U ′ − J)nνσnν′σ −

(U ′ − J)

2
(nνσ + nν′σ)

]
(6.5)

We expanded the Boltzmann factor with respect to HU ′−J

e−β(H0+HU )+(γ−βHJ ) = e−β(H0+HU )

+
∞∑
k=1

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

×
k∏
i=1

[
e−τiβ(H0+HU )(γ − βHU ′−J)eτiβ(H0+HU )

]
e−β(H0+HU ) (6.6)

After this, we follow the same derivations what we developed in the study except

for the Rombouts’ transformation. For U ′ − J terms, we have used a decoupling formula

similar to the transformation in Gull et al. (2008).

1− β(U ′ − J)

γ

∑
ν>ν′

∑
σ

[
nνσnν′σ −

1

2
(nνσ + nν′σ)

]
=

1

4

1

Npair

∑
ν>ν′

∑
σ

∑
SU
′−J

νν′,σ =±1

e
λU′−JS

U′−J
νν′,σ (nνσ−nν′σ) (6.7)
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where

cosh(λU ′−J) = 1 +
Npairβ(U ′ − J)

γ
(6.8)

We have carried out tests for this Hamiltonian for 2-orbital case to check the com-

patibility of the Hubbard-Stratonovich transformation and the Rombouts’ transformation.

Figure 6.16 shows the QMC results and exact diagonalization comparison for U =

4 eV, U = 2.2 eV and U ′ − J = 1.3 eV, ∆τ = 0.12 and L = 32 at T = 3020 K. The free

parameter γ = 0.3. In these simulations 5000 warm up and 10000 measurement sweeps

were taken at 20 processors for each point on the graph. The QMC results match the

exact diagonalization calculations with small errors. These error are actually the statistical

errors and can be corrected with more Monte Carlo samples.

We have carried out calculations in more realistic temperatures with same param-

eters. In figure 6.17, U = 4 eV, U = 2.2 eV and U ′ − J = 1.3 eV, ∆τ = 0.13063 and

L = 296 at T = 300 K. The free parameter γ = 0.3. For QMC results, 1000 warm up

and 1000 measurement sweeps were taken at 32 processors for each point on the graph.

At T = 300 K, the matrices are bigger, thus the run times of the simulations are higher

than the simulations at high temperatures. Therefore, we only carried out QMC simula-

tions at the chemical potential values which have critical jumps in the figures. We saw

some points in figures 6.17 which do not match the exact calculations. These points have

statistical error and can be corrected by taking more Monte Carlo samples.

In figure 6.18, the QMC results are plotted as a function of the free parameter γ.

The parameters are U = 4 eV, U = 2.2 eV and U ′−J = 1.3 eV, ∆τ = 0.13063, L = 296

at T = 300 K and constant chemical potential value µ = 7eV . 1000 warm up and 1000

measurement sweeps were taken at 32 processors for each point on the graph. The QMC

results are independent of the free parameter γ as expected. These results lead to the fact

that Hubbard-Stratonovich transformation and Rombouts’ transformation are compatible

when the transformed terms are diagonal in the occupation number basis.
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Figure 6.16. QMC results for the series expansion to the U ′−J vs exact diagonalization
comparison plotted as a function of chemical potential µ, for theoretical 2-
impurity orbitals of energies ε1 = 0 eV and ε2 = 0 eV at temperature
T = 3020 K. In these calculations HU 6= 0 and HU ′−J 6= 0. U = 4 eV,
U = 2.2 eV and U ′−J = 1.3 eV. In QMC simulations ∆τ = 0.12 and L =
32. The free parameter γ = 0.3. 5000 warm up and 10000 measurement
sweeps were taken at 20 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square
of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical
potential µ. (c) Expectation value of HJ versus chemical potential µ.
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Figure 6.17. QMC results for the series expansion to the U ′−J vs exact diagonalization
comparison plotted as a function of chemical potential µ, for theoretical 2-
impurity orbitals of energies ε1 = 0 eV and ε2 = 0 eV at temperature T =
300 K. In these calculations HU 6= 0 and HU ′−J 6= 0. U = 4 eV, U = 2.2
eV and U ′ − J = 1.3 eV. In QMC simulations ∆τ = 0.13063 and L =
296. The free parameter γ = 0.3. 1000 warm up and 1000 measurement
sweeps were taken at 32 processors for each point on the graph in QMC
simulations. Red empty dots for calculations with the QMC simulations,
black filled dots for the exact diagonalization results. (a) Total occupation
number of the 3d orbitals 〈n3d〉 versus chemical potential µ. (b) Square
of the total magnetic moment at the 3d orbitals 〈(M3d)

2〉 versus chemical
potential µ. (c) Expectation value of HJ versus chemical potential µ.
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Figure 6.18. QMC results for the series expansion to the U ′−J vs exact diagonalization
comparison plotted as a function of the free parameter γ, for theoretical 2-
impurity orbitals of energies ε1 = 0 eV and ε2 = 0 eV at temperature
T = 300 K. In these calculations HU 6= 0 and HU ′−J 6= 0. U = 4 eV,
U = 2.2 eV and U ′ − J = 1.3 eV. In QMC simulations ∆τ = 0.13063
and L = 296. The chemical potential is constant as µ = 7 eV. 1000 warm
up and 1000 measurement sweeps were taken at 32 processors for each
point on the graph in QMC simulations. Red empty dots for calculations
with the QMC simulations, black filled dots for the exact diagonalization
results. (a) Total occupation number of the 3d orbitals 〈n3d〉 versus chem-
ical potential µ. (b) Square of the total magnetic moment at the 3d orbitals
〈(M3d)

2〉 versus chemical potential µ. (c) Expectation value of HJ versus
chemical potential µ.
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CHAPTER 7

CONCLUSIONS

In this thesis, we have implemented a quantum Monte Carlo method to solve the

multi-orbital Anderson impurity model including the SU(2) invariant Hund’s coupling.

The QMC method involves a series expansion to the partition function and Trotter de-

composition in order to apply the renowned Hirsch-Fye QMC algorithm with the spin-flip

and pair hopping terms. The detailed derivations was carried out, and the QMC program

was written to simulate the deoxy and oxyheme molecules. On the other hand, we have

developed an exact diagonalization program to solve the SU(2) invariant Hamiltonian in

the atomic limit.

To form an insight about the effect of transverse components of the Hund’s cou-

pling, the hybridization matrix elements between the Fe(3d) orbitals of hemoglobin mole-

cules and the remaining host orbitals are neglected. This allowed us to diagonalize the

Hamiltonian in the atomic limit. The exact diagonalization calculations revealed that the

transverse Hund’s coupling terms affect the system for certain points, and suppress the

tendency to ferromagnetic regime of the longitudinal Hund’s terms, decreasing the total

magnetic moments before the dramatic jumps for hemoglobin molecules. Additionally,

calculations with the theoretical two and five orbital systems showed that the effect of

the spin-flip and the pair-hopping terms can be more increased which resulted in more

decrement in the total magnetization.

We have compared the QMC measurements and the exact diagonalization calcu-

lations with zero hybridization to ensure the accuracy of the simulations. In QMC mea-

surements, the results have matched to exact diagonalization results for spin-flip and pair-

hopping terms in two orbital systems when the Coulomb interactions are neglected. We

have observed that the free expansion parameter γ does not affect the results as expected

since it is just a constant with respect to electron creation/annihilation operators. The in-

crement of γ increases the average expansion order k, while it is decreasing the strength

of the decoupled HJ . Therefore, the results are not dependent on the free parameter γ.

However, smaller values of γ is safer because we have cut off the expansion order at L and

average expansion order should much smaller than that L. For two orbital systems, the

expectation value of HJ was overestimated in QMC measurements when Coulomb inter-

actions are taken into account, thus the results do not match to the exact ones. Although
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the behaviors of the QMC results and the exact results are very similar, the magnetiza-

tion values are decreased more than expected. When we examine the distribution of the

expansion orders which are sampled in the QMC simulations, the normal behavior is bro-

ken if HU terms are taken into account along with the HJ terms. These results suggests

that the diagonal terms transformed by Hubbard-Stratonovich transformation and the off-

diagonal terms decoupled with Rombouts’ transformation may be incompatible to use in

QMC simulations or calculating the partition functions. The second suggestion is that

the transition probabilities in the Monte Carlo steps may be chosen inaccurately which

leads errors in the QMC results. However, when we used Rombouts’ transformation on

U ′ − J part of the Hamiltonian, the decoupling gives diagonal terms with respect to the

occupation number basis. The results from the series expansion of U ′ − J terms showed

that the Hubbard-Stratonovich transformation and Rombouts’ transformation can be used

together when the terms which are decoupled are diagonal.

All in all, we have found that the effect of spin-flip and pair-hopping terms cannot

be neglected from the exact diagonalization results. The calculations with the multi-

orbital Anderson impurity model including SU(2) invariant Hund’s coupling in order to

obtain the electronic properties of the metalloproteins can give more realistic results. The

QMC algorithm was derived for general interactions, any number of impurity orbitals,

especially for metalloproteins. The first steps have been taken for the QMC studies of the

SU(2) invariant Anderson impurity models on metalloproteins and similar materials.

80



REFERENCES

Anderson, P. W. (1961, Oct). Localized magnetic states in metals. Phys. Rev. 124, 41–
53.

Ceperley, D., G. V. Chester, and M. H. Kalos (1977, Oct). Monte carlo simulation of a
many-fermion study. Phys. Rev. B 16, 3081–3099.

Ceperley, D. M. (1995, Apr). Path integrals in the theory of condensed helium. Rev.
Mod. Phys. 67, 279–355.

Foulkes, W. M. C., L. Mitas, R. J. Needs, and G. Rajagopal (2001, Jan). Quantum
monte carlo simulations of solids. Rev. Mod. Phys. 73, 33–83.

Gull, E., A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner
(2011, May). Continuous-time monte carlo methods for quantum impurity models.
Rev. Mod. Phys. 83, 349–404.

Gull, E., P. Werner, O. Parcollet, and M. Troyer (2008). Continuous-time auxiliary-
field monte carlo for quantum impurity models. EPL (Europhysics Letters) 82(5),
57003.

Haldane, F. D. M. and P. W. Anderson (1976, Mar). Simple model of multiple charge
states of transition-metal impurities in semiconductors. Phys. Rev. B 13, 2553–
2559.

Han, J. E. (2004, Aug). Spin-triplet s-wave local pairing induced by hund’s rule cou-
pling. Phys. Rev. B 70, 054513.

Held, K. and D. Vollhardt (1998, Oct). Microscopic conditions favoring itinerant ferro-
magnetism: Hund’s rule coupling and orbital degeneracy. The European Physical
Journal B - Condensed Matter and Complex Systems 5(3), 473–478.

Hirsch, J. E. (1983, Oct). Discrete hubbard-stratonovich transformation for fermion
lattice models. Phys. Rev. B 28, 4059–4061.

Hirsch, J. E. and R. M. Fye (1986, Jun). Monte carlo method for magnetic impurities
in metals. Phys. Rev. Lett. 56, 2521–2524.

Hubbard, J. (1963). Electron correlations in narrow energy bands. Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences 276(1365), 238–257.

Jungwirth, T., J. Sinova, A. H. MacDonald, B. L. Gallagher, V. Novák, K. W. Edmonds,

81



A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejnı́k, J. Mašek, S.-
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APPENDIX A

SERIES EXPANSION

Interaction representation: Operators and wavefunctions have time dependence.

Hamiltonian consists of kinetic part and a potential part.

H = H0 + V (A.1)

The imaginary time variable is defined as

τ = it (A.2)

The partition function is

Z = Tr
(
e−βH

)
= Tr

[(
e−βHeβH0

)
e−βH0

]
(A.3)

Let us define an operator U(τ).

U(τ) = e−τHeτH0 (A.4)

Time evolution of this operator is

∂

∂τ
U(τ) = e−τH(H0 −H)eτH0

= −e−τHV eτH0

= −U(τ)V (τ) (A.5)
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where

V (τ) = e−τH0V eτH0 (A.6)

Taking τ integral on both sides

U(τ) = 1−
∫ τ

0

dτ1U(τ1)V (τ1)

=
∞∑
k=0

(−1)k
∫ τ

0

dτ1 · · ·
∫ τk−1

0

dτkV (τk) · · ·V (τ1)

=
∞∑
k=0

(−1)k
∫ τ

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

V (τi) (A.7)

where we have changed the order of the integrals. Thus, the Boltzmann operator becomes

e−βH =

[
1 +

∞∑
k=1

(−1)k
∫ β

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

V (τi)

]
e−βH0 (A.8)

In τ integrals substitute τi with τiβ. This substitution changes the limits of the integrals.

e−βH = e−βH0 +
∞∑
k=1

(−1)kβk
∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

[
e−τiβH0V eτiβH0

]
e−βH0

= e−βH0 +
∞∑
k=1

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

k∏
i=1

[
e−τiβH0(−βV )eτiβH0

]
e−βH0 (A.9)
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APPENDIX B

DERIVATION OF EXPANSION WEIGHTS

The Hamiltonian is denifed as

H = H0 +HU +HJ (B.1)

and the series expansion of the Boltzmann operator is

e−β(H0+HU )+(γ−βHJ ) = e−β(H0+HU )

+
∞∑
k=1

∫ 1

0

dτk · · ·
∫ τ2

0

dτ1

×
k∏
i=1

[
e−τiβ(H0+HU )(γ − βHJ)eτiβ(H0+HU )

]
e−β(H0+HU ) (B.2)

Discretize it for numerical calculations

eγ−βH = e−β(H0+HU )

+
∞∑
k=1

L−k
L∑

jk=1

· · ·
j2∑
j1=1

×
k∏
i=1

[
e−ji∆τ(H0+HU )(γ − βHJ)eji∆τ(H0+HU )

]
e−β(H0+HU ) +O(∆τ) (B.3)

∆τ = β
/
L (B.4)

Firstly, the k summation in equation B.3 is cut off at L with the condition 〈k〉 � L.

Originally the summation goes to infinity. It cannot be expanded to infinite order. If we

cut of it at L, kmax should be much smaller than L.
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Secondly, in order to reduce the computation time and the number of config-

urations, we need to do some alterations when we sample from the terms of the ex-

pansion. The terms having consecutive γ − βHJ at the same imaginary-time interval

should be changed into approximate terms consisting one γ − βHJ per imaginary-time

interval. For example, · · · e−β(H0+HU )(γ − βHJ)(γ − βHJ) · · · should be replaced by

· · · (γ − βHJ)e−β(H0+HU )(γ − βHJ) · · · .
If we expand equation B.3, there are some terms which have equal time variables.

For example; for k = 2 → j1 = 2, j2 = 2 or for k = 5 → j5 = 3, j4 = 3, j3 =

2, j2 = 1, j1 = 1. For terms like these, we have to be careful about the fact that originally

imaginary-time variables hold the relation · · · ti < ti+1 < ti+2 · · · . For that reason,

we should correct the volumes of the integrals depending on the number of consecutive

γ − βHJ . Thus, the correction of the volumes of the integrals for ` consecutive γ − βHJ

is

1

`!
(B.5)

Let us define

χ ≡ γ − βHJ (B.6)

After these changes the Boltzmann operator can be written as

eγ−βH =
∑

r1,r2,··· ,rL=0,1

F (k; r1, r2, · · · , rL)
L∏
i=1

[
e−∆τ(H0+HU )χri

]
+O(∆τ) (B.7)

where k =
∑L

i=1 ri and χ0 = 1. F is a positive weight factor.

B.1. Derivation on the example of L=8

We now show that how F terms arise on an example of L = 8 by expanding the

sum of equation B.7.
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B.1.1. k=1

8−1

8∑
j1=1

e−j1∆τ(H0+HU )χej1∆τ(H0+HU )e−β(H0+HU ) =

8−1

8∑
j1=1

e−j1∆τ(H0+HU )χej1∆τ(H0+HU )

[
8∏
i=1

e−∆τ(H0+HU )

]
(B.8)

j1 = 1 −→ 8−1e−∆τ(H0+HU )χe∆τ(H0+HU )e−β(H0+HU )

j1 = 2 −→ 8−1e−∆τ(H0+HU )e−∆τ(H0+HU )χe∆τ(H0+HU )e∆τ(H0+HU )e−β(H0+HU )

...

We drop L−1 terms and change the notation for simplicity;

e−∆τ(H0+HU ) ≡ h

χ ≡ x

Expanding the terms for k = 1 gives us

j1 = 1 −→ hx
1

h
hhhhhhhh = hxhhhhhhh

j1 = 2 −→ hhxhhhhhh

...

j1 = 8 −→ hhhhhhhhx

For these terms there are no consecutive χ’s. There is no need for correction. The treat-

ment of configurations is the following.
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hx h h h h h h h −→ configuration

`1 `2 `3 `4 `5 `6 `7 `8 −→ imaginary-time interval

F(1;1, 0, 0, 0, 0, 0, 0, 0) −→ F term

All substrings having j times x, j−1 times h and consecutive xwill be replaced by

· · ·xhxhx · · · . For example, · · ·xxh · · · and · · ·xhx · · · are approximately same terms,

and should be corrected by 1 for xhx and 1/2! for xxh. Weight for this is 1 + 1
2!

= 3
2
.

B.1.2. k=2

8−2

8∑
j2=1

j2∑
j1=1

[
e−j1∆τ(H0+HU )χej1∆τ(H0+HU )

] [
e−j2∆τ(H0+HU )χej2∆τ(H0+HU )

]
e−β(H0+HU )

(B.9)

Weight factors of the pairings below are

a)F (2; 1, 1, 0, 0, 0, 0, 0, 0) = (1 +
1

2!
)8−2 =

3

2
8−2

b)F (2; 0, 1, 1, 0, 0, 0, 0, 0) = (1 +
1

2!
)8−2 =

3

2
8−2

...

g)F (2; 0, 0, 0, 0, 0, 0, 1, 1) = (1 +
1

2!
+

1

2!
)8−2 = 2 · 8−2 (B.10)

It is seen that we have to be careful when the consecutive χ’s are located at the

end of the strings.
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j2 j1 −→ configuration j2 j1 −→ configuration

1 1 −→ hxxhhhhhhh a 6 3 −→ hhhxhhhxhh

2 1 −→ hxhxhhhhhh a 6 4 −→ hhhhxhhxhh

2 2 −→ hhxxhhhhhh b e 6 5 −→ hhhhhxhxhh

3 1 −→ hxhhxhhhhh f 6 6 −→ hhhhhhxxhh

3 2 −→ hhxhxhhhhh b 7 1 −→ hxhhhhhhxh

3 3 −→ hhhxxhhhhh c 7 2 −→ hhxhhhhhxh

4 1 −→ hxhhhxhhhh 7 3 −→ hhhxhhhhxh

4 2 −→ hhxhhxhhhh 7 4 −→ hhhhxhhhxh

4 3 −→ hhhxhxhhhh c 7 5 −→ hhhhhxhhxh

4 4 −→ hhhhxxhhhh d f 7 6 −→ hhhhhhxhxh

5 1 −→ hxhhhhxhhh g 7 7 −→ hhhhhhhxxh

5 2 −→ hhxhhhxhhh 8 1 −→ hxhhhhhhhx

5 3 −→ hhhxhhxhhh 8 2 −→ hhxhhhhhhx

5 4 −→ hhhhxhxhhh d 8 3 −→ hhhxhhhhhx

5 5 −→ hhhhhxxhhh e 8 4 −→ hhhhxhhhhx

6 1 −→ hxhhhhhxhh 8 5 −→ hhhhhxhhhx

6 2 −→ hxxhhhhhhh 8 6 −→ hhhhhhxhhx

g 8 7 −→ hhhhhhhxhx

g 8 8 −→ hhhhhhhhxx

B.1.3. k=3

8−3

8∑
j3=1

j3∑
j2=1

j2∑
j1=1

[
e−j1∆τ(H0+HU )χej1∆τ(H0+HU )

]
×
[
e−j2∆τ(H0+HU )χej2∆τ(H0+HU )

] [
e−j3∆τ(H0+HU )χej3∆τ(H0+HU )

]
× e−β(H0+HU ) (B.11)
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j3 j2 j1 −→ configuration j3 j2 j1 −→ configuration

1 1 1 −→ hxxxhhhhhhh a c 3 3 1 −→ hxhhxxhhhhh

2 1 1 −→ hxxhxhhhhhh a b 3 3 2 −→ hhxhxxhhhhh

2 2 1 −→ hxhxxhhhhhh a 3 3 3 −→ hhhxxxhhhhh

2 2 2 −→ hhxxxhhhhhh b 4 1 1 −→ hxxhhhxhhhh

3 1 1 −→ hxxhhxhhhhh a 4 2 1 −→ hxhxhhxhhhh

3 2 1 −→ hxhxhxhhhhh a b 4 2 2 −→ hhxxhhxhhhh

3 2 2 −→ hhxxhxhhhhh b c 4 3 1 −→ hxhhxhxhhhh
... b 4 3 2 −→ hhxhxhxhhhh
...

...

7 7 7 −→ hhhhhhhxxxh d d 8 7 7 −→ hhhhhhhxxhx
...

...

8 6 6 −→ hhhhhhxxhhx d d 8 8 6 −→ hhhhhhxhhxx
... d 8 8 7 −→ hhhhhhhxhxx

8 7 6 −→ hhhhhhxhxhx d d 8 8 8 −→ hhhhhhhhxxx

Weight factors of these pairings are

a)F (3; 1, 1, 1, 0, 0, 0, 0, 0) = (1 +
1

2!
+

1

2!
+

1

2!
+

1

3!
)8−3

b)F (3; 0, 1, 1, 1, 0, 0, 0, 0) = (1 +
1

2!
+

1

2!
+

1

2!
+

1

3!
)8−3

c)F (3; 1, 0, 1, 1, 0, 0, 0, 0) = (1 +
1

2!
)8−3

d)F (3; 0, 0, 0, 0, 0, 1, 1, 1) = (1 +
1

2!
+

1

2!
+

1

2!
+

1

2!
+

1

3!
+

1

3!
)8−3 (B.12)

Here, it is also seen that when the consecutive χ’s are located at the end of the

string, the weight factors are changing.

B.2. Recursive Formulas

There are recursive formulas in order to find those weights, F , easily. We show

that how these recursive formulas can be derived on two example. These formulas do

not generate L−k part of the weights. Suppose there are i times h and j times x in a

substring. Recursive formulas come from leaving out · · ·hxxxxx · · · string from that
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substring, each time decreasing x.

B.2.1. xhx substring (i=1, j=2)

Generates xhx and xxh. Weight of that configuration is 1 + 1
2!

.

−→ Start from “xhx“.

Drop one ”· · ·hxxxxx · · · “ string with j − 1 x from that substring.

j − 1 = 2− 1 = 1, thus, drop one ”hx“.

The remaning is ”x“. It has a weight of 1
1!
· 1

1!
= 1.

The first 1
1!

comes from leaving out 1 ”hx“, correction for

one consecutive χ.

The other one comes from correction of volume of the integral

for one consecutive χ.

−→ Again start from “xhx“.

Drop one ”h“ (j-2=2-2=0).

The remaining is ”xx“. It has a weight of 1
0!
· 1

2!
.

1/0! comes from leaving out one ”h“, correction for zero χ.

1/2! comes from correction for 2 consecutive χ’s.

−→ Sum the results.

The weight of xhx is 1 + 1
2!

= 3
2
.

B.2.2. xhxhx substring (i=2, j=3)

Generates xxxhh, xxhxh, xhxxh, xxhhx, xhxhx. Weight of that configuration

is 1 + 1
2!

+ 1
2!

+ 1
2!

+ 1
3!

.

−→ Start from “xhxhx“.

Drop one ”hx“ (j-2=3-2=1) and multiply remaining with 1/1!.

Remaining is ”xhx“ (i=1, j=2).

Drop one ”hx“ and drop one ”h“.

Remaining is ”x“ and ”xx“.

Weight is 1
1!

(
1
1!

1
1!

+ 1
0!

1
2!

)
.

Thus, 1 and 1/2! are generated.
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−→ Again start from “xhxhx“.

Drop one ”h“ (j-3=3-3=0) and multiply remaining with 1/0!.

Remaining is ”xhxx“ (i=1, j=3).

−→ Now start from “xhxx“.

Drop one ”hxx“ (j-1=3-1=2) and multiply remaining with 1/2!.

Remaining is ”x“. Weight is 1
0!

1
2!

1
1!

.

−→ Again start from “xhxx“.

Drop one ”hx“ (j-1=2-1=1) and multiply remaining with 1/1!.

Remaining is ”xx“. Weight is 1
0!

1
1!

1
2!

.

−→ Again start from “xhxx“.

Drop one ”h“ (j-1=1-1=0) and multiply remaining with 1/0!.

Remaining is ”xxx“. Weight is 1
0!

1
0!

1
3!

.

Thus, 1/2!, 1/2!, 1/3! are generated.

−→ Sum the results.

the weight of xhxhx is 1 + 1
2!

+ 1
2!

+ 1
2!

+ 1
3!

.

B.2.3. Introducing Recursive Formulas

From the results we can introduce the recursive formulas. For j consecutive x, we

had

b(0, j) =
1

j!
for 0 ≤ j ≤ L (B.13)

The recursive formula using b(0, j) and the results from the examples is

b(i, j) =

j∑
k=i

1

(j − k)!
b(i− 1, k) for 1 ≤ i ≤ j ≤ L (B.14)

Therefore, for · · ·xhxhxhx · · · substring, i times x and i− 1 times h;

ai = b(i− 1, i) for 1 ≤ i ≤ L (B.15)
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For the terms in which x is located at the last time slice, · · ·xhxhx, i times x and i − 1

times h; it is enough just to change the lower limit of the summation in equation B.14 to

0. It generates the remaining terms.

d(0, j) =
1

j!
for 0 ≤ j ≤ L (B.16)

d(i, j) =

j∑
k=0

1

(j − k)!
d(i− 1, k) for 1 ≤ i ≤ L− 1 and 0 ≤ j ≤ L (B.17)

Therefore, for · · · xhxhxhx substring, i times x and i− 1 times h;

ci = d(i− 1, i) for 1 ≤ i ≤ L (B.18)

Here is some examples for L=8;

F (2; 1, 1, 0, 0, 0, 0, 0, 0) = a28−2

F (3; 0, 1, 1, 1, 0, 0, 0, 0) = a38−3

F (3; 0, 0, 0, 0, 0, 1, 1, 1) = c38−3

F (5; 1, 1, 0, 0, 0, 1, 1, 1) = a2c38−5 (B.19)

94



APPENDIX C

DECOUPLING OF THE SPIN-FLIP AND THE

PAIR-HOPPING TERMS

γνν
′ − βHνν′

J =
γνν

′ − βJ
8

∑
q,t↑,t↓

∏
σ

e
λ4

[
σqfνν

′
σ +tσgνν

′
σ

]
(C.1)

where

Hνν′

J = Jf νν
′

↑ f νν
′

↓ (C.2)

f νν
′

σ = c†νσcν′σ + c†ν′σcνσ (C.3)

gνν
′

σ = (nνσ + nν′σ − 1) (C.4)

λ4 =
1

2
ln

1 + κ

1− κ
(C.5)

κ =

√
βJ

γνν′
< 1 (C.6)

nνσ = c†νσcνσ (C.7)

{q, t↑, t↓} = ±1 (C.8)

Let us derive equation C.1 starting from some identities. We can find these identities

simply applying the operators to a trial wavefunction |νν ′〉.

f νν
′

σ =

1 if nνσ = 1, nν′σ = 0 or nνσ = 0, nν′σ = 1

0 if nνσ = 1, nν′σ = 1 or nνσ = 0, nν′σ = 0
(C.9)
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gνν
′

σ =


1 if nνσ = 1, nν′σ = 1

0 if nνσ = 1, nν′σ = 0 or nνσ = 0, nν′σ = 1

−1 if nνσ = 0, nν′σ = 0

(C.10)

From equations C.9 and C.10 we can find the product of f νν′σ · gνν′σ . We see that

If f νν
′

σ = 1 −→ gνν
′

σ = 0

If gνν
′

σ = ±1 −→ f νν
′

σ = 0

For all cases

f νν
′

σ · gνν′σ = 0 (C.11)

The square of f νν′σ operator is

f νν
′

σ · f νν′σ = c†νσcν′σc
†
νσcν′σ + c†ν′σcνσc

†
ν′σcνσ + c†νσcν′σc

†
ν′σcνσ + c†ν′σcνσc

†
νσcν′σ

= c†νσcν′σ + c†ν′σcνσ

=⇒ (f νν
′

σ )2n = (f νν
′

σ )2 = (f νν
′

σ )4 = · · ·

(f νν
′

σ )2n−1 = (f νν
′

σ )1 = (f νν
′

σ )3 = · · · (C.12)

The square of gνν′σ operator is

gνν
′

σ · gνν
′

σ = (nνσ + nν′σ − 1)(nνσ + nν′σ − 1)

= |gνν′σ |
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=⇒ (gνν
′

σ )2n = |gνν′σ | = (gνν
′

σ )2 = (gνν
′

σ )4 = · · ·

(gνν
′

σ )2n−1 = gνν
′

σ = (gνν
′

σ )3 = (gνν
′

σ )5 = · · · (C.13)

And the last identity (f νν
′

σ )2 + |gνν′σ |.

(f νν
′

σ )2 =

1 if nνσ = 1, nν′σ = 0 or nνσ = 0, nν′σ = 1

0 if nνσ = 1, nν′σ = 1 or nνσ = 0, nν′σ = 0

|gνν′σ | =

1 if nνσ = 1, nν′σ = 1 or nνσ = 0, nν′σ = 0

0 if nνσ = 1, nν′σ = 0 or nνσ = 0, nν′σ = 1

For all cases

(f νν
′

σ )2 + |gνν′σ | = 1 (C.14)

We can expand
∏

σ e
λ4

[
σqfνν

′
σ +tσgνν

′
σ

]
in series using equations C.9, C.10, C.11, C.12, C.13,

C.14.

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
={

1 + λ4

(
qf νν

′

↑ + t↑g
νν′

↑

)
+

1

2!
(λ4)2

(
qf νν

′

↑ + t↑g
νν′

↑

)2

+ · · ·
}

×
{

1 + λ4

(
−qf νν′↓ + t↓g

νν′

↓

)
+

1

2!
(λ4)2

(
−qf νν′↓ + t↓g

νν′

↓

)2

+ · · ·
}

(C.15)
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By using equation C.11

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
={

1 + λ4

(
qf νν

′

↑ + t↑g
νν′

↑

)
+

1

2!
(λ4)2

[
(f νν

′

↑ )2 + (gνν
′

↑ )2
]

+ · · ·
}

×
{

1 + λ4

(
−qf νν′↓ + t↓g

νν′

↓

)
+

1

2!
(λ4)2

[
(f νν

′

↓ )2 + (gνν
′

↓ )2
]

+ · · ·
}

(C.16)

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
={

1 + λ4

(
qf νν

′

↑ + t↑g
νν′

↑

)
+

1

2!
(λ4)2

[
(f νν

′

↑ )2 + |gνν′↑ |
]

+ · · ·
}

×
{

1 + λ4

(
−qf νν′↓ + t↓g

νν′

↓

)
+

1

2!
(λ4)2

[
(f νν

′

↓ )2 + |gνν′↓ |
]

+ · · ·
}

(C.17)

To group the same terms into parentheses

∑
q,t↑,t↓

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
=

∑
q,t↑,t↓

{(
qf νν

′

↑ + t↑g
νν′

↑

)(
λ4 +

1

3!
(λ4)3 + · · ·

)
+
[
(f νν

′

↑ )2 + |gνν′↑ |
](

1 + λ4 +
1

2!
(λ4)2 + · · ·

)}
×
{(
−qf νν′↓ + t↓g

νν′

↓

)(
λ4 +

1

3!
(λ4)3 + · · ·

)
+
[
(f νν

′

↓ )2 + |gνν′↓ |
](

1 + λ4 +
1

2!
(λ4)2 + · · ·

)}
(C.18)

By using equation C.14

∑
q,t↑,t↓

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
=

∑
q,t↑,t↓

{(
qf νν

′

↑ + t↑g
νν′

↑

)
sinh(λ4) + cosh(λ4)

}
×
{(
−qf νν′↓ + t↓g

νν′

↓

)
sinh(λ4) + cosh(λ4)

}
(C.19)
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∑
q,t↑,t↓

e
λ4

[
qfνν

′
↑ +t↑g

νν′
↑

]
e
λ4

[
−qfνν′↓ +t↓g

νν′
↓

]
=

∑
q,t↑,t↓

[
sinh(λ4) cosh(λ4)

(
qf νν

′

↑ − qf νν
′

↓ + t↑g
νν′

↑ + t↓g
νν′

↓

)
+ cosh2(λ4)

+ sinh2(λ4)
(
−f νν′↑ f νν

′

↓ + qt↓f
νν′

↑ gνν
′

↓ − qt↑gνν
′

↑ f νν
′

↓ + t↑t↓g↑g↓

)]
(C.20)

After expand the summation in equation C.20, and multiply with γνν
′−βJ
8

, we have equa-

tion C.1 expanded. Notice that in the summation there are 23 elements.

γνν
′ − βJ
8

∑
q,t↑,t↓

∏
σ

e
λ4

[
σqfνν

′
σ +tσgνν

′
σ

]
=
(
γνν

′ − βJ
)(

cosh2(λ4)− f νν′↑ f νν
′

↓ sinh2(λ4)
)

= γνν
′ − βHνν′

J (C.21)

γνν
′ − βJf νν′↑ f νν

′

↓ =
(
γνν

′ − βJ
)(

cosh2(λ4)− f νν′↑ f νν
′

↓ sinh2(λ4)
)

=
(
γνν

′ − βJ
)(

1 + sinh2(λ4)− f νν′↑ f νν
′

↓ sinh2(λ4)
)

(C.22)

If we solve this equation

=⇒

f νν
′

↑ f νν
′

↓
[
βJ −

(
γνν

′ − βJ
)

sinh2(λ4)
]

= 0

−γνν′ +
(
γνν

′ − βJ
)

+
(
γνν

′ − βJ
)

sinh2(λ4) = 0
(C.23)

For the decomposition to be valid, the solution of λ4 is

sinh2(λ4) =
βJ

γνν′ − βJ
(C.24)

Let us define κ =
√

βJ

γνν′
.

λ4 = arcsinh

(
κ√

1− κ2

)
(C.25)

99



Using the identity arcsinh(x) = ln(x+
√
x2 + 1);

arcsinh

(
κ√

1− κ2

)
= ln

(
κ√

1− κ2
+

√
κ2

1− κ2
+ 1

)

= ln

(
κ√

1− κ2
+

1√
1− κ2

)
(C.26)

= ln

(
1 + κ√
1− κ2

)
(C.27)

= ln

[
(1 + κ)2

1− κ2

]2

(C.28)

=
1

2
ln

[
(1 + κ)(1 + κ)

(1 + κ)(1− κ)

]
(C.29)

=⇒ λ4 =
1

2
ln

(
1 + κ

1− κ

)
(C.30)

κ =

√
βJ

γνν′
and κ < 1 (C.31)
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APPENDIX D

TRACE OF THE EXPONENTIAL OPERATORS

Trace of the quadratic operators in the Boltzmann factor is very important to for-

mulate the algorithm. In this chapter, we will use a compact notation for simplicity. Recall

that the partition function is

Z = TreβH

=
∑
{r`}

F̃ ({r`})
∑
{S̃`}

∑
α

∑
{Pα` }

Tr
∏
σ

∏
`

Dσ(`) (D.1)

where

Dσ(`) = e−∆τ
∑
ν,ν′ c

†
νσ [H0]ν,ν′cν′σe

∑
ν,ν′ c

†
νσ [Wσ(`)]ν,ν′cν′σe

∑
ν,ν′ c

†
νσ [Tασ (`)]ν,ν′cν′σ (D.2)

The operators H0, Wσ(`) and Tασ (`) are quadratic with respect to electron creation / anni-

hilation operators, and they are defined in chapter 4 along with the weight terms, F̃ ({r`}).

Actually, this operators depend on the configurations {r`}, {S̃`}, {α}, {Pα
` }, however we

do not write them to simplify the notation. In the rest of the chapter, the spin indices σ,

and the orbital indices α for HJ term will be dropped. The summation indices, νν ′, are

changed into ij. Therefore, the matrices will be seen as

D(`) = e−∆τ
∑
i,j c
†
i [H0]i,jcje

∑
i,j c
†
i [W (`)]i,jcje

∑
i,j c
†
i [T (`)]i,jcj (D.3)

The configuration space consists of {r`}, {S̃`}, {α}, {Pα
` }. Thus, a given configuration

will be given as

{ζ} ≡
{
{r`}, {S̃`}, {α}, {Pα

` }
}

(D.4)
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D.1. Trace Over Fermionic Degrees of Freedom

For a given configuration {ζ}, the partition function is

Z{ζ} = Tr
∏
`

e−∆τ
∑
i,j c
†
i [H0]i,jcje

∑
i,j c
†
i [W (`)]i,jcje

∑
i,j c
†
i [T (`)]i,jcj (D.5)

Suppose λφ = e−pφ are the eigenvalues of the matrix
∏

` e
−∆τH0eW (`)eT (`). Therefore,

the product of the exponential operators in the partition function can be rewritten in the

diagonal basis as

∏
`

e−∆τ
∑
i,j c
†
i [H0]i,jcje

∑
i,j c
†
i [W (`)]i,jcje

∑
i,j c
†
i [T (`)]i,jcj = e−

∑
φ c
†
φpφcφ

=
∏
φ

e−c
†
φpφcφ (D.6)

We can take the trace in this diagonal basis easily. There are two possibilities for all φ

states since we are in the diagonal basis. There is zero or one electron for the trace over

c†φcφ.

Tr
∏
φ

e−c
†
φpφcφ =

∏
φ

(
1 + e−pφ

)
(D.7)

This equation simply the multiplication of the eigenvalues, thus it can be written as deter-

minant of the original matrices.

∏
φ

(
1 + e−pφ

)
= det

[
1 +

∏
`

e−∆τH0eW (`)eT (`)

]
(D.8)

Thus, the partition function is

Z{ζ} = det

[
1 +

∏
`

B`

]
(D.9)
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where

B` = e−∆τH0eW (`)eT (`) (D.10)

D.2. Calculation of the Green’s Function from M−1

We can further simplify the equation D.9 by introducing M matrices.

det [I +BLBL−1 · · ·B1] = detM (D.11)

where

M =



I 0 · · · BL

−B1 I 0 0

0 −B2 I
...

...
...

... . . . ...

I 0

0 0 · · · 0 −BL−1 I


Nd·L×Nd·L

(D.12)

Here we changed the sequence in the product of the B` matrices since it simplify the

programming part of the algorithm, and I is identity matrix.. In this section, the equal

time Green’s functions will be derived. For a given configuration the single particle equal

time Green’s function is calculated in the following way,

Gxy,{ζ} = 〈cxc†y〉{ζ}

=
Trcxc†y

∏
`D(`)

Tr
∏

`D(`)
(D.13)
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where

D(`) = e−∆τ
∑
i,j c
†
i [H0]i,jcje

∑
i,j c
†
i [W (`)]i,jcje

∑
i,j c
†
i [T (`)]i,jcj (D.14)

Here the Green’s function defined with plus sign, as in Hirsch-Fye paper. We should use

the diagonal basis, φ, in order to evaluate the trace. The transformation is the following,

cx =
∑
φ

〈x|φ〉cφ (D.15)

c†x =
∑
φ

〈φ|x〉c†φ (D.16)

Using these, the Green’s function becomes

〈cxc†y〉{ζ} =
∑
φ,φ′

〈x|φ〉〈φ′|y〉
Trcφc

†
φ′
∏

φ′′ e
−c†

φ′′pφ′′cφ′′

Tr
∏

φ′′ e
−c†

φ′′pφ′′cφ′′
(D.17)

Since the trace is in the diagonal basis, the only contribution comes from cφc
†
φ. Thus the

summation over φ′ is eliminated.

〈cxc†y〉{ζ} =
∑
φ

〈x|φ〉〈φ|y〉
Trcφc

†
φ

∏
φ′′ e

−c†
φ′′pφ′′cφ′′

Tr
∏

φ′′ e
−c†

φ′′pφ′′cφ′′
(D.18)

The operator c†φ′′cφ′′ is the number operator. There are two possibilities in all states for

number operator as 0 or 1.

Tr
∏
φ

e
−c†

φ′′pφ′′cφ′′ =
∏
φ′′

(
1 + e−pφ′′

)
(D.19)
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However, in the numerator the term cφc
†
φ cancels φ terms in this multiplication, because

of the following,

Trcφc
†
φe
−pφc†φcφ = 〈nφ = 0|cφc†φe

−pφc†φcφ|nφ = 0〉+ 〈nφ = 1|cφc†φe
−pφc†φcφ|nφ = 1〉

= 1 + 0

= 1 (D.20)

where

nφ = c†φcφ (D.21)

Therefore, all terms except φ term in the denominator are canceled.

The Green’s function becomes

〈cxc†y〉{ζ} =
∑
φ

〈x|φ〉〈φ|y〉 1

1 + e−pφ

=
∑
φ

〈x|φ〉 1

1 + e−pφ
〈φ|y〉 (D.22)

Recall that e−pφ are the eigenvalues of the matrix
∏

` e
−∆τH0eW (`)eT (`). Equation D.22,

without the inner products, is the inverse of this matrix represented in the diagonal basis.

∑
φ

|φ〉 1

1 + e−pφ
〈φ| =

[
1 +

∏
`

e−∆τH0eW (`)eT (`)

]−1

= [I +BLBL−1 · · ·B1]−1 (D.23)

Thus, the single particle equal-time Green’s function becomes,

Gxy,{ζ} = 〈cxc†y〉{ζ} = [I +BLBL−1 · · ·B1]−1
xy (D.24)

Here the matrices G{ζ} and [I +BLBL−1 · · ·B1]−1 are Nd ×Nd matrices. We know that
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[I +BLBL−1 · · ·B1] can be written as the M matrices which are Nd · L×Nd · L. Thus,

in the changed notation, the Green’s functions represented in the Nd ·L×Nd ·L matrices

is

G{ζ}x,y (`, `′) = 〈Tcx(`)c†y(`′)〉{ζ} = [M ]−1
x`,y`′ (D.25)

where

M =



I 0 · · · BL

−B1 I 0 0

0 −B2 I
...

...
...

... . . . ...

I 0

0 0 · · · 0 −BL−1 I


Nd·L×Nd·L

(D.26)

and

B` = e−∆τH0eW (`)eT (`) (D.27)

Calculations of the unequal-time Green’s functions or equal-time Green’s function in dif-

ferent time slices can be evaluated in the same steps with this appendix.
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APPENDIX E

FAST UPDATE SCHEME

There are 5 types of change in the updates. First, turning on 3 auxiliary field

variables at imaginary-time slice ` and impurity sites η, η′ for HJ term which indicates

r` = 0→ r′` = 1. Second, turning off 3 auxiliary field variables at imaginary-time slice `

and impurity sites η, η′ for HJ term which indicates r` = 1 → r′` = 0. Third, single spin

flip at imaginary-time slice ` and impurity sites η, η′ for HJ term which are qηη
′

` , tηη
′

↑` and

tηη
′

↓` . Forth kind of change occurs for the intra-orbital and inter-orbital interactions when

HJ term is turned on. Fifth is for the intra-orbital and inter-orbital interactions when HJ

term is turned off. However, all these changes occurs only for one imaginary-time slices.

In this appendix the ηη′ indices are dropped from the auxiliary field variables qηη
′

` ,

tηη
′

↑` and tηη
′

↓` . In equation 5.41 the matrix multiplication Λ−1
σ Λ′σ has all elements zero

except the diagonal elements and all diagonal elements are 1 excluding the imaginary-

time slice part that the change occurs. Let us look at the matrix forms in order to see that

clearly.

Λ′σ =



Λσ(1) 0
Λσ(2)

. . .

Λ′σ(`)
. . .

0 Λσ(L)


(E.1)
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and

Λ−1
σ =



[Λσ(1)]−1 0
[Λσ(2)]−1

. . .

[Λσ(`)]−1

. . .

0 [Λσ(L)]−1


(E.2)

Here Λ is aNd ·L×Nd ·Lmatrix, and there areNd×Nd matrices in the diagonal elements

which are denoted as Λ(`). Λ(`) can be written as

[Λ(`)]i,j = [Λ]i`,j` (E.3)

The product of these two matrices is following.

Λ−1
σ Λ′σ =



I 0
I

. . .

[Λσ(`)]−1 Λ′σ(`)
. . .

0 I


(E.4)

That’s why we will only focus imaginary-time slice ` part of these matrix products in the
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following sections of this chapter. We can see that clearly from this equation (Λ−1
σ Λ′σ − I);

(
Λ−1
σ Λ′σ − I

)
=



0 0
0

. . . {
[Λσ(`)]−1 Λ′σ(`)− I

}
Nd×Nd

. . .

0 0


(E.5)

E.1. General Expression for Updates with Four Non-zero Elements

Equation 5.41 is used for updating the Green’s functions. For this equation the

form of (Λ−1
σ Λ′σ − I) is important and it varies for all single spin-flip operations. There

are cases with 4 non-zero elements and 5 non-zero elements. In this section we derive the

expression for 4 non-zero elements. This expression is used for a spin-flip operation that

affects 4 elements of the matrix.

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.6)

where

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(E.7)

109



The form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

with 4 non-zero elements is following;

[Λσ(`)]−1 Λ′σ(`)− I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
• •

0

• •
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

0 0



(E.8)

All elements except the dots are zero. The form of Nd · L × Nd · L matrix (Λ−1
σ Λ′σ − I)

is the same;

Λ−1
σ Λ′σ − I =



0 0
. . .

η′`,η′`η′`,η′`η′`,η′`

↓↓↓
η′`,η`η′`,η`η′`,η`

↓↓↓
• •

0

• •
↑↑↑

η`, η′`η`, η′`η`, η′`
↑↑↑

η`, η`η`, η`η`, η`
. . .

0 0



(E.9)

The matrix representation of this matrix is

(
Λ−1
σ Λ′σ − I

)
ν1`1,ν2`2

= δ`,`1δ`,`2

{
δη′,ν1δη′,ν2

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ δη,ν1δη,ν2
(
Λ−1
σ Λ′σ − I

)
η`,η`

+ δη′,ν1δη,ν2
(
Λ−1
σ Λ′σ − I

)
η′`,η`

+ δη,ν1δη′,ν2
(
Λ−1
σ Λ′σ − I

)
η`,η′`

}
(E.10)
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The matrix representation of equation E.6 is

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+
∑
`3,`4,`5

∑
ν3,ν4,ν5

(Gσ − I)ν1`1,ν3`3
(
Λ−1
σ Λ′σ − I

)
ν3`3,ν4`4

(
A−1
σ

)
ν4`4,ν5`5

Gσ
ν5,ν2

(`5, `2)

(E.11)

After equation E.10 is inserted in equation E.11, equation E.11 becomes

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η′`

∑
`5,ν5

(
A−1
σ

)
η′`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η`

∑
`5,ν5

(
A−1
σ

)
η`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

∑
`5,ν5

(
A−1
σ

)
η`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

∑
`5,ν5

(
A−1
σ

)
η′`,ν5`5

Gσ
ν5,ν2

(`5, `2)

(E.12)

From this equation it is seen that we only need 4 elements of A−1
σ ; (η`, η`), (η′`, η′`),

(η′`, η`) and (η`, η′`) elements.

Now let us calculate A−1
σ using equation E.7 and E.10;

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(E.13)

111



Aσ = I +



· · · · · · · · · · · · ·
· · · · · · ·
... · . . . · · · ...

· · · · · · ·
... · · . . . · · ...

· · · · · · ·
... · · · . . . · ...

· · · · · · ·
· · · · · · · · · · · · ·





0 0
. . .

• •
. . .

0
. . .

• •
. . .

0 0


(E.14)

Aσ =



1 0
. . .

• •
. . .

1
. . .

• •
. . .

0 1



(E.15)

Here all elements in the diagonal are 1 except the big dots, vertical lines indicates the

non-zero elements, and all other elements are zero. The representation of Aσ is

(Aσ)ν1`1,ν2`2 = δν1,ν2δ`1,`2 +
∑
ν3,`3

(I −Gσ)ν1`1,ν3`3
(
Λ−1
σ Λ′σ − I

)
ν3`3,ν2`2

(E.16)
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If we insert equation E.10 into E.16, Aσ becomes

(Aσ)ν1`1,ν2`2 = δν1,ν2δ`1,`2 + δη′,ν2δ`,`2(I −Gσ)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ δη,ν2δ`,`2(I −Gσ)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η`

+ δη,ν2δ`,`2(I −Gσ)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

+ δη′,ν2δ`,`2(I −Gσ)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

(E.17)

Let us look at the form of A−1
σ .

Aσ · A−1
σ = I (E.18)

The matrix form of this is following;



1 0
. . .

• •
. . .

1
. . .

• •
. . .

0 1





1 0
. . .

• •
. . .

1
. . .

• •
. . .

0 1



= I

(E.19)

Aσ A−1
σ

It is seen from equation E.12 that we only need 4 elements of A−1
σ which are indicated as

big dots. Thanks to the form of A−1
σ , we can work on only 2 × 2 part of Aσ and take the
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inverse. Let us define 2× 2 matrix Ã as

Ã =


(Aσ)η′`,η′` (Aσ)η′`,η`

(Aσ)η`,η′` (Aσ)η`,η`

 (E.20)

The inverse of Ã is following;

Ã−1 =
1

det Ã


(Aσ)η`,η` − (Aσ)η′`,η`

− (Aσ)η`,η′` (Aσ)η′`,η′`

 (E.21)

where

det Ã = (Aσ)η′`,η′` (Aσ)η`,η` − (Aσ)η′`,η` (Aσ)η`,η′` (E.22)

In addition to that, det Ã is equal to detAσ thanks to the form of Aσ.

det Ã = detAσ (E.23)

Therefore, the elements which we need of A−1
σ are the following;

(
A−1
σ

)
η′`,η′`

=
(Aσ)η`,η`
detAσ

(E.24)

(
A−1
σ

)
η′`,η`

= −
(Aσ)η′`,η`
detAσ

(E.25)

(
A−1
σ

)
η`,η′`

= −
(Aσ)η`,η′`
detAσ

(E.26)

(
A−1
σ

)
η`,η`

=
(Aσ)η′`,η′`

detAσ
(E.27)
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Finally, after these findings equation E.12 becomes “General Expression for Updates with

(Λ−1
σ Λ′σ − I) Having Four Non-zero Elements”;

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+
[
(Gσ − I)ν1`1,η′`

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

]
×
[

(Aσ)η`,η`
detAσ

Gσ
η′,ν2(`, `2)−

(Aσ)η′`,η`
detAσ

Gσ
η,ν2

(`, `2)

]
+
[
(Gσ − I)ν1`1,η`

(
Λ−1
σ Λ′σ − I

)
η`,η`

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

]
×
[
−

(Aσ)η`,η′`
detAσ

Gσ
η′,ν2(`, `2) +

(Aσ)η′`,η′`
detAσ

Gσ
η,ν2

(`, `2)

]
(E.28)

where

(Aσ)η′`,η′` = 1 +
[
1−Gσ

η′,η′(`, `)
] (

Λ−1
σ Λ′σ − I

)
η′`,η′`

−Gσ
η′,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η′`

(Aσ)η′`,η` = −Gσ
η′,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η`

+
[
1−Gσ

η′,η′(`, `)
] (

Λ−1
σ Λ′σ − I

)
η′`,η`

(Aσ)η`,η′` = −Gσ
η,η′(`, `)

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+
[
1−Gσ

η,η(`, `)
] (

Λ−1
σ Λ′σ − I

)
η`,η′`

(Aσ)η`,η` = 1 +
[
1−Gσ

η,η(`, `)
] (

Λ−1
σ Λ′σ − I

)
η`,η`
−Gσ

η,η′(`, `)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

(E.29)

and

detAσ = (Aσ)η′`,η′` (Aσ)η`,η` − (Aσ)η′`,η` (Aσ)η`,η′` (E.30)

Equations E.28, E.29 and E.30 are the general expressions for the updates when an arbi-

trary spin variable changes at an orbital on whichHJ is turned on and whenNd ·L×Nd ·L
matrix (Λ−1

σ Λ′σ − I) has 4 non-zero elements.
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E.2. General Expression for Updates with Two Non-zero Elements

When there are 2 elements of (Λ−1
σ Λ′σ − I) is non-zero, the update is the same as

the update derived in section E.1 except that we just exclude the off-diagonal terms of the

non-zero elements. Therefore, the update of the Green’s function when (Λ−1
σ Λ′σ − I) has

two non-zero elements is

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η′`

×
[

(Aσ)η`,η`
detAσ

Gσ
η′,ν2(`, `2)−

(Aσ)η′`,η`
detAσ

Gσ
η,ν2

(`, `2)

]
+ (Gσ − I)ν1`1,η`

(
Λ−1
σ Λ′σ − I

)
η`,η`

×
[
−

(Aσ)η`,η′`
detAσ

Gσ
η′,ν2(`, `2) +

(Aσ)η′`,η′`
detAσ

Gσ
η,ν2

(`, `2)

]
(E.31)

where

(Aσ)η′`,η′` = 1 +
[
1−Gσ

η′,η′(`, `)
] (

Λ−1
σ Λ′σ − I

)
η′`,η′`

(Aσ)η′`,η` = −Gσ
η′,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η`

(Aσ)η`,η′` = −Gσ
η,η′(`, `)

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

(Aσ)η`,η` = 1 +
[
1−Gσ

η,η(`, `)
] (

Λ−1
σ Λ′σ − I

)
η`,η`

(E.32)

and

detAσ = (Aσ)η′`,η′` (Aσ)η`,η` − (Aσ)η′`,η` (Aσ)η`,η′` (E.33)

Equations E.31, E.32 and E.33 are the general expressions for the updates when an arbi-

trary spin variable changes at an orbital on whichHJ is turned on and whenNd ·L×Nd ·L
matrix (Λ−1

σ Λ′σ − I) has 2 non-zero elements.
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E.3. General Expression for Updates with Five Non-zero Elements

In this section we derive the expression in section E.1 for 5 non-zero elements.

This expression is used for a spin-flip operation that affects 5 elements of the matrix. The

form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

with 5 non-zero elements is following;

[Λσ(`)]−1 Λ′σ(`)− I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
• •

. . .

• •
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

•
↑↑↑
ν, νν, νν, ν

. . .

0 0



(E.34)

In this example, ν > η and ν > η′ but it can be the opposite case. In our derivation,

however, we derive it for a general case. Thus, it does not matter wherever ν is. All

elements except the dots are zero. The form of Nd ·L×Nd ·L matrix (Λ−1
σ Λ′σ − I) is the

same;

Λ−1
σ Λ′σ − I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
• •

. . .

• •
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

•
↑↑↑
ν, νν, νν, ν

. . .

0 0



(E.35)
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The matrix representation of this matrix is not very different from equation E.10.

(
Λ−1
σ Λ′σ − I

)
ν1`1,ν2`2

= δ`,`1δ`,`2

{
δη′,ν1δη′,ν2

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ δη,ν1δη,ν2
(
Λ−1
σ Λ′σ − I

)
η`,η`

+ δη′,ν1δη,ν2
(
Λ−1
σ Λ′σ − I

)
η′`,η`

+ δη,ν1δη′,ν2
(
Λ−1
σ Λ′σ − I

)
η`,η′`

+ δν,ν1δν,ν2
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

}
(E.36)

In order to update the Green’s function, we use the following expression.

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+
∑
`3,`4,`5

∑
ν3,ν4,ν5

(Gσ − I)ν1`1,ν3`3
(
Λ−1
σ Λ′σ − I

)
ν3`3,ν4`4

(
A−1
σ

)
ν4`4,ν5`5

Gσ
ν5,ν2

(`5, `2)

(E.37)

After equation E.36 is inserted in equation E.37, equation E.37 becomes

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η′`

∑
`5,ν5

(
A−1
σ

)
η′`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η`

∑
`5,ν5

(
A−1
σ

)
η`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

∑
`5,ν5

(
A−1
σ

)
η`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

∑
`5,ν5

(
A−1
σ

)
η′`,ν5`5

Gσ
ν5,ν2

(`5, `2)

+ (Gσ − I)ν1`1,ν`
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

∑
`5,ν5

(
A−1
σ

)
ν`,ν5`5

Gσ
ν5,ν2

(`5, `2)

(E.38)
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Here it is seen that we only need 3× 3 part of A−1
σ which consists of η′, η and ν. Now let

us calculate A−1
σ using equation E.36;

Aσ = I + (I −Gσ)
(
Λ−1
σ Λ′σ − I

)
(E.39)

Aσ = I +



· · · · · · · · · · · · ·
· · · · · · ·
... · . . . · · · ...

· · · · · · ·
... · · . . . · · ...

· · · · · · ·
... · · · . . . · ...

· · · · · · ·
· · · · · · · · · · · · ·





0 0
. . .

• •
. . .

• •
. . .

•
. . .

0 0


(E.40)

Aσ =



1 0
. . .

• •
. . .

• •
. . .

•
. . .

0 1



(E.41)
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Here all elements in the diagonal are 1 except the big dots, vertical lines indicates the

non-zero elements, and all other elements are zero. The representation of Aσ is

(Aσ)ν1`1,ν2`2 = δν1,ν2δ`1,`2 + δη′,ν2δ`,`2(I −Gσ)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ δη,ν2δ`,`2(I −Gσ)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η`

+ δη,ν2δ`,`2(I −Gσ)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

+ δη′,ν2δ`,`2(I −Gσ)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

+ δν,ν2δ`,`2(I −Gσ)ν1`1,ν`
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

(E.42)

Let us look at the form of A−1
σ .

Aσ · A−1
σ = I (E.43)

The matrix form of this is following;



1 0
. . .

• •
. . .

• •
. . .

•
. . .

0 1





1 0
. . .

• •
. . .

• •
. . .

•
. . .

0 1



= I

(E.44)

Aσ A−1
σ

It is seen from equation E.38 that we only need 9 elements of A−1
σ which are indicated as

big dots. Thanks to the form of A−1
σ , we can work on only 3 × 3 part of Aσ and take the
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inverse. Let us define 3× 3 matrix Ã as

Ã =



(Aσ)η′`,η′` (Aσ)η′`,η` (Aσ)η′`,ν`

(Aσ)η`,η′` (Aσ)η`,η` (Aσ)η`,ν`

(Aσ)ν`,η′` (Aσ)ν`,η` (Aσ)ν`,ν`


(E.45)

We can find the inverse of Ã by using 2× 2 determinants of Ã.

Ã−1 =

1

det Ã



∣∣∣∣∣∣∣∣
(Aσ)η`,η` (Aσ)η`,ν`

(Aσ)ν`,η` (Aσ)ν`,ν`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,ν` (Aσ)η′`,η`

(Aσ)ν`,ν` (Aσ)ν`,η`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,η` (Aσ)η′`,ν`

(Aσ)η`,η` (Aσ)η`,ν`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η`,ν` (Aσ)η`,η′`

(Aσ)ν`,ν` (Aσ)ν`,η′`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,η′` (Aσ)η′`,ν`

(Aσ)ν`,η′` (Aσ)ν`,ν`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,ν` (Aσ)η′`,η′`

(Aσ)η`,ν` (Aσ)η`,η′`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η`,η′` (Aσ)η`,η`

(Aσ)ν`,η′` (Aσ)ν`,η`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,η` (Aσ)η′`,η′`

(Aσ)ν`,η` (Aσ)ν`,η′`

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(Aσ)η′`,η′` (Aσ)η′`,η`

(Aσ)η`,η′` (Aσ)η`,η`

∣∣∣∣∣∣∣∣


(E.46)

As in section E.1, because of the form of Aσ, determinants of Aσ and Ã are equal.

det Ã = detAσ (E.47)
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We have all the elements that we need for updating the Green’s function. From matrix

E.45, we can calculate the determinant of Aσ, which is

detAσ = (Aσ)η′`,η′`

[
(Aσ)η`,η` (Aσ)ν`,ν` − (Aσ)η`,ν` (Aσ)ν`,η`

]
− (Aσ)η`,η′`

[
(Aσ)η′`,η` (Aσ)ν`,ν` − (Aσ)η′`,ν` (Aσ)ν`,η`

]
+ (Aσ)ν`,η′`

[
(Aσ)η′`,η` (Aσ)η`,ν` − (Aσ)η′`,ν` (Aσ)η`,η`

]
(E.48)

From equation E.42, we know the 3× 3 part of Aσ. 9 elements of Aσ are

(Aσ)η′`,η′` = 1 +
[
1−Gσ

η′,η′(`, `)
] (

Λ−1
σ Λ′σ − I

)
η′`,η′`

−Gσ
η′,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η′`

(Aσ)η′`,η` = −Gσ
η′,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η`

+
[
1−Gσ

η′,η′(`, `)
] (

Λ−1
σ Λ′σ − I

)
η′`,η`

(Aσ)η′`,ν` = −Gσ
η′,ν(`, `)

(
Λ−1
σ Λ′σ − I

)
ν`,ν`

(E.49)

(Aσ)η`,η′` = −Gσ
η,η′(`, `)

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+
[
1−Gσ

η,η(`, `)
] (

Λ−1
σ Λ′σ − I

)
η`,η′`

(Aσ)η`,η` = 1 +
[
1−Gσ

η,η(`, `)
] (

Λ−1
σ Λ′σ − I

)
η`,η`
−Gσ

η,η′(`, `)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

(Aσ)η`,ν` = −Gσ
η,ν(`, `)

(
Λ−1
σ Λ′σ − I

)
ν`,ν`

(E.50)

(Aσ)ν`,η′` = −Gσ
ν,η′(`, `)

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

−Gσ
ν,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η′`

(Aσ)ν`,η` = −Gσ
ν,η(`, `)

(
Λ−1
σ Λ′σ − I

)
η`,η`
−Gσ

ν,η′(`, `)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

(Aσ)ν`,ν` = 1 +
[
1−Gσ

ν,ν(`, `)
] (

Λ−1
σ Λ′σ − I

)
ν`,ν`

(E.51)

From matrix E.46, we know the 9 elements of A−1
σ which are

(
A−1
σ

)
η′`,η′`

= (detAσ)−1
[
(Aσ)η`,η` (Aσ)ν`,ν` − (Aσ)η`,ν` (Aσ)ν`,η`

]
(
A−1
σ

)
η′`,η`

= (detAσ)−1
[
(Aσ)η′`,ν` (Aσ)ν`,η` − (Aσ)η′`,η` (Aσ)ν`,ν`

]
(
A−1
σ

)
η′`,ν`

= (detAσ)−1
[
(Aσ)η′`,η` (Aσ)η`,ν` − (Aσ)η′`,ν` (Aσ)η`,η`

]
(E.52)
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(
A−1
σ

)
η`,η′`

= (detAσ)−1
[
(Aσ)η`,ν` (Aσ)ν`,η′` − (Aσ)η`,η′` (Aσ)ν`,ν`

]
(
A−1
σ

)
η`,η`

= (detAσ)−1
[
(Aσ)η′`,η′` (Aσ)ν`,ν` − (Aσ)η′`,ν` (Aσ)ν`,η′`

]
(
A−1
σ

)
η`,ν`

= (detAσ)−1
[
(Aσ)η′`,ν` (Aσ)η`,η′` − (Aσ)η′`,η′` (Aσ)η`,ν`

]
(E.53)

(
A−1
σ

)
ν`,η′`

= (detAσ)−1
[
(Aσ)η`,η′` (Aσ)ν`,η` − (Aσ)η`,η` (Aσ)ν`,η′`

]
(
A−1
σ

)
ν`,η`

= (detAσ)−1
[
(Aσ)η′`,η` (Aσ)ν`,η′` − (Aσ)η′`,η′` (Aσ)ν`,η`

]
(
A−1
σ

)
ν`,ν`

= (detAσ)−1
[
(Aσ)η′`,η′` (Aσ)η`,η` − (Aσ)η′`,η` (Aσ)η`,η′`

]
(E.54)

Finally, after these findings equation E.38 becomes “General Expression for Updates with

(Λ−1
σ Λ′σ − I) Having Five Non-zero Elements”;

(
Gσ
ν1,ν2

(`1, `2)
)′

= Gσ
ν1,ν2

(`1, `2)

+
[
(Gσ − I)ν1`1,η′`

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

+ (Gσ − I)ν1`1,η`
(
Λ−1
σ Λ′σ − I

)
η`,η′`

]
×
[(
A−1
σ

)
η′`,η′`

Gσ
η′,ν2(`, `2) +

(
A−1
σ

)
η′`,η`

Gσ
η,ν2

(`, `2) +
(
A−1
σ

)
η′`,ν`

Gσ
ν,ν2

(`, `2)
]

+
[
(Gσ − I)ν1`1,η`

(
Λ−1
σ Λ′σ − I

)
η`,η`

+ (Gσ − I)ν1`1,η′`
(
Λ−1
σ Λ′σ − I

)
η′`,η`

]
×
[(
A−1
σ

)
η`,η′`

Gσ
η′,ν2(`, `2) +

(
A−1
σ

)
η`,η`

Gσ
η,ν2

(`, `2) +
(
A−1
σ

)
η`,ν`

Gσ
ν,ν2

(`, `2)
]

+ (Gσ − I)ν1`1,ν`
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

×
[(
A−1
σ

)
ν`,η′`

Gσ
η′,ν2(`, `2) +

(
A−1
σ

)
ν`,η`

Gσ
η,ν2

(`, `2) +
(
A−1
σ

)
ν`,ν`

Gσ
ν,ν2

(`, `2)
]
(E.55)

Equations E.48, E.49, E.50, E.51, E.52, E.53, E.54 and E.55 are the general expressions

for the updates when an arbitrary spin variable changes at an orbital on whichHJ is turned

on and when Nd · L×Nd · L matrix (Λ−1
σ Λ′σ − I) has 5 non-zero elements.
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E.4. Single Spin-flip for “r`”

Spin-flip for r` occurs in two ways. First one is turning on the effect of HJ for

imaginary-time slice `, and the second one is turning it off for imaginary-time slice `.

E.4.1. Turning on the effect of HJ

Let us look at the turning on case which is following;

r` = 0 −→ r′` = 1

This move turns on three auxiliary field variables at time slice `, and impurity sites η, η′.

These variables are q`, t↑` and t↓`.

q` = 0 −→ q′` = ±1

t↑` = 0 −→ t′↑` = ±1

t↓` = 0 −→ t′↓` = ±1

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.56)
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Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =



. . . 0

eλ4tσ` cosh(λ4σq`)e
Wη′,σ(`) eλ4tσ` sinh(λ4σq`)e

Wη′,σ(`)

. . .

eλ4tσ` sinh(λ4σq`)e
Wη,σ(`) eλ4tσ` cosh(λ4σq`)e

Wη,σ(`)

0 . . .


(E.57)

and

[Λσ(`)]−1 =



. . . 0

e−Wη′,σ(`)

. . .

e−Wη,σ(`)

0 . . .



(E.58)
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After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

;

[Λσ(`)]−1 Λ′σ(`)− I =

0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
eλ4tσ` cosh(λ4σq`)− 1 eλ4tσ` sinh(λ4σq`)

0

eλ4tσ` sinh(λ4σq`) eλ4tσ` cosh(λ4σq`)− 1
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

0 0



(E.59)

Since the change occurs only at imaginary-time slice `, the form of (Λ−1
σ Λ′σ − I) is the

same.

Λ−1
σ Λ′σ − I =

0 0
. . .

eλ4tσ` cosh(λ4σq`)− 1 eλ4tσ` sinh(λ4σq`)

0

eλ4tσ` sinh(λ4σq`) eλ4tσ` cosh(λ4σq`)− 1
. . .

0 0



(E.60)

All elements are zero except the four elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`) and (η`, η`). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero ele-
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ments. The elements which are used for the Green’s function update caused by

r` = 0 −→ r′` = 1

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= eλ4tσ` cosh(λ4σq`)− 1(
Λ−1
σ Λ′σ − I

)
η′`,η`

= eλ4tσ` sinh(λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η′`

= eλ4tσ` sinh(λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η`

= eλ4tσ` cosh(λ4σq`)− 1

(E.61)

E.4.2. Turning off the effect of HJ

Let us look at the turning on case which is following;

r` = 1 −→ r′` = 0

This move turns off three auxiliary field variables at time slice `, and impurity sites η, η′.

These variables are q`, t↑` and t↓`.

q` = ±1 −→ q′` = 0

t↑` = ±1 −→ t′↑` = 0

t↓` = ±1 −→ t′↓` = 0

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.62)
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Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =



. . . 0

eWη′,σ(`)

. . .

eWη,σ(`)

0 . . .



(E.63)

and

[Λσ(`)]−1 =

. . . 0

e−λ4tσ` cosh(λ4σq`)e
−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e

−Wη,σ(`)

. . .

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

0 . . .


(E.64)
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After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

;

[Λσ(`)]−1 Λ′σ(`)− I =

0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
e−λ4tσ` cosh(λ4σq`)− 1 −e−λ4tσ` sinh(λ4σq`)

0

−e−λ4tσ` sinh(λ4σq`) e−λ4tσ` cosh(λ4σq`)− 1
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

0 0



(E.65)

Since the change occurs only at imaginary-time slice `, the form of (Λ−1
σ Λ′σ − I) is the

same.

Λ−1
σ Λ′σ − I =

0 0
. . .

e−λ4tσ` cosh(λ4σq`)− 1 −e−λ4tσ` sinh(λ4σq`)

0

−e−λ4tσ` sinh(λ4σq`) e−λ4tσ` cosh(λ4σq`)− 1
. . .

0 0



(E.66)

All elements are zero except the four elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`) and (η`, η`). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero ele-
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ments. The elements which are used for the Green’s function update caused by

r` = 1 −→ r′` = 0

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= e−λ4tσ` cosh(λ4σq`)− 1(
Λ−1
σ Λ′σ − I

)
η′`,η`

= −e−λ4tσ` sinh(λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η′`

= −e−λ4tσ` sinh(λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η`

= e−λ4tσ` cosh(λ4σq`)− 1

(E.67)

E.5. Single Spin-flip for “q`”

The spin-flip for q` occurs in the following way.

q` −→ q′` = −q`

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.68)
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Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =



. . . 0

eλ4tσ` cosh(λ4σq`)e
Wη′,σ(`) −eλ4tσ` sinh(λ4σq`)e

Wη′,σ(`)

. . .

−eλ4tσ` sinh(λ4σq`)e
Wη,σ(`) eλ4tσ` cosh(λ4σq`)e

Wη,σ(`)

0 . . .


(E.69)

and

[Λσ(`)]−1 =

. . . 0

e−λ4tσ` cosh(λ4σq`)e
−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e

−Wη,σ(`)

. . .

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

0 . . .


(E.70)

After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

, and the result

can be reduced more by using hyperbolic identities. Since the change occurs only at

imaginary-time slice `, the form of (Λ−1
σ Λ′σ − I) is the same. The reduced form of the
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matrix is

Λ−1
σ Λ′σ − I =



0 0
. . .

cosh(2λ4σq`)− 1 − sinh(2λ4σq`)

0

− sinh(2λ4σq`) cosh(2λ4σq`)− 1
. . .

0 0



(E.71)

All elements are zero except the four elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`) and (η`, η`). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero ele-

ments. The elements which are used for the Green’s function update caused by

q` −→ q′` = −q`

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= cosh(2λ4σq`)− 1(
Λ−1
σ Λ′σ − I

)
η′`,η`

= − sinh(2λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η′`

= − sinh(2λ4σq`)(
Λ−1
σ Λ′σ − I

)
η`,η`

= cosh(2λ4σq`)− 1

(E.72)
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E.6. Single Spin-flip for “tσ`”

The spin-flip for tσ` occurs in the following way.

tσ` −→ t′σ` = −tσ`

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.73)

Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =



. . . 0

e−λ4tσ` cosh(λ4σq`)e
Wη′,σ(`) e−λ4tσ` sinh(λ4σq`)e

Wη′,σ(`)

. . .

e−λ4tσ` sinh(λ4σq`)e
Wη,σ(`) e−λ4tσ` cosh(λ4σq`)e

Wη,σ(`)

0 . . .


(E.74)
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and

[Λσ(`)]−1 =

. . . 0

e−λ4tσ` cosh(λ4σq`)e
−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e

−Wη,σ(`)

. . .

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

0 . . .


(E.75)

After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

.

[Λσ(`)]−1 Λ′σ(`)− I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
e−2λ4tσ` − 1

0

e−2λ4tσ` − 1
↑↑↑
η, ηη, ηη, η

. . .

0 0



(E.76)
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This can be reduced more by using hyperbolic identities. Since the change occurs only at

imaginary-time slice `, the form of (Λ−1
σ Λ′σ − I) is the same.

Λ−1
σ Λ′σ − I =



0 0
. . .

e−2λ4tσ` − 1

0

e−2λ4tσ` − 1
. . .

0 0



(E.77)

All elements are zero except two elements which are located at (η′`, η′`) and (η`, η`). For

this new spin configuration, the update expression of Green’s function is equation E.31,

because the matrix, (Λ−1
σ Λ′σ − I), has only 2 non-zero elements. The elements which are

used for the Green’s function update caused by

tσ` −→ t′σ` = −tσ`

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= e−2λ4tσ` − 1(
Λ−1
σ Λ′σ − I

)
η`,η`

= e−2λ4tσ` − 1
(E.78)

E.7. Single Spin-flip for “SUν`”

The update algorithms of arbitrary field variables SUν′`,S
U ′

νν′,` and SU
′−J

νν′,`,σ are mod-

ified when the changes are at the impurity orbitals on which the effects of HJ are turned

on. The update algorithm of these variables do not change if the effects of HJ is turned

off on that orbitals. Here, for the update algorithms of these variables, we assume that the
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effects of HJ is turned on for η and η′ impurity orbitals. There are two cases which SUν`
can be changed; for ν = η or ν = η′ impurity orbitals. If ν 6= η or ν 6= η′, there is no

change in the algorithms.

E.7.1. Spin-flip for SUη′`

In this section, we will look at spin-flip for SUη′` which is

SUη′` −→
(
SUη′`
)′

= −SUη′`

In order to track the effect of this change let us look at (Wη′σ(`))′ −Wη′σ(`) which will

be calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wη′σ(`))′ −Wη′σ(`) = −2λ1σS
U
η′` (E.79)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.80)
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Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =

. . . 0

eλ4tσ` cosh(λ4σq`)e
(Wη′,σ(`))

′

eλ4tσ` sinh(λ4σq`)e
(Wη′,σ(`))

′

. . .

eλ4tσ` sinh(λ4σq`)e
Wη,σ(`) eλ4tσ` cosh(λ4σq`)e

Wη,σ(`)

0 . . .


(E.81)

and

[Λσ(`)]−1 =

. . . 0

e−λ4tσ` cosh(λ4σq`)e
−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e

−Wη,σ(`)

. . .

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

0 . . .


(E.82)

Since the change occurs only at imaginary-time slice `, the form of (Λ−1
σ Λ′σ − I)

is the same. All elements are zero except the four elements which are located at (η′`, η′`),

(η′`, η`), (η`, η′`) and (η`, η`). For this new spin configuration, the update expression of

Green’s function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero
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elements. The elements which are used for the Green’s function update caused by

SUη′` −→
(
SUη′`
)′

= −SUη′`

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= cosh2(λ4σq`)
(
e
−2λ1σSUη′` − 1

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
e
−2λ1σSUη′` − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
1− e−2λ1σSUη′`

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= sinh2(λ4σq`)
(

1− e−2λ1σSUη′`

)
(E.83)

E.7.2. Spin-flip for SUη`

In this section, we will look at spin-flip for SUη` which is

SUη` −→
(
SUη`
)′

= −SUη`

In order to track the effect of this change let us look at (Wη′σ(`))′ −Wη′σ(`) which will

be calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wησ(`))′ −Wησ(`) = −2λ1σS
U
η` (E.84)

This update is the same as in the case for SUη′`, however the only change is the orbital

indices. All elements are zero except the four elements which are located at (η′`, η′`),

(η′`, η`), (η`, η′`) and (η`, η`). For this new spin configuration, the update expression of

Green’s function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero
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elements. The elements which are used for the Green’s function update caused by

SUη` −→
(
SUη`
)′

= −SUη`

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= sinh2(λ4σq`)
(

1− e−2λ1σSUη′`

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
1− e−2λ1σSUη′`

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
e
−2λ1σSUη′` − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= cosh2(λ4σq`)
(
e
−2λ1σSUη′` − 1

)
(E.85)

E.8. Single Spin-flip for “SU ′

νν′,`”

SU
′

νν′,` −→
(
SU
′

νν′,`

)′
= −SU ′νν′,`

The spin-flip for SU ′νν′` affects just the orbital in the first index which is ν in this

example. However, the effect of this change is different for up and down spin in the

following way;

(Wν↑(`))
′ −Wν↑(`) = −2λ2σS

U ′

νν′,`

(Wν↓(`))
′ −Wν↓(`) = +2λ2σS

U ′

νν′,` (E.86)

Since it affects just one orbital, the update algorithm is the same as in the case of SU ′ν` ’.

One needs to check whether ν is equal to η,η′ or not. If ν is equal to η or η′, the up-

date algorithm is equation E.28 and the elements of (Λ−1
σ Λ′σ − I) matrix depends on the
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orbital.

If ν = η′ −→ use equations E.83

If ν = η −→ use equations E.85

If ν 6= η′ or ν 6= η −→ no change in the equations

(E.87)

Addition to this, exponents of the factors in the equations E.83 and E.85 should be

changed depending on up and down spin using equations E.86

E.9. Single Spin-flip for “SU
′−J

νν′,`,σ”

There are three cases in which the spin-flip for SU
′−J

νν′,`,σ occurs. These cases include

HJ being turned on at both ν and ν ′ orbitals, HJ being turned on at just ν or ν ′ orbital.

These three cases includes 5 situations. Let us assume that the effects of HJ is turned on

at η and η′ orbitals.

if ν = η and ν ′ = η′ −→ SU
′−J

ηη′,`,σ

if ν 6= η, η′ and ν ′ = η′ −→ SU
′−J

νη′,`,σ

if ν 6= η, η′ and ν ′ = η −→ SU
′−J

νη,`,σ

if ν = η′ and ν ′ 6= η, η′ −→ SU
′−J

η′ν′,`,σ

if ν = η and ν ′ 6= η, η′ −→ SU
′−J

ην′,`,σ

E.9.1. Spin-flip for SU
′−J

ηη′,`,σ

SU
′−J

ηη′,`,σ −→
(
SU
′−J

ηη′,`,σ

)′
= −SU ′−Jηη′,`,σ
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In order to track the effect of this change let us look at (Wη′σ(`))′−Wη′σ(`) and (Wησ(`))′−
Wησ(`) which will be calculated when we multiply Λ−1

σ and Λ′σ matrices.

(Wη′σ(`))′ −Wη′σ(`) = +2λ3S
U ′−J
ηη′,`,σ

(Wησ(`))′ −Wησ(`) = −2λ3S
U ′−J
ηη′,`,σ (E.88)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.89)

Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =

. . . 0

eλ4tσ` cosh(λ4σq`)e
(Wη′,σ(`))

′

eλ4tσ` sinh(λ4σq`)e
(Wη′,σ(`))

′

. . .

eλ4tσ` sinh(λ4σq`)e
(Wη,σ(`))′ eλ4tσ` cosh(λ4σq`)e

(Wη,σ(`))′

0 . . .


(E.90)
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and

[Λσ(`)]−1 =

. . . 0

e−λ4tσ` cosh(λ4σq`)e
−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e

−Wη,σ(`)

. . .

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

0 . . .


(E.91)

After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

.

[Λσ(`)]−1 Λ′σ(`)− I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
• •

0

• •
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

0 0



(E.92)
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Here, all elements are zero except the big dots. Since the change occurs only at imaginary-

time slice `, the form of (Λ−1
σ Λ′σ − I) is the same.

Λ−1
σ Λ′σ − I =



0 0
. . .

• •
. . .

• •
. . .

0 0


(E.93)

All elements are zero except the four elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`) and (η`, η`). For this new spin configuration, the update expression of Green’s

function is equation E.28, because the matrix, (Λ−1
σ Λ′σ − I), has only 4 non-zero ele-

ments. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

SU
′−J

ηη′,`,σ −→
(
SU
′−J

ηη′,`,σ

)′
= −SU ′−Jηη′,`,σ

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= e
2λ3S

U′−J
ηη′,`,σ

[
1 + sinh2(λ4σq`)

(
1− e−4λ3S

U′−J
ηη′,`,σ

)]
− 1

(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
e

2λ3S
U′−J
ηη′,`,σ − e−2λ3S

U′−J
ηη′,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
e
−2λ3S

U′−J
ηη′,`,σ − e2λ3S

U′−J
ηη′,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= e
2λ3S

U′−J
ηη′,`,σ

[
1 + cosh2(λ4σq`)

(
e
−4λ3S

U′−J
ηη′,`,σ − 1

)]
− 1

(E.94)
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E.9.2. Spin-flip for SU
′−J

νη′,`,σ

SU
′−J

νη′,`,σ −→
(
SU
′−J

νη′,`,σ

)′
= −SU ′−Jνη′,`,σ

In order to track the effect of this change let us look at (Wη′σ(`))′ −Wη′σ(`) which will

be calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wη′σ(`))′ −Wη′σ(`) = +2λ3S
U ′−J
νη′,`,σ

(Wνσ(`))′ −Wνσ(`) = −2λ3S
U ′−J
νη′,`,σ (E.95)

Here, we should be careful about the facts that

ν > η′ (E.96)

η > η′. (E.97)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.98)
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Let us look at the form of (Λ−1
σ Λ′σ − I). We know the forms of the matrices [Λσ(`)]−1

and Λ′σ(`) from section 4.3.

Λ′σ(`) =

. . . 0
eλ4tσ` cosh(λ4σq`)e

(Wη′,σ(`))
′

eλ4tσ` sinh(λ4σq`)e
(Wη′,σ(`))

′

eλ4tσ` sinh(λ4σq`)e
Wη,σ(`) eλ4tσ` cosh(λ4σq`)e

Wη,σ(`)

e(Wν,σ(`))′

0 . . .


(E.99)

and

[Λσ(`)]−1 =

. . . 0
e−λ4tσ` cosh(λ4σq`)e

−Wη′,σ(`) −e−λ4tσ` sinh(λ4σq`)e
−Wη,σ(`)

−e−λ4tσ` sinh(λ4σq`)e
−Wη′,σ(`) e−λ4tσ` cosh(λ4σq`)e

−Wη,σ(`)

e−Wν,σ(`)

0 . . .


(E.100)
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After we multiply them, we get the form of
{

[Λσ(`)]−1 Λ′σ(`)− I
}
Nd×Nd

.

[Λσ(`)]−1 Λ′σ(`)− I =



0 0
. . .

η′,η′η′,η′η′,η′

↓↓↓
η′,ηη′,ηη′,η

↓↓↓
• •

. . .

• •
↑↑↑

η, η′η, η′η, η′
↑↑↑
η, ηη, ηη, η

. . .

•
↑↑↑
ν, νν, νν, ν

. . .

0 0



(E.101)

Here, all elements are zero except the big dots. Since the change occurs only at imaginary-

time slice `, the form of (Λ−1
σ Λ′σ − I) is the same.

Λ−1
σ Λ′σ − I =



0 0
. . .

• •
. . .

• •
. . .

•
. . .

0 0



(E.102)

All elements are zero except five elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`), (η`, η`) and (ν`, ν`). For this new spin configuration, the update expression of

Green’s function is equation E.55, because the matrix, (Λ−1
σ Λ′σ − I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function
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update caused by

SU
′−J

νη′,`,σ −→
(
SU
′−J

νη′,`,σ

)′
= −SU ′−Jνη′,`,σ

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= cosh2(λ4σq`)

(
e

+2λ3S
U′−J
νη′,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
e

+2λ3S
U′−J
νη′,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
1− e+2λ3S

U′−J
νη′,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= sinh2(λ4σq`)

(
1− e+2λ3S

U′−J
νη′,`,σ

)
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

= e
−2λ3S

U′−J
νη′,`,σ − 1

(E.103)

E.9.3. Spin-flip for SU
′−J

νη,`,σ

SU
′−J

νη,`,σ −→
(
SU
′−J

νη,`,σ

)′
= −SU ′−Jνη,`,σ

In order to track the effect of this change let us look at (Wνσ(`))′−Wνσ(`) which will be

calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wησ(`))′ −Wησ(`) = +2λ3S
U ′−J
νη,`,σ

(Wνσ(`))′ −Wνσ(`) = −2λ3S
U ′−J
νη,`,σ (E.104)
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Here, we should be careful about the facts that

ν > η (E.105)

η > η′. (E.106)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.107)

The form of the matrix (Λ−1
σ Λ′σ − I) is the same as in the case of SU

′−J
νη′,`,σ.

Λ−1
σ Λ′σ − I =



0 0
. . .

• •
. . .

• •
. . .

•
. . .

0 0



(E.108)

All elements are zero except five elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`), (η`, η`) and (ν`, ν`). For this new spin configuration, the update expression of

Green’s function is equation E.55, because the matrix, (Λ−1
σ Λ′σ − I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

SU
′−J

νη,`,σ −→
(
SU
′−J

νη,`,σ

)′
= −SU ′−Jνη,`,σ
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change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= sinh2(λ4σq`)
(

1− e+2λ3S
U′−J
νη,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
1− e+2λ3S

U′−J
νη,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
e+2λ3S

U′−J
νη,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= cosh2(λ4σq`)
(
e+2λ3S

U′−J
νη,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

= e−2λ3S
U′−J
νη,`,σ − 1

(E.109)

E.9.4. Spin-flip for SU
′−J

η′ν,`,σ

SU
′−J

η′ν,`,σ −→
(
SU
′−J

η′ν,`,σ

)′
= −SU ′−Jη′ν,`,σ

In order to track the effect of this change let us look at (Wνσ(`))′−Wνσ(`) which will be

calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wνσ(`))′ −Wνσ(`) = +2λ3S
U ′−J
η′ν,`,σ

(Wη′σ(`))′ −Wη′σ(`) = −2λ3S
U ′−J
η′ν,`,σ (E.110)

Here, we should be careful about the facts that

η′ > ν (E.111)

η > η′. (E.112)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.113)
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The form of the matrix (Λ−1
σ Λ′σ − I) is the same as in the case of SU

′−J
νη′,`,σ with a minor

difference.

Λ−1
σ Λ′σ − I =



0 0
. . .

•
. . .

• •
. . .

• •
. . .

0 0



(E.114)

All elements are zero except five elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`), (η`, η`) and (ν`, ν`). For this new spin configuration, the update expression of

Green’s function is equation E.55, because the matrix, (Λ−1
σ Λ′σ − I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

SU
′−J

η′ν,`,σ −→
(
SU
′−J

η′ν,`,σ

)′
= −SU ′−Jη′ν,`,σ

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= cosh2(λ4σq`)

(
e
−2λ3S

U′−J
η′ν,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
e
−2λ3S

U′−J
η′ν,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
1− e−2λ3S

U′−J
η′ν,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= sinh2(λ4σq`)

(
1− e−2λ3S

U′−J
η′ν,`,σ

)
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

= e
+2λ3S

U′−J
η′ν,`,σ − 1

(E.115)
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E.9.5. Spin-flip for SU
′−J

ην,`,σ

SU
′−J

ην,`,σ −→
(
SU
′−J

ην,`,σ

)′
= −SU ′−Jην,`,σ

In order to track the effect of this change let us look at (Wνσ(`))′−Wνσ(`) which will be

calculated when we multiply Λ−1
σ and Λ′σ matrices.

(Wνσ(`))′ −Wνσ(`) = +2λ3S
U ′−J
ην,`,σ

(Wησ(`))′ −Wησ(`) = −2λ3S
U ′−J
ην,`,σ (E.116)

Here, we should be careful about the facts that

η > ν (E.117)

η > η′. (E.118)

Green’s function for new spin configuration is calculated with the relation

(Gσ)′ = Gσ + (Gσ − I)
(
Λ−1
σ Λ′σ − I

)
A−1
σ Gσ (E.119)

The form of the matrix (Λ−1
σ Λ′σ − I) is the same as in the case of SU

′−J
νη′,`,σ with a minor
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difference.

Λ−1
σ Λ′σ − I =



0 0
. . .

•
. . .

• •
. . .

• •
. . .

0 0



(E.120)

All elements are zero except five elements which are located at (η′`, η′`), (η′`, η`),

(η`, η′`), (η`, η`) and (ν`, ν`). For this new spin configuration, the update expression of

Green’s function is equation E.55, because the matrix, (Λ−1
σ Λ′σ − I), has only 5 non-zero

elements. After the results is reduced more by using hyperbolic identities, we can get the

final form of the non-zero elements. The elements which are used for the Green’s function

update caused by

SU
′−J

ην,`,σ −→
(
SU
′−J

ην,`,σ

)′
= −SU ′−Jην,`,σ

change are

(
Λ−1
σ Λ′σ − I

)
η′`,η′`

= sinh2(λ4σq`)
(

1− e−2λ3S
U′−J
ην,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η′`,η`

=
1

2
sinh(2λ4σq`)

(
1− e−2λ3S

U′−J
ην,`,σ

)
(
Λ−1
σ Λ′σ − I

)
η`,η′`

=
1

2
sinh(2λ4σq`)

(
e−2λ3S

U′−J
ην,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
η`,η`

= cosh2(λ4σq`)
(
e−2λ3S

U′−J
ην,`,σ − 1

)
(
Λ−1
σ Λ′σ − I

)
ν`,ν`

= e+2λ3S
U′−J
ην,`,σ − 1

(E.121)
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